Obj Pos+Obj Tex Obj Pos+Table Tex Obj Pos+Cam Pos

Obj Pos+Distract Obj Tex+Table Tex

100 100 100 100 . 10— oo
1 'y : 4 / 1 & -
g 75 (f 75 A 75 1 754 756 75
- 4 P, [-
&S 1 ! ! » : *
2] ' * Y
2 50 5014 50 50 = 50 50
s |7 A — - G gt | lhaammaeaa | mEEE====
=] s ¥
N e——-—————— [-
25 25 25 25 25 25
0 4 10 20 0 4 10 20 0 4 10 20 0 4 10 20 0 4 10 20 0'4 10 20
Obj Tex+Cam Pos Obj Tex+Distract Table Tex+Cam Pos Table Tex+Distract Cam Pos+Distract All Factors (N = 5)
100 100 100 J LU0} R . 100 100
_______ —_h 7—* ____j__-.- &/: ‘:‘ ____J?——»AA
» 1 Y i & v }
a8 75 ’ 75 1 i e e e e 75 75 oyl - 75 ! 75
& y 4
P / ! . £
3 50 50 5014 50 o101 0 S 50
5 L 2] ¥~ 4
s — | FT=ooo=
w0 4
AT 25 25 25 25 25
e
03 0 2 % 0 20 %3 0 2 % 0 2 % 0 20 M 5 =
Total Factor Changes (Effort)
== Complete ¢ Stair L ¢ Diagonal Random ¢+ Factor 1 Only Factor2Only == No Variation

Fig. 11: Simulation results of different data collection strategies for Door Open. We report results where F” consists of each possible
factor pair (IV = 2), average results across all pairs, and results where F N consists of all factors (N = 5). Results are similar as with Pick
Place, with Stair generally performing the best, especially in the (IN = 5) setting. Error bars represent standard error across 5 seeds.

APPENDIX A
DATA COLLECTION STRATEGIES

A. Pseudocode

We provide pseudocode for the data collection strategies
proposed in that are intended to exploit compo-
sitional generalization (Diagonal, L, Stair).

Algorithm 1 Diagonal

Input: scene S, factor values F (size N factors x k values)
for j « 1to k do

f«oN

for i <~ 1to N do

fi < Fij

end for

SETFACTORS(S, f)

COLLECTDATA(S)
end for

Algorithm 2 L

Input: scene S, factor values F (size N factors x k values),
base factor values f* (size IV factors)
for i < 1to N do
[« f
for j < 1 to k do
fi < Fy
SETFACTORS(S, f)
COLLECTDATA(S)
end for
end for

Algorithm 3 Stair

Input: scene S, factor values F (size N factors x k values),
base factor values f* (size N factors)
[
for j < 1to k do
for i < 1to N do
fi < Fij
SETFACTORS(S, f)
COLLECTDATA(S)
end for
end for

APPENDIX B
SIMULATION EXPERIMENTS

A. Door Open Results

We include additional simulation results for the task Door
Open in . Results are similar as in Pick Place, with
generally strong pairwise composition, and Stair generally
performing the best, especially in the NV = 5 setting.

B. Factors

For the inherently discrete-valued factors object texture,
table texture, and distractor objects, we sample our k = 10
values for FV from all possible training values specified in
Factor World. Distractor objects also include a size scale
(sampled from range [0.3,0.8]), 2D rotation (sampled from
range [0,27]), and 2D position (sampled from all possible
positions on the table) as part of each value. For object
position, we sample 2D xy positions from the range [—0.1, 0.1]
for both coordinates. We note that the Pick Place task includes

Fig. 12: Visualization of our factors for the Pick Place (left) and Door Open (right) tasks from Factor World. We show two examples of

values for each factor we consider.

a small amount of added noise to object position each episode,
sampled uniformly from the range [—0.03,0.03]. For camera
position, we sample 3D zyz positions and 4D rotation quater-
nions all from the range [—0.05,0.05]. When sampling our &
values for each factor, we ensure that the scripted policy is
able to solve the task for each value, because some values for
object position and distractor objects can impede the task. In
Fig. 12, we visualize two examples of values for each factor,
for both the Pick Place and Door Open tasks. We note that
each random seed in our evaluation includes a different set of
k = 10 values sampled for each factor for F*.

