
Contents

1 Introduction 1

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminary 3

3 Future-Dependent Value Functions and the PO-bilinear Framework 5

3.1 Future-Dependent Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 The PO-Bilinear Actor-critic Framework for POMDPs . . . . . . . . . . . . . . . 5

4 Examples of PO-Bilinear Actor-critic Classes 6

4.1 Observable Undercomplete Tabular POMDPs . . . . . . . . . . . . . . . . . . . . 6

4.2 Observable Linear Quadratic Gaussian . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Observable Hilbert Space Embedding POMDPs . . . . . . . . . . . . . . . . . . . 7

5 Algorithm and Complexity 7

5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3.1 Finite Sample Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3.2 Observable Undercomplete Tabular POMDPs . . . . . . . . . . . . . . . . 9

5.3.3 Observable LQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3.4 Observable HSE-POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4 PSRs, M -step decodable POMDPs and Low-rank Observable POMDPs . . . . . . 10

6 Summary 10

A Additional Related Works 18

B Supplement for Section 3 19

B.1 PO-bilinear Actor-critic Class with Multi Step Future . . . . . . . . . . . . . . . . 19

C Supplement for Section 4 19

C.1 Observable Undercomplete Tabular POMDPs . . . . . . . . . . . . . . . . . . . . 19

C.2 Observable Overcomplete Tabular POMDPs . . . . . . . . . . . . . . . . . . . . 20

C.3 Observable Linear Quadratic Gaussian . . . . . . . . . . . . . . . . . . . . . . . . 20

C.4 Observable HSE-POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Supplement for Section 5 21

D.1 Algorithm with Multi-Step Future-Dependent Value Functions . . . . . . . . . . . 21

D.2 Algorithm for LQG with Continuous Action . . . . . . . . . . . . . . . . . . . . . 21

E Predictive State Representations 24

16



E.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.2 Definition of PSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.3 Existence of future-dependent value functions . . . . . . . . . . . . . . . . . . . . 27

E.4 PO-Bilinear Rank Decomoposition . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F Generalization of PO-Bilinear AC Class 31

G Examples for Generalized PO-Bilinear AC Class 32

G.1 M -step decodable POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G.2 Observable POMDPs with Latent Low-rank Transition: a model-based perspective 34

G.2.1 Global Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

G.2.2 Revisiting Observable Undercomplete Tabular POMDPs . . . . . . . . . . 36

G.2.3 Revisiting Observable Overcomplete POMDPs . . . . . . . . . . . . . . . 36

G.2.4 Revisiting M -step Decodable Tabular POMDPs . . . . . . . . . . . . . . . 37

H Proof of Theorem 1 37

I Sample Complexity for Finite Function Classes 40

J Sample Complexity in Observable HSE POMDPs 40

K Sample Complexity in Observable Undercomplete Tabular POMDPs 43

L Sample Complexity in Observable Overcomplete Tabular POMDPs 45

L.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

L.2 Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

M Sample Complexity in LQG 46

M.1 Existence of Link Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

M.2 PO-bilinear Rank Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

M.3 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

M.4 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

N Sample Complexity in PSRs 53

N.1 Existence of Link Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

N.2 PO-bilinear Rank Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

N.3 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

N.4 Most General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

O Proof of Theorem 8 55

P Sample Complexity in M -step Decodable POMDPs 57

P.1 PO-bilinear Rank Decomposition (Proof of Lemma 17) . . . . . . . . . . . . . . . 57

P.2 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

17



P.3 Proof of Main Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Q Sample Complexity in Observable POMDPs with Latent Low-rank Transition 62

Q.1 Existence of Value Future-Dependent Value Functions . . . . . . . . . . . . . . . 63

Q.2 PO-bilinear Rank Decomposition (Proof of Lemma 18) . . . . . . . . . . . . . . . 63

R Exponential Stability for POMDPs with Low-rank Transition 64

S Auxiliary Lemmas 66

A Additional Related Works

Generalization and function approximation of RL in MDPs. In Markovian environments, there
is a growing literature that gives PAC bounds with function approximation under certain models.
Some of the representative models are linear MDPs [36, 76], block MDPs [17, 51, 78], and low-rank
MDPs [2, 71]. Several general frameworks in [33, 66, 35, 21, 16] characterize sufficient conditions
for provably efficient RL. Each above model is captured in these frameworks as a special case. While
our work builds on the bilinear/Bellman rank framework [16, 33], when we naïvely reduce POMDPs
to MDPs, the bilinear/Bellman rank is Θ(AH). These two frameworks are only shown applicable to
reactive POMDPs where the optimal policy only depends on the latest observation. However, this
assumption makes the POMDP model very restricted.

System identification for uncontrolled partially observable systems. There is a long line of work
on system identification for uncontrolled partially observable systems, among which the spectral
learning based methods are related to our work [72, 29, 63, 8, 25, 54, 7, 40, 27, 67]. Informally,
these methods leverage the high-level idea that under some observability conditions, one can use
the sufficient statistics of (possibly multi-step) future observations as a surrogate for the belief
states, thus allowing the learning algorithms to ignore the latent state inference and completely rely
on observable quantities. Our approach shares a similar spirit in the sense that we use sufficient
statistics of future observations to replace latent states, and our algorithm only relies on observable
quantities. The major difference is that these prior works only focus on passive system identification
for uncontrolled systems, while we need to find a high-performance policy by actively interacting
with the systems for information acquisition.

Reinforcement learning in PSRs. PSRs [32, 45, 62, 8, 69] are models that generalize POMDPs.
PSRs also rely on the idea of using the sufficient statistics of multi-step future observations (i.e.,
predictive states) to serve as a summary of the history. Prior works on RL for PSRs [8, 40, 15, 44, 30]
do not address the problem of strategic exploration and operate under the assumption that a pre-
collected diverse training dataset is given and the data collection policy is a blind policy (i.e., it does
not depend on history of observations). To our knowledge, the only existing PAC learning algorithm
for PSRs is limited to a reactive PSR model where the optimal policy depends just on the latest
observation [33]. Our framework captures standard PSRs models that are strictly more general than
reactive PSRs.

Future-dependent value functions. Analogue of future-dependent value functions (referred to
as bridge functions) are used in the literature of causal inference (offline contextual bandits) [50,
13, 12, 37, 49, 61, 75] and offline RL with unmeasured confounders [4, 59]. However, their settings
are not standard POMDPs in the sense that their setting is a POMDP with unmeasured confounders
following [68]. Our setting is a standard POMDP without unmeasured confounders. Here, we
emphasize that their setting does not capture our setting. More specifically, by taking [59] as an
example, they require that logged data is generated by policies that can depend on latent states but
cannot depend on observable states. Thus, their definition of future-dependent value functions (called
as bridge functions) is not applicable to our setting since the data we use is clearly generated by
policies that depend on observations. Due to this difference, their setting prohibits us from using
future observations, unlike our setting. Finally, we stress that our work is online, while their setting is
offline. Hence, they do not discuss any methods for exploration.
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B Supplement for Section 3

We generalize Definition 3 to capture more models. The first extension is to use multi-step future-
dependent value functions. This extension is essential to capture overcomplete POMDPs and
multi-step PSRs.

B.1 PO-bilinear Actor-critic Class with Multi Step Future

In this section, we provide an extension to Definition 3 to incorporate multiple-step futures (i.e.,
K > 1). For simplicity, we assume that πout = U(A).

The definition is then as follows. The main difference is that we roll out a policy U(A), K − 1 times
to incorporate multi-step future-dependent value functions. We introduce the notation

(zh−1, oh:h+K−1, ah:h+K−2) = z̄Kh ∈ Z̄K
h = Zh−1 ×OK ×AK−1.

Then, combining the Bellman equation for state-value functions and the definition of K-step future-
dependent value functions, we have

0 = E[V πh+1(zh, sh+1) + rh − V πh (zh−1, sh) | zh−1, sh; ah ∼ π]

= E[gπh+1(z̄
K
h+1) | zh−1, sh; ah ∼ π, ah+1:h+K−1 ∼ U(A)] + E[rh | zh−1, sh; ah ∼ π]

− E[gπh(z̄Kh ) | zh−1, sh; ah:h+K−2 ∼ U(A)]

Thus, by taking expectations further with respect to (zh−1, sh) (i.e., zh−1, sh can be sampled from
some roll-in policy), we have

0 = E[gπh+1(z̄
K
h+1); a1:h−1 ∼ π′, ah ∼ π, ah+1:h+K−1 ∼ U(A)] + E[rh; a1:h−1 ∼ π′, ah ∼ π]

− E[gπh(z̄Kh ); a1:h−1 ∼ π′, ah:h+K−2 ∼ U(A)].

Hence, the Bellman loss of a pair (π, g) under a roll-in π′ denoted by Brh(π, g;π
′) at h ∈ [H] is

defined as

Brh(π, g;π
′) = E[gh+1(z̄

K
h+1); a1:h−1 ∼ π′, ah ∼ π, ah+1:h+K−1 ∼ U(A)] + E[rh; a1:h−1 ∼ π′, ah ∼ π]

− E[gh(z̄Kh ); a1:h−1 ∼ π′, ah:h+K−2 ∼ U(A)].

The above is a proper loss function when we use multi-step futures. Here is the structure we need for
Brh(π, g;π

′).
Definition 4 (PO-bilinear AC Class for POMDPs with multi-step future). The model is a PO-bilinear
class of rank d if G is realizable (regarding general K-step future-dependent value functions), and
there exists Wh : Π× G → Rd and Xh : Π → Rd such that for all π′, π ∈ Π, g ∈ G and h ∈ [H],

1. We have:

E[gh+1(z̄
K
h+1); a1:h−1 ∼ π′, ah ∼ π, ah+1:h+K−1 ∼ U(A)] + E[rh; a1:h−1 ∼ π′, ah ∼ π]

− E[gh(z̄Kh ); a1:h−1 ∼ π′, ah:h+K−2 ∼ U(A)] = ⟨Wh(π, g), Xh(π
′)⟩,

2. Wh(π, g
π) = 0 for any π ∈ Π and the corresponding future-dependent value function gπ in

G .

We define d as the PO-bilinear rank.

C Supplement for Section 4

C.1 Observable Undercomplete Tabular POMDPs

We need to prove Lemma 2. In the tabular case, by setting

ψh(z, o) = 1(z)⊗ 1(o), ϕh(z, s) = 1(z)⊗ 1(s),Kh = I|Zh−1| ⊗O

where 1(z),1(o),1(s) are one-hot encoding vectors over Zh−1,O,S, respectively. Then, we can
regard the tabular model as an HSE-POMDP. We can just invoke Lemma 4.
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C.2 Observable Overcomplete Tabular POMDPs

We consider overcomplete POMDPs with multi-step futures. The proofs are deferred to Section
C.2. We have the following theorem. This is a generalization of Lemma 1, i.e., when K = 1, it is
Lemma 1.

Lemma 5. Define a |T K | × |S|-dimensional matrix OK whose entry indexed by
(oh:h+K−1, ah:h+K−2) ∈ T K and sh ∈ S is equal to P(oh:h+K−1, ah:h+K−2 | sh; ah:h+K−2 ∼
U(A)). When this matrix is full-column rank, K-step future-dependent value functions with respect to
U(A) exist.

Note a sufficient condition to satisfy the above is that a matrix OK(a′h:h+K−2) ∈ R|O|K×|S| whose
entry indexed by oh:h+K−1 ∈ OK and sh ∈ S is equal to P(oh:h+K−1 | sh; ah:h+K−2 = a′h:h+K−2)

is full-column rank for certain a′h:h+K−2 ∈ AK−1. It says there is (unknown) action sequence with
length K that retains information about latent states.

We next calculate the PO-bilinear rank. Importantly, this does not depend on |A|K and |O|K .

Lemma 6. Set a future-dependent value function class Gh = [Z̄K → [0, CG ]] for certain CG ∈ R+

and a policy class Πh = [Z̄h → ∆(A)]. Then, the model satisfies PO-bilinear rank condition with
PO-bilinear rank (Definition 4) at most |S|(|O||A|)M .

Note that the bilinear rank is still |S|(|O||A|)M (just |S| in the more general definition in Section F).
Crucially, it does not depend on the length of futures K.

Proof of Lemma 5 Consider any function f : Zh−1 × S → R (thus, this captures all possible V πh ).
Denote 1(z) as the one-hot encoding of Zh−1 (similarly for 1(s) over S and 1(t) over T K). We
have f(z, s) = ⟨f, 1(z)⊗ 1(s)⟩ = ⟨f, 1(z)⊗ ((OK)†OK1(s))⟩, where we use the assumption that
rank(OK) = |S| and thus (OK)†OK = I . Then,

f(zh−1, sh) = ⟨f, 1(zh−1)⊗ (OK)†E[1(oh:h+K−1, ah:h+K−2) | sh; ah:h+K−2 ∼ πout]⟩
= E[⟨f, 1(zh−1)⊗ (OK)†1(oh:h+K−1, ah:h+K−2)⟩ | zh−1, sh; ah:h+K−2 ∼ πout].

which means that the value bridge function corresponding to f(·) is

g(z, t) := ⟨f, 1(z)⊗ (OK)†1(t)⟩.

■

Proof of Lemma 6 Recall we want to show the low-rank property of the following loss function:

E[gh+1(z̄
K
h+1); a1:h−1 ∼ π′, ah ∼ π, ah+1:h+K−1 ∼ πout] + E[rh; a1:h−1 ∼ π′, ah ∼ π]

− E[gh(z̄Kh ); a1:h−1 ∼ π′, ah:h+K−1 ∼ πout].

We consider an expectation conditioning on zh−1 and sh. For some vector θπ,g ∈ R|Zh−1|×|S|,
which depends on π, we write it in the form of ⟨θπ,g, 1(zh−1, sh)⟩ where 1(zh−1, sh) is the one-hot
encoding vector over Zh−1 × S . Then, the loss for (π, g) is equal to

⟨θπ,g,E[1(zh−1, sh); a1:h−1 ∼ π′]⟩.

Hence, we can take X(π′) = E[1(zh−1, sh); a1:h−1 ∼ π′] and W (π) = θπ,g . ■

C.3 Observable Linear Quadratic Gaussian

We need to prove Lemma 3. The proof is further deferred to Section M.

C.4 Observable HSE-POMDPs

We first provide the proof of Lemma 4. Then, we briefly mention how we extend to the infinite-
dimensional setting.
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Proof of the first statement in Lemma 4 First, we need to show value bridge functions exist. This
is proved noting

Eo∼O(s)[⟨(K†
h)

⊤θπh , ψh(z̄h)⟩] = ⟨(K†
h)

⊤θπh ,Khϕh(zh−1, sh)⟩ = ⟨θπh , ϕh(zh−1, sh)⟩ = V πh (zh−1, sh).

Thus, ⟨(K†
h)

⊤θπh , ψh(z̄h)⟩ is a value bridge function. ■

Proof of the second statement in Lemma 4 Consider a triple (π′, π, g) ∈ Π × Π × G, with
gh(·) = θ⊤h ψh(·) and gπh = ⟨θ⋆h, ψh(·)⟩, we have:

Brh(π, g;π
′)

= E
[
θ⊤h ψ(z̄h)− rh − θ⊤h+1ψ(z̄h+1); a1:h−1 ∼ π′, ah ∼ π

]
= E

[
θ⊤hKhϕh(zh−1, sh)− rh − θ⊤h+1Kh+1(ϕh+1(zh, sh+1)); a1:h−1 ∼ π′, ah ∼ π

]
= E

[
(θh − θ⋆h)

⊤Khϕh(zh−1, sh)− (θh+1 − θ⋆h+1)
⊤Kh+1(Tπ;hϕh(zh−1, sh)); a1:h−1 ∼ π′]

=
〈
E[ϕh(zh−1, sh); a1:h−1 ∼ π′], K⊤

h (θh − θ⋆h)− T⊤
π;hK

⊤
h+1(θh+1 − θ⋆h+1)

〉
,

which verifies the bilinear structure, i.e., Xh(π
′) = E[ϕh(zh−1, sh); a1:h−1 ∼ π′], and Wh(π, g) =

K⊤
h (θh− θ⋆h)−T⊤

π;hK
⊤
h+1(θh+1− θ⋆h+1), and shows that the bilinear rank is at most maxh dψh . ■

Infinite dimensional HSE-POMDPs Consider the case ϕh and ψh are features in infinite dimen-
sional RKHS. By assuming that the spectrum of the operator Kh is decaying with a certain order, we
can still ensure the existence of value bridge functions even if dϕh and d′ψh are infinite dimensional.

Next, we consider the PO-bilinear rank. We can still use the decomposition in the proof above. While
the PO-bilinear rank itself in the current definition is infinite-dimensional, when we get the PAC result
later, the dependence on the PO-bilinear rank comes from the information gain based on Xh(π),
which is the intrinsic dimension of Xh(π). Thus, we can easily get the sample complexity result
by replacing dψh with the information gain over ψh(·) [65]. Generally, to take infinite dimensional
models into account, the PO-bilinear rank in Definition 3 can be generalized using the critical
information gain [16].

D Supplement for Section 5

In this section, we first consider the case with multi-step futures. Next, we present a modification to
handle LQG with continuous action in Definition 3.

D.1 Algorithm with Multi-Step Future-Dependent Value Functions

Finally, we consider the case with multi-step futures in Algorithm 2 when πout = U(A). Recall the
notation z̄Kh = (zh−1, oh:h+K−1, ah:h+K−2). The only difference is in the process of data collection.
Particularly, at every iteration t, we roll-in using πt to (and include) time step h− 1, we then roll-out
by switching to U(A) for K steps.

D.2 Algorithm for LQG with Continuous Action

Our algorithm so far samples ah from U(A) and performs importance weighting in designing the loss
σth, which will incur a polynomial dependence on |A| as we will see in the next section. However,
among the examples that we consider in Section 4, LQG has continuous action. If we naïvely sample
ah from a ball in Rda and perform (nonparametric) importance weighting, we will pay exp(da) in
our sample complexity bound, which is not ideal for high-dimension control problems. To avoid
exponential dependence on da, here we replace U(A) with a d-optimal design over the action’s
quadratic feature space.

Here, we want to evaluate the Bellman error of (π, g) pair under a roll-in policy π′:

Brh(π, g;π
′) := E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄h)]

where uh(z̄h, ah, rh, oh+1; θ) = θ⊤h ψ(z̄h)− rh(sh, ah)− θ⊤h+1ψh+1(z̄h+1) for any linear determin-
istic policy π ∈ Π (here gh(·) := θ⊤h ψ(·)) using a single policy. In other words, we would like to get
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Algorithm 2 PaRtially ObserVAble BiLinEar (PROVABLE) # multi-step version
1: Input: Future-dependent value function class G = {Gh},Gh ⊂ [Z̄Kh → R], Policy class

Π = {Πh},Πh ⊂ [Z̄h → ∆(A)], parameters m ∈ N, R ∈ R
2: Define

lh(z̄
K
h , ah+K−1, rh, oh+K ;π, g) := |A|πh(ah | z̄h)

(
gh+1(z̄

K
h+1) + rh

)
− gh(z̄

K
h ).

3: Initialize π0 ∈ Π
4: Form the first step dataset D0 = {z̄K;i

1 }mi=1 where each z̄K is generated by following a1:K−1 ∼
U(A) in an i.i.d manner.

5: for t = 0 → T − 1 do
6: for any h ∈ [H], define the Bellman error

σth(π, g) = EDth [lh(z̄
K
h , ah+K−1, rh, oh+K ;π, g)]

where Dt
h means empirical approximation by executing a1:h−1 ∼ πt, ah:h+K−1 ∼ U(A) and

collecting m i.i.d tuples.
7: Select policy optimistically as follows (here note g = {gh}Hh=1)

(πt+1, gt+1) := argmax
π∈Π,g∈G

ED0 [g1(z̄
K
1 )] s.t. ∀h ∈ [H],∀i ∈ [t], σih(π, g)

2 ≤ R.

8: end for
9: Output: Randomly choose π̂ from (π1, · · · , πT ).

a good loss lh such that

Brh(π, g;π
′) = E[lh(z̄h, ah, rh, oh+1; θ, π); a1:h−1 ∼ π′, ah ∼ πe]

for some policy πe without incuring exponential dependence on da. We explain how to design such a
loss function lh(·;π, g) step by step.

First Step The first step is to consider the conditional expectation on (z̄h, sh, ah). Here, using
the quadratic form of ψ, we can show that there are some c0 : Z̄h × S → R, c1 : Z̄h × S →
R(da+ds+dz̄h )

2

, c2 ∈ R:

Brh(π, g;π
′) = E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah; a1:h−1 ∼ π, ah ∼ π(z̄h)]

= ⟨c2(θ), [1, [z̄⊤h , s⊤h , a⊤h ]⊗ [z̄⊤h , s
⊤
h , a

⊤
h ]]

⊤⟩
= c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ)κ(ah)

where κ(a) = [a⊤, (a ⊗ a)⊤]⊤. Then, the Bellman loss we want to evaluate can be written in the
form of

E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄h)]

= E[c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ)κ(π(z̄h)); a1:h−1 ∼ π′].

Second step The second step is to compute a d-optimal design for the set {κ(a) : a ∈ Rda , ∥a∥2 ≤
Z} for certain enough large Z ∈ R, and denote a1, . . . , ad

⋄
as the supports on the d-optimal design.

Note in LQG, though we cannot ensure the action lives in the compact set, we can still ensure that in
high probability and it suffices in our setting as we will see. Since the dimension of k(a) is da + d2a,
we can ensure d⋄ ≤ (da + d2a)(da + d2a + 1)/2 [43, 39]. Here is a concrete theorem we invoke.

Theorem 7 (Property of G-optimal design). Suppose X ∈ Rd is a compact set. There exists a
distribution ρ over X such that:

• ρ is supported on at most d(d+ 1)/2 points.

• For any x′ ∈ X , we have x′⊤Ex∼ρ[xx⊤]−1x′ ≤ d.

We have the following handy lemma stating any κ(a) is spanned by {κ(ai)}d⋄i=1.
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Lemma 7. Let K = [ρ1/2(a1)κ(a1), ρ1/2(a2)κ(a2), · · · , ρ1/2(ad⋄)κ(ad⋄)] and α(a) =
K⊤(KK⊤)−1k(a). Then, it satisfies

κ(a) = Kα(a), ∥α(a)∥ ≤ (da + d2a)
1/2, αi(a)/ρ

1/2(ai) ≤ (da + d2a)

Proof. Since K is full-raw rank from the construction of G-optimal design, KK⊤ is invertible. Then,
we have

d⋄∑
i=1

αi(a)ρ
1/2(ai)κ(ai) = KK⊤(KK⊤)−1κ(a) = κ(a)

For the latter statement, we have

⟨K⊤(KK⊤)−1k(a),K⊤(KK⊤)−1k(a)⟩ = k(a)⊤(KK⊤)−1k(a) ≤ (da + d2a).

