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A Additional Related Works

Generalization and function approximation of RL in MDPs.  In Markovian environments, there
is a growing literature that gives PAC bounds with function approximation under certain models.
Some of the representative models are linear MDPs [36, [76), block MDPs [17, 511 [78]], and low-rank
MDPs [2,[71]]. Several general frameworks in [33} 166, 35,21, [16] characterize sufficient conditions
for provably efficient RL. Each above model is captured in these frameworks as a special case. While
our work builds on the bilinear/Bellman rank framework [[16}33]], when we naively reduce POMDPs
to MDPs, the bilinear/Bellman rank is ©(A*). These two frameworks are only shown applicable to
reactive POMDPs where the optimal policy only depends on the latest observation. However, this
assumption makes the POMDP model very restricted.

System identification for uncontrolled partially observable systems. There is a long line of work
on system identification for uncontrolled partially observable systems, among which the spectral
learning based methods are related to our work [[72} |29} 163} 18 25/ 154, [7, 140, 27, [67]. Informally,
these methods leverage the high-level idea that under some observability conditions, one can use
the sufficient statistics of (possibly multi-step) future observations as a surrogate for the belief
states, thus allowing the learning algorithms to ignore the latent state inference and completely rely
on observable quantities. Our approach shares a similar spirit in the sense that we use sufficient
statistics of future observations to replace latent states, and our algorithm only relies on observable
quantities. The major difference is that these prior works only focus on passive system identification
for uncontrolled systems, while we need to find a high-performance policy by actively interacting
with the systems for information acquisition.

Reinforcement learning in PSRs. PSRs [32] 45162 |8, |69] are models that generalize POMDPs.
PSRs also rely on the idea of using the sufficient statistics of multi-step future observations (i.e.,
predictive states) to serve as a summary of the history. Prior works on RL for PSRs [8 401 [15, 44/ [30]
do not address the problem of strategic exploration and operate under the assumption that a pre-
collected diverse training dataset is given and the data collection policy is a blind policy (i.e., it does
not depend on history of observations). To our knowledge, the only existing PAC learning algorithm
for PSRs is limited to a reactive PSR model where the optimal policy depends just on the latest
observation [33]. Our framework captures standard PSRs models that are strictly more general than
reactive PSRs.

Future-dependent value functions. Analogue of future-dependent value functions (referred to
as bridge functions) are used in the literature of causal inference (offline contextual bandits) [S0,
130 112,137, 149,161, [75]] and offline RL with unmeasured confounders [4}159]]. However, their settings
are not standard POMDPs in the sense that their setting is a POMDP with unmeasured confounders
following [68]. Our setting is a standard POMDP without unmeasured confounders. Here, we
emphasize that their setting does not capture our setting. More specifically, by taking [S9] as an
example, they require that logged data is generated by policies that can depend on latent states but
cannot depend on observable states. Thus, their definition of future-dependent value functions (called
as bridge functions) is not applicable to our setting since the data we use is clearly generated by
policies that depend on observations. Due to this difference, their setting prohibits us from using
future observations, unlike our setting. Finally, we stress that our work is online, while their setting is
offline. Hence, they do not discuss any methods for exploration.
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B Supplement for

We generalize [Definition 3|to capture more models. The first extension is to use multi-step future-
dependent value functions. This extension is essential to capture overcomplete POMDPs and

multi-step PSRs.

B.1 PO-bilinear Actor-critic Class with Multi Step Future

In this section, we provide an extension to to incorporate multiple-step futures (i.e.,
K > 1). For simplicity, we assume that 7°%* = U/(A).

The definition is then as follows. The main difference is that we roll out a policy U (.A), K — 1 times
to incorporate multi-step future-dependent value functions. We introduce the notation

K - 7K K K-1
(Zh—15 On:ht K—1:Qhihr K —2) = Zh, € Zj} = Zp—1 x OF x A",

Then, combining the Bellman equation for state-value functions and the definition of K-step future-
dependent value functions, we have

0= ]E[szr+1(zha Sthl) +7rh = V}?(thh Sh) ‘ Zh—1ySh; Qp ~ 7'(‘]
= E[ggﬂ(fiﬁl) | zn—1,8n;an ~ Ty aps1:nrx—1 ~ U(A)] +Elry | 2n-1, Sn;an ~ 7
—Elg7 (2°) | 2h-1, $h; aneni k2 ~ U(A)]

Thus, by taking expectations further with respect to (2,1, sp) (i-e., zn—1, S, can be sampled from
some roll-in policy), we have

0=Elg7 1 (25 1);01:n-1 ~ 7'y an ~ 7, apgany k-1 ~ UA)] + Elrp; arn-1 ~ 7, ap ~
—Elgr (2 )i ar:n—1 ~ 7, apeny -2 ~ U(A))].

Hence, the Bellman loss of a pair (7, g) under a roll-in 7" denoted by Bry, (7, g;7') at h € [H] is
defined as

Bry(m, g;7') = Elgnt1(2f1); arin—1 ~ 7 an ~ 7, apgrnr k-1 ~ U(A)] + Efrpasp—1 ~ 7', ap, ~ 7]
—Elgn(Z )i at:n—1 ~ 7', aninrr—2 ~ U(A)).

The above is a proper loss function when we use multi-step futures. Here is the structure we need for
Bry(m, g; 7).

Definition 4 (PO-bilinear AC Class for POMDPs with multi-step future). The model is a PO-bilinear
class of rank d if G is realizable (regarding general K-step future-dependent value functions), and
there exists Wy, : 11 x G — R and X}, : 11 — R? such that for all 7', 7 € 1, g € G and h € [H),

1. We have:

Elgn1(Z051); arhe1 ~ 7'y an ~ , apsrns k-1 ~ UA)] + Elrp; arn—1 ~ 7' ap ~ 7
—Elgn (2 )i a1:n—1 ~ 7, anhyr—2 ~ U(A)] = (Wi(m, g), Xn(7)),

2. Wy (m,g™) = 0 for any w € Il and the corresponding future-dependent value function g™ in
g.
We define d as the PO-bilinear rank.

C Supplement for

C.1 Observable Undercomplete Tabular POMDPs

We need to prove[Lemma 7] In the tabular case, by setting
¥n(z,0) = 1(2) ® 1(0), ¢n(2, 5) = 1(2) @ 1(s), Kp = I|z, ,| ® O

where 1(z), 1(0), 1(s) are one-hot encoding vectors over Z;,_1, O, S, respectively. Then, we can
regard the tabular model as an HSE-POMDP. We can just invoke [Lemma 4]
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C.2 Observable Overcomplete Tabular POMDPs

We consider overcomplete POMDPs with multi-step futures. The proofs are deferred to Section

E%& We have the following theorem. This is a generalization of Lemma 1] i.e., when K = 1, it is

Lemma 5. Define a |TX| x |S|-dimensional matrix QX whose entry indexed by
(On:htk—1,annik—2) € TE and sy, € S is equal to P(op:py k1, Ghehik—2 | Sh;Ahhgic—2 ~
U(A)). When this matrix is full-column rank, K-step future-dependent value functions with respect to
U(A) exist.

Note a sufficient condition to satisfy the above is that a matrix Q% (aj,.;,, ;_,) € RIOI* %S| whose
entry indexed by op,.; 4 —1 € O and s, € Sisequal to P(op.ny k-1 | Sh;annsx—2 = Ak —2)
is full-column rank for certain aj,.;, , 5 € AK=1 Tt says there is (unknown) action sequence with
length K that retains information about latent states.

We next calculate the PO-bilinear rank. Importantly, this does not depend on |.A|X and |O|¥.
Lemma 6. Set a future-dependent value function class G, = [ZX — [0, Cg]] for certain Cg € R

and a policy class Iy, = [Z;, — A(A)]. Then, the model satisfies PO-bilinear rank condition with
PO-bilinear rank at most |S|(|O||A)M.

Note that the bilinear rank is still |S|(|O||.A])* (just |S| in the more general definition in [Section F).
Crucially, it does not depend on the length of futures K.

Proof of Consider any function f : Zj,_; x S — R (thus, this captures all possible V;™).
Denote 1(z) as the one-hot encoding of Z;,_; (similarly for 1(s) over S and 1(¢) over TX). We
have f(z,s) = (f,1(z) ® 1(s)) = (f,1(2) ® ((0¥)T0X1(s))), where we use the assumption that
rank(OF) = |S| and thus (O%)TOX = I. Then,

Fzhe1,s0) = (£, 1(zn-1) @ (OF)VE[(0nns k-1, @hihs Kk —2) | $n; annsx—2 ~ 7))

=E[(f,1(zn-1) @ (OF)Y N opnyr—1,annir—2)) | Zh_1,5n; Ghenrx—2 ~ 7).

which means that the value bridge function corresponding to f(-) is
9(z, 1) = (f,1(2) ® (0F)1(2)).

|
Proof of Recall we want to show the low-rank property of the following loss function:

K . / t . /
Elgnt1(Zny1); arn—1 ~ ' ap ~ T, apy1:nr k-1 ~ 7] + Elrpsarn—1 ~ ' ap ~ 7]

—Elgn(Z); ar:n—1 ~ 7', apps -1 ~ 7.

We consider an expectation conditioning on z,_; and s,. For some vector 0, , € RIZn-1IxIS|
which depends on 7, we write it in the form of (6 4, 1(z5—1, s5)) where 1(2,—1, s5) is the one-hot
encoding vector over Z;,_1 X S. Then, the loss for (7, g) is equal to

(0,9, E[1(2h—1,5n); a1:h—1 ~ 7']).

Hence, we can take X (n) = E[1(z-1, $1); @1:h—1 ~ '] and W(m) =60, ,. W

C.3 Observable Linear Quadratic Gaussian
We need to prove The proof is further deferred to

C.4 Observable HSE-POMDPs

We first provide the proof of Then, we briefly mention how we extend to the infinite-
dimensional setting.
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Proof of the first statement in First, we need to show value bridge functions exist. This
is proved noting

Eono(s) (K1) 07, on(z0))] = ((K3) 67, Knén(zn-1,51)) = (OF, dn(zn-1, 1)) = Vil (01, 50).
Thus, ((K,TL)THZ{, ¥y (2p)) is a value bridge function. W

Proof of the second statement in [Lemma 4] Consider a triple (7/,7,g) € II x II x G, with
gn(-) = 0 ¢n(-) and g = (0, 9n (")), we have:
Bry(m, g; ')
=E[0]¢(Z) = rh = Op 19 (Zn41); avin—1 ~ ' ap, ~ 7]
=E [0 Knon(zn—1,51) — h — Op 1 Kns1(ns1(2n, $n41)); at:ne1 ~ 7', ap ~ 7|
=E[(6) — 05) " Knon(zn—1,50) — Ons1 — 05 10) " Kot (Trndn(2n—1,51)); ar:n—1 ~ ']
= (Elon(zn-1,n); a1:n—1 ~ 7], Ky (6n = 05) = T Ky 4y (Oni1 — 0541))

which verifies the bilinear structure, i.e., Xp,(7") = E[¢p(2h-1, Sh); @1:h—1 ~ 7], and W, (7, g) =
K,;r (0n—07) — TWT;hK}Lr1 (On+1 — 05 1), and shows that the bilinear rank is at most maxy, dy,,. W

Infinite dimensional HSE-POMDPs Consider the case ¢;, and vy, are features in infinite dimen-
sional RKHS. By assuming that the spectrum of the operator K}, is decaying with a certain order, we
can still ensure the existence of value bridge functions even if dy, and d;; are infinite dimensional.