C. Training

We use the same policy architecture and training hyperpa-
rameters from the original Factor World experiments [49]. We
condition policies on the same observations (2 84x84 RGB
images from 2 camera views without history, and propriocep-
tion), and use the same action space (3D end-effector position
deltas and open/close gripper). Unlike the original Factor
World experiments, we always use random shift augmentation.
Unlike our real robot experiments, we train policies without
goal conditioning, as we do not leverage diverse prior data in
this setting, so task conditioning is not as essential.

Obj Pos+Obj Tex Obj Pos+Table Tex Obj Pos+Cam Pos Obj Pos+Distract Obj Tex+Table Tex Avg (N =2)
100 —— —— ——— x 100h U 10— = 100________7 oo s 1004 e "
® ¥ 4 :
g 75 ¥ 75 ¥ 75 P 75 ¥ 75| 4 75
S 7 X —
4 4 N e T §
2]
£ 50 V ~—t 50 500 JA 501 50 500
o L ’
& s & S| S Te——
25 | S - S 25 25 25 25
0 4 10 20 0 4 10 20 0 4 10 20 0 4 10 20 0 4 10 20 0'4 10 20
Obj Tex+Cam Pos Obj Tex+Distract Table Tex+Cam Pos Table Tex+Distract Cam Pos+Distract All Factors (N = 5)
100} e [11 1] E— L 100 P 100 S (] E— s 100
¥ D e I T =" ==
@ 75, 7518 75 / 75 751k 75
s} i _________
& S R | /- e L
7)) pf 3 *
§ SO mmm————— 50 50 4 50 50 50
] =2
s 0 [fEmmmmme= . }
w0
25 25 25 25 25 25 ¥
M o o
03 0 2 % 0 20 %3 0 2 % 0 2 % 0 20 M 5 =
Total Factor Changes (Effort)
== Complete ¢ Stair L ¢ Diagonal Random ¢+ Factor 1 Only Factor2Only == No Variation

Fig. 13: Simulation results of data collection strategies for Pick Place, with additional color jitter augmentation. Overall performance across
all strategies slightly improves, but the overall trends are similar to as without color jitter. Error bars represent standard error across 5 seeds.

D. Color Jitter Augmentation

We do not use color jitter augmentation in our main simula-
tion experiments, because the original experiments for Factor
World found this to reduce overall generalization, except for
when training variation was very low [49]. However, here
we include additional results with color jitter (in addition to
random shift). We find that overall performance across all
strategies does slightly improve, but the overall trends across
strategies are similar to as without color jitter.

E. Accounting for Factor Value Similarity

In practice, data collection strategies should ideally account
for similarity between factor values to improve generalization.
For example, when training policies to be robust to the factor
object type, it would be desirable to prioritize object diversity
during data collection to generalize to as many objects as
possible, rather than collecting data for overly similar ob-
jects. Here, we demonstrate how our proposed data collection
framework could incorporate notions of factor similarity when
available, through additional Pick Place experiments.

We consider the composition of object position and camera
position in the N = 2 setting, as these are the only factors
we study in simulation where computing similarity/distance is
straightforward (we use Euclidean distance for 3D positions,
and angular distance for camera rotation quaternions). We
modify Stair to choose factor values using a similarity-aware
strategy, rather than randomly as before. We do this by running
a k-medoids algorithm on the set of 10 values for each factor,
to determine which k values/medoids in the set minimize the
sum of distances from each value to its nearest medoid. We
determine k according to what is permissible under different

Stair, Obs Pos+Cam Pos

100 1= o o e o e
87 4
o]
~
n
$ 50
It @
A
25
0% 10
Total Factor Changes (Effort)
== All Values (20 Changes)

+— Random Selection
Similarity-Aware Selection

Fig. 14: Performance of the Stair strategy for the Pick Place task,
when composing object position and camera position. We find that
selecting factor values using a similarity-aware strategy outperforms
random selection (as done in our main simulation results).

factor change budgets (e.g., for 10 total changes in the N = 2
setting, each factor can have k = 1—20 = 5 values).