We use a property of G-optimal design in Theorem 7.

For the last statement, we have

κ⊤(ai)(KK⊤)−1κ(a) ≤ ∥κ⊤(ai)∥(KK⊤)−1∥κ⊤(a)∥(KK⊤)−1 ≤ (da + d2a).

from CS inequality.

Third Step The third step is combining current facts. Recall we want to evaluate

E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)] = E[c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ)κ(π(z̄h)); a1:h−1 ∼ π′].

In addition, the following also holds:

E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(ai)] = E[c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ)κ(a
i); a1:h−1 ∼ π′]

E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(0)] = E[c0(z̄h, sh; θ); a1:h−1 ∼ π′]

Here, we use κ(0) = 0. This concludes that

E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)]

= E[c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ)κ(π(z̄h)); a1:h−1 ∼ π′]

= E[c0(z̄h, sh; θ) + c⊤1 (z̄h, sh; θ){
d⋄∑
i=1

αi(π(z̄h))κ(a
i)}; a1:h−1 ∼ π′]

= E

[
c0(z̄h, sh; θ)

(
1−

d⋄∑
i=1

αi(π(z̄h))

)
+

d⋄∑
i=1

αi(π(z̄h))
(
c⊤1 (z̄h, sh; θ)κ(a

i) + c0(z̄h, sh; θ)
)
; a1:h−1 ∼ π′

]

= E

[(
1−

d⋄∑
i=1

αi(π(z̄h))

)
uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(0)

]

+

d⋄∑
i=1

E
[
αi(π(z̄h))uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(ai)

]
.

Thus, we can perform policy evaluation for a policy π if we can do intervention from
do(0), do(a1), · · · , do(ad⋄).

Fourth Step The fourth step is replacing do(0), do(a1), · · · , do(ad⋄) with a single policy that
uniformly randomly select actions from the set {0, a1, . . . , ad⋄}, which we denote as a ∼ U(1 + d⋄).
Using importance weighting, we define the loss function for π, θ as follows:

E[fh(z̄h, ah, rh, oh+1; θ, π); a1:h−1 ∼ π′, ah ∼ U(1 + d⋄)] (3)

where U(1 + d⋄) is a uniform action over 0, a1, · · · , ad⋄ and

fh(z̄h, ah, rh, oh+1; θ, π)

= |1 + d⋄|

(
I(ah = 0)

(
1−

d⋄∑
i=1

αi(π(z̄h))

)
+

d⋄∑
i=1

I(ah = ai)αi(π(z̄h))

)
uh(z̄h, ah, rh, oh+1; θ).

The term 3is equal to Brh(π, g;π
′) we want to evaluate.
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Summary To summarize, we just need to use the following loss function in line 6 in Algorithm 1:

EDth [lh(z̄h, ah, rh, oh+1; θ, π)]

where lh(z̄h, ah, rh, oh+1; θ, π) is

I(∥z̄h∥ ≤ Z1)I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)fh(z̄h, ah, rh, oh+1; θ, π)

and Dt
h is a set of m i.i.d samples following the distribution induced by executing a1:h−1 ∼ π′, ah ∼

U(1 + d⋄). Values Z1, Z2, Z3 in indicators functions are some large values selected properly later.
Due to unbounded Gaussian noises in LQG, indicators functions for truncation is introduced here for
technical reason to get valid concentration in Assumption 2.

E Predictive State Representations

We first give a summary of our results in PSRs. Then, we first add several discussions to explain core
tests in detail. Next, we show the existence and form of future-dependent value functions. Finally, we
calculate the PO-bilinear rank. In this section, we will focus on the general case where tests could be
multiple steps.

E.1 Summary

In this section, we demonstrate that our definition and algorithm applies to PSRs — models that
strictly generalize POMDPs [45, 62]. Below, we first briefly introduce PSRs, followed by showing
that it is a PO-bilinear AC model. Throughout this section, we will focus on discrete linear PSRs.
We also suppose reward at h is deterministic function of (oh, ah) conditional on τah+1 where
τah = (o1, a1, · · · , oh−1, ah−1). Given τah , the dynamical system generates oh ∼ P(·|τah ). Here we
use the superscript a on τah to emphasize that the τah ends with the action ah−1.

PSRs use the concept of test, which is a sequence of future observations and actions, i.e., for
some test t = (oh:h+W−1, ah:h+W−2) with length W ∈ N+, we define the probability of test t
being successful P(t|τah ) as P(t|τah ) := P(oh:h+W−1|τah ; do(ah:h+W−2)) which is the probability of
observing oh:h+W−1 by actively executing actions ah:h+W−2 conditioned on history τah .

We now explain one-step observable PSRs while deferring the general multi-step observable setting
to Section E. A one-step observable PSR uses the observations in O as tests, i.e., tests with length 1.
Definition 5 (Core test set and linear PSRs). A core test set T ⊂ O contains a finite number of tests
(i.e., observations from O). For any h, any history τah , any future test th = (oh:h+W−1, ah:h+W−2)

for any W ∈ N+, there exists a vector mth ∈ R|T |, such that the probability of th succeeds
conditioned on τah can be expressed as: P(th|τah ) = m⊤

th
[P(o|τah )]o∈T , where we denote qτah :=

[P(o|τah )]o∈T as a vector in R|T | with entries equal to P(o|τah ) for o ∈ T . The vector qτah is called
predictive state.

A core test set T that has the smallest number of tests is called a minimum core test set denoted as Q.
PSRs are strictly more expressive than POMDPs in that all POMDPs can be embedded into PSRs
whose size of the minimum core tests is at most |S|; however, vice versa does not hold [45]. For
example, in observable undercomplete POMDPs (i.e., O full column rank) , the observation set O
can serve as a core test set, but the minimum core test set Q will have size |S|. Here, we assume we
know a core test set T that contains Q; however, we are agnostic to which set is the actual Q. In the
literature on PSRs, this setting is often referred to as transform PSRs [8, 57].

Now we define a future-dependent value function in PSRs. First, given an M -memory policy, define
Vπh (τah ) = E[

∑H
t=h rt|τah ; ah:H ∼ π], i.e., the expected total reward under π, conditioned on the

history τah . Note that our value function here depends on the entire history.
Definition 6 (General future-dependent value functions). Consider anM -memory policy π. One-step
general future-dependent value functions gπh : Zh−1 × T → R at step h ∈ [H] are defined as
solutions to

Vπh (τah ) = E[gπh(zh−1, oh) | τah ]. (4)

This definition is more general than Definition 3 since (4) implies (1) in POMDPs by setting O = T .
In PSRs, we can show the existence of this general future-dependent value function.
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Lemma 8 (The existence of future-dependent value functions for PSRs). Suppose T is a core test
set. Then, a one-step future-dependent value function gπh always exists.

The high-level derivation is as follows. Using the linear PSR property, one can first show that Vπh (τah )
has a bilinear form Vπh (τah ) = 1(zh−1)

⊤Jπhqτah , where 1(z) ∈ R|Zh−1| denotes the one-hot encoding
vector over Zh−1, and Jπh is a |Zh−1| × |T | matrix. Then, given any τah and o ∼ P(·|τah ), for some
|Zh−1| × |T | matrix J, we can show gh(zh−1, o) := 1(zh−1)

⊤J[1(t = o)]t∈T satisfies the above,
where [1(t = o)]t∈T ∈ R|T | is a one-hot encoding vector over T and serves as an unbiased estimate
of qτah .

Finally, we show that PSR admits PO-bilinear rank decomposition (Definition 3).
Lemma 9. Suppose a core test set T includes a minimum core test set Q. Set Πh = [Z̄h → ∆(A)]
and Gh = {(zh−1, o) 7→ 1(zh−1)

⊤J[1(t = o)]t∈T | J ∈ R|Zh−1|×|T |}, the PO-bilinear rank is at
most (|O||A|)M |Q|.

Then, Algorithm 1 is directly applicable to PSRs. Note that here the PO-bilinear rank, fortunately,
rank scales with |Q| but not |T |. The dependence (|O||A|)M comes from the dimension of the
“feature" of memory 1(zh−1). If one has a compact feature representation ϕ : Zh−1 → Rd, such
that Vπh (τah ) = ϕ(zh−1)

⊤Jπhqτah is linear with respect to feature ϕ(zh−1), then the PO-bilinear rank
is d|Q|. This implies that if one has a compact featurization of memory a priori, one can avoid
exponential dependence on M .

Sample complexity. We finally briefly mention the sample complexity result. The detail is deferred
to Section N. The sample complexity to satisfy J(π⋆)− J(π̂) ≤ ϵ is given as

Õ

(
|O|M |A|M−1|Q|2 max(Θ, 1)H4|A|2 ln(|Gmax||Πmax|/δ) ln(ΘW )2

ϵ2

)
where ΘW and Θ are some parameters associated with PSRs. Here, there is no explicit dependence
on |T |. Note that in the worst case, ln |Gmax| scales as O(|Zh−1||T |), and ln |Πmax| scales as
O(|Zh−1||O||A|).

E.2 Definition of PSRs

We first define core tests and predictive states [45, 62]. This definition is a generalization of
Definition 5 with multi-step futures.

We slighly abuse notation and denote τah := (o1, a1, . . . , oh−1, ah−1) throughout this whole section
— note that τah here does not include oh.
Definition 7 (Core test sets and PSRs). A set T ⊂ ∪C∈N+OC ×AC−1 is called a core test set if for
any h ∈ [H], W ∈ N+, any possible future (i.e., test) th = (oh:h+W−1, ah:h+W−2) ∈ OW ×AW−1

and any history τah , there exists mth ∈ R|T | such that
P(oh:W+h−1 | τah ; do(ah:W+h−2)) = ⟨mth , [P(t | τah )]t∈T ⟩.

The vector [P(t | τah )]t∈T ∈ R|T | is referred to as the predictive state.

We often denote qτah = [P(t | τah )]t∈Th . To understand the above definition, we revisit observable
undercomplete POMDPs and overcomplete POMDPs.
Example 1 (Observable undercomplete POMDPs). In undercomplete POMDPs, when O is full-
column rank, O is a core test. Recall O is a matrix in R|O|×|S| whose entry indexed by oi ∈ O, sj ∈ S
is equal to O(oi | sj).
Lemma 10 (Core tests in undercomplete POMDPs). When O is full-column rank, O is a core test
set.

Proof. Consider any h ∈ [H]. Given a |S|-dimensional belief state sτah = [P(· | τah )]|S| with each
entry P(sh | τah ), for any future t = (oh:h+W , ah:h+W−1), there exists a |S|-dimensional vector m′

t

such that P(oh:h+W | τah ; do(ah:h+W−1)) = ⟨m′
t, sτah ⟩. More specifically, m′

t can be written as:

(m′
t)

⊤ = O(oh+W | ·)⊤
h+W−1∏
τ=h

Tahdiag(O(oh | ·))

25



where O(o|·) ∈ R|S| is a vector with the entry indexed by s equal to O(o|s), Ta ∈ R|S|×|S| is a
matrix with the entry indexed by (s, s′) equal to T(s′ | s, ah). Here, note given a vector C, diag(C)
is define as a |C| × |C| diagonal matrix where the diagonal element corresponds to C. Thus, we have

P(oh:h+W | τah ; do(ah:h+W−1)) = ⟨m′
t, sτah ⟩ = ⟨m′

t,O†qτah ⟩ = ⟨(O†)⊤m′
t,qτah ⟩,

where qτah ∈ R|O| and qτah (o) = P(o|τah ). This concludes the proof.

Example 2 (Overcomplete POMDPs). We consider overcomplete POMDPs so that we can permit
|S| ≥ |O|.
Lemma 11 (Core tests in overcomplete POMDPs). Recall T K = O × (O × A)K−1. Define a
|T K | × |S|-dimensional matrix OK whose entry indexed by (oh:h+K−1, ah:h+K−2) ∈ T K , sh ∈ S
is equal to P(oh:h+K−1, ah:h+K−2 | sh; ah:h+K−2 ∼ U(A)). When this matrix is full-colmun rank
for all h, T K is a core test set.

Proof. Fix a test t = (o′h:h+K−1, a
′
h:h+K−2) and consider a step h ∈ [H]. Then,

P(o′h:h+K−1, a
′
h:h+K−2 | sh; ah:h+K−2 ∼ U(A))

= E[1(oh:h+K−1 = o′h:h+K−1, ah:h+K−2 = a′h:h+K−2) | sh; ah:h+K−2 ∼ U(A))]

= E[(1/|A|K−1)1(oh:h+K−1 = o′h:h+K−1, ah:h+K−2 = a′h:h+K−2) | sh; ah:h+K−2 ∼ do(a′h:h+K−2)]

= E[(1/|A|K−1)1(oh:h+K−1 = o′h:h+K−1) | sh; ah:h+K−2 ∼ do(a′h:h+K−2)]

= (1/|A|K−1)P(o′h:h+K−1 | sh; do(a′h:h+K−2)).

Thus, the assumption that T K is full column rank implies that that the matrix J̄h ∈ R|T K |×|S| with
the entry indexed by (t, sh) being equal to P(o′h:h+K−1 | sh; do(a′h:h+K−2)) is full-column rank.

Define a |T K |-dimensional state qτah = [P(t | τah )]t∈T K given history τah . By definition, we have

qτah = J̄hsτah

Using J̄h is full-column rank, we have sτah = M̄†
hqτah . Thus, using the format of m′

t from
the proof of Lemma 10, we can conclude that for any test t = (oh:h+W , ah:h+W−1), we have
P(oh:h+W |τ ; do(ah:h+W−1)) = ⟨(M̄†

h)
⊤m′

t,qτah ⟩. Thus, this concludes T K is a core test set.

Finally, we present an important property of predictive states, which corresponds to the Bayesian
filter in POMDP.

Lemma 12 (Forward dynamics of predictive states). We have

P(t | τah , a, o) = m⊤
o,a,tqτah /m

⊤
o qτah .

When we define Mo,a ∈ R|T |×|T | where rows are mo,a,t for t ∈ T , we can express the forward
update rule of predictive states as follows:

qτah ,a,o =Mo,aqτah /(m
⊤
o qτah ).

Proof. The proof is an application of Bayes’s rule. We denote the observation part of t by tO and the
action part of tA, respectively. We have

P(t | τah , a, o) = P(tO | τah , o; do(a, tA)) (by definition)

=
P(o, tO | τah ; do(a, tA))

P(o; τah )
(Bayes rule)

= m⊤
o,a,tqτah /m

⊤
o qτah . (by definition)

This concludes the proof.
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To further understand that why PSR generalizes POMDP, let us re-visit the undercomplete POMDPs
(i.e., O being full column rank) again. Set T = O. As we see in the proof of Lemma 10, the
belief state sτ ∈ ∆(S) together with O defines predictive state, i.e., qτah = Osτah , with Mo,a =

OTadiag(O(o|·))O†, and m⊤
o = 1⊤diag(O(o|·))O†. Note that in POMDPs, matrix Mo,a and vector

mo all contain non-negative entries. On other hand, in PSRs, Ma,o and ma,o could contain negative
entries. This is the intuitive reason why PSRs are more expressive than POMDPs [45]. For the formal
instance of a finite-dimensional PSR which cannot be expressed as a finite-dimensional POMDP,
refer to [62, 31].

E.3 Existence of future-dependent value functions

We discuss the existence and the form of future-dependent value functions. First, we define general
future-dependent value functions with multi-step futures. For notational simplicity, we assume here
that the tests t ∈ T have the same length, i.e., there is a K ∈ N+, such that T ⊂ OK ×AK−1.
Definition 8 (General future-dependent value functions in dynamical systems). Recall T ⊂ OK ×
AK−1 is the set of tests. At time step h, general future-dependent value functions gπh : Zh−1 ×
OKAK−1 → R are defined as solutions to the following:

Vπh (τah ) = E[gπh(zh−1, oh:h+K−1, ah:h+K−2) | τah ; (ah:h+K−2) ∼ ρout]. (5)

where ρout is some distribution over the action set T A induced by the test set, i.e., {tA : t ∈ T }.
Here, for t = (oh:h+K−1, ah:h+K−2), we often denote oh:h+K−1 and ah:h+K−2 by tO and tA,
respectively.

To show the existence of general future-dependent value functions for PSRs, we first study the format
of value functions in PSRs. The following lemma states that value functions for M -memory policies
have bilinear forms.
Lemma 13 (Bilinear form of value functions for M -memory policies). Let ϕ(·) ∈ R|Zh−1| be a
one-hot encoding vector over Zh−1. Suppose T is a core test set. Then, for any M -memory policy π,
there exists Jπh ∈ R|Zh−1|×|T | such that

Vπh (τah ) = ϕ⊤(zh−1)Jπhqτah .

Proof. From Lemma 12, there exists a matrix Mo,a ∈ R|T |×|T | such that via Bayes rule:
qτah ,a,o =Mo,aqτah /P(o|τ

a
h ). (6)

We use induction to prove the claim. Here, the base argument clearly holds. Thus, we assume

Vπh+1(τ
a
h+1) = ϕ⊤(zh)Jπh+1qτah+1

.

We have

Vπh (τah ) = E[rh + Vπh+1(τ
a
h , oh, ah) | τah ; ah ∼ π(z̄h)]

=
∑
oh,ah

P(oh | τah )πh(ah | oh, zh−1)r(oh, ah)︸ ︷︷ ︸
(a)

+
∑
oh,ah

P(oh | τah )πh(ah | oh, zh−1){ϕ⊤(zh)Jπh+1qτah ,oh,ah}︸ ︷︷ ︸
(b)

.

Note we use the assumption that the reward is a function of oh, ah conditional on (τah , oh, ah).

We first check the first term (a) that contains rewards. Using the fact that P(o|τah ) = m⊤
o qτah , this is

equal to∑
oh,ah

⟨moh ,qτah ⟩πh(ah | oh, zh−1)r(oh, ah) = ⟨
∑
oh,ah

mohπh(ah | oh, zh−1)r(oh, ah),qτah ⟩.
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Thus, it has a bilinear form, i.e., there exists some matrix Jπ1 such that

⟨
∑
oh,ah

moh,ahπh(ah | oh, zh−1)rh,qτah ⟩ = ϕ⊤(zh−1)Jπ1qτah

where Jπ1 is a matrix whose row indexed by zh−1 is equal to
∑
o,am

⊤
o πh(a|o, zh−1)r(o, a).

Next, we see the second term (b). Using (6), the second term is equal to∑
oh,ah

πh(ah | oh, zh−1)ϕ
⊤(zh−1 ⊕ oh, ah)Jπh+1Moh,ahqτah

where we use the notation zh−1 ⊕ o, a to represent the operation of appending (o, a) pair to the
memory while maintaining the proper length of the memory by truncating away the oldest observation-
action pair. Thus, it has an again bilinear form ϕ(zh−1)

⊤Jπ2qτah and the matrix Jπ2 can be defined
such that its row indexed by zh−1 is equal to

∑
o,a πh(a|o, zh−1)ϕ

⊤(zh−1 ⊕ o, a)Mπ
h+1Ma,o. This

concludes the proof.

Next, we check sufficient conditions to ensure the existence of general K-step future-dependent value
functions. Given T , we define the corresponding set of action sequences T A as T A := {tA : t ∈ T }.
We set ρout in (5) to be a uniform distribution over the set T A denoted by U(T A). Namely, U(T A)
will uniformly randomly select a sequence of test actions from T A.

Lemma 14 (Existence of future-dependent value functions in PSRs). Suppose T is a core test. There
exists gπh : Zh−1 × T such that

E[gπh(zh−1, oh:h+K−1, ah:h+K−2) | τah ; ah:h+K−2 ∼ U(T A)] = Vπh (τah ).

Proof. We mainly need to design an unbiased estimator of the predictive state qτah . We use impor-
tance weighting to do that. Given ah:h+K−2 ∼ U(T A), and the resulting corresponding random
observations oh:h+K−1, we define the following estimator q̂τah (oh:h+K−1, ah:h+K−2) ∈ R|T |, such
that its entry indexed by a test t ∈ T is equal to:

q̂τah (oh:h+K−1, ah:h+K−2)[t] =
1(tO = oh:h+K−1, t

A = ah:h+K−2)

1/|T A|
.

We can verify that

E[q̂τah (oh:h+K−1, ah:h+K−2)[t] | τah ; ah:h+K−2 ∼ U(T A)]

= 1/|T A|E[1(tO = oh:h+K−1, t
A = ah:h+K−2) | τah ; ah:h+K−2 ∼ U(T A)]

= E[1(tO = oh:h+K−1, t
A = ah:h+K−2) | τah ; ah:h+K−2 ∼ do(tA)] = qτah [t].

Then,

E[q̂τah (oh:h+K−1, ah:h+K−2) | τah ; ah:h+K−2 ∼ U(T A)] = qτah .

With this estimator, now we can define the future-dependent value function using the bilinear form of
Vπh (τ), i.e.,

gπh(zh−1, oh:h+K−1, ah:h+K−2) = ϕ(zh−1)
⊤Jπhq̂τah (oh:h+K−1, ah:h+K−2).

Using the fact that q̂τah (oh:h+K−1, ah:h+K−2) is an unbiased estimate of qτah , we can conclude the
proof.

Since PSR models capture POMDP models, our above result directly implies the existence of the
future-dependent value functions in observable POMDPs as well by using obtained facts in Example 1
and 2 .
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E.4 PO-Bilinear Rank Decomoposition

Finally, we calculate the PO-bilinear rank. Here,

gh ∈ {Zh−1 × (OKAK−1) ∋ (zh−1 × t) 7→ ϕ(zh−1)
⊤Jπhq̂τah (t) ∈ R : Jπh ∈ RZh−1×|T |}.

The Bellman error for (g, π) under a roll-in π′ denoted by Brh(g, π;π
′) is defined as

− E[E[gh+1(zh, t
A
h+1, t

O
h+1) | τah+1; t

A
h+1 ∼ U(T A

h+1)] + rh; a1:h−1 ∼ π′, ah ∼ π]

+ E[gh(zh−1, t
A
h , t

O
h ) | τah ; tAh ∼ U(T A

h )]; a1:h−1 ∼ π′, ah ∼ π].

In fact, Brh(g, π;π′) = 0 for any general future-dependent value functions gπ .

Our goal is to design a loss function lh(·) such that we can estimate the above Bellman error
Brh(g, π;π

′) using data from a single policy. To do that, we design the following randomized action
selection strategy.

Given a action sequence tA from a test t, let us denote t̄A as a copy of tA but starting from the
second action of tA, i.e., if tA = {a1, a2, a3}, then t̄A = {a2, a3}. Denote T̄ A = {t̄A : t ∈ T }.
Our random action selection strategy first selects ah ∼ U(A) uniformly randomly from A, and then
select a sequence of actions ā uniformly randomly from T A ∪ T̄ A. Here, we remark the length of
outputs is not fixed (i.e., ā ∈ T A has length larger than the ā ∈ T̄ A).