Next, we consider the PO-bilinear rank. We can still use the decomposition in the proof above. While
the PO-bilinear rank itself in the current definition is infinite-dimensional, when we get the PAC result
later, the dependence on the PO-bilinear rank comes from the information gain based on Xj (),
which is the intrinsic dimension of X}, (7). Thus, we can easily get the sample complexity result
by replacing d,, with the information gain over ¢, (-) [63]]. Generally, to take infinite dimensional
models into account, the PO-bilinear rank in can be generalized using the critical
information gain [16].

D Supplement for

In this section, we first consider the case with multi-step futures. Next, we present a modification to

handle LQG with continuous action in[Definition 3}

D.1 Algorithm with Multi-Step Future-Dependent Value Functions

Finally, we consider the case with multi-step futures in when 71°%" = U{(A). Recall the
notation Z,If = (2h—1,On:h+K—1, Qh:h+ K —2). The only difference is in the process of data collection.
Particularly, at every iteration ¢, we roll-in using 7! to (and include) time step h — 1, we then roll-out
by switching to /(.A) for K steps.

D.2 Algorithm for LQG with Continuous Action

Our algorithm so far samples aj, from U/ (.A) and performs importance weighting in designing the loss
o}, which will incur a polynomial dependence on |.A4| as we will see in the next section. However,
among the examples that we consider in[Section 4} LQG has continuous action. If we naively sample
ay, from a ball in R% and perform (nonparametric) importance weighting, we will pay exp(d,) in
our sample complexity bound, which is not ideal for high-dimension control problems. To avoid
exponential dependence on d,, here we replace U(.A) with a d-optimal design over the action’s
quadratic feature space.

Here, we want to evaluate the Bellman error of (7, g) pair under a roll-in policy 7’
Bry(m, g; ') := Elun(Zn, an, 7hy 0n1150); @101 ~ 7'y ap ~ w(Z3)]

where wy, (Zn, an, i, 0nt1;0) = 0, V(Z1) — T (Sh, an) — 0,11 ¥n+1(Zn11) for any linear determin-
istic policy 7 € II (here g5 (-) := 6] 1(-)) using a single policy. In other words, we would like to get
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Algorithm 2 PaRtially ObserVAble BiLinEar (PROVABLE) # multi-step version

1: Input: Future-dependent value function class G = {Gn},Gn C [Z[ — R], Policy class
IT = {11, }, 11, C [Z), — A(A)], parameters m € N, R € R
2: Define

W(ZN  ansk—1,Th, ons k3, g) o= Al (an | 21) (9h+1(5ff+1) + ) — gn(Z).-

3: Initialize 70 € TI _

4: Form the first step dataset D° = {EIK 1m | where each zK is generated by following aj. ;1 ~
U(A) in an i.i.d manner.

5:fort=0—T—1do

6: forany h € [H], define the Bellman error

oh(m,9) = Ept In (2 any k-1, 7h, 00t i3 7, 9)]

where D} means empirical approximation by executing a1.,—1 ~ 7, ap.p+ -1 ~ U(A) and
collecting m i.i.d tuples.
7. Select policy optimistically as follows (here note g = {gn }/L,)

(7', g1 = argmax Epo[g1 ()] s.t. VR € [H], Vi€ [t], ol (7, 9)* < R.
well,geg

8: end for
9: Output: Randomly choose # from (7, -+ , 7).

a good loss [}, such that
Bry(m, g;7') = E[ln(Zn, an, Th, 0h415 0, )5 a1:—1 ~ 7', ap ~ 7°]
for some policy 7° without incuring exponential dependence on d,. We explain how to design such a

loss function I (+; 7, g) step by step.

First Step The first step is to consider the conditional expectation on (2, s, ap). Here, using
the quadratic form of 1), we can show that there are some ¢y : Z;, X S — Ryc1 1 Zp, X S —
R(atdstdz,)* o) c R:
Bry (7, g;7') = Elun(Zn, an, ', 06115 0) | 2, Spy ans a1—1 ~ m,ap, ~ 7(Z))
T T T T T TnT
= <C2(9)’ [1’ [Zh »Shs ah] ® [Zh »Sh >ahH >
= co(Zn, 5n;0) + ¢ (Zn, sn; 0)k(an)

where k(a) = [a",(a ® a)"]". Then, the Bellman loss we want to evaluate can be written in the
form of

Elun(Zn, an, rh, 0n41;0); @1:n—1 ~ ' ap ~ 7(Zp)]

= E[CQ(E}“ Shs 0) + CI(E}M Sh; e)m(ﬁ(zh)); ai:h—1 ™~ 71',]-

Second step The second step is to compute a d-optimal design for the set {x(a) : a € R, ||a||o <
Z} for certain enough large Z € R, and denote a', .. ., a®’ as the supports on the d-optimal design.
Note in LQG, though we cannot ensure the action lives in the compact set, we can still ensure that in
high probability and it suffices in our setting as we will see. Since the dimension of k(a) is d, + d2,
we can ensure d° < (d, + d?)(d, + d2 + 1)/2 [43,139]. Here is a concrete theorem we invoke.

Theorem 7 (Property of G-optimal design). Suppose X € R? is a compact set. There exists a
distribution p over X such that:

* pis supported on at most d(d + 1)/2 points.

e Foranyx' € X, we have ' TE ., [zz |12’ < d.

We have the following handy lemma stating any x(a) is spanned by {x(a’)}%" ;.
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Lemma 7. Let K = [p/2(a")k(al), p'/?(a®)k(a?),---,p'/%(a®)k(a®)] and a(a) =
KT (KK ") 'k(a). Then, it satisfies

r(a) = Ka(a), [a(@)] < (do+d2)'%,  aia)/p'/?(a’) < (da +d)

Proof. Since K is full-raw rank from the construction of G-optimal design, K K | is invertible. Then,
we have

Zal )2 (ak(a’) = KKT (KK ) k(a) = k(a)

For the latter statement, we have
(KT(KK ") 'k(a), KT (KK ") *k(a)) = k(a) (KK ") 'k(a) < (dq + d2).
We use a property of G-optimal design in[Theorem 7]
For the last statement, we have
£ (@) EEK ) R(a) < [I8T (@)l xmy-1 8T (@) | gxm)—1 < (da +d3).
from CS inequality. O

Third Step The third step is combining current facts. Recall we want to evaluate

Elun(Zn, an, mhy 01413 0); arn—1 ~ 7, an ~ 7(2;)] = Eleo(Zn, 513 0) + ¢ (Zn, 513 0)k(7(21)); arn—1 ~ 7).
In addition, the following also holds:

Elun(Zh, an, Ty 0415 0); atn—1 ~ 7', an ~ do(a’)] = Elco(Zn, sn30) + ¢ (Zn, sn;0)k(a’); arp—1 ~ ']
Efun(Zn, an, 7hy 0nt1;0); a1:n—1 ~ 7' ap ~ do(0)] = Elco(Zn, 513 0); ar:n—1 ~ 7]

Here, we use x(0) = 0. This concludes that

Elup (Zh, an, rhy 0nt1;0); a1:n—1 ~ @' ap ~ 7(2;)]

= E[co(2n, $n;0) + ¢ (Zh, sn; 0)k ( (Zh))'alh 1~ ']

= Elco(2n, sn; 0) + ¢ (20, 513 0 Zaz (a")}; arn1 ~ ']
=E [Co(ih,shﬂ) (1—2041'( ) +Zaz et (Zn, sn; 0)k(a’) + co(Zn, 5n50)) s arn—1 ~ 7
=1

d()
=E l(l - Z%‘(ﬂ%))) wh(Zh, G, Thy Ont1;0); ar:—1 ~ @' ap ~ do(0)

+ ZE i(m(2n))un(Zn, an, Ty 0py1; 0); ar—1 ~ s ap ~ do(a")] .

Thus, we can perform policy evaluation for a policy 7 if we can do intervention from
do(0),do(al),- -, do(a®).

Fourth Step The fourth step is replacing do(0), do(a'), - -- ,do(a®") with a single policy that

uniformly randomly select actions from the set {0, a', ..., a? }, which we denote as a ~ U (1 + d°).
Using importance weighting, we define the loss function for 7, 6 as follows:

]E[fh(zha AhyThyOh41; 93 71'), ar:p—1 ﬂ_/; ap ~ U(l + do)] (3)
where U(1 + d°) is a uniform action over 0, a', - - - ,a® and

frn(Znyan, rh, 0ng1;0,m)

d° d°
=[14d°| (H(ah =0) (1 - ZO@'(W(%))) + Y ap = ai)ai(ﬂ(zh))> Up(Zhs Qhy Thy On4130).

The term B]s equal to Bry, (7, g; 7') we want to evaluate.
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Summary To summarize, we just need to use the following loss function in[line 6|in[Algorithm I}

Ep: [ln (2, an, rh; 0pt1;0, )]
where lh(fh, QAhy Thy Op415 0, ﬂ') is
I(lznll < ZO)U(Irell < Z2)(llont1 |l < Z3) fa(Zh, an, Thy 0156, )

and D;L is a set of m i.i.d samples following the distribution induced by executing ay1.,_1 ~ 7', aj, ~
U(1 + d°®). Values Z1, Z5, Z3 in indicators functions are some large values selected properly later.
Due to unbounded Gaussian noises in LQG, indicators functions for truncation is introduced here for
technical reason to get valid concentration in Assumption [2}

E Predictive State Representations

We first give a summary of our results in PSRs. Then, we first add several discussions to explain core
tests in detail. Next, we show the existence and form of future-dependent value functions. Finally, we
calculate the PO-bilinear rank. In this section, we will focus on the general case where tests could be
multiple steps.

E.1 Summary

In this section, we demonstrate that our definition and algorithm applies to PSRs — models that
strictly generalize POMDPs [45,62]. Below, we first briefly introduce PSRs, followed by showing
that it is a PO-bilinear AC model. Throughout this section, we will focus on discrete linear PSRs.
We also suppose reward at h is deterministic function of (op,ap) conditional on 75, where
i = (01,01, -+ ,0n—1,ap—1). Given 7, the dynamical system generates o5, ~ P(:|7{). Here we
use the superscript a on 75 to emphasize that the ;' ends with the action aj,_.

PSRs use the concept of rest, which is a sequence of future observations and actions, i.e., for
some test ¢t = (Op.paw—1,an:hew—2) with length W € NT, we define the probability of test ¢
being successful P(¢|75) as P(¢|7) := P(op:n+w—1|75; do(ap:n+w—2)) which is the probability of
observing op.n+w—1 by actively executing actions ap:,+w—2 conditioned on history 7.

We now explain one-step observable PSRs while deferring the general multi-step observable setting
to[Section E| A one-step observable PSR uses the observations in O as tests, i.e., tests with length 1.

Definition 5 (Core test set and linear PSRs). A core test set T C O contains a finite number of tests
(i.e., observations from O). For any h, any history T, any future test tp, = (On:h+w—1, @h:ht W —2)
for any W € N7, there exists a vector my, € RI71, such that the probability of t, succeeds

conditioned on f! can be expressed as: P(tp|}) = m, [P(o|f)]oeT, where we denote qra =

[P(o|7)]oeT as a vector in RIT| with entries equal to P(o| ) for o € T. The vector q-o is called
predictive state.