In , we compare using k-medoids for factor value
selection (orange), and random selection as done in our main
results (gray). We evaluate using the same procedure as in
our main simulation results in , where the aim
is to generalize to all factor value combinations. We find that

(b) CompKitch

>

(c) TileKitch

Fig. 15: Additional views of each kitchen in our real robot experiments. We name CompKitch and TileKitch after their countertop materials
of composite and tile, respectively. These images were taken after our evaluations, so there may be some slight differences from then.

accounting for similarity does indeed improve upon random
selection, although it does not match observing all factor
values (green), which requires 20 factor changes.

We note that it often not straightforward to compute simi-
larity metrics for other factors, and that while accounting for
similarity can be easily incorporated into our data collection
framework, it is mostly orthogonal to our study of compo-
sition. We believe it would be interesting for future work to
investigate methods of computing similarity metrics for other
factors, such as by using text and/or image embeddings, and
leveraging this to further improve data collection.

F. Computing Factor Changes

For our results in Section [V-B, we compute the total
number of factor changes for each strategy as follows. We
assume the initial configuration of factor values requires n
changes, one for each factor. For Stair, L, and Single Factor,
we assume each new configuration of factor values requires 1
additional change. We note this could be a slight underestimate
for L in practice, as this strategy could require some additional
changes when finishing varying one factor and returning
to the base factor values f*, to begin data collection for
varying another factor. For Diagonal and Random, we assume
each new configuration of factor values requires n additional
changes, as new values for all factors are resampled. We note
that this could be a slight overestimate for Random in practice,
as some of the resampled factor values may not change.

For each budget of factor value changes, we determine
the amount of factor value configurations allowed for each
strategy. We then divide the budget of total demonstrations by
this to determine how many to collect for each configuration,
with any remainder going to the last configuration.

APPENDIX C
REAL ROBOT EXPERIMENTS

A. Robot Platform

We use Logitech C920 webcams for our main and secondary
third-person cameras. Our setup also includes the wrist camera
used in BridgeData V2, and we experimented with using it in
addition to our main third-person camera. While we found that
it improved overall robustness when training from scratch, par-
ticularly for some factors that wrist cameras provide invariance

to (e.g., object position, table height), policies still benefited
from data coverage for these factors. More importantly, we
also found that it was incompatible with using BridgeData
V2 as prior data, reducing performance when using prior data
compared to not using prior data at all. We believe this is
because only a small fraction of BridgeData V2 contains wrist
camera data, as similar negative results have been observed
in other work that use prior robotic datasets with a small
proportion of wrist camera data [35]. As we were only able to
achieve successful transfer in our experiments in Section V-C
by using prior data without a wrist camera, we decided to omit
the wrist camera in all our experiments.

B. Evaluation Protocol

For our out-of-domain transfer experiments in Section V-C,
we name our transfer kitchens CompKitch and TileKitch after
their countertop materials of composite and tile, respectively.
We provide additional views of these kitchens, as well as
BaseKitch, in Fig. 15 to make the difference between these
kitchens more apparent. These images were taken after our
evaluations, so there may be some slight differences from then.

Our factor fable height refers to the height of the object
table (where objects are manipulated on) relative to the robot.
However, we vary this factor in practice by adjusting the height
of the mobile table the robot and third-person cameras are
mounted on. This still changes the relative height of the robot
with respect to the object table, the same as if the object table
changed height. For example, in Section V-C, Higher Table
refers to the object table being higher relative to the robot,
which was achieved by lowering the robot’s table.

We collect demonstrations using a Meta Quest 2 VR headset
for teleoperation. All demonstrations are collected by a single
experienced human teleoperator for consistency. We collect
our Stair dataset by starting at f*, and then varying factors
cyclically in the order object position, object type, container
type, table height, table texture. The order we vary values for
each factor is the same as in Fig. 7, from top to bottom.