As a first step, we define two unbiased estimators for qτah and qτah+1
. Conditioning on history

τah , given actions ah ∼ U(A) followed by action sequence āh+1 ∼ U(T A ∪ T̄ A), denote the
corresponding observations as oh, oh+1, . . . oh+|āh+1|+1. We construct unbiased estimators for qτah
and qτah+1

as follows. As an unbiased estimator of qτah , we define q̂τah with the entry indexed by test
t′ ∈ T as follows:

q̂τah (ah, āh+1, oh:h+|āh+1|+1)[t
′] =

1(āh+1 ∈ T̄ A, (ah, āh+1) = t′A, oh:h+|āh+1|+1 = t′O)

1/(2|A||T A|)
. (7)

Similarly, as an unbiased estimator of qτah+1
, we define q̂τah+1

with the entry indexed by test t′ ∈ T
as follows:

q̂τah+1
(ah, āh+1, oh+1:h+|āh+1|+1)[t

′] =
1(āh+1 ∈ T A, āh+1 = t′A, oh+1:h+|āh+1|+1 = t′O)

1/(2|T A|)
(8)

We remark the length of ā in (7) and the one of (8) are different.

Then, by using importance sampling, we can verify

E[q̂τah (ah, āh+1, oh:h+|āh+1|+1)|τah ; ah ∼ U(A), āh+1 ∼ U(T A ∪ T̄ A)] = qτah ,

E[q̂τah+1
(āh+1, oh+1:h+|āh+1|+1)|τah+1; āh+1 ∼ U(T A ∪ T̄ A)] = qτah+1

.

With the above setup, we can construct the loss function l for estimating the Bellman error. We set
the loss as follows:

lh(zh−1, ah, rh, āh+1, oh:h+|āh+1|+1;π, g) (9)

= ϕ(zh−1)
⊤Jhq̂τah (ah, āh+1, oh:h+|āh+1|+1)

− 1{ah = πh(z̄h)}
1/|A|

(
rh + ϕ(zh)

⊤Jh+1q̂τah+1
(āh+1, oh+1:h+|āh+1|+1)

)
.

Since we have shown that q̂τah and q̂τah+1
are unbiased estimators of qτ and qτah+1

, respectively, we
can show that for any roll-in policy π′:

Brh(π, g;π
′)

= −E[E[gh+1(zh, t
A
h+1, t

O
h+1) | τah+1; t

A
h+1 ∼ U(T A

h+1)] + rh; a1:h−1 ∼ π′, ah ∼ π]

+ E[gh(zh−1, t
A
h , t

O
h ) | τah ; tAh ∼ U(T A

h )]; a1:h−1 ∼ π′, ah ∼ π]

= E[−ϕ(zh)⊤Jπh+1qτah+1
− rh + ϕ(zh−1)

⊤Jπhqτah ; a1:h−1 ∼ π′, ah ∼ π]

= E
[
lh(zh−1, ah, rh, āh+1, oh:h+|āh+1|+1;π, g); a1:h−1 ∼ π′, ah ∼ U(A), āh+1 ∼ U(T A ∪ T̄ A)

]
.

The above shows that we can use lh(·) as a loss function.
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Summary We can use the almost similar algorithm as Algorithm 1. The sole difference is we need
to replace σth(π, g) with

EDth

[
lh(zh−1, ah, rh, āh+1, oh:h+|āh+1|+1;π, g); a1:h−1 ∼ π′, ah ∼ U(A), āh+1 ∼ U(T A ∪ T̄ A)

]
where Dt

h is an empirical approximation when executing a1:h−1 ∼ πt, ah ∼ U(A), āh+1 ∼ U(T A∪
T̄ A).

Calculation of PO-bilinear rank Finally, we prove a PSR belongs to the PO-bilinear class.

Lemma 15 (PO-bilinear decomposition). Let Q be a minimum core test set contained in T . The PSR
model has PO-bilinear rank at most |O|M |A|M |Q|, i.e., there exists two |O|M |A|M |Q|-dimensional
mappings Wh : Π × G → R|O|M |A|M |Q| and Xh : Π → R|O|M |A|M |Q| such that for any tripe
(π, g;π′), we have:

Brh(π, g;π
′) = E

[
ϕ(zh−1)

⊤Jhqτah − rh − ϕ(zh)
⊤Jh+1qτah+1

; a1:h−1 ∼ π′, ah ∼ π
]

= ⟨Xh(π
′),Wh(π, g)⟩ .

Proof. We first take expectation conditional on τah . Then, we have

ϕ(zh−1)
⊤Jhqτah − E

[
rh + ϕ(zh)

⊤Jh+1qτah+1
| τah ; ah ∼ π

]
= ϕ(zh−1)

⊤Jhqτah +
(
ϕ(zh−1)

⊤Jπ1qτah + ϕ(zh−1)
⊤Jπ2qτah

)
,

where Jπ1 and Jπ2 are some two matrices as defined in the proof of Lemma 13 from where we have
already known that the π-induced Bellman backup on a value function which has a bilinear form
gives back a bilinear form value function. Rearrange terms, we get:

ϕ(zh−1)
⊤Jhqτah − E

[
rh + ϕ(zh)

⊤Jh+1qτah+1
| τah ; ah ∼ π

]
=
〈
ϕ(zh−1), (Jh + Jπ1 + Jπ2 )qτa

h

〉
.

Now recall that the minimum core test set is Q ⊂ T . The final step is to argue that qτ lives in a
subspace whose dimension is |Q|. Since Q is a core test set, by definition, we can express qτah using
[P(t|τah )]t∈Q, i.e.,

∃K ∈ R|T |×|Q|, qτah = K[P(t|τah )]t∈Q,

where the row of K indexed by t ∈ T is equal to kt, where kt is the vector that is used to predict
P(t|τah ) = k⊤

t [P(t|τah )]t∈Q whose existences is ensured by the definition of PSRs. This implies that〈
ϕ(zh−1), (Jh + Jπ1 + Jπ2 )qτa

h

〉
= ⟨ϕ(zh−1), (Jh + Jπ1 + Jπ2 )K[P(t|τah )]t∈Q⟩
= (ϕ(zh−1)⊗ [P(t|τah )]t∈Q), vec((Jh + Jπ1 + Jπ2 )K)⟩.

Finally, we take expectation with respect to τah then we get Brh(π, g;π′) = ⟨Xh(π
′),Wh(π, g)⟩ such

that

Xh(π
′) = ϕ(zh−1)⊗ E[[P(t|τah )]t∈Q; a1:h−1 ∼ π′], Wh(π, g) = vec((Jh + Jπ1 + Jπ2 )K).

The key observation here is that the bilinear rank scales with |Q| but not |T |. This is good news since
we often cannot identify exact minimal core test sets; however, it is easy to find core tests including
minimal core tests. Thus, even if we do not know the linear dimension of a dynamical system a priori,
the resulting bilinear rank is the linear dimension of dynamical systems as long as core sets are large
enough so that they include minimal core tests. This will result in the benefit of sample complexity as
we will see Section N.
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F Generalization of PO-Bilinear AC Class

We extend our previous definition of PO-Bilinear AC framework. We first present an even more
general framework that captures all the previous examples that we have discussed so far. We then
provide two more examples that can be covered by this framework: (1) M -step decodable POMDPs,
and (2) observable POMDPs with low-rank latent transition. Using the result in (2), we can obtain
refined results in the tabular setting compared to the result from Section 5.3.2.

The following is a general PO-Bilinear AC Class. Recall M(h) := max(h −M, 1). We consider
one-step future, i.e.,K = 1, but the extension toK > 1 is straightforward. Comparing to Definition 3,
we introduce another class of functions termed as discriminators F and the loss function l.
Definition 9 (General PO-Bilinear AC Class). Consider a tuple ⟨Π,G, l,Πe,F⟩ consisting of a
policy class Π, a function class G, a loss function l = {lh}Hh=1 where lh(·; f, π, g) : Hh−1 ×O ×
A× R×O → R, a set of estimation policies Πe := {πe(π) : π ∈ Π} where πeh(π) : Z̄h → ∆(A),
and a discriminator class F = {Fh} with Fh ⊂ [Hh → R]. Consider a non-decreasing function
ζ : R+ → R with ζ(0) = 0.

The model is a PO-bilinear class of rank d if G is realizable, and there exist Wh : Π× G → Rd and
Xh : Π → Rd such that for all π, π′ ∈ Π, g ∈ G and h ∈ [H],

(a) |E[gh(z̄h)− rh − gh+1(z̄h+1); a1:h ∼ π]| ≤ |⟨Wh(π, g), Xh(π)⟩|,

(b)

ζ(max
f∈Fh

|E[lh(τh, ah, rh, oh+1; f, π, g); a1:M(h)−1 ∼ π′, aM(h):h ∼ πe(π′)]|) ≥ |⟨Wh(π, g), Xh(π
′)⟩|.

(In M -step decodable POMDPs and POMDPs with low-rank latent transition, we set
πe(π) = U(A) and in the previous sections, we set πe(π′) = π′. )

(c)
max
f∈Fh

|E[lh(τh, ah, rh, oh+1; f, π, g
π); a1:M(h)−1 ∼ π′, aM(h):h ∼ πe(π′)]| = 0

for any π ∈ Π and the corresponding future-dependent value function gπ in G .

The first condition states the average Bellman error under π is upper-bounded by the quantity in the
bilinear form. The second condition states that we have a known loss function l that can be used to
estimate an upper bound (up to a non-decreasing transformation ζ) of the value of the bilinear form.
Our algorithm will use the surrogate loss l(·). As we will show, just being able to estimate an upper
bound of the value of the bilinear form suffices for deriving a PAC algorithm. The discriminator F
and the non-decreasing functions ζ give us additional freedom to design the loss function. For simple
examples such as tabular POMDPs and LQG, as we already see, we simply set the discriminator
class F = ∅ (i.e., we do not use discriminators) and ζ being the identity mapping.

With this definition, we slightly modify PROVABLE to incorporate the discriminator to construct
constraints. The algorithm is summarized in Algorithm 3 that is named as DISPROVABLE. There are
two modifications: (1) when we collect data, we switch from the roll-in policy πt to the policy πe
at time step M(h); (2) the Bellman error constraint σth is defined using the loss l together with the
discriminator class Fh.

The following theorem shows the sample complexity of Algorithm 3. For simplicity, we direct
consider the case where Π,G,F are all discrete.
Assumption 3 (Uniform Convergence). Fix h ∈ [H]. Let D′

h be a set of m i.i.d tuples by executing
a1:M(h)−1 ∼ πt, aM(h):h ∼ πe With probability 1− δ,

supπ∈Π,g∈G,f∈F |(ED′
h
− E)[lh(τh, ah, rh, oh+1; f, π, g)]| ≤ ϵgen,h(m,Π,G,F , δ)

For h = 1, we also require

sup
g1∈G1

|ED′
1
[g1(o1)]− E[ED′

1
[g1(o1)]]| ≤ ϵini,1(m,G, δ).

Theorem 8 (Sample complexity of Algorithm 3). Suppose we have a PO-bilinear AC class with rank
d in Definition 9. Suppose Assumption 3, supπ∈Π ∥Xh(π)∥ ≤ BX and supπ∈Π,g∈G ∥Wh(π, g)∥ ≤
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Algorithm 3 PaRtially ObserVAble BiLinEar with DIScriminators (DISPROVABLE)
1: Input: Value future-dependent value function class G = {Gh},Gh ⊂ [Z̄h → R], discriminator

class F = {Fh},Fh ⊂ [Hh → R], policy class Π = {Πh},Πh ⊂ [Z̄h → ∆(A)], parameters
m ∈ N, R ∈ R

2: Initialize π0 ∈ Π
3: Form the first step dataset D0 = {oi}mi=1, with oi ∼ O(·|s1)
4: for t = 0 → T − 1 do
5: For any h ∈ [H], define the Bellman error

∀(π, g) ∈ Π× G : σth(π, g) := max
f∈Fh

|EDth [lh(τh, ah, rh, oh+1; f, π, g)] |

where Dt
h is the empirical approximation by executing a1:M(h)−1 ∼ πt, aM(h):h ∼ πe(πt)

and collecting m i.i.d tuples.
6: Select policy optimistically as follows

(πt+1, gt+1) := argmax
π∈Π,g∈G

ED0 [g1(o)] s.t. ∀h ∈ [H],∀i ∈ [t], σih(π, g) ≤ R.

7: end for
8: Output: Randomly choose π̂ from (π1, · · · , πT ).

BW for any h ∈ [H].

By setting T = 2Hd ln
(
4Hd

(
B2
XB

2
W

ζ2(ϵ̃gen)
+ 1
))

, R = ϵgen where

ϵgen := maxh ϵgen,h(m,Π,G,F , δ/(TH + 1)), ϵ̃gen := maxh ϵgen,h(m,Π,G,F , δ/H).

With probability at least 1− δ, letting π⋆ = argmaxπ∈Π J(π
⋆), we have

J(π⋆)− J(π̂) ≤ H1/2
[
4ζ(ϵgen)

2 + 2Tζ(2ϵgen)
2Hd ln(4Hd(B2

XB
2
W /ζ

2(ϵ̃gen) + 1))
]1/2

+ 2ϵini.

The total number of samples used in the algorithm is mTH .

This reduces to Theorem 1 when we set ζ as an identify function and πe(π′) = π′. When ζ−1(·) is
a strongly convex function, we can gain more refined rate results. For example, when ζ(x) =

√
x,

i.e., ζ−1(x) = x2, with ϵgen = O(1/
√
m), the above theorem implies a slow sample complexity

rate 1/ϵ4. However, by leverage the strong convexity of the square function ζ−1(x) := x2, a refined
analysis can give the fast rate 1/ϵ2. We will see such two examples in the next sections.

G Examples for Generalized PO-Bilinear AC Class

We demonstrate that our generalized framework captures two models: (1) M -step decodable
POMDPs, and (2) observable POMDPs with the latent low-rank transition. In this section, we
assume rh ∈ [0, 1] for any h ∈ [H].

G.1 M -step decodable POMDPs

The example we include here is a model that involves nonlinear function approximation but has a
unique assumption on the exact identifiability of the latent states.
Example 5 (M -step decodable POMDPs [19]). There exists an unknown decoder ιh : Z̄h → S,
such that for every reachable trajectory (s1:h, a1:h−1, o1:h), we have sh = ιh(z̄h) for all h ∈ [H].

Note that when M = 0, this model is reduced to the well-known Block MDP model [17, 51, 78].

Existence of future-dependent value functions. From the definition, using a value function
V πh (zh−1, sh) over zh−1 ∈ Zh−1, sh ∈ S, we can define a future-dependent value function vπh :
Zh−1 ×O → R as

vπh(zh−1, oh) = V πh (zh−1, ιh(z̄h))

since it satisfies
Eoh∼O(sh)[v

π
h(zh−1, oh) | zh−1, sh] = Eoh∼O(sh)[V

π
h (zh−1, ιh(z̄h)) | zh−1, sh] = V πh (zh−1, sh).

This is summarized in the following lemma.
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Lemma 16 (Existence of future-dependent value functions in M -step decodable POMDPs). In
M -step decodable POMDPs, future-dependent value functions exist.

M -step decodable POMDPs showcase the generality of future-dependent value functions, which
not only capture standard observability conditions where future observations and actions are used
to replace belief states (e.g., observable tabular POMDPs and observable LQG), but also capture a
model where history is used to replace latent states.

PO-Bilinear Rank. Next, we calculate the PO-bilinear rank based on Definition 9. In the tabular
case, we can naïvely obtain the PO-bilinear decomposition with rank |O|M |A|M |S| following
Example 1. Here, we consider the nontabular case where function approximation is used and |O| can
be extremely large. We define the following Bellman operator associated with π at step h:

Bπh : G → [Z̄h → R]; (10)

∀z̄h : [Bπhg] (z̄h) := Eah∼π(z̄h)
[
rh(ιh(z̄h), ah) + Eoh+1∼O◦T(ιh(z̄h),ah)[gh+1(z̄h+1)]

]
.

Note that above we use the ground truth decoder ιh to decode from z̄h to its associated latent state sh.
The existence of this Bellman operator Bπh is crucially dependent on the existence of such decoder ιh.

We show that M -step decodable POMDPs satisfy the definition in Definition 9. We assume that
the latent state-wise transition model is low-rank. In MDPs, this assumption is widely used in
[76, 36, 2, 71]. Here, we do not need to know µ, ϕ in the algorithm.

Assumption 4 (Low-rankness of latent transition). Suppose T is low-rank, i.e., T(s′ | s, a) =
⟨ϕ(s, a), µ(s′)⟩(∀(s, a, s′)) where ϕ, µ are (unknown) d-dimensional features. As technical condi-
tions, we suppose ∥ϕ(s, a)∥ ≤ 1 for any (s, a) and |

∫
µ(s)v(s)d(s)| ≤

√
d for any ∥v∥∞ ≤ 1.

Lemma 17 (Bilinear decomposition of low-rank M -step decodable POMDPs ). Suppose Assumption
4, ∥Gh∥∞ ≤ H, ∥Fh∥∞ ≤ H , rh ∈ [0, 1] for any h ∈ [H]. Assume a discriminator class is Bellman
complete, i.e.,

∀π ∈ Π,∀g ∈ G : (Bπhg)− gh ∈ Fh,
for any h ∈ [H]. The loss function is designed as

lh(τh, ah, rh, oh+1; f, π, g) := πh(ah | z̄h)|A|f(z̄h)(gh(z̄h)− rh − gh+1(z̄h+1))− 0.5f(z̄h)
2.
(11)

Then, there exist Wh(π, g), Xh(π
′) so that the PO-bilinear rank is at most d such that

|E[gh(z̄h)− rh − gh+1(z̄h+1) : a1:h ∼ π]| = |⟨Wh(π, g), Xh(π)⟩|, (12)∣∣∣∣max
f∈Fh

E[lh(τh, ah, rh, oh+1; f, π, g); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

∣∣∣∣ ≥ 0.5⟨Wh(π, g), Xh(π
′)⟩2

|A|M
,

(13)

and ∣∣∣∣max
f∈Fh

E[lh(τh, ah, rh, oh+1; f, π, g
π); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

∣∣∣∣ = 0. (14)

Proof. The proof is deferred to Section Q.2. Note that (12), (13), (14) correspond to (a), (b), (c) in
Definition 9.

We use the most general bilinear class definition from Definition 9, where ζ(a) = |A|M/2a1/2 for
scalar a ∈ R+. Hence ζ is a non-decreasing function (ζ is non-decreasing in R+). The proof of the
above lemma leverages the novel trick of the so-called moment matching policy introduced by [19].
When the latent state and action space are discrete, it states that the bilinear rank is |S||A|, which is
much smaller than |O|M |A|M |S|. Note we here introduce −0.5f(z̄h)

2 in the loss function (11) to
induce strong convexity w.r.t f as in [70, 14, 10], which is important to obtain the fast rate later.

The concrete sample complexity of PROVABLE (Algorithm 3) for this model is summarized in the
following. Recall that the bilinear rank is d where d is the rank of the transition matrix. We set
Gh ⊂ [Z̄h → [0, H]]. Then, we have the following result.
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Theorem 9 (Sample complexity for M -step decodable POMDPs (Informal)). Suppose Assumption
4, Bellman completeness, ∥Gh∥∞ ≤ H, ∥Fh∥∞ ≤ H , rh ∈ [0, 1] for any h ∈ [H]. With probability
1− δ, we can achieve J(π⋆)− J(π̂) ≤ ϵ when we use samples at most

Õ

(
d2H6|A|2+M ln(|Πmax||Fmax||Gmax|/δ)

ϵ2

)
.

Here, polylog(d,H, |A|, 1/ϵ, ln(|Πmax|), ln(|Fmax|), ln(|Gmax|), ln(1/δ)) are omitted.

The followings are several implications. First, the error rate scales with O(1/ϵ2). As we promised,
by leveraging the strong convexity of loss functions, we obtain a rate O(1/ϵ2), which is faster than
O(1/ϵ4) that are attained when we naively invoke Theorem 8 with ξ(x) ∝

√
x. Secondly, the error

bound incurs |A|M . As showed in [19], this is inevitable in M -step decodable POMDPs. Thirdly,
in the tabular case, when we use the naïve function classes for G,F ,Π, i.e., Gh = {Z̄h → [0, H]},
Fh = {Z̄h → [0, H]}, Πh = {Z̄h → ∆(A)}, the bound could incur additional |O|M since the
complexity of the function classes can scale with respect to (|O||A|)M (e.g., log(|Gh|) can be in
the order of O(|O|M |AM ), and similarly for log(|Fh|), ln(Πh)). However, when we start form a
realizable model class that captures the ground truth transition and omission distribution, we can
remove |O|M . See Section G.2.4 for an example.

Note that [19] uses a different function class setup where they assume one has an M memory-action
dependentQ function class Qh : Z̄h×A → R which containsQ⋆h(z̄h, a) while we use the actor-critic
framework vπh , π. The two function class setups are not directly comparable. Generally, we mention
that such optimal Q⋆ with truncated history does not exist when the exact decodability does not hold
(e.g., such Q⋆ with truncated history does not exist in LQG). This displays the potential generality of
the actor-critic framework we propose here.

G.2 Observable POMDPs with Latent Low-rank Transition: a model-based perspective

The final example we include in this work is a POMDP with the latent low-rank transition. We
first introduce the model, and then we introduce our function approximation setup and show the
sample complexity. Finally, we revisit the sample complexity for observable tabular POMDPs and
M -step decodable tabular POMDPs using the improved algorithm that elaborates on the model-based
approach in this section.
Example 6 (Observable POMDPs with latent low-rank transition). The latent transition T(s′|s, a)
is factorized as T(s′|s, a) = µ⋆(s′)⊤ϕ⋆(s, a),∀s, a, s′ where µ⋆ : S → Rd and ϕ⋆ : S × A → Rd.
The observation |O| × |S| matrix O has full-column rank.

In the tabular POMDP example, we have d ≤ |S|. However in general d can be much smaller than
|S|. Note that in this section, we will focus on the setting where S,O are discrete to avoid using
measure theory languages, but their size could be extremely large. Particularly, our sample complexity
will not have explicit polynomial or logarithmic dependence on |O|, |S|, instead it will only scale
polynomially with respect to the complexity of the hypothesis class and the rank d.

Model-based function approximation. Our function approximation class consists of a set of
models M = {(µ, ϕ,O)} where µ, ϕ together models latent transition as µ(·)⊤ϕ(s, a) ∈ ∆(S),
and O : S → ∆(O) models O, and O is full column rank. For notation simplicity, we often use
θ := (µ, ϕ,O) ∈ M to denote a model (µ, ϕ,O). We impose the following assumption.
Assumption 5 (Realizability). We assume realizability, i.e., (µ⋆, ϕ⋆,O) ∈ M.

