A APPENDIX

A.1 DATASETS & EVALUATION

In Table 5, we present an overview of the dataset statistics related to inductive knowledge graph reasoning. In the inductive scenario, we adhere to the approach outlined in Zhang & Yao (2022), where each target tail (or head) entity is ranked in comparison to the remaining negative entities. Our reported metrics include the mean reciprocal rank (MRR) of the rankings and the hit rate (H@K) for the top K rankings.

Table 5: Statistics of inductive benchmarks. We use REL and ENT and TR to denote the number of relations, entities, and triplets, respectively

DataSets		WN18RR				FB15k-237				NELL-995			
		REL	ENT	TR	-	REL	ENT	TR		REL	ENT	TR	
v1	train	9	2746	6678		183	2000	5226		14	10915	5540	
	test	9	922	1991		146	1500	2404		14	225	1034	
v2	train	10	6954	18968		203	3000	12085		88	2564	10109	
	test	10	2923	4863		176	2000	5092		79	4937	5521	
v3	train	11	12078	32150		218	4000	22394		142	4647	20117	
	test	11	5084	7470		187	3000	9137		122	4921	9668	
v4	train	9	3861	9842		222	5000	33916		77	2092	9289	
	test	9	7208	15157		204	3500	14554		61	3294	8520	

A.2 HYPER-PARAMETERS

We provide the hyper-parameters of L, K, p_e, p_τ and batch size in Table 6.

Use an example targ	WN18RR				FB15k237				NELL-995			
Hyper-parameters	V1	V2	V3	V4	V1	V2	V3	V4	V1	V2	V3	V4
L	3	3	7	3	7	3	7	5	3	3	3	7
K	150	50	100	300	300	250	300	300	50	300	300	100
p_e	0.5	0.3	0.3	0.6	0.3	0.7	0.3	0.4	0.5	0.4	0.4	0.8
$p_{ au}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	0.4	0.4	0.5
batch size	100	50	100	10	20	10	20	20	10	100	10	20

Table 6: Hyperparameter configurations of DDLR on different datasets.

A.3 EFFECTIVENESS OF CUT-OFF PROBABILITY

Fig 3 illustrates the impact of different values of p_{τ} . The results indicate that the choice of the cutoff probability may have a noticeable impact on performance. Around a specific cut-off probability value, the model may exhibit optimal performance, while in the vicinity of other cut-off probability, performance may decline. Therefore, in practical applications, careful consideration should be given to selecting the cut-off probability value to optimize the model's performance on specific tasks and datasets.

Figure 3: Ablation study with different p_{τ}

A.4 FULL ALGORITHM

The full procedure is shown in Algorithm 1. In line 3, we initialize embeddings for all nodes and obtain the ending nodes of the important paths with a length of t - 1 through the path scoring function and the top-K strategy in line 6. Next, DDLR conducts edge sampling in line 8. Finally, we obtain the representation $h_q^{(t)}(u, v)$ in line 12 and path scores $s_{uq}^{(t)}(x)$ in line 13.

Algorithm 1:

Input: head entity u, query relation q, iterations L**Output:** $h_q^{(L)}(u, v)$ for $v \in \mathcal{V}$ 1 $\hat{\mathcal{V}}^{(0)} = \{u\}$ 2 for $v \in \mathcal{V}$ do $\boldsymbol{h}_{q}^{(0)}(u,v) = \boldsymbol{q}$ if u=v else **0** 3 4 end **5 for** t = 1 to *L* **do** $\chi^{(t-1)} = \operatorname{TopK}(s_{uq}^{(t)}(x) \mid x \in \hat{\mathcal{V}}^{(t-1)})$ $\mathcal{E}^{(t)} = \bigcup_{x \in \chi^{(t-1)}} (x, r, v) \in \mathcal{N}(x)$ 6 7 Compute $\widetilde{\mathcal{R}}^{(t)}$ with Eq 13 8 $\mathcal{E}^{(t)} = \{ (x, r, v) \mid (x, r, v) \in \mathcal{E}^{(t)}, r \in \widetilde{\mathcal{R}}^{(t)} \}$ 9 $\hat{\mathcal{V}}^{(t)} = \bigcup_{(x,r,v)\in\mathcal{E}^{(t)}} \{v\}$ 10 for $v \in \hat{\mathcal{V}}^{(t)}$ do 11 Compute $\boldsymbol{h}_{q}^{(t)}(u,v)$ with Eq 16 12 Compute $s_{uq}^{(t)}(x)$ with Eq 9 13 end 14 15 end 16 return $oldsymbol{h}_q^{(L)}(u,v)$