A core test set 7 that has the smallest number of tests is called a minimum core test set denoted as Q.
PSRs are strictly more expressive than POMDPs in that all POMDPs can be embedded into PSRs
whose size of the minimum core tests is at most |S|; however, vice versa does not hold [45]. For
example, in observable undercomplete POMDPs (i.e., O full column rank) , the observation set O
can serve as a core test set, but the minimum core test set Q will have size |S|. Here, we assume we
know a core test set 7 that contains Q; however, we are agnostic to which set is the actual Q. In the
literature on PSR, this setting is often referred to as transform PSRs [18,157]].

Now we define a future-dependent value function in PSRs. First, given an M-memory policy, define

Vi(rg) = E[Zi wTt| T an:gr ~ ], i.e., the expected total reward under 7, conditioned on the
history 777. Note that our value function here depends on the entire history.

Definition 6 (General future-dependent value functions). Consider an M-memory policy w. One-step
general future-dependent value functions g : Zn,_1 x T — R at step h € [H] are defined as
solutions to

Vi (1) = Elg (zh-1,0n) | 73] )

This definition is more general than[Definition 3|since @) implies[(T)]in POMDPs by setting O = 7.

In PSRs, we can show the existence of this general future-dependent value function.
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Lemma 8 (The existence of future-dependent value functions for PSRs). Suppose T is a core test
set. Then, a one-step future-dependent value function gy always exists.

The high-level derivation is as follows. Using the linear PSR property, one can first show that V[ (77)
has a bilinear form VJ7 (71) = 1(z5—1) " J5qa, where 1(z) € RIZ»~1| denotes the one-hot encoding
vector over Z;,_1, and J7 is a | Z,—1| x |T| matrix. Then, given any 7 and o ~ P(-|77), for some
|Zn_1| x |T| matrix J, we can show gp,(z,_1,0) := 1(z,_1) "J[1(t = 0)]seT satisfies the above,
where [1(t = 0)];e7 € RI7! is a one-hot encoding vector over 7 and serves as an unbiased estimate
of grp.

Finally, we show that PSR admits PO-bilinear rank decomposition (Definition 3).

Lemma 9. Suppose a core test set T includes a minimum core test set Q. Set I, = [Z}, — A(A)]
and G, = {(zn_1,0) = 1(zn_1)"J[1(t = 0)|se7 | I € RIZv1IXITIN the PO-bilinear rank is at
most (|O[|A))M|QJ.

Then, is directly applicable to PSRs. Note that here the PO-bilinear rank, fortunately,
rank scales with [Q| but not | 7|. The dependence (|O||.A|)™ comes from the dimension of the
“feature" of memory 1(z;,—1). If one has a compact feature representation ¢ : Z,_1 — R?, such
that VI (12) = ¢(2n-1) " hQre is linear with respect to feature ¢(z,—1), then the PO-bilinear rank
is d|Q|. This implies that if one has a compact featurization of memory a priori, one can avoid
exponential dependence on M.

Sample complexity. We finally briefly mention the sample complexity result. The detail is deferred
to[Section N} The sample complexity to satisfy J(7*) — J(#) < € is given as

o <OIM|AIM1|Q|2H1&X(@’ D HYA? In(|Gimax| Mimax| /) ln(@w)2>

2
€

where Oy and © are some parameters associated with PSRs. Here, there is no explicit dependence

on |T]. Note that in the worst case, In |G ax| scales as O(|Z,—1||T]), and In |II;,ax| scales as

O(|2n-1|O]A)).

E.2 Definition of PSRs

We first define core tests and predictive states [45) 162]. This definition is a generalization of
[Definition 5| with multi-step futures.
We slighly abuse notation and denote 7 := (01, a1, ...,0x—1,ar—1) throughout this whole section
— note that 73" here does not include oy,.
Definition 7 (Core test sets and PSRs). A set T C Ugen+ OF x AL is called a core test set if for
any h € [H), W € N, any possible future (i.e., test) t, = (0p.nsw—1,ahniw—2) € OW x AW 1
and any history 77, there exists my, € RI71 such that

Plonwin—1 | 7 do(anwin—2)) = (my,, [P(t | 7)]teT)-

The vector [P(t | 70)lieT € RITVis referred to as the predictive state.

We often denote g« = [P(t | 7;7)]te7;, . To understand the above definition, we revisit observable
undercomplete POMDPs and overcomplete POMDPs.

Example 1 (Observable undercomplete POMDPs). In undercomplete POMDPs, when Q is full-
column rank, O is a core test. Recall Q is a matrix in RI°1*|S! whose entry indexed by o; € O, 5; €8
is equal to O(o; | s;).

Lemma 10 (Core tests in undercomplete POMDPs). When Q is full-column rank, O is a core test
set.

Proof. Consider any h € [H]. Given a |S|-dimensional belief state s« = [P(- | 7;7)]|s| with each
entry P(sp, | 717), for any future ¢ = (0p:h4w, @h:h+w—1), there exists a |S|-dimensional vector m’;
such that P(op.p+w | 75 do(an.nrw-1)) = (m'y, 870 ). More specifically, m’; can be written as:

h-‘rW 1
(m';)" = O(onw | -) H T, diag(O(op, | -))
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where Q(o|-) € RISl is a vector with the entry indexed by s equal to O(o|s), T, € RISI¥ISis a
matrix with the entry indexed by (s, s’) equal to T(s’ | s, ap,). Here, note given a vector C, diag(C')
is define as a |C| x |C| diagonal matrix where the diagonal element corresponds to C'. Thus, we have

P(onnsw | 75 do(annsw—1)) = (m'y,s70) = (m',07q.0) = ((O7) 'm'y, qr0),
where q,« € RI®l and q,« (0) = P(o|72). This concludes the proof. O]
h h h

Example 2 (Overcomplete POMDPs). We consider overcomplete POMDPs so that we can permit
8] > 10].

Lemma 11 (Core tests in overcomplete POMDPs). Recall T = O x (O x A)X~L. Define a
|TE| x |S|-dimensional matrix O whose entry indexed by (op.n+x—1,ann+x—2) € TE, s, €S
is equal 10 P(Op:nt K —1, Gh:ht K —2 | Sk @hht i —2 ~ U(A)). When this matrix is full-colmun rank
forall h, TX is a core test set.

Proof. Fixatestt = (0. _L,al. _,) and consider a step h € [H]. Then,
hih4+K—1) Ch:h+ K —2 P

=

h+K—15 a;z:h+K—2 | $hian:nyr—2 ~U(A))

Ohs

= E[1(0n:nt k-1 = Ohpy k15 Ghih b K—2 = G k—2) | Sk G —2 ~ U(A))]
E[(1/IA* )1 (0nnt k-1 = Oy k-1, Gheh 4 K—2 = pppy ic—2) | 5 aheny i —2 ~ do(ah g e —o)]
E

[(1/|A|K71)1(0h:h+K—1 = Olh:h-',—K—l) | Sh;an:htr—2 ~ do(a;L:h—‘y—K—Q)]

= (/AP0 i1 | snido(ahny k).

Thus, the assumption that 7% is full column rank implies that that the matrix J;, € RI7"xIS| with
the entry indexed by (¢, s5,) being equal to P(0},.;, e | 5n; do(a},.p, 4 g _5)) is full-column rank.

Define a |7%|-dimensional state g« = [P(¢ | 7{)];e7x given history 7. By definition, we have
qrp = jhs‘rﬁ

Using J;, is full-column rank, we have Sra = M ;quTs. Thus, using the format of m’; from

the proof of [Lemma 10} we can conclude that for any test t = (0p.p+w, Gh:htw—1), We have
Plop:pyw |7 do(an:ntw—1)) = ((M;i)Tm’t, Q- ). Thus, this concludes TX is a core test set. [

Finally, we present an important property of predictive states, which corresponds to the Bayesian
filter in POMDP.

Lemma 12 (Forward dynamics of predictive states). We have
P(t| 17, a,0) = mlwqﬁ; /mOTqT;;.

When we define M, , € RITIXITI ywhere rows are m, o fort € T, we can express the forward
update rule of predictive states as follows:

arg.a,0 = Mo,aqrﬁ/(mzq‘r,‘f)'

Proof. The proof is an application of Bayes’s rule. We denote the observation part of ¢ by t© and the
action part of t, respectively. We have

P(t | 72, a,0) = P(t° | 72, 0; do(a, t*)) (by definition)
P (@] a. tA
— (Ovt | Thado(aa )) (Bayes rule)
P(o; )
= moT,a,th;: / mIng. (by definition)
This concludes the proof. O
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To further understand that why PSR generalizes POMDP, let us re-visit the undercomplete POMDPs
(i.e., O being full column rank) again. Set 7 = . As we see in the proof of the
belief state s, € A(S) together with @ defines predictive state, i.e., qr¢ = Os;e, with M, , =
OT,diag(0(o|-))Ot, and m] = 1" diag(0(o|-))O*. Note that in POMDPs, matrix M, , and vector
m, all contain non-negative entries. On other hand, in PSRs, M, , and m, , could contain negative
entries. This is the intuitive reason why PSRs are more expressive than POMDPs [45]]. For the formal
instance of a finite-dimensional PSR which cannot be expressed as a finite-dimensional POMDP,
refer to [62,131]].

E.3 Existence of future-dependent value functions

We discuss the existence and the form of future-dependent value functions. First, we define general
future-dependent value functions with multi-step futures. For notational simplicity, we assume here
that the tests ¢ € 7 have the same length, i.e., there is a ' € N, such that 7 C 0% x AK—1,

Definition 8 (General future-dependent value functions in dynamical systems). Recall T C OK x
AK=1 s the set of tests. At time step h, general future-dependent value functions gn t Zp—1 X

OK AK=1 5 R are defined as solutions to the following:
Vi (1h) = Elgf; (2h—1, On:h k15 Ghen ik —2) | T3 (@hintre—2) ~ p™*]. )

where p°“t is some distribution over the action set T induced by the test set, i.e., {t* : t € T}.
Here, for t = (On:hik—1,Gh:hik—2), We often denote op.irc—1 and ap.pyx—o2 by t© and t,
respectively.

To show the existence of general future-dependent value functions for PSRs, we first study the format
of value functions in PSRs. The following lemma states that value functions for A -memory policies
have bilinear forms.

Lemma 13 (Bilinear form of value functions for M-memory policies). Let ¢(-) € RIZr-1l pe a
one-hot encoding vector over Zy_1. Suppose T is a core test set. Then, for any M -memory policy m,
there exists JT € RIZn—11XIT1 sych that

Vi) = ¢ (zn-1)T5drg-

Proof. From , there exists a matrix M, € RITIXITI such that via Bayes rule:
arg,a,0 = Moq,aq‘r,‘f /P(O|T}?) (6)
We use induction to prove the claim. Here, the base argument clearly holds. Thus, we assume

Vi1 (Thy) = ‘ZST(Zh)MHqﬂ?H'
We have

Vi (7i) = Elra + Vi1 (74 on, an) [ 7375 an ~ m(20)]

= > Plon | 7)mn(an | on, zn—1)r(on, an)

Oh,Qh

(a)
+ > Plon | Ti)malan | ons za-1){6 " (20) 7 11Grg 00,0} -

Oh,Qh

(b)
Note we use the assumption that the reward is a function of oy, a;, conditional on (7, op,, a).

We first check the first term (a) that contains rewards. Using the fact that P(o|7)') = m qa, this is
equal to

> (my, , qra)mn(an | op, zn-1)r(on, an) = (Y g, mh(an | on, zn-1)7(0n, an), dra).