We assume M is discrete, but |M| can be large such that a linear dependence on |M| in the sample
complexity is not acceptable. Our goal is to get a bound that scales polynomially with respect to
ln(|M|), which is the standard statistical complexity of the discrete hypothesis class M.

Next, we construct Π,G,F using the model class M. Given θ := (µ, ϕ,O), we denote πθ as the
optimal M -memory policy, i.e., the M -memory policy that maximizes the total expected reward. We
set

Π = {πθ : θ ∈ M}.

We consider the value function class for θ := (µ, ϕ,O) with O being full column rank. For each
θ, we can define the corresponding value function of the policy π at h ∈ [H]: V πθ;h(zh−1, sh) :
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Zh−1 × S → R. Then, since O is full column rank, as we see in the proof of Lemma 1, a
corresponding future-dependent value function is

gπθ;h(z, o) = ⟨fπθ,h,1(z)⊗O†1(o)⟩
where V πθ;h(zh−1, sh) = ⟨fπθ;h,1(z)⊗ 1(s)⟩. Then, we construct G = {Gh} as:

∀h ∈ [H] : Gh = {Z̄h ∋ z̄h−1 7→ gπθ;h(z̄h−1) ∈ R : π ∈ Π, θ ∈ M}. (15)
By construction, since θ⋆ := (µ⋆, ϕ⋆,O) ∈ M, we must have gπ ∈ G,∀π ∈ Π, which implies G is
realizable (note gπh = gπθ⋆;h). Here, from the construction and the assumption rh ∈ [0, 1] for any
h ∈ [H], we have |Gh| ≤ |M|2 and ∥Gh∥∞ ≤ H/σ1, which can be seen from

∀(z, o); ⟨fπθ;h,1(z)⊗O†1(o)⟩ ≤ ∥fπθ;h∥∞∥1(z)⊗O†1(o)∥1 ≤ H × ∥O†1(o)∥1 ≤ H/σ1

by assuming ∥O†∥1 ≤ 1/σ1 and ∥fπθ;h∥∞ ≤ H .

To construct a discriminator class F , we first define the Bellman operator Bπθ;h for π ∈ Π, h ∈
[H], θ ∈ M:

Bπθ;h : G → [Hh → R];
∀τh;

(
Bπθ;hg

)
(τh) = Eah∼πh(z̄h)

[
rh + Eoh+1∼Pθ(·|τh,ah)gh+1(z̄h+1)

]
,

where Hh is the whole history space up to h (τh = (a1:h−1, o1:h), and z̄h is just part of this history)
and Pθ(oh+1|τh, ah) is the probability of generating oh+1 conditioned on τh, ah under model θ.
Then, we construct F = {Fh} such that

∀h ∈ [H] : Fh = {Hh ∋ τh 7→ {gh − Bπθ;hg}(τh) ∈ R : π ∈ Π, g ∈ G, θ ∈ M}. (16)
so that we can ensure the Bellman completeness:

−(BπhG) + Gh ⊂ Fh.
noting Bπθ⋆;h = Bπh . Here, from the construction, |Fh| ≤ |M|2 × |M|2 × |M|2 = |M|6 and
∥Fh∥∞ ≤ 3H/σ1.

We define the loss as the same as the one we used in M -step decodable POMDPs, except that our
discriminators now take the entire history as input:
lh(τh, ah, rh, oh+1; f, π, g) := πh(ah | z̄h)|A|f(τh)(gh(z̄h)− rh − gh+1(z̄h+1))− 0.5f(τh)

2.
(17)

Finally, as in the case of M -step decodable POMDPs (Lemma 17), we get the following lemma that
states that our model is a PO-bilinear AC class (Definition 9) under the following model assumption.
Assumption 6. We assume ∥O†∥1 ≤ 1/σ1 for any O in the model. Suppose µ(·)⊤ϕ(s, a) ∈ ∆(S)
for any (s, a), µ(·) and ϕ(·) in the model. Suppose ∥ϕ(s, a)∥ ≤ 1 for any ϕ in the model and (s, a) ∈
S×A. Suppose for any v : S → [0, 1] and for any µ in the model, we have ∥

∫
v(s)µ(s)d(s)∥2 ≤

√
d.

Lemma 18 (PO-bilinear decomposition for Observable POMDPs with low-rank transition). Suppose
Assumption 5, 6. Consider observable POMDPs with latent low-rank transition. Set G as in (15),
F as in (16) and l as in (17). Then, there exist Wh(π, g), Xh(π

′) that admits the PO-bilinear rank
decomposition in Definition 9 with rank d.

The above lemma ensures that the PO-bilinear rank only depends on d, and is independent of the
length of the memory. For example, in the tabular case, it is |S|.
Next, we show the output from DISPROVABLEcan search for the best in class M -memory policy as
follows.
Theorem 10 (Sample complexity of DISPROVABLE for observable POMDPs with latent low-rank
transition). Consider observable POMDPs with latent low-rank transition. Suppose Assumption 5, 6.
With probability 1− δ, we can achieve J(π⋆)− J(π̂) ≤ ϵ when we use samples at most

Õ

(
d2H6|A|2+M ln(|M|/δ)

ϵ2σ2
1

)
.

Here, we omit polylog(d,H, |A|, ln(1/δ), ln(|M|), 1/σ1, 1/ϵ).

Here, we emphasize that there is no explicit polynomial or logarithmic dependence on |S| and |O|,
which permits learning for large state and observation spaces. We also do not have any explicit
polynomial dependence on |O|M , as we construct Π and G from the model class M which ensures
the complexities of π and G are in the same order as that of M.
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G.2.1 Global Optimality

We show a quasi-polynomial sample complexity bound for competing against the globally optimal
policy π⋆gl. To compete against the globally optimal policy π⋆gl, we need to set M properly. We use
the following lemma. The proof is given in Section R.
Lemma 19 (Near global optimaltiy of M -memoruy policy). Consider ϵ ∈ (0, H], and a POMDP
with low-rank latent transition and O being full column rank with ∥O†∥1 ≤ 1/σ1. When M =
Θ(C(1/σ1)

−4 ln(dH/ϵ)) (with C being some absolute constant), there must exists an M -memory
policy π⋆, such that J(π⋆gl)− J(π⋆) ≤ ϵ

Note that the memory M above is independent of |S| instead it only depends on the rank d. To prove
the above lemma, we first show a new result on belief contraction for low-rank POMDPs under the
ℓ1-based observability. The proof of the belief contraction borrows some key lemma from [23] but
extends the original result for small-size tabular POMDPs to low-rank POMDPs. We leverage the
linear structure of the problem and the G-optimal design to construct an initial distribution over S
that can be used as a starting point for belief propagation along the memory.

We conclude the study on the POMDPs with low-rank latent transition by the following theorem,
which demonstrates a quasi-polynomial sample complexity for learning the globally optimal policy.
Theorem 11 (Sample complexity of DISPROVABLE for POMDPs with low-rank latent transition —
competing against π⋆gl). Consider observable POMDPs with latent low-rank transition. Fix some
ϵ ∈ (0, H), δ ∈ (0, 1). Suppose Assumption 5, 6. We construct Π,G,F , and the loss l as we described
above. With probability at least 1− δ, when M = Θ(Cσ−4

1 ln(dH/ϵ)), DISPROVABLE outputs a π̂
such that J(π⋆gl)− J(π̂) ≤ ϵ, with number of samples scaling

Õ

(
d2H6|A|2 ln(|M/δ|)

ϵ2σ2
1

· |A|ln(dH/ϵ)/σ
4
1

)
.

Remark 6 (Comparison to [73]). We compare our results to the very recent work [73] that studies
POMDPs with the low-rank latent transition. The results are in general not directly comparable, but
we state several key differences here. First, [73] considers a special instance of low-rank transition,
i.e., [73] assumes T has low non-negative rank, which could be exponentially larger than the usual
rank [2]. Second, [73] additionally assumes short past sufficiency, a condition which intuitively says
that for any roll-in policy, the sufficient statistics of a short memory is enough to recover the belief
over the latent states, and their sample complexity has an exponential dependence on the length of the
memory. While our result also relies on the fact that the globally optimal policy can be approximated
by an M -memory policy with small M , this fact is derived directly from the standard observability
condition.

G.2.2 Revisiting Observable Undercomplete Tabular POMDPs

We reconsider the sample complexity of undercomplete tabular POMDPs using Theorem 10. In this
case, we will start from a model class that captures the ground truth latent transition T and omission
distribution O. By constructing ϵ-nets over the model class,we can set ln(|M|) = Õ(|S|3|O||A|)
since T,O have |S|2|A| and |O||S| many parameters, respectively. Besides, the PO-bilinear rank is
d = |S|. Therefore, the sample complexity is

Õ

(
|S|5|O|H6|A|2+M ln(1/δ)

ϵ2σ2
1

)
.

We leave the formal analysis to future works.

Compared to results in Section 5.3.2, there is no |O|M term. This is due to two improvements. The
first improvement is that we refine the rank from |O|M |A|M |S| to |S|. The second improvement is
we model the future-dependent value function class and policy class starting from the model class
whose complexity has nothing to do with the length of memory M (note that previously, from a pure
model-free perspective, the statistical complexity of G can scale as |O|M |A|M |S| in the worst case).

G.2.3 Revisiting Observable Overcomplete POMDPs

We reconsider the sample complexity of overcomplete tabular POMDPs using Theorem 10 with slight
modification to incorporate multi-step future. Suppose ∥{OK}†∥1 ≤ 1/σ1 (recall OK is defined in
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Lemma 5 in Section C.2). Then, we can achieve a sample complexity

Õ

(
|S|5|O|H6|A|2+M ln(1/δ)

ϵ2σ2
1

)
since the PO-bilinear rank is |S|. Note that there is no |O|M+K dependence, since both the policy
class and the future-dependent value function class are built from the model class whose complexity
has nothing to do with M,K.

Note that due to our definition of OK , there is no |A|K term. However, when we use a different
definition, for instance, mina′h:h+K−2∈AK−1 ∥{OK(a′h:h+K−2)}†∥1 ≤ 1/α1 (recall OK(a′h:h+K−2)

is defined in Section C.2), we would incur |A|K . This is because if we only know that there is an
unknown sequence of actions a′h:h+K−2 such that OK(a′h:h+K−2) is full column rank, we need
to use uniform samples |A|K in the importance sampling step to identify such a sequence. More
formally, we can see that

|A|K min
a′h:h+K−2∈AK−1

∥{OK(a′h:h+K−2)}†∥1 ≥ ∥{OK}†∥1. (18)

G.2.4 Revisiting M -step Decodable Tabular POMDPs

We reconsider the sample complexity of tabular M -step decodable POMDPs by constructing F ,G,Π
from the model class M as we did for the low-rank POMDP. In this case, by constructing ϵ-nets,
we can set ln(|M|) = Õ(|S|3|O||A|) since T,O have |S|2|A| and |O||S| parameters, respectively.
Therefore, the sample complexity is

Õ

(
H6|S|5|O||A|2+M ln(1/δ)

ϵ2

)
.

Again, we leave the formal analysis to future works. Compared to the naive result mentioned after
Theorem 9 where ln(G), ln(Π) could scale in the order of |O|M in the tabular case, we do not have
|O|M dependence here.

H Proof of Theorem 1

We fix the parameters as in Theorem 1. Let

lh(z̄h, ah, rh, oh+1) = |A|πh(ah | z̄h){rh + gh+1(z̄h+1)} − gh(z̄h).

We define

ϵgen = max
h

ϵgen,h(m,Π,G, δ/(TH + 1)), ϵini = ϵini(G, δ/(TH + 1)),

ϵ̃gen = max
h

ϵgen(m,Π,G, δ/H).

Then, by our assumption 2 with probability 1− δ, we ∀t ∈ [T ],∀h ∈ [H]

sup
π∈Π,g∈G

|EDth [lh(z̄h, ah, rh, oh+1;π, g)]− E[EDth [lh(z̄h, ah, rh, oh+1;π, g)]]| ≤ ϵgen, (19)

sup
g1∈G1

|ED0 [g1(o1)]− E[ED0 [g1(o1)]]| ≤ ϵini. (20)

Hereafter, we condition on the above events.

We first show the following lemma. Recall

π⋆ = argmax
π∈Π

J(π).

Lemma 20 (Optimism). Set R := ϵ2gen. For all t ∈ [T ], (π⋆, gπ
⋆

) is a feasible solution of the
constrained program. Furthermore, we have J(π⋆) ≤ E[gt1(o1)] + 2ϵini for any t ∈ [T ], where gt is
the future-dependent value function selected by the algorithm in iteration t.
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Proof. For any π, we have

E[EDth [lh(z̄h, ah, rh, oh+1;π, g
π)] = 0

since gπ is a future-dependent value function in G. This is because

E[EDth [lh(z̄h, ah, rh, oh+1;π, g
π)]

= E[gh(z̄h)− rh − gh+1(z̄h+1); a1:h−1 ∼ πt, ah ∼ π] (IS sampling)

= ⟨Wh(π, g
π), Xh(π

t)⟩ (First assumption in Definition 3)
= 0. (Second assumption in Definition 3)

Thus,

|EDth [lh(z̄h, ah, rh, oh+1;π
⋆, gπ

⋆

)]| ≤ ϵgen.

using (19) noting π⋆ ∈ Π, gπ
⋆ ∈ G. This implies

∀t ∈ [T ],∀h ∈ [H]; (EDth [lh(z̄h, ah, rh, oh+1;π
⋆, gπ

⋆

)])2 ≤ ϵ2gen.

Hence, (π⋆, gπ
⋆

) is a feasible set for any t ∈ [T ].

Then, we have

J(π⋆) = E[gπ
⋆

1 (o1)] ≤ ED0 [gπ
⋆

1 (o1)] + ϵini (Uniform convergence result)

≤ ED0 [gt1(o1)] + ϵini (Using the construction of algorithm)

≤ E[gt1(o1)] + 2ϵini. (Uniform convergence)

Remark 7. Note that

E[EDth [lh(z̄h, ah, rh, oh+1;π, g
π)]] = 0

holds for general future-dependent value functions gπ inDefinition 6 . Thus, the statement goes
through even if we use Definition 6.

Next, we prove the following lemma to upper bound the per step regret.
Lemma 21. For any t ∈ [T ], we have

J(π⋆)− J(π̂) ≤
H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|+ 2ϵini.

Proof.

J(π⋆)− J(π̂)

≤ 2ϵini + E[gt1(o1)]− J(πt) (From optimism)

= 2ϵini +

H∑
h=1

E[gth(z̄h)− {rh + gth+1(z̄h+1)}; a1:h ∼ πt] (Performance difference lemma)

≤ 2ϵini +

H∑
h=1

|E[gth(z̄h)− {rh + gth+1(z̄h+1)}; a1:h ∼ πt]|

= 2ϵini +

H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|. (First assumption in Definition 3)

Lemma 22. Let Σt,h = λI +
∑t−1
τ=0Xh(π

τ )Xh(π
τ )⊤. We have

1

T

T−1∑
t=0

H∑
h=1

∥Xh(π
t)∥Σ−1

t,h
≤ H

√
d

T
ln

(
1 +

TB2
X

dλ

)
.
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Proof. We fix h ∈ [H]. Here, we have Σt,h = λI +
∑t−1
τ=0Xh(π

τ )Xh(π
τ )⊤. From the elliptical

potential lemma in [1, Lemma G.2], we have

1

T

T−1∑
t=0

∥Xh(π
t)∥Σ−1

t,h
≤

√√√√ 1

T

T−1∑
t=0

∥Xh(πt)∥2Σ−1
t,h

≤

√
1

T
ln

det(Σt,h)

det(λI)
≤

√
d

T
ln

(
1 +

TB2
X

dλ

)
.

Then,

1

T

T−1∑
t=0

H∑
h=0

∥Xh(π
t)∥2

Σ−1
t,h

≤ H

√
d

T
ln

(
1 +

TB2
X

dλ

)
.

Lemma 23.
∥Wh(π

t, gt)∥2Σt,h ≤ 2λB2
W + 4Tϵ2gen.

Proof. We have

∥Wh(π
t, gt)∥2Σt,h = λ∥Wh(π

t, gt)∥22 +
t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2.

The first term is upper-bounded by λB2
W . The second term is upper-bounded by

t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2

=

t−1∑
τ=0

(
E[lh(z̄h, ah, rh, oh+1;π

t, gt); a1:h−1 ∼ πτ , ah ∼ U(A)]
)2

(First assumption in Definition 3)

≤ 2

t−1∑
τ=0

EDτh [lh(z̄h, ah, rh, oh+1;π
t, gt)]2 + 2tϵ2gen ≤ 4Tϵ2gen.

From the first line to the second line, we use the definition of bilinear rank models. From the second
line to the third line, we use (a+ b)2 ≤ 2a2 + 2b2. In the last line, we use the constraint on (πt, gt).

Combining lemmas so far, we have

J(π⋆)− J(π̂) ≤ 1

T

T−1∑
t=0

H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|+ 2ϵini (Use Lemma 21)

≤ 1

T

T−1∑
t=0

H∑
h=1

∥Wh(π
t, gt)∥Σt,h∥Xh(π

t)∥Σ−1
t,h

+ 2ϵini (CS inequality)

≤ H1/2
[
2λB2

W + 4Tϵ2gen
]1/2(dH

T
ln

(
1 +

TB2
X

dλ

))1/2

+ 2ϵini.

(Use Lemma 22 and Lemma 23)

We set λ such that B2
X/λ = B2

WB
2
X/ϵ

2
gen + 1 and T =

⌈
2Hd ln(4Hd(B2

XB
2
W /ϵ̃gen + 1))

⌉
. Then,

Hd

T
ln

(
1 +

TB2
X

dλ

)
≤ Hd

T
ln

(
1 +

T

d

(
B2
WB

2
X

ϵ2gen
+ 1

))
≤ Hd

T
ln

(
1 +

T

d

(
B2
WB

2
X

ϵ̃2gen
+ 1

))
≤ Hd

T
ln

(
2T

d

(
B2
WB

2
X

ϵ̃2gen
+ 1

))
≤ 1
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since a ln(bT )/T ≤ 1 when T = 2a ln(2ab).

Finally, the following holds

J(π⋆)− J(πT ) ≤ H1/2
[
4λB2

W + 8Tϵ2gen
]1/2

+ 2ϵini

≤ H1/2
[
4λB2

W + 16ϵ2genHd ln(4Hd(B
2
XB

2
W /ϵ̃gen + 1))

]1/2
+ 2ϵini

(Plug in T )

≤ H1/2
[
8ϵ2gen + 16ϵ2genHd ln(4Hd(B

2
XB

2
W /ϵ̃gen + 1))

]1/2
+ 2ϵini
(Plug in ϵgen)

≤ 5ϵgen
[
H2d ln(4Hd(B2

XB
2
W /ϵ̃gen + 1))

]1/2
+ 2ϵini.

I Sample Complexity for Finite Function Classes

Consider cases where Π and G are finite and the PO-bilinear rank assumption is satisfied. When
Π and G are infinite hypothesis classes, |F| and |G| are replaced with their L∞-covering numbers,
respectively.
Theorem 12 (Sample complexity for discrete Π and G). Let ∥Gh∥∞ ≤ CG , rh ∈ [0, 1] for any
h ∈ [H] and the PO-bilinear rank assumption holds with PO-bilinear rank d. By letting |Πmax| =
maxh |Πh|, |Gmax| = maxh |Gh|, with probability 1 − δ, we can achieve J(π⋆) − J(π̂) ≤ ϵ when
we use samples at most

Õ
(
dbH

4 max(CG , 1)
2|A|2 ln(|Gmax||Πmax|/δ) ln2(BXBW )(1/ϵ)2

)
.

Here, polylog(d,H, |A|, ln(|Gmax|), ln(|Πmax|), ln(1/δ), ln(BX), ln(BW ), ln(1/δ), (1/ϵ)) are
omitted.

Proof. We derive the above result. First, we check the uniform convergence result. Then,

ϵgen = cmax(CG , 1)|A|
√
ln(|Gmax||Πmax|TH/δ)/m.

Thus, we need to set m such that

J(π⋆)− J(π̂) ≤ cmax(CG , 1)|A|
√
ln(|Gmax||Πmax|TH/δ)/m

√
dH2 ln(H3dB2

XB
2
Wm+ 1) ≤ ϵ

where c is some constant and

T = cHd ln(HdB2
XB

2
Wm+ 1).

By organizing the term, the following m is sufficient

c

√
dH2 max(CG , 1)2|A|2 ln(|Gmax||Πmax|H2d/δ) ln(H3dB2

XB
2
Wm)

m
≤ ϵ

Using Lemma 44, the following m satisfies the condition:

m = c
B1(lnB1B2)

2

ϵ2
, B1 = dH2 max(CG , 1)

2|A|2 ln(|Gmax||Πmax|H2d/δ), B2 = H3dB2
XB

2
W .

Combining all together, the sample complexity is mTH , i.e.,

Õ

(
d2H4 max(CG , 1)

2|A|2 ln(|Gmax||Πmax|/δ) ln2(BXBW )

ϵ2

)
. ■

J Sample Complexity in Observable HSE POMDPs

We revisit the existence of future-dependent value functions by taking the norm constraint into
account. Then, we consider the PO-bilinear decomposition with certain BX ∈ R and BW ∈ R. Next,
we calculate the uniform convergence result. Finally, we show the sample complexity result.

We use the following assumptions
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Assumption 7. For any h ∈ [H], the following holds:

1. V πh (zh−1, s) = ⟨θπh , ϕh(zh−1, s)⟩.

2. There exists a matrix Kh such that Eo∼O(s)[ψh(zh−1, o)] = Khϕh(zh−1, s) (i.e., condi-
tional embedding of the omission distribution),

3. ∥ϕh(·)∥ ≤ 1, ∥ψh(·)∥ ≤ 1, ∥θπh∥ ≤ ΘV , 0 ≤ rh ≤ 1,

4. There exists a matrix Tπ;h such that E[ϕh(zh, sh+1) | zh−1, sh; ah ∼ π] =
Tπ;hϕh(zh−1, sh) (i.e., conditional embedding of the transition)

5. Π is finite.

We define
σmin(K) = min

h∈[H]
1/∥K†

h∥, σmax(K) = max
h∈[H]

∥Kh∥, σmax(T ) = max
h∈[H]

∥Tπ:h∥,

dϕ = max
h∈[H]

dϕh , dψ = max
h∈[H]

dψh .

Existence of future-dependent value functions. We show future-dependent value functions exist.
This is proved by noting

Eo∼O(s)[⟨(K†
h)

⊤θπh , ψh(z̄h)⟩] = ⟨(K†
h)

⊤θπh ,Khϕh(zh−1, sh)⟩ = ⟨θπh , ϕh(zh−1, sh)⟩ = V πh (zh−1, sh).