C. Training

We use the same ResNet-34 diffusion goal-conditioned pol-
icy architecture from the original BridgeData V2 experiments,
except we condition on a history of 2 128x128 RGB image

Data Strategy | L
Train Method | Bridge | From Scratch

Factor 2 Object Object Container Table Table | Object Object Container Table Table
Factor 1 Pos Type Type Height Tex Pos Type Type Height Tex
Object/Container Pos | N/A 7/9 6/9 2/9 6/9 N/A 5/9 2/9 0/9 3/9
Object Orientation 2/9 5/9 5/9 1/9 3/9 0/9 2/9 3/9 0/9 1/9
Overall | 36/81 | 16/81

TABLE VI: Additional real robot pairwise composition results for our “put fork in container” task, with additional factors object/container

position and object orientation. Similarly as in our main pairwise composition results in

, leveraging BridgeData V2 as prior data

significantly improves composition for these factors compared to training from scratch.

observations from a third-person view (in addition to a goal
image from the same view), and use action chunking to predict
the next 4 actions. However, we noticed better performance
during inference by only executing the first predicted action,
so we do this for all experiments unless otherwise stated. We
share the same visual encoder across image observations in
the history. We use the same 7D action space as the original
experiments (6D end-effector pose deltas, and open/close
gripper). We use the same data augmentation from the original
experiments, which consists of random crops, random resizing,
and color jitter.

For policies using BridgeData V2 as prior data, we first
pre-train a model on BridgeData V2 using the original training
hyperparameters for 2M gradient steps. As done in the original
BridgeData V2 experiments, 10% of trajectories in this data is
reserved for validation. We checkpoint every 50K steps, and
choose the checkpoint with the lowest validation action pre-
diction mean-squared error as the initialization for later fine-
tuning. During fine-tuning, we use the same hyperparameters
as during pre-training, except we train for only 300K gradient
steps. Also, we do not use a validation set, and instead simply
evaluate the final checkpoint. When co-fine-tuning, we train
on a mixture of 75% in-domain data and 25% prior data.

D. Pairwise Composition for Additional Factors

We conduct experiments for two new factors: ob-
ject/container position and object orientation. We visualize
these factors and their values in . Note that ob-
Jject/container position involves new positions of both the fork
and container, with more significant changes compared to our
previous values for object position. We extended the L dataset
for our original factors with 10 demonstrations for each new
factor value, re-trained policies on this extended dataset, and
evaluated pairwise composition with these new factors. Unlike
our previous results in , we do not evaluate the
No Variation Bridge policy, because we found it was unable
to succeed at all with shifts for these factors in isolation, so
there was no potential for composition.

While these policies worked for object/container position,
we found they was unable to perform the task for the object
orientation shifts we considered in isolation. We hypothesize
this could be because different values for this factor have rel-
atively small changes in their visual observations, but require

Base Values f*

TN
Object/Container Position ~ Object Orientation

Fig. 16: Visualization of our additional real robot factors in BaseK-
itch. The top row shows our base factor values f*. The other rows
show all deviations from f* by one factor value.

significantly different behavior, which can make it challenging
to learn when to apply the correct behavior. Therefore, for
our evaluation on composing object orientation, we trained
separate policies where we balance training batches such that
50% of in-domain data consists of data for object orientation.

We report these results in . We find that with prior
data, object/container position achieves similar composition as
our original object position factor, with a success rate of 20/36
for both. However, when training from scratch, the policy is
able to compose this new factor more effectively than the

Object Position Object Type Container Type Table Height Table Texture

100 100 100 100 100

8 75 75 75 75 75
&

2 50 50 50 50 50
<

w25 25 25 25 25

0 0 0 0 0

Tierl Tier2 Tier3 Tierl Tier2 Tier3 Tierl Tier2 Tier3 Tierl Tier2 Tier3 Tierl Tier2 Tier3

L Data, w/ Bridge

Fig. 17: Per-factor value success rates of policies from our pairwise composition results in

L Data, From Scratch

—e— No Variation Data, w/ Bridge

. Factor values are placed in tiers, where

increasing tiers are more dissimilar from the base factor values f*. Composition is generally more challenging for factor values that are

more dissimilar from the base factor values.