Oh,Qh Oh;Qh



Thus, it has a bilinear form, i.e., there exists some matrix J7 such that

( Z Moy, Th(an | Oy 2n—1)Th, Qre) = @' (20-1)J] qr

Oh,Qh

where J7 is a matrix whose row indexed by z;,_1 is equal to >__ . m/ 7, (alo, z,—1)r (0, a).

Next, we see the second term (b). Using @, the second term is equal to

> mnlan [ ons 2h-1)0 " (21 ® o, an)If 41 Mo, 0, Arp

Oh;Qh

where we use the notation z;,_1 @ o, a to represent the operation of appending (o, a) pair to the
memory while maintaining the proper length of the memory by truncating away the oldest observation-
action pair. Thus, it has an again bilinear form ¢(zj,_1) " 59r¢ and the matrix J3 can be defined
such that its row indexed by z;,_1 is equal to Zo,a mn(alo, zn_1)¢ " (zn_1 @ o, a)MJ M, ,. This
concludes the proof. O

Next, we check sufficient conditions to ensure the existence of general K-step future-dependent value
functions. Given 7', we define the corresponding set of action sequences 7 as T4 := {t4 : t € 7:4}
We set p°“* in|(5)|to be a uniform distribution over the set 7 denoted by U(7T ). Namely, ¢ (7 )
will uniformly randomly select a sequence of test actions from 7.

Lemma 14 (Existence of future-dependent value functions in PSRs). Suppose T is a core test. There
exists g, : Zp—1 x T such that

Elg7 (2h—1, Onsh K —15 G k—2) | T @nangie—2 ~ U(TH)] = Vi (1),

Proof. We mainly need to design an unbiased estimator of the predictive state g,¢. We use impor-
tance weighting to do that. Given a1 x—2 ~ U(T*), and the resulting corresponding random

observations oy,.,+ x —1, we define the following estimator ng (Oh:h+K—1,0h:htK—2) € RI71, such
that its entry indexed by a test ¢ € 7T is equal to:

N 1(¢© = Oh:ht Ko — ,t'A = aph K
G (Onntse—1, e re—2)[t] = 1 Vi E— 2)

We can verify that

ElGra (On:nt K1, Ghinric—2)[t] | 785 anngic—2 ~ U(TH)]

=1/|THELEC = opins k-1, = aninrx—2) | T3 @pansrc—2 ~ U(TH)]

=E[1(t° = onintrx—1,t" = apnsr—2) | 75 aninp k-2 ~ do(t)] = qrat].
Then,

ElGra (Onint k-1, Ghinric—2) | T3 i —2 ~ U(T)] = qra.
With this estimator, now we can define the future-dependent value function using the bilinear form of
Vi(r), ie.,
9 (2h—1, Onshp K15 ik —2) = G(2h—1) " Th@re (Oniha K -1, Qnihs K —2)-

Using the fact that QT;; (Oh:h+K—1,Gh:h+K—2) is an unbiased estimate of qr¢, we can conclude the
proof. O

Since PSR models capture POMDP models, our above result directly implies the existence of the
future-dependent value functions in observable POMDPs as well by using obtained facts in Example [I]
and[2].
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E.4 PO-Bilinear Rank Decomoposition

Finally, we calculate the PO-bilinear rank. Here,

gn € {Zh—l X (OKAKil) = (Zh—l X t) — (b(Zh_l)TJZqTﬁr (t) eR: Jg S thflxwdl}.

The Bellman error for (g, 7) under a roll-in 7’ denoted by Bry, (g, 7; 7') is defined as
- E[]E[ghﬂ(zh»tﬁﬂatgﬂ) | T}(zl+1;t714+1 ~ U(ﬁfﬂ)] + ra; a1 ~ 7, ap ~ 7
+Elgn(zn—1: 625 t7) | 35 ~ U(T))s v ~ 7', ap, ~ 7).

In fact, Bry, (g, m; ") = 0 for any general future-dependent value functions g”.

Our goal is to design a loss function I, (-) such that we can estimate the above Bellman error

Bry (g, 7; 7') using data from a single policy. To do that, we design the following randomized action
selection strategy.

Given a action sequence ¢ from a test ¢, let us denote 7 as a copy of ¢ but starting from the
second action of ¢4, i.e., if tA = {ay, as, a3}, then t* = {ay,as}. Denote TA = {tA : t € T}.
Our random action selection strategy first selects aj, ~ U(.A) uniformly randomly from A, and then
select a sequence of actions a uniformly randomly from 7 U TA. Here, we remark the length of
outputs is not fixed (i.e., a € 7 has length larger than the a € 7).

As a first step, we define two unbiased estimators for qre and qro, - Conditioning on history
7, given actions a;, ~ U(A) followed by action sequence a;4; ~ U(T* U T*), denote the
corresponding observations as o, Op+1, - - - Opy[ay 4, |+1- We construct unbiased estimators for ¢
and 9rg,, as follows. As an unbiased estimator of q¢, we define q,+ with the entry indexed by test
t' € T as follows:

. _ 1(aps1 € T4, (an, any1) = U4 onnjan, 41 = £°)
Ay (ah’ah+1’0h1h+|5h+1|+1)[t/] - 1/(2|A||TA]) - -0

Similarly, as an unbiased estimator of Qrp, - We define qTﬁﬂ with the entry indexed by testt’ € T
as follows:

. _ , 1(ap4 € TA, apy1 = t4, Oh41:h+|api1|+1 = t)
qT}‘:+1 (ah7ah+17O}L+1:h+‘5h+1‘+l)[t ] = 1/(2‘7—A|) (8)

We remark the length of a in[(7) and the one of [(8)]are different.
Then, by using importance sampling, we can verify
Eldrs (an, 8n11, Opntjana +1) |75 an ~ U(A), 8pp1 ~ U(TAUTA)] = gy,
Eldre, , (Qn41, Ontt:ntjan s [+1) | Thgts @ns1 ~ UTAuTH)] = arg, -

With the above setup, we can construct the loss function ! for estimating the Bellman error. We set
the loss as follows:

In(Zh—1, @, Thy @n g1, Oncht|aya |+1 T 9) )

= ¢(2h-1) ' Tn@ro (@, Bpt1, Opihs anss [ +1)

Hap = mp(z N _
- W (Th + ¢(Z}L)TJh+1ng+1(a}L+17Oh+1:h+‘éh+1‘+l)> .

Since we have shown that g« and ngH are unbiased estimators of q. and dro, s respectively, we
can show that for any roll-in policy 7'

Bry, (7, g; ')

= *E[]E[ghﬂ(zhvtfﬂvtfﬂ) | Tf(:+1§tﬁ+1 ~ U(ﬁfﬂ)] + rpjap—1 ~ 7T/7ah ~ T
+Elgn(zn-1, 35 t5) | 73 t7 ~ U(T]s i ~ 7'y ap, ~ 7

= E[—¢(2h)TJZ+1ngH =+ ¢(zn-1)  TjQra; arn—1 ~ 7, an ~ 7

=E [In(2h=1,@h, Th A1, Ot fan s | +15 T 9); G1:h—1 ~ Ty ap ~ U(A),apq ~ U(TAUTH)]

The above shows that we can use [ (+) as a loss function.
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Summary We can use the almost similar algorithm as|Algorithm 1| The sole difference is we need
to replace o/, (, g) with

Epe [l (Zh=1, Qs Ths Bhg1, Oniht a1 |+15 5 9); Q1o ~ Ty ap ~ U(A),appq ~ U(T4U TA)}

where D! is an empirical approximation when executing ay.p,—1 ~ 7, ap, ~ U(A), ap11 ~ U(TAu

TA).

Calculation of PO-bilinear rank Finally, we prove a PSR belongs to the PO-bilinear class.
Lemma 15 (PO-bilinear decomposition). Let Q be a minimum core test set contained in T. The PSR
model has PO-bilinear rank at most |O|M|A|M|Q), i.e., there exists two |O|M | A|M|Q|-dimensional
mappings Wy, : Il x G — RIOMIAIMICQL gpg Xy o I — RIOMIAIMIQL gych that for any tripe
(m, g; '), we have:

Bry(m, g;7') = E [Qj)(zhfl)—r«]]hqr;j —rn = &(zn) Tni1Qre jarno1 ~ 7 an ~ T

= <Xh(7rl)7 Wh(ﬂ-7 g)> :

Proof. We first take expectation conditional on 7. Then, we have

¢(zn-1) " Inars —E {Th +6(zn) InpaQre,, | T an ~ W]
= ¢(zn-1)  Intre + (0(zn—1) " ITdre + d(2n-1) ' J5ara)

where JT and J are some two matrices as defined in the proof of from where we have
already known that the 7-induced Bellman backup on a value function which has a bilinear form
gives back a bilinear form value function. Rearrange terms, we get:

¢(zn1) " Tnare — B |rn + ¢(zn)  Tnirare,, | 75 an ~ W] = (¢(zn-1), In +IT + I5)ar) -

Now recall that the minimum core test set is @ C 7. The final step is to argue that g lives in a
subspace whose dimension is |Q|. Since Q is a core test set, by definition, we can express qrp using

[P(t|m)lee. ie.,
JK c R‘TlXIQI’ qT}‘Z = K[]P(ﬂTg)]teQa

where the row of K indexed by t € T is equal to k;, where k; is the vector that is used to predict
P(t|7) = k/ [P(t|7{*)];c o whose existences is ensured by the definition of PSRs. This implies that

(d(zn-1), @0 +IT +I3)qra) = (D(zn-1), Tn +IT + I3)K[P(t|7)]ic0)
= (¢(zn-1) ® [P(t|m)]te0), vee((Jn + T +J3)K)).

Finally, we take expectation with respect to 7 then we get Bry, (7, g; ') = (X, (n"), Wy (7, g)) such
that

Xn(7') = ¢(zn-1) @ B[P(tT5)]ecos arnr ~ 7', Wa(m,g) = vee((Jn + IT + J3) K).
O

The key observation here is that the bilinear rank scales with | Q| but not | 7|. This is good news since
we often cannot identify exact minimal core test sets; however, it is easy to find core tests including
minimal core tests. Thus, even if we do not know the linear dimension of a dynamical system a priori,
the resulting bilinear rank is the linear dimension of dynamical systems as long as core sets are large
enough so that they include minimal core tests. This will result in the benefit of sample complexity as
we will see
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F Generalization of PO-Bilinear AC Class

We extend our previous definition of PO-Bilinear AC framework. We first present an even more
general framework that captures all the previous examples that we have discussed so far. We then
provide two more examples that can be covered by this framework: (1) M-step decodable POMDPs,
and (2) observable POMDPs with low-rank latent transition. Using the result in (2), we can obtain
refined results in the tabular setting compared to the result from Section[5.3.2]

The following is a general PO-Bilinear AC Class. Recall M (h) := max(h — M, 1). We consider
one-step future, i.e., K’ = 1, but the extension to K > 1 is straightforward. Comparing to[Definition 3|
we introduce another class of functions termed as discriminators F and the loss function /.

Definition 9 (General PO-Bilinear AC Class). Consider a tuple (I1,G,1,11°, F) consisting of a
policy class 11, a function class G, a loss function | = {l, }L | where I;,(:; f,m,g) : Hp—1 X O X
A x R x O — R, a set of estimation policies 11¢ := {n®(m) : = € I1} where () : Z;, — A(A),
and a discriminator class F = {Fp,} with Fy, C [Hj, — R]. Consider a non-decreasing function
¢:RY = Rwith (0) = 0.