Thus, ⟨(K†
h)

⊤θπh , ψh(z̄h)⟩ is a future-dependent value function. The radius of the parameter space is
upper-bounded by ΘV /σmin(K). Hence, we set

Gh = {⟨θ, ψh(·)⟩ : ∥θ∥ ≤ ΘV /σmin(K)}.
Then, the realizability holds.

PO-bilinear decomposition. Recall we derive the PO-bilinear decomposition in Section C.4.
Consider a triple (π′, π, g) with gh(·) = θ⊤h ψh(·) and gπh = ⟨θ⋆h, ψh(·)⟩, we have:

E
[
θ⊤h ψh+1(z̄h)− rh − θ⊤h+1ψ(z̄h+1); a1:h−1 ∼ π′, ah ∼ π

]
=
〈
E[ϕh(zh−1, sh); a1:h−1 ∼ π′], K⊤

h (θh − θ⋆h)− T⊤
π;hK

⊤
h+1(θh+1 − θ⋆h+1)

〉
,

which verifies the PO-bilinear structure, i.e.,
Xh(π

′) = E[ϕh(zh−1, sh); a1:h−1 ∼ π′], Wh(π, g) = K⊤
h (θh− θ⋆h)−T⊤

π;hK
⊤
h+1(θh+1− θ⋆h+1),

and shows that the PO-bilinear rank is at most dϕ = maxh dϕh . Thus, based on the above PO-
bilinear decomposition, we set ∥BX∥ = 1, ∥BW ∥ = 2(1 + σmax(T ))σmax(K)ΘV /σmin(K). This
is because

∥K⊤
h (θh − θ⋆h)− T⊤

π;hK
⊤
h+1(θh+1 − θ⋆h+1)∥

≤ ∥K⊤
h ∥(∥θh∥+ ∥θ⋆h∥) + ∥T⊤

π;h∥∥K⊤
h+1∥(∥θh+1∥+ ∥θ⋆h+1)∥)

≤ 2(1 + σmax(T ))σmax(K)ΘV /σmin(K).

and
∥E[ϕh(zh−1, sh); a1:h−1 ∼ π′]∥ ≤ E[∥ϕh(zh−1, sh)∥; a1:h−1 ∼ π′] ≤ 1.

In the above, we use Jensen’s inequality.

Uniform convergence. To invoke Theorem 1, we show the uniform convergence result.
Lemma 24 (Uniform convergence of loss functions). Let C = ΘV /(σmin(K)). Then, with probabil-
ity 1− δ,

sup
π∈Π,g∈G

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h)− rh − gh+1(z̄h+1)}]|

≤ 5|A|{1 + 2C}
√

{2dψ ln(1 + Cm) + ln(|Πmax|/δ)}
m

and

sup
g1∈G1

|{ED − E}[g1(z̄1)| ≤ 5C

√
{dψ ln(1 + Cm) + ln(|Πmax|/δ)}

m
.
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Proof. Let C = ΘV /σmin(K). Define Nϵ,h as an ϵ-net for Gh. Then, |Nϵ,h| ≤ (1 + C/ϵ)d. Then,

|lh(·;π, g)− lh(·;π⋄, g⋄)| ≤ |A|{∥gh − g⋄h∥∞ + ∥gh+1 − g⋄h+1∥∞}
≤ |A|{∥θh − θ⋄h∥2 + ∥θh+1 − θ⋄h+1∥2} ≤ 2|A|ϵ.

Besides, for fixed π ∈ Π, θh ∈ Nϵ,h, θh+1 ∈ Nϵ,h+1, we have

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]| ≤ |A| (1 + 2C)

√
ln(|Πh|/δ)

m
.

Then, for ∀π ∈ Π,∀θh ∈ Nϵ,h, ∀θh+1 ∈ Nϵ,h+1, we have

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]| ≤ |A| (1 + 2C)

√
ln(|Πh||Nϵ,h||Nϵ,h+1|/δ)

m
.

Hence, for any gh = ⟨θh, ψh⟩ ∈ Gh, gh+1 = ⟨θh+1, ψh+1⟩ ∈ Gh+1,

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]|

≤ |A| (1 + 2C)

√
ln(|Πh||Nϵ,h||Nϵ,h+1|/δ)

m
+ 4|A|ϵ.

By taking ϵ = 1/m, we have ∀π ∈ Π,∀gh ∈ Gh,∀gh+1 ∈ Gh+1:

|{ED − E}[|A|πh(ah | z̄h){gh(z̄h)− rh − gh+1(z̄h+1)}]|

≤ |A|{1 + 2C}
√

{2d ln(1 + Cm) + ln(|Πh|/δ)}
m

+
4|A|
m

≤ 5|A|{1 + 2C}
√

{2d ln(1 + Cm) + ln(|Πh|/δ)}
m

.

Similarly,

∀g1 ∈ G1; |{ED − E}[g1(z̄1)]| ≤ C

√
{d ln(1 + Cm) + ln(|Πh|/δ)}

m
+

4

m

≤ 5C

√
{d ln(1 + Cm) + ln(|Πh|/δ)}

m
.

Finally, we obtain the PAC bound, we need to find m such that

c|A|max(C, 1)

√
dψ ln(max(C, 1)m) + ln(|Πmax|TH/δ)

m

√
dϕH2 ln (HdϕB2

XB
2
Wm+ 1) ≤ ϵ.

where c is some constant and

T = cHdϕ ln(HdB
2
XB

2
Wm+ 1).

By organizing the term, the following m is sufficient:

c

√
{dψ + ln(dϕ|Πmax|H2/δ)}dϕH2|A|2 max(C, 1)2 ln({C +HdϕB2

XB
2
W + 1)}m)2

m
≤ ϵ.

By using Lemma 44, we can set

m =
B1

ϵ2
ln(mB1B2)

2,

B1 = {dψ + ln(dϕ|Πmax|H2/δ)}dϕH2|A|2 max(C, 1)2, B2 = C +HdϕB
2
XB

2
W + 1.

Thus, the final sample complexity is

Õ

(
d2ϕ{dψ + ln(|Πmax|/δ)}H4|A|2 max(C, 1)2

ϵ2

)
where C = ΘV /σmin(K).
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K Sample Complexity in Observable Undercomplete Tabular POMDPs

We revisit the existence of future-dependent value functions. Then, we show the PO-bilinear rank
decomposition. After showing the uniform convergence lemma, we calculate the sample complexity.

Existence of future-dependent value functions. In the tabular case, by setting

ψh(z, o) = 1(z)⊗ 1(o), ϕh(z, s) = 1(z)⊗ 1(s),Kh = I|Zh−1| ⊗O.

where 1(z) is a one-hot encoding vector over Zh−1, we can regard the tabular model as an HSE-
POMDP. Here is our assumption.
Assumption 8. (a) 0 ≤ rh ≤ 1, (b) O is full-column rank and ∥O†∥1 ≤ 1/σ1 for any h ∈ [H].

Note we use the 1-norm since this choice is more amenable in the tabular setting. However, even if
the norm bound is given in terms of 2-norm, we can still ensure the PAC guarantee (this is because
∥O†∥1/

√
|S| ≤ ∥O†∥2 ≤ ∥O†∥1

√
|O|).

Here, since we assume the reward lies in [0, 1], value functions on the latent state belong to
{⟨θ, ϕh(·)⟩ : ∥θ∥∞ ≤ H}. Here, letting V πh = ⟨θπh , ϕh⟩, future-dependent value functions ex-
ist by taking ⟨θπh ,1(z)×O†1(o)⟩. Hence, we take

Gh =
{
(z, o) 7→ ⟨θ,1(z)⊗O†1(o)⟩; ∥θ∥∞ ≤ H

}
so that the realizability holds. Importantly, we can ensure ∥Gh∥∞ ≤ H/σ1 since

|⟨θ,1(z)⊗O†1(o)⟩| ≤ ∥θ∥∞∥1(z)⊗O†1(o)∥1 ≤ ∥θ∥∞∥O†1(o)∥1 ≤ H/σ1

for any (z, o) ∈ Zh−1 ×O. Note Gh is contained in{
⟨θ,1(z)⊗ 1(o)⟩; ∥θ∥2 ≤ H|O|M+1|A|M/σ1

}
(21)

This is because each ⟨θ,1(z)⊗O†1(o)⟩ is equal to ⟨θ′,1(z)⊗1(o)⟩ for some vector θ′ ∈ R|Zh−1|×|O|.
Here, denoting the component of θ corresponding to z ∈ Zh−1 by θz ∈ R|O|, θ′ is a vector stacking
O†θz for each z ∈ Zh−1. Then, we have

∥O†θz∥2 ≤ ∥O†∥2∥θz∥2 ≤ ∥O†∥1
√
|O|H

√
|O| ≤ H|O|/σ1.

Hence, ∥θ′∥2 ≤ |O|M |A|M ×H|O|/σ1.

PO-Bilinear decomposition. Next, recall we derive the PO-bilinear decomposition:

E[θ⊤h ϕh(z̄h)− rh − θ⊤h+1ϕh+1(z̄h+1); a1:h−1 ∼ π′, ah ∼ π]

= ⟨K⊤
h {θh − θπh} − {Tπ:h}⊤K⊤

h+1{θh+1 − θπh+1},E[ϕh(zh−1, sh); a1:h−1 ∼ π′]⟩.

Then, BX = 1 and BW = 4H|O|M+1|A|M/σ1. We use ∥K⊤
h ∥2 = ∥Oh∥2 ≤ 1, ∥T⊤

π:h∥2 ≤ 1. This
is because

∥K⊤
h {θh − θπh} − {Tπ:h}⊤K⊤

h+1{θh+1 − θπh+1}∥2
≤ ∥θh∥2 + ∥θπh∥2 + ∥θh+1∥2 + ∥θπh+1∥2 ≤ 4H|O|M+1|A|M/σ1.

In the last line, we use (21).

Uniform convergence. Then, we can obtain the following uniform convergence lemma.
Lemma 25. Let C = H/σ1 and dψ = |O|M+1|A|M . Then, with probability 1− δ,

sup
π∈Π,g∈G

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h)− rh − gh+1(z̄h+1)}]|

≤ 5|A|{1 + 2C}

√
{d2ψ ln(1 + Cm) + ln(|Πh|/δ)}

m

and

sup
g1∈G1

|{ED − E}[g1(z̄1)]| ≤ 5C

√
{dψ ln(1 + Cm) + ln(|Πh|/δ)}

m
.
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Proof. Let dϕ = |S||O|M |A|M , dψ = |O|M+1|A|M .

Define Nϵ,h as an ϵ-net for {θ : ∥θ∥2 ≤ C} with respect to L2-norm. Define N ′
ϵ,h as an ϵ-net for

Πh : Z̄h → ∆(A) with respect to the following norm:
d(π, π′) = max

z̄h−1∈Z̄h−1

∥π(· | z̄h−1)− π′(· | z̄h−1)∥1.

Then, |Nϵ,h| ≤ (1 + C/ϵ)d, |N ′
ϵ,h| ≤ (1 + 1/ϵ)dψ|A|.

Let gh = ⟨θh, ψh⟩, g⋄h = ⟨θ⋄h, ψh⟩ where ψh is a one-hot encoding vector over Z̄h. Then, when
∥θh − θ⋄h∥2 ≤ ϵ, ∥θh+1 − θ⋄h+1∥2 ≤ ϵ, ∥πh − π⋄

h∥1 ≤ ϵ, we have
|lh(·;π, g)− lh(·;π⋄, g⋄)| ≤ |A|{∥πh − π⋄

h∥∞C + ∥gh − g⋄h∥∞ + ∥gh+1 − g⋄h+1∥∞}
≤ |A|{ϵC + ∥θh − θ⋄h∥2 + ∥θh+1 − θ⋄h+1∥2}
≤ 3|A|Cϵ.

Besides, for fixed π ∈ N ′
ϵ,h, θh ∈ Nϵ,h, θh+1 ∈ Nϵ,h+1, we have

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]| ≤ |A| (1 + 2C)

√
ln(1/δ)

m
.

Then, for ∀π ∈ N ′
ϵ,h,∀θh ∈ Nϵ,h, ∀θh+1 ∈ Nϵ,h+1, we have

|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]| ≤ |A| (1 + 2C)

√
ln(|N ′

ϵ,h||Nϵ,h||Nϵ,h+1|/δ)
m

.

Hence, for any πh ∈ Πh, gh = ⟨θh, ψh⟩ ∈ Gh, gh+1 = ⟨θh+1, ψh+1⟩ ∈ Gh+1,
|{ED − E} [|A|πh(ah | z̄h) {gh(z̄h; θh)− rh − gh+1(z̄h+1; θh+1)}]|

≤ |A| (1 + 2C)

√
ln(|N ′

ϵ,h||Nϵ,h||Nϵ,h+1|/δ)
m

+ 3|A|Cϵ.

By taking ϵ = 1/m, we have ∀π ∈ Π,∀gh ∈ Gh,∀gh+1 ∈ Gh+1;

|{ED − E}[|A|πh(ah | z̄h){gh(z̄h)− rh − gh+1(z̄h+1)}]|

≤ |A|{1 + 2C}
√

{2dψ ln(1 + Cm) + dψ|A| ln(1 +m) + ln(1/δ)}
m

+
3|A|C
m

≤ 10|A|C
√

{dψ|A| ln(1 + Cm) + ln(1/δ)}
m

.

Sample Complexity. Finally, we obtain the PAC bound. We need to find m such that

c|A|C
√

{dψ|A| ln(1 + Cm) + ln(TH/δ)}
m

√
dϕH2 ln(HdϕB2

XB
2
Wm+ 1) ≤ ϵ.

where c is some constant and
T = cHdϕ ln(HdB

2
XB

2
Wm+ 1).

By organizing terms, we get√
|A|3C2dϕdψH2 ln(H2dϕ/δ) ln({C + dψ +HdϕB2

XB
2
W }m)2

m
≤ ϵ.

Thus, we need to set

m = Õ

(
|A|3C2dϕdψH

2 ln(1/δ)

ϵ2

)
Hence, the sample complexity is

Õ

(
|A|3C2d2ϕdψH

4 ln(1/δ)

ϵ2

)
.

By some algebra, it is

Õ

(
|A|3M+3|O|3M+1|S|2H6 ln(1/δ)

ϵ2σ2
1

)
.

Later, we prove we can remove |O|M using the more refined analysis in Section Q.
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Global optimality. We use a result in the proof of [23, Theorem 1.2]. We just set M =
C(1/σ1)

4 ln(SH/ϵ). Note their assumption 1 is satisfied when ∥O†∥1 ≤ (1/σ1). More specif-
ically, assumption 1 in [23] requires for any b and b′, we have

∥Ob−Ob′∥1 ≥ 1/σ1∥b− b′∥1.
This is proved as follows. Note for any e, e′,

∥O†e−O†e′∥1 ≤ ∥O†∥1∥e− e′∥1.

Then, by setting e = Ob and e′ = Ob′, the assumption 1 is ensured. Here, we use O†O = I .

L Sample Complexity in Observable Overcomplete Tabular POMDPs

We first gave an overview of the result. Then, we move to the detail.

L.1 Summary
We consider obvercomplete tabular POMDPs. In this case, the PO-bilinear rank is at most
|O|M |A|M |S|. We suppose rh ∈ [0, 1] for any h ∈ [H]. Assuming OK is full-column rank, to sat-
isfy the realizability, we set Gh = {⟨θ,1(z)⊗ {OK}†1(tK)⟩ | ∥θ∥∞ ≤ H} where ∥OK∥1 ≤ 1/σ1
and 1(z),1(tK) are one-hot encoding vectors over Zh−1 and OK × AK−1, respectively. We set
Πh = [Z̄h → ∆(A)]. Then, the following holds.
Theorem 13 (Sample complexity for overcomplete tabular models). With probability
1 − δ, we can achieve J(π⋆) − J(π̂) ≤ ϵ when we use samples at most
Õ
(
|S|2|A|3M+K+2|O|3M+KH6(1/ϵ)2(1/σ1)

2 ln(1/δ)
)
.

Here, polylog(|S|, |O|, |A|, H, 1/σ1, ln(1/δ)) are omitted.

When we use K-step futures, in the above theorem, we additionally incur |A|K |O|K , which is coming
from a naive parameterization of Gh. In Section G.2.3, we will see that under the model-based
learning perspective (i.e., we parameterize T,O first and then construct Π and G using the model
class), we will get rid of the dependence |O|M+K and |A|K . This is because the complexity of the
model class is independent of M or K (i.e., number of parameters in T,O are O(|S|2|A||O|)).

L.2 Detail

To simplify the presentation, we focus on the case when πout = U(A).

Existence of future-dependent value functions. In the tabular case, by setting

ψh(z, t
K) = 1(z)⊗ 1(tK), ϕh(z, s) = 1(z)⊗ 1(s),Kh = I|Zh−1| ⊗OK .

where 1(z) is a one-hot encoding vector over Zh−1 and 1(tK) is a one-hot encoding vector over
ZK = OK ×AK−1, we can regard the tabular model as an HSE-POMDP. Here is our assumption.
Assumption 9. (a) 0 ≤ rh ≤ 1, (b) OK is full-column rank and ∥{OK}†∥1 ≤ 1/σ1.

Recall we define OK in Lemma 5. Since we assume the reward lies in [0, 1], value functions on the
latent state belong to {⟨θ, ϕh(·)⟩ : ∥θ∥∞ ≤ H}. Here, letting V πh (·) = ⟨θπh , ϕh(·)⟩, future-dependent
value functions exist by taking ⟨θπh ,1(z)⊗ {OK}†1(tK)⟩. Hence, we take

Gh = {(z, tK) 7→ ⟨θπh ,1(z)⊗ {OK}†1(tK)⟩; ∥θπh∥∞ ≤ H}
so that the realizability holds. Importantly, we can ensure ∥Gh∥∞ ≤ H/σ1 as in Section K. Then, as
in Section K, Gh is contained in{

⟨θ,1(z)⊗ 1(o)⟩; ∥θ∥2 ≤ H|O|M+1|A|M/σ1
}
.

PO-bilinear decomposition. Next, we derive the PO-bilinear decomposition:

E[θ⊤h ϕ(zh−1, t
K
h )− rh − θ⊤h+1ϕ(zh−1, t

K
h ); a1:h−1 ∼ π′, ah ∼ π, ah+1:h+K−1 ∼ U(A)]

= ⟨{Kh}⊤{θh − θπh} − {Tπ:h}⊤{Kh+1}⊤{θh+1 − θπh+1},E[ϕh(zh−1, sh); a1:h−1 ∼ π′]⟩.

Then, BX = 1 and BW = 4H|O|M+1|A|M/σ1. We use ∥Kh∥2 = ∥OK∥2 ≤ 1, ∥T⊤
π:h∥2 ≤ 1.
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Sample Complexity. We can follow the same procedure in the proof of Section K. Let dϕ =
|S||O|M |A|M , dψ = |O|M+K |A|M+K−1. Hence, the sample complexity is

Õ

(
|A|3C2d2ϕdψH

4 ln(1/δ)

ϵ2σ2
1

)
.

By some algebra, the above is

Õ

(
|A|3M+K+2|O|3M+K |S|2H6 ln(1/δ)

ϵ2σ2
1

)
.

Using the more refined analysis later, we show we can remove |O|3M+K in Section Q.

M Sample Complexity in LQG

In this section, we derive the sample complexity in LQG. We first explain the setting. Then, we prove
the existence of future-dependent value functions. Lemma 3 is proved there. Furthermore, we show
the PO-bilinear rank decomposition in LQG. We prove Lemma 3 there. Next, we show the uniform
convergence result in LQG. Finally, by invoking Theorem 1, we calculate the sample complexity.

We study a finite-horizon discrete time LQG governed by the following equation:

s1 = ϵ1, sh+1 = Ash +Bah + ϵh, rh = s⊤hQsh + a⊤hRah, oh = Osh + τh.

where ϵh is Gaussian noise with mean 0 and noise Σϵ and τh is a Gaussian noise with mean 0
and Στ . We use a matrix O instead of C to avoid notational confusion later. With a linear policy
πh(ah | oh, zh−1) = δ(ah = U1hoh +U2hzh−1), this induces the following system: z′h
oh
ah
sh+1

 = Ξ1h(π)

[
zh−1

sh

]
+ Ξ2h(π),Ξ2h(π) =

 0
τ

U1hτ
BU1hτ + ϵ

 , Ξ1h(π) =

 I ′ 0
0 O

U2h U1hO
BU2h A+BU1hO


where z′h is the vector removing (oh, ah) from zh and I ′ is a matrix mapping zh to z′h. This is derived
by

sh+1 = Ash +Bah + ϵ = Ash +B{U1hoh +U2hzh−1}+ ϵ

= (A+BU1hO)sh +BU2hzh−1 + ϵ+BU1hτ,

ah = U1hoh +U2hzh−1 = U1hOsh +U2hzh−1 +U1hτ,

oh = Osh + τ.

We suppose the system is always stable in the sense that the operator norm of Ξ1h(π) is upper-bounded
by 1. Here is the assumption we introduce throughout this section.
Assumption 10. Suppose max(∥A∥, ∥B∥, ∥O∥, ∥Q∥, ∥R∥) ≤ C. Suppose ∥Ξ1h(π)∥ ≤ 1 for any π.
O is full-column rank.

We present the form of linear mean embedding operators in LQGs.
Lemma 26 (Linear mean embedding operator). Let z ∈ Zh−1, o ∈ O, s ∈ S. We have

Eo∼O(s)

 1[
z
o

]
⊗
[
z
o

] = Kh

 1[
z
s

]
⊗
[
z
s

] ,Kh =

 1 0

vec

([
0 0
0 Στ

]) [
I 0
0 O

]
⊗
[
I 0
0 O

]
.


Proof. Here, we have

Eo∼O(s)

[[
z
o

]
⊗
[
z
o

]]
= Vec

[[
zz⊤ zo⊤

oz⊤ oo⊤

]]
= Vec

[[
zz⊤ zs⊤O⊤

Osz⊤ Oss⊤O⊤ +Σr

]]
= Vec

[[
0 0
0 Σr

]]
+

[
I 0
0 O

]
⊗
[
I O
0 O

]
×Vec

[[
zz⊤ zs⊤

sz⊤ ss⊤

]]
.

From the second line to the third line, we use formula vec[A1A2A3] = (A⊤
3 ⊗ A1)vec(A2). This

immediately concludes the result.
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Thus, the matrix Kh has the left inverse when O is full-column rank as follows:

K†
h =

 1 0

−
[
I 0
0 O†

]
⊗
[
I 0
0 O†

]
vec

([
0 0
0 Στ

]) [
I 0
0 O†

]
⊗
[
I 0
0 O†

] .
We use a block matrix inversion formula:[

A−1
1 0

−A†
3A2A

−1
1 A†

3

] [
A1 0
A2 A3

]
= I.