Factor | Tier 1 Tier 2 Tier 3
Object Pos Down (3) Up 4) Left (2)
Object Type Wooden (3) Gray (4) Plastic (2)

Blue Plate (4) Pink Bowl (3)
Higher S5cm (2) Lower Scm (3)
Brown Wood (2) Gift Wrap (4)

Container Type
Table Height
Table Tex

White Cup (2)
Lower 8cm (4)
White Marble (3)

TABLE VII: Tiers for each factor value used in , deter-
mined using our success rate-based similarity metric as described in

. In parentheses next to each factor, we provide the
row number where the factor value is visualized in

original, achieving a success rate of 10/36 compared to 1/36.
This could be because different values for object/container
position are more visually distinguishable, and their required
behavior is also significantly more different, which could make
it easier to learn when to apply the correct behavior.

Our policies can sometimes compose object orientation,
although composition for this is the weakest compared to
the other factors we study. This could be due to the afore-
mentioned challenges with learning for this factor, as well as
because our data balancing may have insufficiently represented
the other factors.

E. Factor Similarity Analysis

Here, we provide additional analysis on when our policies
are able to compose factor values from our pairwise evaluation
in . To do this, for each factor, we consider how
similar each of the non-base factor values we consider are
to the base factor value, with respect to a policy’s ability to
generalize across factor values.

To compute a similarity metric, we consider the success
rates from our results in , in particular for the policy
trained on No Variation data and BridgeData V2. We then
obtain a success rate for each non-base factor value, by
aggregating the results for all factor value pairs that contain
that factor value. We use this success rate as our similarity
metric, where higher success rates indicate greater similarity,
because this captures how well a policy trained on base factor
values generalizes to other factor values.

Using this similarity metric, we rank the non-base factor
values for each factor as Tier 1, Tier 2, or Tier 3, where a
higher tier is more dissimilar from the base factor value. We

list the tiers for each factor value in . We then take
the aggregated per-factor value success rates for each policy
from our results in (where we aggregate success rates
as we do for computing the similarity metric), and plot this
against our factor value tiers in

We find that the policies trained on L data (orange and pink
lines) generally achieve lower compositional success rates for
factor values that are more dissimilar from the base factor
values f*, suggesting that composition is more challenging for
these more dissimilar values, although this trend is not strictly
monotonic. We note that part of this effect could be because
our success rate-based similarity metric may also capture how
challenging factor values are in general.

F. R3M

We use the ResNet-50 version of R3M. When training,
we pre-compute representations beforehand, and standardize
the dataset such that each feature has mean O and standard
deviation 1 (similar to the batch normalization used in the
original R3M experiments). We use the training dataset mean
and standard deviation for normalization during inference. We
feed normalized representations to the same diffusion policy
head architecture used when learning end-to-end, except we do
not use goal-conditioning. We increase the amount of training
gradient steps from 300K to 500K, to reduce training loss. We
also tried 1M gradient steps, which reduces loss even further,
but this resulted in worse performance. Instead of executing
only the first predicted action as with the end-to-end policies,
we execute all 4, which we found to slightly reduce jitteriness.
Like when learning end-to-end, we verify our R3M policies
are able to succeed with base factor values f* in BaseKitch.

G. VC-1

We train and evaluate VC-1 policies using the same proce-
dure as with R3M, except using the ViT-L version of VC-1
instead of R3M.

	Introduction
	Related Work
	Exploiting Compositional Generalization for Efficient Data Collection
	Problem Statement
	Objective
	Data Collection Strategies
	Hypotheses

	Simulation Experiments
	Evaluation Protocol
	Results

	Real Robot Experiments
	Evaluation Protocol
	Pairwise Composition
	Out-Of-Domain Transfer
	Additional Experiments

	Discussion
	Summary
	Limitations and Future Work

	Appendix A: Data Collection Strategies
	Pseudocode

	Appendix B: Simulation Experiments
	Door Open Results
	Factors
	Training
	Color Jitter Augmentation
	Accounting for Factor Value Similarity
	Computing Factor Changes

	Appendix C: Real Robot Experiments
	Robot Platform
	Evaluation Protocol
	Training
	Pairwise Composition for Additional Factors
	Factor Similarity Analysis
	R3M
	VC-1