The model is a PO-bilinear class of rank d if G is realizable, and there exist Wy, : 11 x G — R® and
Xy, : I1 — R? such that for all m,7' € 11, g € G and h € [H),

(a) |Elgn(zn) = mh — gh+1(Znt1); arn ~ 7] < [(Wh(m, g), Xn (7))
(b)

C(}f}éé}gi [E[n (Ths @by Thy On1s fr 7, 9)s @i (hy—1 ~ T s ang(nyn ~ 7 (7)) > [(Wh(m, g), Xn(7'))].

s

(In M-step decodable POMDPs and POMDPs with low-rank latent transition, we set
7¢(m) = U(A) and in the previous sections, we set 7¢(n') = 7', )

(c)

jax \E(ln (Thy @ny Ty 0nge1s frm, 7)) @1ni(ny—1 ~ T s ang(pyn ~ (")) = 0
h
for any w € 11 and the corresponding future-dependent value function g™ in G .

The first condition states the average Bellman error under 7 is upper-bounded by the quantity in the
bilinear form. The second condition states that we have a known loss function [ that can be used to
estimate an upper bound (up to a non-decreasing transformation () of the value of the bilinear form.
Our algorithm will use the surrogate loss (-). As we will show, just being able to estimate an upper
bound of the value of the bilinear form suffices for deriving a PAC algorithm. The discriminator F
and the non-decreasing functions ( give us additional freedom to design the loss function. For simple
examples such as tabular POMDPs and LQG, as we already see, we simply set the discriminator
class F = 0 (i.e., we do not use discriminators) and ¢ being the identity mapping.

With this definition, we slightly modify PROVABLE to incorporate the discriminator to construct
constraints. The algorithm is summarized in[Algorithm 3|that is named as DISPROVABLE. There are
two modifications: (1) when we collect data, we switch from the roll-in policy 7 to the policy 7°
at time step M (h); (2) the Bellman error constraint o}, is defined using the loss [ together with the
discriminator class Fp,.

The following theorem shows the sample complexity of For simplicity, we direct
consider the case where II, G, F are all discrete.

Assumption 3 (Uniform Convergence). Fix h € [H]. Let Dj, be a set of m i.i.d tuples by executing
a1 (n)—1 ~ T ang(ny:n ~ m° With probability 1 — 9,

SUPrem,geg,feF |(ED;L = E)ln(Thy any Ty 015 £ 75 9 < €gen,n(m, 11, G, F, 6)
For h = 1, we also require

sup |Ep;[g1(01)] — E[Ep; [g1(01)]]] < €ini,1(m, G, 0).

91€G1

Theorem 8 (Sample complexity of |[Algorithm 3). Suppose we have a PO-bilinear AC class with rank
d in Suppose Assumption |3} sup, oy [| Xn(7)|| < Bx and sup,.cyp yeg |Wa(m, )|l <

31



Algorithm 3 PaRtially ObserVAble BiLinEar with DIScriminators (DISPROVABLE)

1: Input: Value future-dependent value function class G = {G, }, G, CJZ;L — R], discriminator
class F = {Fn}, Frn C [Hn — R], policy class IT = {11, },1I;, C [Z, — A(A)], parameters
meN,ReR

2: Initialize 7% € TI

3: Form the first step dataset D° = {0*},, with o’ ~ O(|s1)

4: fort =0—T —1do

5:  Forany h € [H], define the Bellman error

V(m, g) €I G : ap(m,g) = jax |Ept [In(Ths an, Thy ont1s f, 7, 9)] |
M

where Dj, is the empirical approximation by executing ay.ps(py—1 ~ T, apr(ny.n ~ 7€ (1)
and collecting m i.i.d tuples.
6:  Select policy optimistically as follows

(rih gty = argmax Epo[g1(0)] s.t. Vh € [H], Vi€ [t],o0(n,9) < R.
well,geg

7: end for
8: Output: Randomly choose 7 from (71, -+, 77).

By for any h € [H].

By setting T = 2Hd In (4Hd (g%%f%) + 1)) s R = €4en where

€gen = Maxp €gen,n(M,IL G, F,0/(TH + 1)), €ger, := maxy, €gen,n(m,I1,G, F,0/H).
With probability at least 1 — 0, letting 7* = argmax, cp; J(7*), we have

J(m*) = J(7) < HY? [4¢(egen)? + 2T¢ (2€gen)* HdIn(4Hd(B% By, /(2 (Egen) + 1))]
The total number of samples used in the algorithm is mT H.

This reduces to[Theorem 1| when we set ¢ as an identify function and 7¢(’) = 7/. When ¢~1(-) is
a strongly convex function, we can gain more refined rate results. For example, when ((z) = \/,
ie., ("!(x) = 22, with €gen, = O(1/4/m), the above theorem implies a slow sample complexity
rate 1/¢*. However, by leverage the strong convexity of the square function (~!() := 22, a refined
analysis can give the fast rate 1/¢2. We will see such two examples in the next sections.

1/2
/ + 2€n;.

G Examples for Generalized PO-Bilinear AC Class

We demonstrate that our generalized framework captures two models: (1) M-step decodable
POMDPs, and (2) observable POMDPs with the latent low-rank transition. In this section, we
assume 7, € [0, 1] for any h € [H].

G.1 M -step decodable POMDPs

The example we include here is a model that involves nonlinear function approximation but has a
unique assumption on the exact identifiability of the latent states.

Example 5 (M-step decodable POMDPs [19]). There exists an unknown decoder iy, : Z, =S,
such that for every reachable trajectory (S1.p, a1:h—1,01:1), we have sy, = tp(Z1) for all h € [H].

Note that when M = 0, this model is reduced to the well-known Block MDP model [[17, 51} 78].

Existence of future-dependent value functions. From the definition, using a value function
V' (2n—1,sn) over z_1 € Z,_1,s, € S, we can define a future-dependent value function v} :
Zh_1 xO — Ras

Vh (Zh—1,0n) = Vi (2h—1,tn(Zn))
since it satisfies
Eo, ~o(sn)[Vh (2h—1,0n) | 2n—1,54] = Eopno(si) Vi (2n—1,th(Zn)) | 2n—1,50] = Vi (2n-1, 5n)-
This is summarized in the following lemma.
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Lemma 16 (Existence of future-dependent value functions in M-step decodable POMDPs). In
M -step decodable POMDPs, future-dependent value functions exist.

M-step decodable POMDPs showcase the generality of future-dependent value functions, which
not only capture standard observability conditions where future observations and actions are used
to replace belief states (e.g., observable tabular POMDPs and observable LQG), but also capture a
model where history is used to replace latent states.

PO-Bilinear Rank. Next, we calculate the PO-bilinear rank based on In the tabular
case, we can naively obtain the PO-bilinear decomposition with rank |O|™|A|M|S]| following
Here, we consider the nontabular case where function approximation is used and |O| can
be extremely large. We define the following Bellman operator associated with 7 at step h:

BY G —[Z, — R} (10)
Vzn 2 [Big] (2n) = Eapon(za) [Tr(en(Z0), an) + Eop yy m00T(un (1) am) (9811 (Zhg1)]] -

Note that above we use the ground truth decoder ¢, to decode from Zzj, to its associated latent state sy,.
The existence of this Bellman operator B} is crucially dependent on the existence of such decoder ¢y,.

We show that M -step decodable POMDPs satisfy the definition in We assume that
the latent state-wise transition model is low-rank. In MDPs, this assumption is widely used in
(76,136, 2, [71]]. Here, we do not need to know p, ¢ in the algorithm.

Assumption 4 (Low-rankness of latent transition). Suppose T is low-rank, i.e., T(s' | s,a) =
(p(s,a), u(s")(¥(s,a,s")) where ¢, u are (unknown) d-dimensional features. As technical condi-
tions, we suppose ||¢(s,a)|| < 1 for any (s,a) and | [ p(s)v(s)d(s)| < Vd for any ||v]|oo < 1.
Lemma 17 (Bilinear decomposition of low-rank M -step decodable POMDPs ). Suppose Assumption
1Ghlloe < H, || Frlloo < H, 71, € [0,1] for any h € [H]. Assume a discriminator class is Bellman
complete, i.e.,

vr €Il,Vg € G: (Brg) — gn € Fu,

Sor any h € [H). The loss function is designed as

I (Ths an, Ty ongts £om, g) o= mlan | Z0)|ALf(Z0) (90(Z0) — Th — ghe1 (Bae1)) — 0.5 (2n)°

1D
Then, there exist Wy, (m, g), Xp(n') so that the PO-bilinear rank is at most d such that
[Elgn(Zn) = rh = gh41(Zne1) 2 arn ~ 7| = [(Wi(7, g), Xn (7)), (12)
0.5(Wy(m,g), Xp(m"))?
max K[l (Th, an, 1, 0nt15 £, 7, 9); arnany—1 ~ T 5 anrnyn ~ UA)]| > Wil g)M w(T))
fEFn Al
(13)
and
max E[ln(Th: @y Thy Ont1s fr 97 )5 G1ni(ny—1 ~ T 5 Gng(ny:n ~ U(A)]’ =0. (14)
h

Proof. The proof is deferred to Section[Q.2] Note that (I2)), (I3), (I4) correspond to (a), (b), (c) in
Definition 9| O

We use the most general bilinear class definition from where ((a) = |A|M/2a!/? for
scalar @ € R, Hence ( is a non-decreasing function (¢ is non-decreasing in R™). The proof of the
above lemma leverages the novel trick of the so-called moment matching policy introduced by [19].
When the latent state and action space are discrete, it states that the bilinear rank is |S||.A|, which is
much smaller than |O|*|.A|M|S|. Note we here introduce —0.5f(2)? in the loss function (TT) to
induce strong convexity w.r.t f as in [70} |14} [10]], which is important to obtain the fast rate later.

The concrete sample complexity of PROVABLE (Algorithm 3)) for this model is summarized in the
following. Recall that the bilinear rank is d where d is the rank of the transition matrix. We set
Gr C [Z2n, — [0, H]]. Then, we have the following result.
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Theorem 9 (Sample complexity for M -step decodable POMDPs (Informal)). Suppose Assumption
Bellman completeness, ||Gp||oo < H, || Frlloo < H, 1y € [0, 1] for any h € [H]. With probability
1 — 6, we can achieve J(n*) — J(7t) < € when we use samples at most

5 (d2H6A|2+M 1n(|Hmax||fmax|gmax/6>>

2
€
Here, polylog(d, H,|Al, 1/¢,In(|Tlnax|), In(|Fmax|), In(|Gmax|), In(1/6)) are omitted.

The followings are several implications. First, the error rate scales with O(1/¢?). As we promised,
by leveraging the strong convexity of loss functions, we obtain a rate O(1/€?), which is faster than
O(1/€*) that are attained when we naively invoke with £(x) o /2. Secondly, the error
bound incurs |A|*. As showed in [19], this is inevitable in M-step decodable POMDPs. Thirdly,
in the tabular case, when we use the naive function classes for G, F, 11, i.e., G, = {Z, — [0, H]},
Fn = {2, — [0,H]}, ), = {2, — A(A)}, the bound could incur additional |O[* since the
complexity of the function classes can scale with respect to (|O||.A|)™ (e.g., log(|Gx|) can be in
the order of O(|O||.AM), and similarly for log(|F,|), In(I1,)). However, when we start form a
realizable model class that captures the ground truth transition and omission distribution, we can
remove |O|M. See Section for an example.