M.1 Existence of Link Functions

Lemma 27 (Value functions in LQGs). Let πh(a | o, z) = δ(a = U1ho+U2hz) for z ∈ Zh−1, o ∈
O. Then, a value function has a bilinear form:

V πh (z, s) = [z⊤, s⊤]Λh[z
⊤, s⊤]⊤ + Γh.

For any h ∈ [H], these parameters Λh,Γh are recursively defined inductively by

ΛH =

[
U⊤

2hRU2h U⊤
2hRU1hO

{U⊤
2hRU1hO}⊤ Q+O⊤U⊤

1hRU1hO

]
, OH = tr(U⊤

1hRU1hΣτ ),

Λh = Ξ1h(π)Λh+1Ξ
⊤
1h(π) + ΣΛh ,ΣΛh1 =

[
U⊤

2hRU2h U⊤
2hRU1hO

{U⊤
2hRU1hO}⊤ Q+O⊤U⊤

1hRU1hO

]
,

Γh = tr (Λh+1ΣΛh2(π)) + Γh+1, ΣΛh2(π) =


0 0 0 0
0 Στ ΣτU

⊤
1h ΣτU

⊤
1hB

⊤

0 U1hΣτ U1hΣτU
⊤
1h U1hΣτU

⊤
1hB

⊤

0 BU1hΣτ BU1hΣτU
⊤
1h BU1hΣτU

⊤
1hB

⊤ +Σϵ

 .
Proof. The proof is completed by backward induction regarding h, starting from level H . First, we
have

V πH(z, s) = s⊤Qs+ Eo∼O(s)[{U1ho+U2hz}⊤R{U1ho+K2z}]
= s⊤Qs+ Eo∼O(s)[{U1hOs+U1hτ +U2hz}⊤R{U1hOs+U1hτ +U2hz}]
= s⊤{Q+O⊤U⊤

1hRU1hO}s+ zU⊤
2hRU2hz + 2z⊤U⊤

2hRU1hOs+ tr(U⊤
1hRU1hΣτ )

= [z⊤, s⊤]

[
U⊤

2hRU2h U⊤
2hRU1hO

{U⊤
2hRU1hO}⊤ Q+O⊤U⊤

1hRU1hO

]
[z⊤, s⊤]⊤ + tr(U⊤

1hRU1hΣτ ).

Here, we use induction. Thus, supposing the statement is true at horizon h+ 1, we have

V πh (z, s) = Γh+1 + s⊤Qs+ Eo∼O(s)[{U1ho+U2hz}⊤R{U1ho+K2z}]
+ Eo∼O(s),a∼π(o,z),s′∼T(s,a)[[z

⊤
−1, o

⊤, a⊤, s′⊤]Λh+1[z
⊤
−1, o

⊤, a⊤, s′⊤]⊤]

where z′ is a vector that removes the last component (o, a) from z and s′ is a state at h+ 1. Here,
recall we have

[(z′)⊤, o⊤, a⊤, s′⊤]⊤ = Ξ1h(π)[z
⊤, s⊤]⊤ + Ξ2h(π).

Then, the statement is concluded some algebra.

Lemma 28 (Norm constraints on value functions). We can set ∥Λh∥ ≤ CΛ,h, ∥Γh∥ ≤ CΓ,h such
that

CΛ,h = poly(C, H),CΓ,h = poly(do, ds, da,C, H).

Proof. We have

∥ΛH∥ ≤ poly(C, H), ∥ΓH∥ ≤ poly(C, H).
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Then,

∥Λh∥ ≤ ∥Ξ1h(π)∥∥Λh+1∥∥Ξ1h(π)∥+ poly(C, H).

Since we assume ∥Ξ1h(π)∥ ≤ 1, this immediately leads to

∥Λh∥ ≤ poly(C, H).

Besides,

∥Γh∥ ≤ poly(H, do, ds, da,C)∥Λh+1∥+ ∥Γh+1∥.

Thus,

∥Γh∥ ≤ poly(H, do, ds, da,C).

Next, we set the norm on the function class Gh.
Lemma 29 (Realizability on LQGs). We set

Gh =
{
Γ̄h + (z⊤, o⊤)Λ̄h(z

⊤, o⊤)⊤ | ∥Λ̄h∥ ≤ CΛ̄,h, |Γ̄h| ≤ CΓ̄,h, z ∈ Zh−1, o ∈ O
}
,

CΛ̄,h = poly(H, do, ds, da,C, ∥O†∥), CΓ̄,h = poly(H, do, ds, da,C, ∥O†∥).

A function class Gh includes at least one value future-dependent value function for any linear policy
π = δ(a = U1ho+U2hz) for ∥U1h∥ ≤ C, ∥U2h∥ ≤ C.

Proof. Here, we have

V πh (·) = Γh + tr

{
Λh

[
zz⊤ zs⊤

sz⊤ ss⊤

]}
= Γh + Eo∼O(s)

[
tr

{
Λh

[
zz⊤ zo⊤{O†}⊤
O†oz⊤ O† {oo⊤ − Στ

}
{O†}⊤

]}]
= Γh − tr

{
Λh

[
0 0
0 O†Στ{O†}⊤

]}
+ Eo∼O(s)

[
[z⊤, o⊤]

[
I 0
0 {O†}⊤

]
Λh

[
I 0
0 O†

] [
z
o

]]
.

The norm constraint on Λ̄h is decided by the following calculation:∥∥∥∥[I 0
0 {O†}⊤

]
Λh

[
I 0
0 O†

]∥∥∥∥ ≤ ∥O†∥22∥Λh∥ = poly(H, do, ds, da,C, ∥O†∥).

Then, the norm on Γ̄h is decided by the following calculation:∣∣∣∣Γh − tr

{
Λh

[
0 0
0 O†Στ{O†}⊤

]}∣∣∣∣ ≤ |Γh|+
∣∣∣∣tr{Λh [0 0

0 O†Στ{O†}⊤
]}∣∣∣∣

≤ |Γh|+ ∥Σh∥2∥O†∥22Tr(Στ )
≤ |Γh|+ ∥Σh∥2∥O†∥22Cdo
= poly(H, do, ds, da,C, ∥O†∥).

From the first line to the second line, we use Lemma 43.

M.2 PO-bilinear Rank Decomposition

Lemma 30 (Bilinear rank decomposition for LQG). For any gh+1 ∈ Gh+1, gh ∈ Gh, we have the
following bilinear rank decomposition:

E[gh+1(zh, oh+1) + rh − gh(zh−1, oh); a1:h−1 ∼ π′, ah ∼ π] = ⟨X(π′),W (π)⟩
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where

Xh(π
′) = (1,E[[z⊤h−1, s

⊤
h ]⊗ [z⊤h−1, s

⊤
h ]; a1:h−1 ∼ π′])⊤,

Wh(π) =

 tr

(
{Λ̄h − Λ̄⋆h}

[
0 0
0 Στ

]
+

[
I 0
0 O⊤

]
{Λ̄h+1 − Λ̄⋆h+1}

[
I 0
0 O

]
ΣΛh2(π)

)
vec

[[
I 0
0 O⊤

]
{Λ̄h − Λ̄⋆h}

[
I 0
0 O

]
+ Ξ⊤

1h(π)

[
I 0
0 O⊤

]
{Λ̄⋆h+1 − Λ̄h+1}

[
I 0
0 O

]
Ξ1h(π)

]
 .

Here, Ξ1h(π) and ΣΛh2(π) depend on a policy π. The following norm constraints hold:

∥Xh(π
′)∥2 ≤ poly(H, do, ds, da,C, ∥O†∥), ∥Wh(π)∥2 ≤ poly(H, do, ds, da,C, ∥O†∥).

Proof. We have

E[gh(zh−1, oh)− rh(zh−1, sh)− gh+1(zh, oh+1); a1:h−1 ∼ π′, ah ∼ π]

= −E[rh(zh−1, sh); a1:h−1 ∼ π′, ah ∼ π]+

+ E
[
Γ̄h + (z⊤h−1, o

⊤
h )Λ̄h(z

⊤
h−1, o

⊤
h )

⊤ − Γ̄h+1 − (z⊤h , o
⊤
h+1)Λ̄h+1(z

⊤
h , o

⊤
h+1)

⊤; a1:h−1 ∼ π′, ah ∼ π
]
.

(22)

Since we have

E[rh(zh−1, sh); a1:h−1 ∼ π′, ah ∼ π]

= −E
[
Γ̄⋆h + (z⊤h−1, o

⊤
h )Λ̄

⋆
h(z

⊤
h−1, o

⊤
h )

⊤ − Γ̄⋆h+1 − (z⊤h , o
⊤
h+1)Λ̄

⋆
h+1(z

⊤
h , o

⊤
h+1)

⊤; a1:h−1 ∼ π′, ah ∼ π
]
.

we focus on the term (22).

Hereafter, we suppose the expectation is always taken under a1:h−1 ∼ π′, a ∼ π. We also denote
z = zh−1, oh = o, oh+1 = o′, sh = s, sh+1 = s′ to simplify the presentation. Using this simplified
notation, we get

E
[
(z⊤, o⊤)Λ̄h(z

⊤, o⊤)⊤
]
= E

[
(z⊤, (Os+ τ)⊤)Λ̄h(z

⊤, (Os+ τ)⊤)⊤
]

= E
[
[z⊤, s⊤]

[
I 0
0 O⊤

]
Λ̄h

[
I 0
0 O

] [
z
s

]]
+ tr

(
Λ̄h

[
0 0
0 Στ

])
.

Besides,

E
[
(z′⊤, o′⊤)Λ̄h+1(z

′⊤, o′⊤)⊤
]

= E
[
[z′⊤, s′⊤]

[
I 0
0 O⊤

]
Λ̄h+1

[
I 0
0 O

] [
z′

s′

]]
+ tr

(
Λ̄h

[
0 0
0 Στ

])
= E

[
[z⊤, s⊤]Ξ⊤

1h(π)

[
I 0
0 O⊤

]
Λ̄h+1

[
I 0
0 O

]
Ξ1h(π)

[
z
s

]]
+ tr

(
Λ̄h

[
0 0
0 Στ

])
+

+ tr

([
I 0
0 O⊤

]
Λ̄h+1

[
I 0
0 O

]
ΣΛh2(π)

)
.

Then, the bilinear decomposition is clear by using

A⊤
2 A1A2 = tr(A1A2A

⊤
2 ) = vec(A⊤

1 )
⊤vec(A2A

⊤
2 ) = ⟨vec(A⊤

1 ), A2 ⊗A2⟩.
where A2 is any vector and A1 is any matrix.

First, we calculate the upper bounds of the norms.

∥Xh(π
′)∥22 = 1 +

∥∥∥∥E(z,s)∼dπ′
h

[[
zz⊤ zs⊤

sz⊤ ss⊤

]]∥∥∥∥2
F

= 1 +

∥∥∥∥E(z,s)∼dπ′
h−1

[
Ξ1h(π)

[
zz⊤ zs⊤

sz⊤ ss⊤

]
Ξ⊤
1h(π)

]
+ΣΛh2(π)

∥∥∥∥2
F

≤ 1 + ∥Ξ1h(π)∥42
∥∥∥∥E(z,s)∼dπ′

h−1

[[
zz⊤ zs⊤

sz⊤ ss⊤

]]∥∥∥∥2
F

+ ∥ΣΛh2(π)∥2F

≤ 1 + ∥Xh−1(π
′)∥22 + ∥ΣΛh2(π)∥2F .
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From the third line to the fourth line, we use ∥Ξ1h(π)∥2 ≤ 1. Thus, ∥Xh(π
′)∥2 ≤

poly(H, do, ds, da, ∥O†∥,C).
Next, we consider W (π). By some algebra, we can see

∥W (π)∥2 ≤ poly(∥Λ̄h∥, ∥Λ̄h+1∥,C, do, ds, da, ∥Ξ1h(π)∥))
≤ poly(H, do, ds, da, ∥O†∥,C)

Lemma 31 (Variance of marginal distribution). Recall dπh(zh−1, sh) is a marginal distribution
over Zh−1 × S at h when we execute a1:h−1 ∼ π. The distribution dπh(zh−1, sh) is a Gaussian
distribution with mean 0. The operator norm on the variance of dπh(zh−1, sh) is upper-bounded by
poly(H, do, da, ds,C).

Proof. We first calculate the operator norm of the variance of dπh(zh−1, oh). The variance is

h∑
i=1

(
h∏

t=i+1

Ξ1t(π)

)
ΣΛi2(π)

(
h∏

t=i+1

Ξ⊤
1t(π)

)
.

The statement is immediately concluded.

Let uh(z̄h, rh, ah, oh+1; θ) = θ⊤h ψh(z̄h)− rh − θ⊤h+1ψh+1(z̄h+1). Recall ψh(z̄h) = [1, z̄⊤h ⊗ z̄⊤h ]
⊤.

We define

ŷh(a
[i]) = ED{αi(π(z̄h))I(∥z̄h∥ ≤ Z1)I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)I(ah = a[i])(1 + d⋄)

uh(z̄h, rh, ah, oh+1; θ); a1:h−1 ∼ π′, ah ∼ U(1 + d⋄)}

ŷh(a
[0]) = ED{{1−

∑
i

αi(π(z̄h))}I(a = 0)I(∥z̄h∥ ≤ Z1)I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)

(1 + d⋄)uh(z̄h, rh, ah, oh+1; θ); a1:h−1 ∼ π′, ah ∼ U(1 + d⋄)}.

Then, the final estimator is constructed by

ŷh(a
[0]) +

d⋄∑
i=1

ŷh(a
[i]).

This is equal to

ED[lh(z̄h, ah, rh, oh+1; θ, π)]

where

lh(z̄h, ah, rh, oh+1; θ, π) =

[∑
i

αi(π(z̄h))I(ah = a[i]) + {1−
∑
i

αi(π(z̄h))}I(ah = 0)

]
×

I(∥z̄h∥ ≤ Z1)I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)(1 + d⋄)uh(z̄h, rh, ah, oh+1; θ).

We set

Zi = poly(ln(m), ds, do, da,C, H, ∥O†∥).

for any i ∈ [3].

M.3 Uniform Convergence

Recall that

Π = {δ(a = U1hz +U2ho) | ∥U1h∥ ≤ C, ∥U2h∥ ≤ C}.

Besides, Gh is included in

{⟨θ, ψh(·)⟩ | ∥θ∥ ≤ poly(H, do, ds, da,C, ∥O†∥)}.
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Lemma 32 (Concentration of loss functions). With probability 1− δ,
sup

π∈Π,θ∈Θ
|(ED − E){lh(z̄h, ah, rh, oh+1; θ, π)}|

is upper-bounded by

poly(ln(m), ds, do, da,C, H, ∥O†∥)×
√
ln(1/δ)/m.

Proof. Due to indicator functions, lh(z̄h, ah, oh, oh+1; θ, π) is bounded for any π, θ by

poly(ln(m), ds, da, do,C, H, ∥O†∥).
Thus, for fixed π and θ, we can say that with high probability 1− δ

poly(ln(m), ds, do, da,C, H, ∥O†∥, ln(1/δ))×
√
1/m.

Besides, we can consider a covering number with respect to l∞-norm for the space of K and θ since
both are bounded. The radius of each space is upper-bounded by

poly(ln(m), ds, do, da,C, H, ∥O†∥).
Thus, by taking uniform bound and considering the bias term due to the discretization as in the proof
of Lemma 24, the statement is concluded.

Lemma 33 (Bias terms 1). Expectation of ŷh(a[i]) and ŷh(a[0]) are equal to

yh(a
[i]) + Error1, yh(a

[0]) + Error2.

where

yh(a
[i]) = E

[
αi(π(z̄h))I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(a[i])

]
,

yh(a
[0]) = E

[
{1−

∑
i

αi(π(z̄h))}I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(0)

]
,

Error1 = m−1poly(ln(m), ds, do, da,C, H, ∥O†∥), Error2 = m−1poly(ln(m), ds, do, da,C, H, ∥O†∥).

Proof. We want to upper bound the difference of

E
[
αi(π(z̄h))I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(a[i])

]
and

E
[
αi(π(z̄h))I(∥z̄h∥ ≤ Z1)I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(a[i])

]
.

By CS inequality, we have

|E
[
αi(π(z̄h))I(∥z̄h∥ ≤ Z1){I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)− 1}uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ do(a[i])

]
|

≤
∣∣∣E [

{I(∥rh∥ ≤ Z2)I(∥oh+1∥ ≤ Z3)− 1}2; a1:h−1 ∼ π′, ah ∼ do(a[i])
]∣∣∣︸ ︷︷ ︸

(a)

×
∣∣∣E [

α2
i (π(z̄h))u

2
h(z̄h, ah, rh, oh+1); a1:h−1 ∼ π′, ah ∼ do(a[i])

]∣∣∣1/2︸ ︷︷ ︸
(b)

.

We analyze the term (a) and the term (b). Before starting analysis, note (z̄⊤h , a
⊤
h , r

⊤
h , o

⊤
h+1) follows

Gaussian distribution with mean 0 and variance upper-bounded by
poly(C, ds, do, da, H)

using Lemma 31. Besides, α2
i (πh(z̄h)) ≤ poly(ds, do, da, H) from Lemma 7. Note we can use a

G-optimal design since we have a norm constraint on z̄1.

Regarding the term (a), by setting Z2 = poly(C, ds, do, da, ln(m), H, ∥O†∥) and Z3 =
poly(C, ds, do, da, ln(m), H, ∥O†∥) properly, we can ensure it is upper-bounded by

poly(C, ds, do, da, H, ∥O†∥, ln(m))

m
.

Regarding the term (b), noting high order moments of Gaussian distributions can be always upper-
bounded, the term (b) is upper-bounded by poly(C, ds, do, da, H, ∥O†∥, ln(m)). This concludes the
statement.
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Lemma 34 (Bias terms 2). Recall we define yh(a[i]) and yh(a[0]) in Lemma 33. Then, we have

E[I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)] = yh(a
[0]) +

∑
i

yh(a
[i]).

Thus,

E[lh(z̄h, ah, rh, oh+1; θ, π)a1:h−1 ∼ π′, ah ∼ U(1 + d⋄)]

= E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)] +
poly(C, ds, da, do, H, ∥O†∥)

m
.

Proof.

First Statement We have

E[I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)]

= E[I(∥z̄h∥ ≤ Z1)E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah]; a1:h−1 ∼ π′, ah ∼ π(z̄j)]

= E[I(∥z̄h∥ ≤ Z1)E[uh(z̄h, πh(z̄h), rh, oh+1; θ) | z̄h, sh, ah = πh(z̄h)]; a1:h−1 ∼ π′].

Here, by some algebra, there exists a vector c2

E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah] = ⟨c2, [1, [z̄⊤h , s⊤h , a⊤h ]⊗ [z̄⊤h , s
⊤
h , a

⊤
h ]]

⊤⟩.
Thus, there exists c0 and a vector c1 such that

E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah] = c0(z̄h, sh) + c⊤1 (z̄h, sh)κ(ah)

Recall we can write

κ(πh(z̄h)) =

d⋄∑
i=1

αi(πh(z̄h))κ(a
[i])

Using the above,
E[I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)]

= E[I(∥z̄h∥ ≤ Z1){c0(z̄h, sh) + c⊤1 (z̄h, sh)}κ(πh(z̄h)); a1:h−1 ∼ π′]

= EI(∥z̄h∥ ≤ Z1){c0(z̄h, sh) +
∑
i

c⊤1 (z̄h, sh)αi(πh(z̄h))κ(a
[i])}; a1:h−1 ∼ π′]

= E[I(∥z̄h∥ ≤ Z1)[c0(z̄h, sh)+

+
∑
i

αi(πh(z̄h)){E[κ(z̄h, πh(z̄h), rh, oh+1) | z̄h, sh, ah = a[i]]− c0(z̄h, sh)}]; a1:h−1 ∼ π′]

= E

[
I(∥z̄h∥ ≤ Z1)

[
c0(z̄h, sh)−

∑
i

αi(πh(z̄h))c0(z̄h, sh)

]]
+

∑
i

yh(a
[i]).

Besides,

c0(z̄h, sh) = E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah = do(0)].

Thus,

E

[
I(∥z̄h∥ ≤ Z1)

[
c0(z̄h, sh)−

∑
i

αi(πh(z̄h))c0(z̄h, sh)

]]
= E[I(∥z̄h∥ ≤ Z1){1−

∑
i

αi(πh(z̄h))}E[uh(z̄h, ah, rh, oh+1; θ) | z̄h, sh, ah = 0]; a1:h−1 ∼ π′]

= E[I(∥z̄h∥ ≤ Z1){1−
∑
i

αi(πh(z̄h))}uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah = do(0)]

= yh(a
[0]).

In conclusion,

E[I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)] = yh(a
[0]) +

∑
i

yh(a
[i]).
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Second Statement As we see in the proof of Lemma 33, the following term
E[{I(∥z̄h∥ ≤ Z1)− 1}uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ π(z̄j)]

is upper-bounded by poly(C, ds, do, da, H, ln(m))/m. Hence,
E[lh(z̄h, ah, rh, oh+1; θ, π)]

= E[ŷh(a[0])] +
d⋄∑
i=1

E[ŷh(a[i])] (Definition)

= yh(a
[0]) +

d⋄∑
i=1

yh(a
[i]) + poly(C, ds, do, da, H, ln(m))/m (Statement of Lemma 33)

= E[I(∥z̄h∥ ≤ Z1)uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ πh(z̄h)] + poly(C, ds, do, da, H, ln(m))/m
(First statement)

= E[uh(z̄h, ah, rh, oh+1; θ); a1:h−1 ∼ π′, ah ∼ πh(z̄h)] + poly(C, ds, do, da, H, ln(m))/m

= Brh(π, θ;π
′) + poly(C, ds, do, da, H, ln(m))/m.

M.4 Sample Complexity

Summarizing results so far, we have
sup

π∈Π,θ∈Θ
|ED[lh(z̄h, ah, rh, oh+1; θ, π)}]− Brh(π, θ;π

′)|

≤ poly(ln(m), ds, do, da,C, H, ∥O†∥)×
√
ln(1/δ)/m.

This is enough to invoke Theorem 1. Here, recall we have

∥Xh(π)∥ ≤ poly(H, do, da, ds,C,Θ, ∥O†∥), ∥Wh(π)∥ ≤ poly(H, do, da, ds,C,Θ, ∥O†∥).
for any π ∈ Π using Lemma 30. In addition, we showed the PO-bilinear rank is

poly(H, do, da, ds).

Then, using Theorem 1, the sample complexity is

Õ

(
poly(ln(m), ds, do, da,C,Θ, H, ∥O†∥, ln(1/δ))× 1

ϵ2

)
.

N Sample Complexity in PSRs

To focus on the main point, we just use a one-step future. We first show the form of future-dependent
value functions to set a proper class for Gh. Next, we show the PO-bilinear decomposition.