Note that [19] uses a different function class setup where they assume one has an M memory-action
dependent () function class Qy, : Zj, x A — R which contains Q; (Z5, a) while we use the actor-critic
framework v}, w. The two function class setups are not directly comparable. Generally, we mention
that such optimal Q* with truncated history does not exist when the exact decodability does not hold
(e.g., such @* with truncated history does not exist in LQG). This displays the potential generality of

the actor-critic framework we propose here.

G.2 Observable POMDPs with Latent Low-rank Transition: a model-based perspective

The final example we include in this work is a POMDP with the latent low-rank transition. We
first introduce the model, and then we introduce our function approximation setup and show the
sample complexity. Finally, we revisit the sample complexity for observable tabular POMDPs and
M -step decodable tabular POMDPs using the improved algorithm that elaborates on the model-based
approach in this section.

Example 6 (Observable POMDPs with latent low-rank transition). The latent transition T(s'|s, a)
is factorized as T(s'|s,a) = p*(s') T ¢*(s,a),Vs,a, s’ where u* : S — R% and ¢* : S x A — R4
The observation |O| x |S| matrix O has full-column rank.

In the tabular POMDP example, we have d < |S|. However in general d can be much smaller than
|S|. Note that in this section, we will focus on the setting where S, O are discrete to avoid using
measure theory languages, but their size could be extremely large. Particularly, our sample complexity
will not have explicit polynomial or logarithmic dependence on |O|, |S|, instead it will only scale
polynomially with respect to the complexity of the hypothesis class and the rank d.

Model-based function approximation. Our function approximation class consists of a set of
models M = {(u,#,O)} where p, ¢ together models latent transition as u(-) T é(s,a) € A(S),
and O : § — A(O) models O, and O is full column rank. For notation simplicity, we often use
0 := (u,9,0) € M to denote a model (u, ¢, O). We impose the following assumption.

Assumption 5 (Realizability). We assume realizability, i.e., (u*, ¢*,0) € M.

We assume M is discrete, but | M| can be large such that a linear dependence on | M| in the sample
complexity is not acceptable. Our goal is to get a bound that scales polynomially with respect to
In(| M), which is the standard statistical complexity of the discrete hypothesis class M.

Next, we construct I1, G, F using the model class M. Given 6 := (u, ¢, 0), we denote ¥ as the
optimal M-memory policy, i.e., the M -memory policy that maximizes the total expected reward. We
set

= {x:0ec M}

We consider the value function class for 6 := (u, ¢, O) with O being full column rank. For each
¢, we can define the corresponding value function of the policy 7 at h € [H]: VT, (2n-1,58) :
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Zn_1 x 8§ — R. Then, since O is full column rank, as we see in the proof of a
corresponding future-dependent value function is

I (2,0) = {f7n. 1(z) ® O'1(0))
where Vi, (zn—1, 1) = (f§;, 1(2) ® 1(s)). Then, we construct G = {Gy, } as:
Vhe[H]: Gn={2n 3 zZn-1 g5n(zn-1) €ER:meIl,0 € M}. (15)

By construction, since 6* := (u*, ¢*, Q) € M, we must have g™ € G, Vr € II, which implies G is
realizable (note g;; = gg..,). Here, from the construction and the assumption r;, € [0, 1] for any

h € [H], we have |Gp,| < |[M|? and ||G},||~ < H /o1, which can be seen from
¥(2,0); {ffn, 1(2) ® O'1(0)) < || ffnllool|1(2) ® OT1(0) |y < H x [O'1(0) |1 < H/o,
by assuming ||OT||; < 1/ and [fanlleo < H.

To construct a discriminator class ', we first define the Bellman operator By, for m € II,h €
[H],0 € M:
By, G — [Hn — R];

VTh; (Bg;hg) (Th) = EahNTrh(Zh) [rh + E0h+1NP9("7h7ah)gh+1(Zh"rl)} ’

where M, is the whole history space up to h (75, = (a1.,—1, 01.1), and Zy, is just part of this history)
and Py(0p11|7h, ar) is the probability of generating oj,41 conditioned on 74, a;, under model 6.
Then, we construct F = {F},} such that

Vhe[H : Fn={Hromh+ {gn — Bipg}(mn) e R:meIl,g€ G, 0 € M}. (16)
so that we can ensure the Bellman completeness: ’

—(BjG) + Gr C Fp.

noting Bj.., = Bf. Here, from the construction, |F,| < [MJ?* x [M]* x [M]* = |[M]° and
[Fhlloc < 3H /01

We define the loss as the same as the one we used in M -step decodable POMDPs, except that our
discriminators now take the entire history as input:

Un(Thy any Ty 0nt1s £, 9) = malan | Z0)|ALf(T)(9n(Zn) — 7h — ght1(Zn41)) — 0-5f(7'h)(21~7)

Finally, as in the case of M-step decodable POMDPs (Lemma 17)), we get the following lemma that
states that our model is a PO-bilinear AC class under the following model assumption.
Assumption 6. We assume |O'||; < 1/ for any O in the model. Suppose u(-) " ¢(s,a) € A(S)
forany (s,a), u(-) and ¢(-) in the model. Suppose ||¢(s,a)| < 1 for any ¢ in the model and (s,a) €
S x A. Suppose for any v : S — (0, 1] and for any yu in the model, we have || [ v(s)u(s)d(s)||2 < Vd.
Lemma 18 (PO-bilinear decomposition for Observable POMDPs with low-rank transition). Suppose
Assumption @ Consider observable POMDPs with latent low-rank transition. Set G as in @]
F as in[(16)|and | as in[(17)| Then, there exist Wy,(w, g), X1, (") that admits the PO-bilinear rank
decomposition in|Definition 9\with rank d.

The above lemma ensures that the PO-bilinear rank only depends on d, and is independent of the
length of the memory. For example, in the tabular case, it is |S|.

Next, we show the output from DISPROVABLEcan search for the best in class M -memory policy as
follows.
Theorem 10 (Sample complexity of DISPROVABLE for observable POMDPs with latent low-rank
transition). Consider observable POMDPs with latent low-rank transition. Suppose Assumption 5] [6]
With probability 1 — §, we can achieve J(7*) — J(#) < € when we use samples at most

L (PHOAPM In(M]/6)

0 53 .

€207

Here, we omit polylog(d, H, |A|,In(1/6),In(|M]),1/01,1/€).

Here, we emphasize that there is no explicit polynomial or logarithmic dependence on |S| and |O|,
which permits learning for large state and observation spaces. We also do not have any explicit
polynomial dependence on |O]M, as we construct IT and G from the model class M which ensures
the complexities of 7 and G are in the same order as that of M.
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G.2.1 Global Optimality

We show a quasi-polynomial sample complexity bound for competing against the globally optimal
policy mg;. To compete against the globally optimal policy 73, we need to set M properly. We use

gl’
the following lemma. The proof is given in[Section R]
Lemma 19 (Near global optimaltiy of M-memoruy policy). Consider € € (0, H|, and a POMDP
with low-rank latent transition and O being full column rank with |OT|; < 1/01. When M =
O(C(1/o1)~*In(dH /€)) (with C being some absolute constant), there must exists an M -memory
policy 7, such that J(m3)) — J(7*) < €

Note that the memory M above is independent of |S| instead it only depends on the rank d. To prove
the above lemma, we first show a new result on belief contraction for low-rank POMDPs under the
£1-based observability. The proof of the belief contraction borrows some key lemma from [23]] but
extends the original result for small-size tabular POMDPs to low-rank POMDPs. We leverage the
linear structure of the problem and the G-optimal design to construct an initial distribution over &
that can be used as a starting point for belief propagation along the memory.

We conclude the study on the POMDPs with low-rank latent transition by the following theorem,
which demonstrates a quasi-polynomial sample complexity for learning the globally optimal policy.

Theorem 11 (Sample complexity of DISPROVABLE for POMDPs with low-rank latent transition —
competing against 7). Consider observable POMDPs with latent low-rank transition. Fix some
e€ (0,H),d € (0,1). Suppose Assumption @ We construct 11, G, F, and the loss | as we described
above. With probability at least 1 — 6, when M = ©(Coy* In(dH /€)), DISPROVABLE outputs a &
such that J(3)) — J () < €, with number of samples scaling

O (d21—16|-'4|2 1D(‘M/(S|) . |A|ln(dH/e)/o;1) ]

252
€°07

Remark 6 (Comparison to [[73]]). We compare our results to the very recent work [73] that studies
POMDPs with the low-rank latent transition. The results are in general not directly comparable, but
we state several key differences here. First, [[73|] considers a special instance of low-rank transition,
i.e., [[73|] assumes T has low non-negative rank, which could be exponentially larger than the usual
rank [2|]. Second, [73] additionally assumes short past sufficiency, a condition which intuitively says
that for any roll-in policy, the sufficient statistics of a short memory is enough to recover the belief
over the latent states, and their sample complexity has an exponential dependence on the length of the
memory. While our result also relies on the fact that the globally optimal policy can be approximated
by an M-memory policy with small M, this fact is derived directly from the standard observability
condition.

G.2.2 Revisiting Observable Undercomplete Tabular POMDPs

We reconsider the sample complexity of undercomplete tabular POMDPs using In this
case, we will start from a model class that captures the ground truth latent transition T and omission
distribution Q. By constructing e-nets over the model class,we can set In(|M|) = O(|S|3|O||.A|)
since T, O have |S|?|.A| and |O||S| many parameters, respectively. Besides, the PO-bilinear rank is
d = |S|. Therefore, the sample complexity is

O (ISI5IOIH6|A|2+MIH(1/5)> _

252
€°07

We leave the formal analysis to future works.

Compared to results in Section there is no |O|™ term. This is due to two improvements. The
first improvement is that we refine the rank from |O|™|A|™|S]| to |S|. The second improvement is
we model the future-dependent value function class and policy class starting from the model class
whose complexity has nothing to do with the length of memory M (note that previously, from a pure
model-free perspective, the statistical complexity of G can scale as |O|™ | A||S]| in the worst case).

G.2.3 Revisiting Observable Overcomplete POMDPs

We reconsider the sample complexity of overcomplete tabular POMDPs using with slight
modification to incorporate multi-step future. Suppose [|[{O%}||; < 1/, (recall OF is defined in
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[Cemma 3|in Section[C.2)). Then, we can achieve a sample complexity
o <5|5O|H6|A|2+M 1n(1/5)>

2,2
€207

since the PO-bilinear rank is |S|. Note that there is no |O]M T dependence, since both the policy
class and the future-dependent value function class are built from the model class whose complexity
has nothing to do with M, K.

Note that due to our definition of Q¥ there is no |.A\K term. However, when we use a different
.o . . . K K
definition, for instance, ming; |~ ear-1 [[{O (@hnyr—2) 3l < 1/on (recall 0K (), k)

is defined in Section |C.2)), we would incur |.A|¥. This is because if we only know that there is an
unknown sequence of actions aj,.;, | i, such that O™ (aj,;,, ,_,) is full column rank, we need

to use uniform samples |A|% in the importance sampling step to identify such a sequence. More
formally, we can see that

(A min HO™ (g ic—2)} [l = {HO®} 1. (18)

AphtK—2

G.2.4 Revisiting M -step Decodable Tabular POMDPs

We reconsider the sample complexity of tabular M -step decodable POMDPs by constructing F, G, II
from the model class M as we did for the low-rank POMDP. In this case, by constructing e-nets,

we can set In(|M|) = O(|S|?|O||A]) since T, Q have |S|?|.A| and |O||S| parameters, respectively.
Therefore, the sample complexity is

O <H6|5|5|0|«4|2+M ln(1/5)) _

€2

Again, we leave the formal analysis to future works. Compared to the naive result mentioned after
where In(G), In(TT) could scale in the order of |O|* in the tabular case, we do not have
(@)

¥ dependence here.