We assume the following assumptions.
Assumption 11. (a) T ⊂ O is a core test and Q is a minimum core rest, (b) ∥vec(Jπh)∥ ≤ Θ for any
π ∈ Π where Jπh is in Vπh (τh) = 1(zh−1)

⊤Jπhqτh .

N.1 Existence of Link Functions

Recall V πh (τh) = 1(zh−1)
⊤Jπhqτh , where we use 1(z) ∈ R|O|M |A|M to denote the one-hot encoding

vector over Zh−1, and Jπh is a matrix in R|O|M |A|M×|T |.

Then, gπh(zh−1, o) := 1(zh−1)
⊤Jπh[1(t = o)]t∈T is a value future-dependent value function. This is

because
E[gh(zh−1, o) | τh] = E[1(zh−1)

⊤Jπh[1(t = o)]t∈T | τh]
= 1(zh−1)

⊤Jπhqτh .

Hence, we set Gh to be
{(zh−1, o) 7→ 1(zh−1)

⊤J[1(t = o)]t∈T : ∥vec(J)∥ ≤ Θ}
so that the realizability holds.
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N.2 PO-bilinear Rank Decomposition

We show that PSR admits PO-bilinear rank decomposition (Definition 6). Here is the Bellman loss:
E[{gh+1(zh, oh+1) + rh} − gh(zh−1, oh); a1:h−1 ∼ π′, ah ∼ π].

To analyze the above, we decompose the above into three terms:
E[gh+1(zh, oh+1); a1:h−1 ∼ π′, ah ∼ π]︸ ︷︷ ︸

(a)

+E[rh; a1:h−1 ∼ π′, ah ∼ π]︸ ︷︷ ︸
(b)

+E[−gh(zh−1, oh); a1:h−1 ∼ π′, ah ∼ π]︸ ︷︷ ︸
(c)

.

Let Q be a minimum core test. Here, for any future t, there exists m̃t such that P(t | τh) = ⟨m̃t, q̃τh⟩
where [P(· | τh)]|Q| is a |Q|-dimensional predictive state q̃τh . This satisfies

P(oh | τh; ah)q̃τh,ah,oh = M̃oh,ah q̃τh . (23)

where M̃oh,ah is a matrix whose i-th row is m̃⊤
oh,ah

as we see in Section E.

Term (c). We have
E[gh(zh−1, oh) | τh] = 1(zh−1)

⊤JE[[1(t = oh)]t∈T | τh]
= 1(zh−1)

⊤JJ1q̃τh
where J1 ∈ R|T |×|Q| is a matrix whose i-th row is m̃⊤

t . The existence of J1 is ensured since Q is a
core test.

Term (b). We have

E[rh | τh; ah ∼ π] =
∑
oh,ah

π(ah | oh, zh−1)rh(ah, oh)P(oh | τh; ah)

=
∑
oh,ah

π(ah | oh, zh−1)rh(ah, oh)⟨m̃oh,ah , q̃τh⟩

= 1(zh−1)
⊤Jπ2 q̃τh

for some matrix Jπ2 . In the first inequality, we use the reward is a function of oh, ah conditioning on
the whole history. From the first line to the second line, we use a property of core tests.

Term (a). We have
E[gh+1(zh, oh+1) | τh; ah ∼ π] = E[1(zh)⊤J[1(t = oh+1)]t∈T | τh; ah ∼ π]

= E[1(zh)⊤JJ3q̃τh,ah,oh | τh; ah ∼ π]

for some matrix J3. Then, the above is further equal to∑
ah,oh

1(zh)⊤JJ3π(ah | zh−1, oh)P(oh | τh; ah)q̃τh,ah,oh

=
∑
ah,oh

1(zh)⊤JJ3π(ah | zh−1, oh)M̃oh,ah q̃τh

= 1(zh−1)
⊤Jπ4 q̃τh

for some matrix Jπ4 . From the first line to the second line, we use P(oh | τh; ah)q̃τh,ah,oh =

M̃oh,ah q̃τh in (23).

Summary. Combining all terms, there exists a matrix Jπ5 such that
E[{gh+1(zh, oh+1) + rh} − gh(zh−1, oh); a1:h−1 ∼ π′, ah ∼ π]

= 1(zh−1)
⊤Jπ5E[q̃τh ; a1:h−1 ∼ π′]

= ⟨Vec(Jπ5 ), 1(zh−1)⊗ E[q̃τh ; a1:h−1 ∼ π′]⟩
Here, we suppose ∥Vec(Jπ5 )∥ ≤ ΘW for any π. Besides,

∥1(zh−1)⊗ E[q̃τh ; a1:h−1 ∼ π′]∥2 ≤ ∥E[q̃τh ; a1:h−1 ∼ π′]∥2 ≤ E[∥q̃τh∥2; a1:h−1 ∼ π′]

≤ E[∥q̃τh∥1; a1:h−1 ∼ π′] = 1.

Thus, we can set BX = 1.
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N.3 Sample Complexity

Suppose Π,G are finite and rewards at h lie in [0, 1]. Assume the realizability holds. Then,

ϵgen = cmax(Θ, 1)|A|
√
ln(|Gmax||Πmax|TH/δ)/m.

Following the calculation in Section I, the sample complexity is

Õ

(
|O|2(M−1)|A|2(M−1)|Q|2 max(Θ, 1)H4|A|2 ln(|Gmax||Πmax|/δ) ln(ΘW )2

ϵ2

)
.

Here, there is no explicit dependence on |T |. Note the worst-case sample complexity of ln |Gmax| is
O(|Zh−1||T |) and the worse-case sample complexity of ln |Πmax| is O(|Zh−1||O||A|).

N.4 Most General Case

We consider the general case in Section E. Let Gh be a function class consisting of 1(zh−1)
⊤Jh1(t)

where Jh satisfies Jh ∈ RZh−1×|T | and ∥vec(Jh)∥ ≤ Θ. When the realizability holds, we would get

Õ

(
|O|2(M−1)|A|2(M−1)|Q|2|T A|2 max(Θ, 1)H4|A|2 ln(|Gmax||Πmax|/δ) ln(BXBW )2

ϵ2

)
.

Here, there is no explicit sample complexity of |T O|. Note the worse-case sample complexity of
ln |Gmax| is O(|Zh−1||T |) and the worst-case sample complexity of ln |Πmax| is O(|Zh−1||O||A|).

O Proof of Theorem 8

We fix the parameters as in Theorem 8. Let

lh(τh, ah, rh, oh+1; f, π, g) = |A|πh(ah | z̄h){rh + gh+1(z̄h+1)− gh(z̄h)}f(τh)− 0.5f(τh)
2.

From the assumption, Then, with probability 1− δ, we have ∀t ∈ [T ],∀h ∈ [H]

sup
π∈Π,g∈G,f∈F

|EDth [lh(τh, ah, rh, oh+1; f, π, g)]− E[EDth [lh(τh, ah, rh, oh+1; f, π, g)]]| ≤ ϵgen,

(24)
sup
g1∈G1

|ED0 [g1(o1)]− E[ED0 [g1(o1)]]| ≤ ϵini. (25)

We first show the following lemma. Recall π⋆ = argmaxπ∈Π J(π).

Lemma 35 (Optimism). Set R := ϵgen. For all t ∈ [T ], (π⋆, gπ
⋆

) is a feasible solution of the
constrained program. Furthermore, we have J(π⋆) ≤ E[gt1(o1)] + 2ϵini for any t ∈ [T ], where gt is
the value link function selected by the algorithm in iteration t.

Proof. For any π, we have

max
f∈Fh

|E[EDth [lh(τh, ah, rh, oh+1; f, π, g
π)]]| = 0

since gπ is a value link function in G noting the condition (c) in Definition 9. Thus,

max
f∈Fh

|EDth [lh(τh, ah, rh, oh+1; f, π
⋆, gπ

⋆

)]| ≤ ϵgen

using (24) noting π⋆ ∈ Π, gπ
⋆ ∈ G. Hence, (π⋆, gπ

⋆

) is a feasible set for any t ∈ [T ] and any
h ∈ [H] .

Then, we have

J(π⋆) = E[gπ
⋆

1 (o1)] ≤ ED0 [gπ
⋆

1 (o1)] + ϵini (Uniform convergence result)

≤ ED0 [gt1(o1)] + ϵini (Using the construction of algorithm)

≤ E[gt1(o1)] + 2ϵini. (Uniform convergence)
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Next, we prove the following lemma to upper bound the per step regret.

Lemma 36. For any t ∈ [T ], we have

J(π⋆)− J(π̂) ≤
H∑
h=1

(
|⟨Wh(π

t, gt), Xh(π
t)⟩|
)
+ 2ϵini.

Proof.

J(π⋆)− J(π̂)

≤ 2ϵini + E[gt1(o1)]− J(πt) (From optimism)

= 2ϵini +

H∑
h=1

E[gth(z̄h)− {rh + gth+1(z̄h+1)}; a1:h ∼ πt] (Performance difference lemma)

≤ 2ϵini +

H∑
h=1

|E[gth(z̄h)− {rh + gth+1(z̄h+1)}; a1:h ∼ πt]|

≤ 2ϵini +

H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|. (From (a) in Definition 3)

From Lemma 22, we have

1

T

T−1∑
t=0

H∑
h=1

∥Xh(π
t)∥Σ−1

t,h
≤ H

√
d

T
ln

(
1 +

TB2
X

dλ

)
.

Lemma 37.

∥Wh(π
t, gt)∥2Σt,h ≤ 2λB2

W + Tζ(2ϵgen).

Proof. We have

∥Wh(π
t, gt)∥2Σt,h = λ∥Wh(π

t, gt)∥22 +
t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2.

The first term is upper-bounded by λB2
W . The second term is upper-bounded by

t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2

≤
t−1∑
k=0

ζ

(
max
f∈Fh

∣∣E[lh(τh, ah, rh, oh+1; f, π
t, gt); a1:M(h)−1 ∼ πk, aM(h):h ∼ πe(π)]

∣∣)2

≤
t−1∑
k=0

ζ

(
max
f∈Fh

∣∣∣EDkh
[lh(z̄h, ah, rh, oh+1; f, π

t, gt)]
∣∣∣+ ϵgen

)2

≤ tζ(2ϵgen)
2.

From the first line to the second line, we use (b) in Definition 9. From the second line to the third
line, we use ξ is a non-decreasing function. In the last line, we use the constraint on (πt, gt).
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Combining lemmas so far, we have

J(π⋆)− J(π̂) ≤ 1

T

T−1∑
t=0

H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|+ 2ϵini

≤ 1

T

T−1∑
t=0

H∑
h=1

∥Wh(π
t, gt)∥Σt,h∥Xh(π

t)∥Σ−1
t,h

+ 2ϵini (CS inequality)

≤ H1/2
[
2λB2

W + Tζ2(2ϵgen)
]1/2(dH

T
ln

(
1 +

TB2
X

dλ

))1/2

+ 2ϵini.

We set λ such thatB2
X/λ = B2

WB
2
X/ζ

2(ϵgen)+1 and T =
⌈
2Hd ln(4Hd(B2

XB
2
W /ζ

2(ϵ̃gen) + 1))
⌉
.

Then,
Hd

T
ln

(
1 +

TB2
X

dλ

)
≤ Hd

T
ln

(
1 +

T

d

(
B2
WB

2
X

ζ2(ϵgen)
+ 1

))
≤ Hd

T
ln

(
1 +

T

d

(
B2
WB

2
X

ζ2(ϵ̃gen)
+ 1

))
≤ Hd

T
ln

(
2T

d

(
B2
WB

2
X

ζ2(ϵ̃gen)
+ 1

))
≤ 1

since a ln(bT )/T ≤ 1 when T = 2a ln(2ab).

Finally, the following holds

J(π⋆)− J(πT )

≤ H1/2
[
2λB2

W + Tζ2(2ϵgen)
]1/2

+ 2ϵini

≤ H1/2
[
2λB2

W + 2ζ2(2ϵgen)Hd ln(4Hd(B
2
XB

2
W /ζ

2(ϵ̃gen) + 1))
]1/2

+ 2ϵini (Plug in T )

≤ H1/2
[
4ζ2(ϵgen) + 2ζ2(2ϵgen)Hd ln(4Hd(B

2
XB

2
W /ζ

2(ϵ̃gen) + 1))
]1/2

+ 2ϵini. (Plug in λ)

P Sample Complexity in M -step Decodable POMDPs

We first give a summary of our results. Then, we show that an M -step decodable POMDP is a
PO-bilinear rank model. After showing the uniform convergence of the loss function with fast rates,
we calculate the sample complexity. Since we use squared loss functions, we need to modify the
proof of Theorem 1.

P.1 PO-bilinear Rank Decomposition (Proof of Lemma 17)

In this section, we derive the PO-bilinear decomposition of M -step decodable POMDPs (Lemma 17
).

First, we define moment matching policies following [19]. We denote M(h) = h−M .
Definition 10 (Moment Matching Policies). For h′ ∈ [M(h), h], we define

xh′ = (sM(h):h′ , oM(h):h′ , aM(h):h′−1) ∈ Xl
where Xl = Sl × Ol × Al−1 and l = h′ −M(h) + 1. For an M -step policy π and h ∈ [H], we
define the moment matching policy µπ,h = {µπ,hh′ : Xh′−M(h)+1 → ∆(A)}h−1

h′=M(h):

µπ,hh′ (ah′ | xh′) := E[πh′(ah′ | z̄h′) | xh′ ;π].

Note the expectation in the right hand side is taken under a policy π.

Using [19, Lemma B.2], we have
Br(π, g;π′) = E[{gh(z̄h)− rh − gh+1(z̄h+1)}; a1:M(h)−1 ∼ π′, aM(h):h ∼ π]

= E[{gh(z̄h)− rh − gh+1(z̄h+1)}; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h, ah ∼ π]

= E[E[{gh(z̄h)− rh − gh+1(z̄h+1)} | sM(h); aM(h):h−1 ∼ µπ,h, ah ∼ π]; a1:M(h)−1 ∼ π′]

= ⟨Xh(π
′),Wh(π, g)⟩ .
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where

Wh(π, g) =

∫
E[{gh(z̄h)− rh − gh+1(z̄h+1)} | sM(h); aM(h):h−1 ∼ µπ,h, ah ∼ π]µ(sM(h))d(sM(h)),

Xh(π
′) = E[ϕ(sM(h)−1, aM(h)−1); a1:M(h)−1 ∼ π′].

Thus, the first condition in Definition 9 ((12)) is satisfied

Next, we show the second condition in Definition 9 ((13)). This is proved as follows

0.5

|A|M
〈
Xh(π

′),Wh(π, g)
〉2 (26)

=
0.5

|A|M
(
E
[
(gh(z̄h)− (Bπ

hgh+1)(z̄h)) ; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h
])2

≤ 0.5

|A|M E
[
(gh(z̄h)− (Bπ

hgh+1)(z̄h))
2 ; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h

]
(Jensen’s inequality)

≤ 1

|A|M max
f∈Fh

E
[
(gh(z̄h)− (Bπ

hgh+1)(z̄h)) f(z̄h)− 0.5f(z̄h)
2; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h

]
=

1

|A|M max
f∈Fh

E
[
|A|πh(ah|z̄h) (gh(z̄h)− rh − gh+1(z̄h+1)) f(z̄h)− 0.5f(z̄h)

2; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h, ah ∼ U(A)
]

≤ max
f∈Fh

E
[
|A|πh(ah|z̄h) (gh(z̄h)− rh − gh+1(z̄h+1)) f(z̄h)− 0.5f(z̄h)

2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)
]

= max
f∈Fh

E
[
lh(z̄h, ah, rhoh+1; f, π, g); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)

]
. (27)

From the first line to the second line, we use [19, Lemma B.2]. From the third to the fourth line, we
use the Bellman completeness assumption: −(BπhG) + Gh ⊂ Fh. From the fourth line to the fifth
line, we use importance sampling.

Finally, we show the third condition in Definition 9 (14):∣∣∣∣max
f∈Fh

E[lh(τh, ah, rh, oh+1; f, π, g
π); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

∣∣∣∣ = 0. (28)

This follows since

E[lh(τh, ah, rh, oh+1; f, π, g
π); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

= E
[
|A|πh(ah|z̄h)

(
gπh(z̄h)− rh − gπh+1(z̄h+1)

)
f(z̄h)− 0.5f(z̄h)

2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)
]

= E
[
E[|A|πh(ah|z̄h)

(
gπh(z̄h)− rh − gπh+1(z̄h+1)

)
| z̄h]f(z̄h)− 0.5f(z̄h)

2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)
]

= E
[
−0.5f(z̄h)

2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)
]
.

P.2 Uniform Convergence

We define the operator

(Bπhg)(z̄h) := E[rh + gh+1(z̄h+1) | z̄h; ah ∼ π].

and

(B̄πhg)(z̄h) := −(Bπhg)(z̄h) + gh.

Lemma 38 (Uniform Convergence). Let |D| = m. Suppose ∥Fh∥∞ ≤ 3H for h ∈ [H]. Fix π′ ∈ Π.

1. Take a true future-dependent value function gπ ∈ G. Then, it satisfies

max
fh∈Fh

|ED[|A|πh(ah | z̄h){gπh(z̄h)− rh − gπh+1(z̄h+1)}fh(z̄h)− 0.5fh(z̄h)
2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

≤ c1
(H|A|)2 ln(|Πmax||Fmax||Gmax|/δ)

m
.

2. Suppose g(π) satisfies

max
fh∈Fh

|ED[|A|πh(ah | z̄h){gh(π)(z̄h)− rh − gh+1(π)(z̄h+1)}fh(z̄h)− 0.5fh(z̄h)
2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]|

≤ Λ,

58



and the Bellman completeness B̄πhG ⊂ Fh(∀π ∈ Π) holds. Then, with probability 1 − δ,
we have

E[(B̄πhg(π))2(z̄h); a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ U(A)]

≤ Λ + c2
(H|A|)2 ln(|Πmax||Fmax||Gmax|/δ)

m
.

Proof. To simplify the notation, we define

αh(z̄h, ah, rh, oh+1; g) = πh(ah | z̄h)|A|{gh(z̄h)− rh − gh+1(z̄h+1)}.

Given g ∈ G, we define f̂h(·; g) as the maximizer:

argmax
fh∈Fh

|ED[|A|πh(ah | z̄h){gh(z̄h)− rh − gh+1(z̄h+1)}fh(z̄h)− 0.5fh(z̄h)
2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]|.

In this proof, the expectation is always taken for the data generating process D. We first observe

ED[αh(z̄h, ah, rh, oh+1; g)fh(z̄h)− 0.5fh(z̄h)
2]

= 0.5ED[αh(z̄h, ah, rh, oh+1; g)
2 − {αh(z̄h, ah, rh, oh+1; g)− fh(z̄h)}2].

Then, we define

Erh(f, g) := 0.5{αh(z̄h, ah, rh, oh+1; g)− fh(z̄h)}2 − 0.5{αh(z̄h, ah, rh, oh+1; g)− (B̄πhg)(z̄h)}2].

As the first step, we prove with probability 1− δ

∀g; |ED[Erh(f̂h(·; g), g)]| ≤
12H|A| ln(2|Fh|||Gh||Gh+1|/δ)

m
. (29)

We first fix g. Then, from the definition of f̂h(·; g) and the Bellman completeness B̄πhG ⊂ Fh, we
have

ED[Erh(f̂h(·; g), g)] ≤ 0. (30)

Here, we invoke Bernstein’s inequality:

∀f ∈ Fh; |(E− ED)Erh(f, g))| ≤
√

E[Erh(f, g)]
ln(2|Fh|/δ)

m
+

(6H|A|)2 ln(2|Fh|/δ)
m

. (31)

Hereafter, we condition on the above event. Then, combining (30) and (31), we have

E[Erh(f̂h(·; g), g)] ≤ ED[Erh(f̂h(·; g), g)] + |(E− ED)Erh(f̂h(·; g), g)|

≤

√
E[Er2h(f̂h(·; g), g)] ln(2|Fh|/δ)(6H|A|)2

m
+

(6H|A|)2 ln(2|Fh|/δ)
m

.

Here, we use

E[Erh(f̂h(·; g), g)] = 0.5E[{fh(z̄h)− (B̄πhg)(z̄h)}2],
E[Erh(f̂h(·; g), g)2] ≤ E[{fh(z̄h)− (B̄πhg)(z̄h)}2](6H|A|)2 = E[Erh(f̂h(·; g))](6H|A|)2.

Thus, by some algebra,

E[Erh(f̂h(·; g), g)] ≤
(12H|A|)2 ln(2|Fh|/δ)

m
.

Besides,

|ED[Erh(f̂h(·; g), g)]|
≤ E[Erh(f̂h(·; g))] + |(E− ED)[Erh(f̂h(·; g), g)]|

≤ E[Erh(f̂h(·; g), g)] +

√
E[Erh(f̂h(·; g), g)](6H|A|)2 ln(2|Fh|/δ)

m
+

(6H|A|)2 ln(2|Fh|/δ)
m

≤ 3(12H|A|)2 ln(2|Fh|/δ)
m

+
27H|A| ln(2|Fh|/δ)

m
.

Lastly, by union bounds over Gh,Gh+1, the statement (29) is proved. Note B̄πhgπ = 0.
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First Statement.

|ED[αh(z̄h, ah, rh, oh+1; g
π)f̂h(z̄h; g

π)− 0.5f̂h(z̄h; g
π)2]|

= |0.5ED[αh(z̄h, ah, rh, oh+1; g
π)]− 0.5ED[{αh(z̄h, ah, rh, oh+1; g

π)− fh(z̄h)}2]|

≤ c
H|A| ln(|Fh|Gh||Gh+1/δ)

m
.

From the second line to the third line, we use (29).

Second Statement. Now, we use the assumption on g(π):

ED[αh(z̄h, ah, rh, oh+1; g(π))f̂h(z̄h; g(π))− 0.5f̂h(z̄h; g(π))
2] ≤ Λ.

From what we showed in (29), this implies

ED[αh(z̄h, ah, rh, oh+1; g(π))(B̄πhg(π))(z̄h)− 0.5(B̄πhg(π))2(z̄h)] ≤ Λ +
3(12H|A|)2 ln(|Fh||Gh||Gh+1|/δ)

m
.

Recall we want to upper-bound the error for E[0.5(B̄πhg(π))2(z̄h)]. Here, we use the following
observation later:

E[αh(z̄h, ah, rh, oh+1; g(π))(B̄πhg(π))(z̄h)− 0.5(B̄πhg(π))2(z̄h)] = E[0.5(B̄πhg(π))2(z̄h)].