H Proof of Theorem 1|
We fix the parameters as in[Theorem 1] Let

In(Zns ans mhy on1) = [Almn(an | Z0){rn + g1 (Zra1)} — gn(Zn)-

We define
€gen = m}ax egen,h(mv H7 ga 6/(TH + 1))3 €ini = eini(gv 5/(TH + 1))7
L
€gen = m}?xegm(m,ﬂ, G,0/H).

Then, by our assumption [2] with probability 1 — 4, we Vt € [T],Vh € [H]

Sup_ [Ept [In(2n, an, n, ont13 7, 9)] — E[Ept [In(Zh; an, mhy 0pg 157, 9)]]] < €gen,  (19)
el ge

sup |[Epo[g1(o1)] — E[Epo[g1(01)]]| < €ini- (20)
91€6G1

Hereafter, we condition on the above events.

We first show the following lemma. Recall

7 = argmax J (7).
mell
Lemma 20 (Optimism). Set R := €2,,,. Forallt € [T], (7%, g™") is a feasible solution of the
constrained program. Furthermore, we have J(7*) < E|[g}(01)] + 2€ini for any t € [T, where g* is
the future-dependent value function selected by the algorithm in iteration t.
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Proof. For any 7, we have
E[Ep: [ln(2h, an, T, 0nt1;m,97)] = 0
since g™ is a future-dependent value function in G. This is because

E[Ep: [ln(Zh, an, Thy 0nt13 7, 97)]

=Elgn(zn) = rn — gns1(Zny1); arn1 ~ ' an ~ 7 (IS sampling)
= (Wi(m,g™), Xn(r")) (First assumption in[Definition 3)
= 0. (Second assumption in [Definition 3)

Thus,
Bt (14 (Zns s iy 0041575, 97 )] < €gen-
using (T9) noting 7* € T, g™ € G. This implies
vt € [T],Vh € [H]; (ED;[lh(ih,ah,Th,0h+1;7T*79ﬂ*)])2 < €oen-
Hence, (7*, g™ ) is a feasible set for any ¢ € [T7.

Then, we have

J(7*) =E[g] (01)] < EpolgT (01)] + €ini (Uniform convergence result)
< Epo[gt(01)] + €ini (Using the construction of algorithm)
< Elgi(01)] + 2€in;- (Uniform convergence)

O

Remark 7. Note that
EEp: [In(2h, an, rhy ont13m,97)]] = 0

holds for general future-dependent value functions g™ iDefinition 6|. Thus, the statement goes
through even if we use|Definition 6]

Next, we prove the following lemma to upper bound the per step regret.
Lemma 21. For anyt € [T], we have

H
J(7*) = J(&) < > [(Walnt, g'), Xn(ah))] + 2eini.

h=1
Proof.
Tt) = 1)
< 2¢imi + E[gh(01)] — J () (From optimism)
H
= 2€in; + Z Elg),(2n) — {rn + 9j41(Zn+1)}; @10 ~ 7] (Performance difference lemma)
h=1
< 2€ini + ) |Elgh(Zn) — {rn + ghy1 (Zns1) }s az ~ ']

M= T

=2€ini + Y |(Wi(r", g"), Xn(m"))|. (First assumption in[Definition 3)

=

=1
O
Lemma 22. Let Xy j, = M + Y020 X3, (n7) X (77) 7. We have

T-1 H
1 . d TB%
E E ||Xh(7r)|2;}1L<H\/T1n<1+ o)
t=0 h=1

N
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Proof. We fix h € [H]. Here, we have ¥, ), = Al + Zt;:lo Xpn(77) X (77) 7. From the elliptical
potential lemma in [1, Lemma G.2], we have

1. det(Te) _ [d TB
Xn( < Xp(mt)]|2.- —In——242<4/=In(1 .
Z” n(mllszy TZH ’WHZl_\/Tndet()J)_ 7\

Then,

T-1 TB2 )

H
1 d
— Xp(m)|2-y < Hy[=In(1 S
I \/T“( + 15

Lemma 23.
[Wi(n", 9IS, , < 2ABjy, +4T€,,,.

Proof. We have
Wi (7, g%, , = M[Wi(',g") ||2+Z Wi(x',g"), Xn(n7))%.

The first term is upper-bounded by AB3;. The second term is upper-bounded by
t—1

> (Wi(nt,g"), Xa(a")?

=0

2
- Z lh Zh>ah7rh7 Oh+41;T 7gt); a1:h—1 ™~ 7TT7ah ~ U(‘A)D

(First assumption in[Definition 3))
t—1
<2 Epp[ln(Zn, an,mh, o157, g"))* + 2t€},,, < ATel,,.
7=0
From the first line to the second line, we use the definition of bilinear rank models. From the second
line to the third line, we use (a + b)? < 2a? + 2b?. In the last line, we use the constraint on (7t, g*).

O
Combining lemmas so far, we have
T-1 H

J(w*)d(ﬁ)gfgz (Wi(m', 9%), Xn(m"))| + 2€ini (Use|Cemma 21)
| T-1 H

< T 22 Z [|W, (7 ,g ||2, N ||Xh( )Hzt_llz + 2€ini (CS inequality)

dH TB%\\ "
< H'? [2AB%, +47,,]"? < In ( e + 2€imi-

(Use|Lemma 22| and [Lemma 23))
We set A such that B /X = Bj, B /.., + 1and T = [2HdIn(4Hd(B% B} /égen + 1))]. Then,

Hd T B2 Hd B2, B2
~——1In X) <0y WZX 411
( d)‘ )_ T < * d< 6gen - >>
Hd B2, B2
<—"In W=X 411
T < 3 d ( 6qen * >>

Hd 2T BQB2

gen
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since aIn(bT)/T < 1 when T' = 2a1n(2ab).
Finally, the following holds

J(a*) — I(xT) < H'2 [AAB, + 8T€2,, ] + 2ei

gen

< HY?[4\B2, + 16€2,, HdIn(AHd(B% B2, gen +1))] /> + 2€imi

gen
(PluginT)

< H'2 [8¢2,, + 1662, HAIn(AHA(B% By [égen + 1))] /> + 2650
(Plug in €gep)

1/2

< Segen [H?*dIn(AHd(BX By [€gen + 1)) 77 + 2€ins.

I Sample Complexity for Finite Function Classes

Consider cases where II and G are finite and the PO-bilinear rank assumption is satisfied. When
IT and G are infinite hypothesis classes, |F| and |G| are replaced with their L>°-covering numbers,
respectively.

Theorem 12 (Sample complexity for discrete IT and G). Let |G|l < Cg,rn € [0, 1] for any
h € [H] and the PO-bilinear rank assumption holds with PO-bilinear rank d. By letting Il ax| =
maxp, ||, |Gmax| = maxy, |G|, with probability 1 — 6, we can achieve J(n*) — J(7t) < € when

we use samples at most
O (dpH* max(Cg, 1)*|A|* In(|Gumax | Mmax|/8) In*(Bx Bw)(1/€)?) .

Here, polylog(d, H, |Al,In(|Gmax|)s In(|Imax|), In(1/6), In(Bx), In(Bw ), In(1/0), (1/€)) are
omitted.

Proof. We derive the above result. First, we check the uniform convergence result. Then,
€gen = cmax(Cg, 1)|A|\/1n(\gmax|\Hmax\TH/é)/m.

Thus, we need to set m such that

J(m*) = J(7) < emax(Cg, 1)|.A\\/ln(|gmax|\Hmax\TH/cs)/m\/dH2 ln(H3dB§(B‘2,Vm +1)<e
where ¢ is some constant and
T = cHdIn(HdB% Biym +1).

By organizing the term, the following m is sufficient

c\/dH2 max(Cg, 1)2|A|? In(|Gmax||Mmax|H?d/8) In(H3dB% B3, m)

m

<e

Using[Lemma 44] the following m satisfies the condition:

Bl (111 Bl B2)2

= e Bi = dH* max(Cg, 1)*| A" n(|Gumex| Tmax | H*d/5), By = H*dBX By
Combining all together, the sample complexity is mT H, i.e.,

o <d2H4 max(Cg, 1) A2 (|G| Mamax|/6) 1n2<BXBw>> -
€2 ’

J Sample Complexity in Observable HSE POMDPs

We revisit the existence of future-dependent value functions by taking the norm constraint into
account. Then, we consider the PO-bilinear decomposition with certain Bx € R and By, € R. Next,
we calculate the uniform convergence result. Finally, we show the sample complexity result.

We use the following assumptions
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Assumption 7. For any h € [H|, the following holds:
1 Vi (zn-1,8) = (0F, dn(zh—1, ).

2. There exists a matrix Ky, such that Eo o) [¥n(2n-1,0)] = Knon(zn-1,s) (i.e., condi-
tional embedding of the omission distribution),

3 MlonOI < Lllvn(I < 1,07l < ©v,0< 7, <1,

4. There exists a matrix Ty, such that E[én(zn,Sp+1) | 2n—1,Sn;an ~ 7| =
Trndn(zn—1, sh) (i.e., conditional embedding of the transition)
5. Il is finite.
We define
Omin(K) = min 1/, oma(E) = masc 1Knll, omax(T) = mece [Tl

d = d d = d .
o= maxdy,, dy = max dy,

Existence of future-dependent value functions. We show future-dependent value functions exist.
This is proved by noting
Eooo) [{(KD) TOF, ¥n(20))] = (K} 767, Kndn(zn—1,50)) = (07, dn(zn-1,0)) = Vi (zn—1, 5n).

Thus, ((K) 767, 4n(z,)) is a future-dependent value function. The radius of the parameter space is
upper-bounded by Oy /oy (K). Hence, we set

Gn = {(0,¢n()) : 0] < Ov /omin(K)}.
Then, the realizability holds.

PO-bilinear decomposition. Recall we derive the PO-bilinear decomposition in Section [C.4]
Consider a triple (7', 7, g) with g, (-) = 0, 5, () and g7 = (05,9 (+)), we have:

E [9;1%“(5}1) — 1 — O 10 (Zns1)iatno1 ~ T ap ~ 7|

= (Elpn(zn—1,sn); arn—1 ~ '], K, (On — 0}) = TLp Ky (Onsr — 0541))
which verifies the PO-bilinear structure, i.e.,
Xn(7') = El¢n(zn-1,5n); ar:n—1 ~ '], Wil g) = Ky (0n —05;) = T Ky (01 — 05 11),
and shows that the PO-bilinear rank is at most dy = maxy dg,. Thus, based on the above PO-

bilinear decomposition, we set || Bx || = 1, || Bw || = 2(1 + 0max(T"))0max (K)Ov /O min (K). This
is because

1R (O = 03) = T )1 (Ongr = O340 |
< ORI+ 105 1) + 1T K1 IOl + 16742)1)

< 2(1 + Ulnax(T))Umax(K)@V/Jmin(K)~
and

IE[pn(2n—1,50); a1:n—1 ~ 7] < E[l|n(2n-1,s0)[; ar:n—1 ~ 7] < 1.
In the above, we use Jensen’s inequality.