We use Bernstein’s inequality: with probability 1− δ, for any g ∈ G,

|(E− ED)[αh(z̄h, ah, rh, oh+1; g)(Bπhg)(z̄h)− 0.5(Bπhg)2(z̄h)]|

≤
√

E[(3|A|H)2(Bπhg)2(z̄h)] ln(2|Gh||Gh+1|/δ)
m

+
(3|A|H)2 ln(|Gh||Gh+1|/δ)

m
.

Here, we use

E[{αh(z̄h, ah, rh, oh+1; g)(Bπhg)(z̄h)− 0.5(Bπhg)2(z̄h)}2]
≤ E[{αh(z̄h, ah, rh, oh+1; g)(Bπhg)(z̄h)− 0.5(Bπhg)2(z̄h)}](6|A|H)2.

Hereafter, we condition on the above event.

Finally, we have

E[0.5(B̄πhg(π))2(z̄h)]
≤ ED[αh(z̄h, ah, rh, oh+1; g(π))(B̄πhg(π))(z̄h)− 0.5(B̄πhg(π))2(z̄h)]+
+ |(E− ED)[αh(z̄h, ah, rh, oh+1; g(π))(B̄πhg(π))(z̄h)− 0.5(B̄πhg(π))2(z̄h)]|

≤ Λ +
3(12H|A|)2 ln(4|Fh||Gh||Gh+1|/δ)

m

+ |(E− ED)[αh(z̄h, ah, rh, oh+1; g(π))(Bπhg(π))(z̄h)− 0.5(Bπhg(π))2(z̄h)]|

≤ Λ +
3(12H|A|)2 ln(4|Fh||Gh||Gh+1|/δ)

m
+

√
E[0.5(Bπhg(π))2(z̄h)] ln(4|Gh||Gh+1|/δ)

m
+

ln(|Gh||Gh+1|/δ)
m

.

Hence,

∀π ∈ Π,∀g(π);E[0.5(Bπhg(π))2(z̄h)] ≤ Λ + c
(H|A|)2 ln(|Fh||Gh||Gh+1|/δ)

m
.

P.3 Proof of Main Statement

We define

|Fmax| = max
h∈[H]

|Fh|, |Πmax| = max
h∈[H]

|Πh|, |Gmax| = max
h∈[H]

|Gh|.
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Let

ϵ2gen = c1
(H|A|)2 ln(|Πmax||Fmax||Gmax|T (H + 1)/δ)

m
,

ϵ̃2gen = c1
(H|A|)2 ln(|Πmax||Fmax||Gmax|(H + 1)/δ)

m
,

ϵini = c3

√
(H|A|)2 ln(|G1|T (H + 1)/δ)

m
,

T = 2Hd ln

(
4Hd

(
B2
XB

2
W

ϵ̃gen
+ 1

))
, R = ϵ2gen.

Then, from the first statement in Lemma 38, with probability 1− δ, ∀t ∈ [T ],∀h ∈ [H],∀π ∈ Π

max
fh∈Fh

|EDt
h
[|A|πh(ah | z̄h){gπh(z̄h)− rh − gπh+1(z̄h+1)}fh(z̄h)− 0.5fh(z̄h)

2; a1:M(h)−1 ∼ πt, aM(h):h ∼ U(A)]|

(32)

≤ c1
(H|A|)2 ln(|Πmax||Fmax||Gmax|T (H + 1)/δ)

m
.

Besides, from the second statement in Lemma 38, for π ∈ Π,∀t ∈ [T ],∀h ∈ [H], when g(π)
satisfies

max
fh∈Fh

|EDt
h
[|A|πh(ah | z̄h){gh(π)(z̄h)− rh − gh+1(π)(z̄h+1)}fh(z̄h)− 0.5fh(z̄h)

2; a1:M(h)−1 ∼ πt, aM(h):h ∼ U(A)]|

≤ c1
(H|A|)2 ln(|Πmax||Fmax||Gmax|T (H + 1)/δ)

m
,

we have

E[(B̄π
hg(π))

2(z̄h); a1:M(h)−1 ∼ πt, aM(h):h−1 ∼ U(A)] ≤ (c1 + c2)
(H|A|)2 ln(|Πmax||Fmax||Gmax|TH/δ)

m
.

(33)

We first show the optimism. Recall π⋆ = argmaxπ∈Π J(π).

Lemma 39 (Optimism). Set R = ϵ2gen. For all t ∈ [T ], (π⋆, gπ
⋆

) is a feasible solution of the
constrained program. Furthermore, we have J(π⋆) ≤ E[gt1(o1)] + 2ϵini for any t ∈ [T ].

Proof. For any π ∈ Π, letting gπ ∈ G be a corresponding value future-dependent value function, we
have

max
f∈Fh

|EDth [lh(z̄h, ah, rh, oh+1; f, π, g
π)]| ≤ ϵ2gen.

using (32). This implies

∀t ∈ [T ],∀h ∈ [H], max
f∈Fh

|EDth [lh(z̄h, ah, rh, oh+1; f, π
⋆, gπ

⋆

)]| ≤ ϵ2gen.

Hence, (π⋆, gπ
⋆

) is a feasible set for any t ∈ [T ]. Then, we have

J(π⋆) = E[gπ
⋆

1 (o1)] ≤ EDt1 [g
π⋆

1 (o1)] + ϵini

≤ EDt1 [g
t
1(o1)] + ϵini ≤ E[gt1(o1)] + 2ϵini.

Next, recall the following two statements. The following statements are proved as before in the proof
of Theorem 1.

• For any t ∈ [T ],

J(π⋆)− J(πt) ≤
H∑
h=1

|⟨Wh(π
t, gt), Xh(π

t)⟩|+ 2ϵini.
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• Let Σt,h = λI +
∑t−1
τ=0Xh(π

τ )Xh(π
τ )⊤. We have

1

T

T−1∑
t=0

H∑
h=1

∥Xh(π
t)∥2

Σ−1
t,h

≤ H

√
d

T
ln

(
1 +

TB2
X

dλ

)
.

Lemma 40.

∥Wh(π
t, gt)∥2Σt,h ≤ 2λB2

W + T |A|M ϵ2gen.

Proof. We have

∥Wh(π
t, gt)∥2Σt,h = λ∥Wh(π

t, gt)∥22 +
t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2.

The first term is upper-bounded by λB2
W . The second term is upper-bounded by

t−1∑
τ=0

⟨Wh(π
t, gt), Xh(π

τ )⟩2

≤ |A|M
t−1∑
τ=0

E[E[|A|πth(ah | z̄h)gh(z̄h)− rh − gh+1(z̄h+1) | z̄h; ah ∼ U(A)]2; a1:M(h)−1 ∼ πτ , aM(h):h−1 ∼ U(A)]

= |A|M
t−1∑
τ=0

E[(B̄π
t

h g(π))
2(z̄h); a1:M(h)−1 ∼ πτ , aM(h):h−1 ∼ U(A)]

≤ |A|MT (c1 + c2)
(H|A|)2 ln(|Πmax||Fmax||Gmax|TH/δ)

m
≤ T |A|M ϵ2gen.

From the first line to the second line, we use (26). Here, from the third line to the fourth line, we use
(33).

The rest of the argument is the same as the proof in Theorem 1. Finally, the following holds

J(π⋆)− J(π̂) ≤ 5ϵgen|A|M/2
[
H2d ln(4Hd(B2

XB
2
W /ϵ̃gen + 1))

]1/2
+ 2ϵini.

Sample Complexity Result. We want to find m such that√
H2|A|2+M ln(|Πmax||Fmax||Gmax|TH/δ)

m
[H2d ln(HdB2

XB
2
Wm)]1/2 ≤ ϵ.

where

T = Hd ln(HdB2
XB

2
Wm).

By organizing terms, we have√
H4d|A|2+M ln(|Πmax||Fmax||Gmax|Hd/δ) ln(HdB2

XB
2
Wm)

m
≤ ϵ.

Thus, setting the following m is enough:

m = Õ

(
H4d|A|2+M ln(|Πmax||Fmax||Gmax|/δ)

ϵ2

)
.

The total sample we use mTH is

Õ

(
d2H6|A|2+M ln(|Πmax||Fmax||Gmax|/δ)

ϵ2

)
.

Q Sample Complexity in Observable POMDPs with Latent Low-rank
Transition

This section largely follows the one in Section P.
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Q.1 Existence of Value Future-Dependent Value Functions

Since we consider the discrete setting, we can set the value future-dependent value function class as
Section K. Hence, we set

Gh =
{
⟨θ,1(z)⊗O†1(o)⟩; ∥θ∥∞ ≤ H

}
.

Then, we can ensure ∥Gh∥ ≤ H/σ1. Then, from the construction of Fh, we can also ensure
∥Fh∥ ≤ 4H/σ1.

Q.2 PO-bilinear Rank Decomposition (Proof of Lemma 18)

In this section, we derive the PO-bilinear decomposition of observable POMDPs with the latent
low-rank transition. We want to prove Lemma 18. Recall M(h) = max(h−M, 1).

Using [19, Lemma B.2], we have

Br(π, g;π′) = E[{gh(z̄h)− rh − gh+1(z̄h+1)}; a1:M(h)−1 ∼ π′, aM(h):h ∼ π]

= E[{gh(z̄h)− rh − gh+1(z̄h+1)}; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h, ah ∼ π]

= E[E[{gh(z̄h)− rh − gh+1(z̄h+1)} | sM(h); aM(h):h−1 ∼ µπ,h, ah ∼ π]; a1:M(h)−1 ∼ π′]

= ⟨Xh(π
′),Wh(π, g)⟩

where

Wh(π, g) =

∫
E[{gh(z̄h)− rh − gh+1(z̄h+1)} | sM(h); aM(h):h−1 ∼ µπ,h, ah ∼ π]µ(sM(h))d(sM(h)),

Xh(π
′) = E[ϕ(sM(h)−1, aM(h)−1); a1:M(h)−1 ∼ π′].

Thus, the first condition in Definition 9 is satisfied

Next, we show the second condition in Definition 9. This is proved as follows:

0.5

|A|M
〈
Xh(π

′),Wh(π, g)
〉2

=
0.5

|A|M E
[
(gh(z̄h)− (Bπ

hgh+1)(τh)) ; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h
]2

≤ 0.5

|A|M E
[
(gh(z̄h)− (Bπ

hgh+1)(τh))
2 ; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h

]
≤ 1

|A|M max
f∈Fh

E
[
(gh(z̄h)− (Bπ

hgh+1)(τh)) f(τh)− 0.5f(τh)
2; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h

]
=

1

|A|M max
f∈Fh

E
[
|A|πh(ah|z̄h) (gh(z̄h)− rh − gh+1(z̄h+1)) f(τh)− 0.5f(τh)

2; a1:M(h)−1 ∼ π′, aM(h):h−1 ∼ µπ,h, ah ∼ U(A)
]

≤ max
f∈Fh

E
[
|A|πh(ah|z̄h) (gh(z̄h)− rh − gh+1(z̄h+1)) f(τh)− 0.5f(τh)

2; a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)
]

= max
f∈Fh

E
[
lh(τh, ah, rh, oh+1; f, π, g); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)

]
.

From the first line to the second line, we use [19, Lemma B.2]. From the third to the fourth line, we
use the Bellman completeness assumption: −(BπhG) + Gh ⊂ Fh. From the fourth line to the fifth
line, we use importance sampling.

The third condition∣∣∣∣max
f∈Fh

E[lh(τh, ah, rh, oh+1; f, π, g
π); a1:M(h)−1 ∼ π′, aM(h):h ∼ U(A)]

∣∣∣∣ = 0.

is easily proved.

Finally, the following norm constraints hold:

∥Wh(π, g)∥ ≤ 3CG
√
d, ∥Xh(π

′)∥ ≤ 1.
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Sample Complexity Result. Following the same procedure as Section P, here, we want to find m
such that √

C2
G |A|2+M ln(|Πmax||Fmax||Gmax|TH/δ)

m
[H2d ln(HdB2

XB
2
Wm)]1/2 ≤ ϵ.

where

T = Hd ln(HdB2
XB

2
Wm).

By organizing terms, we have√
C2

GH
2d|A|2+M ln(|Πmax||Fmax||Gmax|Hd/δ) ln(HdB2

XB
2
Wm)

m
≤ ϵ.

Thus, setting the following m is enough

m = Õ

(
H4d|A|2+M ln(|Πmax||Fmax||Gmax|/δ)

ϵ2σ2
1

)
.

The total sample we use mTH is

Õ

(
d2H6|A|2+M ln(|Πmax||Fmax||Gmax|/δ)

ϵ2σ2
1

)
.

Finally, we plug-in ln(|Πmax||Fmax||Gmax|/δ) = ln(|M|).

R Exponential Stability for POMDPs with Low-rank Transition

In this section, we prove that the short memory policy is a globall near optimla policy in low-rank
MDPs. We first introduce several notation. Next, we prove the exponential stability of Bayesian
fileters, which immediately leads to the main statement.

Notation. Given a belief b ∈ ∆(S), an action and observation pair (a, o), we define the Bayesian
update as follows. We define B(b, o) ∈ ∆(S) as the operation that incorporates observation o, i.e.,
b′ = B(b, o) with b′(s) = O(o|s)b(s)/(

∑
s̄O(o|s̄)b(s̄)), and Tab as the operation that incorporates

the transition, i.e., (Tab)(s′) =
∑
s b(s)T(s′|s, a). Finally, we denote U(b, a, o) as the full Bayesian

filter, i.e.,
U(b, a, o) = B(Tab, o).

Let us denote b0 ∈ ∆(S) as the initial latent state distribution. Given the first observation o1 ∼
O(·|s), s ∼ b0, we denote b1 = B(b0, o1) as the initial belief of the system conditioned on the first
observation o1. Given two beliefs b, b′, we define the distance D2(b, b

′) := logEs∼b[b(s)/b(s′)]

Consider a POMDP whose latent transition is low rank, i.e., T(s′|s, a) = µ(s′)⊤ϕ(s, a). For notation
simplicity, we still consider discrete state, action, and observation space to avoid using measure
theory languages.

Design of initial distribution. We want to design a good distribution for the initial distribution in
an artificial Bayesian filter ignoring the history other than the short history.

The following lemma is from [23, Lemma 4.9] that quantifies the contraction of a Bayesian map.
Lemma 41 (Contraction propery of beliefs). Suppose b, b′ ∈ ∆(S) and ∥b/b′∥∞ < ∞. Then we
have:

Es∼b,o∼O(s)

[√
exp

(
D2(B(b, o), B(b′, o))

4
− 1

)]
≤
(
1− σ4

1/2
40
)√

exp

(
D2(b, b′)

4

)
− 1

Next, we compute the G-optimal design using feature ϕ(s, a) : S ×A → R. Denote the G-optimal
design as ρ ∈ ∆(S × A). Here, we use assumption ∥ϕ(s, a)∥ ≤ 1 for any (s, a) in Assumption
6, which ensures that ϕ(s, a) lives in a compact space for any (s, a). The property is given as in
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Theorem 7. In summary, the support of ρ (denoted by Sρ) is at most d(d+ 1)/2 points and for any
ϕ(s, a), there exists α(s, a) such that

ϕ(s, a) =

|Sρ|∑
i=1

αi(s, a)ϕ(s
i, ai)ρ1/2(si, ai), αi(s, a)/ρ

1/2(si, ai) ≤ d (34)

where we denote the points on the support Sρ as {si, ai}|Sρ|i=1 .

We set our “empty" belief as follows:

b̃0(·) :=
∑
s̃,ã

ρ(s̃, ã)T(·|s̃, ã) =
|Sρ|∑
i=1

ρ(si, ai)T(·|si, ai).

Note that this belief b̃0 does not depend on any history. We aim to boundD2(b, b̃0) using the following
lemma where b is some belief resulting from applying Ta for any a to a belief b̃ ∈ ∆(S). This is a
newly introduce lemma.
Lemma 42 (Distance between the actual belief and the designed initial distribution). For any
distribution b ∈ ∆(S) that results from a previous belief b̃ and a one-step latent transition under
action a, i.e., b(s) = Tab̃(s̃), we have:

D2(b, b̃0) ≤ ln(d3).

Proof. For any b ∈ ∆(S), using its definition, we have:

b(s) =
∑
s̃

b̃(s̃)ϕ(s̃, a)⊤µ(s) (Definition)

=
∑
s̃

b̃(s̃)

Sρ∑
i=1

αi(s̃, a)ρ
1/2(si, ai)ϕ(si, ai)⊤µ(s) (Property of G-optimal design)

=

Sρ∑
i=1

(∑
s̃

b̃(s̃)αi(s̃, a)ρ
1/2(si, ai)

)
︸ ︷︷ ︸

:=βi

ϕ(si, ai)⊤µ(s)

Similarly, the construction of b̃0 implies that b̃0(s) =
∑Sρ
i=1 ρ(s

i, ai)ϕ(si, ai)⊤µ(s), thus, we have:

b(s)/b̃0(s) =

Sρ∑
i=1

βiϕ(s
i, ai)⊤µ(s)∑Sρ

j=1 ρ(s
j , aj)ϕ(sj , aj)⊤µ(s)

≤
Sρ∑
i=1

βiϕ(s
i, ai)⊤µ(s)

ρ(si, ai)ϕ(si, ai)⊤µ(s)

=

Sρ∑
i=1

βi
ρ(si, ai)

=

Sρ∑
i=1

∑
s̃

b̃(s̃)
αi(s̃, a)

ρ1/2(si, ai)
=
∑
s̃

b̃(s̃)

Sρ∑
i=1

αi(s̃, a)

ρ1/2(si, ai)

≤
∑
s̃

b̃(s̃)d3 = d3. (Use propety of G-optimal design(34))

Thus, D2(b, b̃0) = ln
(
Es∼b b(s)b̃0(s)

)
≤ ln d3.

Now we prove the exponential stability by leveraging Lemma 42 and Lemma 41.
Theorem 14 (Exponential stability for POMDPs with Low-rank Latent Transition). Consider a t ≥
Cγ−4 ln(d/ϵ). Consider any policy (full history dependent) π and a trajectory a1:h+t−1, o1:h+t ∼ π
for h ≥ 1. Denote bh+t as the (true) belief conditioned on a1:h+t−1, o1:h+t. For approximated belief,
first for h = 1, we define b̄h+t as:

b̄1 = b1, b̄1+τ (o1:1+τ , a1:1+τ−1) = U(b̄n(o1:τ , a1:τ−1), o1+τ , a1+τ−1), 1 ≤ τ ≤ t;

for h ≥ 2, we define b̄h+t as:

b̄h = B(b̃0, oh), b̄h+τ (oh:h+τ , ah:h+τ−1) = U(b̄h+τ−1(oh:h+τ−1, ah:h+τ−2), oh+τ , ah+τ−1), 1 ≤ τ ≤ t;

Then we have:
∀h ≥ 1 : E[

∥∥bh+t(o1:h+t, a1:h+t−1)− b̄h+t(oh:h+t, ah:h+t−1)
∥∥
1
; a1:h+t−1 ∼ π] ≤ ϵ.
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Proof. We define

Yh+n(o1:h+n, a1:h+n−1) =
√
exp(D2(bh+n(o1:h+n, a1:h+n−1), b̄h+n(oh:h+n, ah:h+n−1))/4)− 1.

Hereafter, we omit (o1:h+n, a1:h+n−1) to simplify the notation.

We start from the base case Yh (i.e., n = 0).

First case, consider h > 1, bh = U(bh−1, oh, ah−1). Denote b′h = Tah−1
bh−1. From Lemma 42, we

know that:

E[D2(b
′
h, b̃0) | o1:h−1, ah−1; a1:h−1 ∼ π] ≤ ln(d3).

Thus, noting bh = B(b′h, oh) and b̄h = B(b̃h, oh), we have:

Eoh∼Ob′h

[√
exp(D2(bh, B(b̃0, oh))/4)− 1 | o1:h−1, a1:h−1; a1:h−1 ∼ π

]
≤ Eoh∼Ob′h

[√
exp(D2(b′h, b̃0)/4)− 1 | o1:h−1, a1:h−1; a1:h−1 ∼ π

]
(From Lemma 41)

≤ (1− σ4
1/2

40)d3/2

which implies the base case:

E[Yh | o1:h−1, ah−1; a1:h−1 ∼ π] ≤ (1− σ4
1/2

40)d3/2.

Now for any n ≥ 1, we have:

E[Yh+n | o1:h−1, a1:h−1; a1:h+n−1 ∼ π]

= E
[√

exp
(
D2(bh+n, b̄h+n)/4

)
− 1 | o1:h−1, a1:h−1; a1:h+n−1 ∼ π

]
≤ (1− σ4

1/2
40)E

[√
exp

(
D2

(
(Tah+n−1

bh+n−1), (Tah+n−1
b̄h+n−1)

)
/4
)
− 1 | o1:h−1, a1:h−1; a1:h+n−1 ∼ π

]
≤ (1− σ4

1/2
40)E

[√
exp

(
D2

(
bh+n−1, b̄h+n−1)

)
/4
)
− 1 | o1:h−1, a1:h−1; a1:h+n−1 ∼ π

]
(Data processing inequality from [23, Lemma 2.7])

= (1− σ4
1/2

40)E[Yh+n−1 | o1:h−1, a1:h−1; a1:h+n−1 ∼ π].

This completes the induction step. Adding expectation with respect to the history a1:h−1, o1:h−1

back, we conclude the proof.

When h = 1, we simply start with the original belief b1. For any 0 ≤ n ≤ t, we simply set
b̄1+n = b1+n, thus the conclusion still holds.

The above Theorem 14 indicates that in order to approximate the ground truth belief bh+t that is
conditioned on the entire history, we only need to apply the Bayesian filter on the M memory z̄h+t
starting from a fixed distribution b̃0. The existence of such b̃0 is proven by construction where we rely
on the low-rankness of the latent transition and a D-optimal design over S ×A using the feature ϕ.

The above Theorem 14 together with the proof of Theorem 1.2 in [23] immediately implies for
M = Θ(C(σ1)

−4 ln(dH/ϵ)) (with C being some absolute constant), there must exists an M-memory
policy π⋆, such that J(π⋆gl)− J(π⋆) ≤ ϵ – thus a globally optimal policy can be approximated by a
policy that only relies on short memories.

S Auxiliary Lemmas

We use the following in Section 4.2.
Lemma 43 (Useful inequalities).
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•

∥AB∥ ≤ ∥A∥∥B∥, ∥AB∥F ≤ ∥A∥∥B∥F
vec(aa⊤) = a⊗ a, ∥vec(A)∥2 = ∥A∥F ,Tr(AB) = vec(A⊤)⊤vec(B).

• When A and B are semi positive definite matrices, we have

Tr(AB) ≤ ∥A∥Tr(B).

The following lemma is useful when we calculate the sample complexity.
Lemma 44. The following is satisfied√

B1

m
ln2(B2m+B3) ≤ cϵ

when

m = c
B1

ϵ2
{ln(m(B2 +B3 + 1))}2.

for some constant c.
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