Uniform convergence. To invoke we show the uniform convergence result.
Lemma 24 (Uniform convergence of loss functions). Let C' = Oy /(omin(K)). Then, with probabil-

ity 1 — 4,
s [{Ep — B} [LAlm(an | 21) {9n(50) — 70— gns ()]
nell,geg
< 5lA[{1+ 20}\/{2% In(1 + Cm7)n+ ([T |/6)}
and

\/ {dy (1 + Cm) + In(|Tay]/6)}

sup {Ep — E}[g1(21)| < 5C m

g1€G1
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Proof. Let C' = Oy /omin(K). Define NV, 1, as an e-net for Gy,. Then, [N, | < (1 + C/e)?. Then,

n (i ms9) = (57, 7)) < [AHllgn = gilloo + llgnt1 = ghsalloo}
< [ARN0n = Oill2 + 1011 = OF 11 ll2} < 2| Ale.

Besides, for fixed 7 € IL, 6, € N 5, 041 € N p+1, we have
In(|I14]/6
H{Ep — E} [|Almn(an | Zn) {gn(Zn;0n) — h — gni1(Zns1;0n41) H| < Al (14 20) %

Then, for Vr € IL, V0, € N p, V011 € Ne 41, we have

In([TIn | NVe,n [ |Nen1]/8)

HEp — E} [|Almn(an | Zn) {gn(Zn; 0n) — Th — ght1(Za+150n41) }]| < [A] (1 +2C) \/ -
Hence, for any g, = (0n,¥n) € Gn, ght1 = (Ont1, Yng1) € Grg1,

HEp — E} [|Almn(an | Zn) {gn(Zn; 0n) — h — ghs1(Zha1; Ons1) }]
< A (1 +20) \/ln(|Hh|Ne,h||M,h+l|/5)

m
By taking € = 1/m, we have V7 € I1,Vgy, € G, Vgnt1 € Ghi1:
H{Ep — E}|Almn(an | 2){gn(Zn) — Th — gnt1(Zn4+1) 3]
2dIn(1+Cm) + W(LI/3)} | 44
m m

< 5lAj(1 420}y LA Om) 4 n(II/O))

+ 4| Ale.

< |A{1+2C}

Similarly,

Vg1 € i3 [{Ep — E}oa(21)]] < C\/ {dIn(1 + Cm7>n+ In(|tal/0)} 4

. 5C\/{d1n(1 + Cm) + In(|T| /6)}

m

Finally, we obtain the PAC bound, we need to find m such that

dy In(max(C, 1)m) + In(

Moo | TH /0
- M /)\/d¢H21n(Hd¢B§(B§Vm+1)ge.

c| Al max(C, 1)\/
where c is some constant and
T = cHdyIn(HdB% Bjym + 1).
By organizing the term, the following m is sufficient:

. \/ {dy + In(dp|Mnax| H2/6) Ydy H2| A2 max(C, 1)2 In({C + Hdy,B% B2, + 1)}m)?
m

<ee.

By using|Lemma 44] we can set

B
m = —21 In(mB1Bsy)?,
€
By = {dy + In(dy|Hpmax | H? /6) }dy H?| A|]> max(C, 1)?, By = C + HdyB% By, + 1.
Thus, the final sample complexity is

5 ( d2{dy + In(|Tax|/0)  H*|AJ? max(C, 1)2>

€2

where C' = Oy /omin (K).
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K Sample Complexity in Observable Undercomplete Tabular POMDPs

We revisit the existence of future-dependent value functions. Then, we show the PO-bilinear rank
decomposition. After showing the uniform convergence lemma, we calculate the sample complexity.

Existence of future-dependent value functions. In the tabular case, by setting
Yn(2,0) = 1(2) @ 1(0), ¢n(2,8) = 1(2) ® 1(s), Kp = ]I|Zh71\ ® 0.

where 1(z) is a one-hot encoding vector over Z;,_1, we can regard the tabular model as an HSE-
POMDP. Here is our assumption.

Assumption 8. (a) 0 < rj, < 1, (b) Q is full-column rank and |||, < 1/oy for any h € [H].

Note we use the 1-norm since this choice is more amenable in the tabular setting. However, even if
the norm bound is given in terms of 2-norm, we can still ensure the PAC guarantee (this is because

107]1:/V/1ST < 10F]l2 < [|OF[l1v/]OD.
Here, since we assume the reward lies in [0, 1], value functions on the latent state belong to
{0, 0n(")) : |0l < H}. Here, letting V;™ = (0F, ¢1,), future-dependent value functions ex-
ist by taking (97, 1(z) x O1(0)). Hence, we take
Gn = {(2,0) = (0,1(2) ® 0"1(0)); |0]| o < H}
so that the realizability holds. Importantly, we can ensure ||Gp|lcc < H/oq since
10, 1(2) ® 0T1(0))] < [0l [11(2) ® OT1(0)[lr < [10]lc 0T 1(0)[I1 < H/os

for any (z,0) € Z,_1 x O. Note Gy, is contained in

{{0,1(2) @ 1(0)); 10l < HIOI" A for1 } 1)

This is because each (A, 1(2)®071(0)) is equal to (¢, 1(2)®1(0)) for some vector §’ € RIZn-11x1O,
Here, denoting the component of 6 corresponding to z € Z;,_; by 0. € RI®I, ¢’ is a vector stacking
010, for each z € Z;,_;. Then, we have

10%6.[]2 < |OF|2]16 ]2 < |OT|1V/|O|H/|0] < H|O|/01.

Hence, ||0'||2 < |OIM|AIM x H|O|/o;.

PO-Bilinear decomposition. Next, recall we derive the PO-bilinear decomposition:
E[0) ¢n(Zn) = — O 110041 (Bng1); arin—1 ~ 7' ap, ~ 7]
= (K {6h — 05} — {Trn} " Ky 1 {041 — 051}, Elon(2n—1, sn); ar:n—1 ~ 7))

Then, By = 1 and By = 4H|O|M+1|AIM /o1. We use || K, |2 = [|Opl2 < 1,||T.7, ||z < 1. This
is because

155 {0 — 07} = {Tr} " K {01 — 0741 Hlo

< 16nll2 + 107 12 + 10nr1ll2 + 167 44 ]l2 < 4HIOPMFHAM foy.
In the last line, we use[21)]
Uniform convergence. Then, we can obtain the following uniform convergence lemma.
Lemma 25. Let C = H/oy and dy, = |O|MF| A|M. Then, with probability 1 — 6,

Sw {Ep — E} [|Almn(an | Zn) {gn(2n) — rn — ght1(Znt1) }|

2 In(1+4 Cm) + In(|T,|/8)}

m

I
< 5|Al{1 + 2¢)

and

\/{dw In(1 + Cm) + In(|TI,]/6)}

sup [{Ep — E}[g:1(z1)]] < 5C m

g1€G1
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Proof. Letdy = |S||OM|AIM, dy = |OMFL|AM.
Define NV, j, as an e-net for {6 : ||f]|> < C'} with respect to L?-norm. Define N/ ;, as an e-net for

0}, : 2, — A(A) with respect to the following norm:
d(m,w') = max x| zp—1) = 7'(- | Zn-1)l11-

Zp-1€Zp-1

Then, [N, 1| < (1+ C/e)?, W< (1 + 1/e) Al
Let g, = (O, ¥n), g5 = (05,vn) where 1, is a one-hot encoding vector over Zj. Then, when
165 = 6312 < €61 — 812 < € [ — 751 < €. we have
ln(57,9) = In (57, g% < [AHllmn = T3 lloeC + llgn — gilloo + llgn+1 = ghsalloc}
< [A{eC + |6n — Opll2 + [[6n+1 — 054112}
< 3|A|Ce.
Besides, for fixed m € N/}, 0 € N, Op1 € Ne py1, we have

H{Ep — E} [|Almn(an | Zn) {9n(Zn;0n) — 7h — ght1(Zns1; Ong1) H| < JA[ (1 4 2C)
Then, for V7 € N/ ;,, V0, € N, V0ni1 € Nepy1, we have

In(1/4)

In (N, [N R[N nt11/6)

HEp — E} [|Almn(an | 2n) {gn(Zh; 0n) — T — gni1(Zn+1; 0n41) }| < Al (14 20) \/

Hence, for any 71, € Iy, gr, = (On, V1) € Ghy g1 = (Ons1, Yni1) € Graas
HEp — E} [|Almn(an | 2n) {gn(Z0;0n) — h — gha1(Zny1; Onin)

(N, [INen | INe )
§|A|(1+20)\/n(| LNl Wonsil/9)

m

m

By taking € = 1/m, we have V& € I1,Vgy, € G, Vgnt1 € Ght1;
HEp — E}|Almn(an | 2n){gn(Zn) — rn — gn+1(2Zn41)}]|

< A1+ 20}\/{2% In(1+Cm) + dy|AlIn(1 +m) +In(1/9)}  34/C

m m

- 10|AC\/{d¢|A| In(1+ Cm) +1In(1/6)}

m

Sample Complexity. Finally, we obtain the PAC bound. We need to find m such that
d In(1+C |
oAty G+ O

m

TH/6
[0} \doH? n(Hdy By Bym +1) < e
where c is some constant and
T = cHdyIn(HdB% B3,m + 1).
By organizing terms, we get

\/ AP C2dydy H? n(H2dy/0) n({C + dy + HdyB% By ym)* _

m
Thus, we need to set

~ (|APC?dydy H? In(1/0)
m =0 ( 2
Hence, the sample complexity is

5 <|A|3C2did¢H4 In(1 /5))

€2

By some algebra, it is

252
€“07

O (|¢4|3M+3|O|3M+1|52H6 1fl(1/5))
Later, we prove we can remove |O|™ using the more refined analysis in
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Global optimality. We use a result in the proof of [23, Theorem 1.2]. We just set M =
C(1/o1)*In(SH/e). Note their assumption 1 is satisfied when ||Of||; < (1/0). More specif-
ically, assumption 1 in [23]] requires for any b and V', we have
|Ob— O ||y > 1/o1]]b—b'|1.
This is proved as follows. Note for any e, ¢/,
[O0fe — OFe'[l; < [[O7[l1]le — €'llx-

Then, by setting e = Qb and ¢/ = O/, the assumption 1 is ensured. Here, we use ofto = 1.

L Sample Complexity in Observable Overcomplete Tabular POMDPs

We first gave an overview of the result. Then, we move to the detail.

L.1 Summary

We consider obvercomplete tabular POMDPs. In this case, the PO-bilinear rank is at most
|O|M|.A|M|S|. We suppose 7, € [0, 1] for any h € [H]. Assuming QX is full-column rank, to sat-
isfy the realizability, we set G, = {(0,1(2) ® {OF}T1(t£)) | ||0]|oc < H} where ||OX||; < 1/04

and 1(z), 1(t) are one-hot encoding vectors over Z;,_; and OF x AK~1 respectively. We set
I}, = [Zr, — A(A)]. Then, the following holds.

Theorem 13 (Sample complexity for overcomplete tabular models). With probability
1 — 0, we can achieve J(n*) — J(&) < € when we use samples at most

O (‘8|2 A|3M+K+2‘O|3M+KH6(1/6)2(1/01)2 ln(l/é)) .
Here, polylog(|S|, |O|, |A|, H,1/c1,1n(1/§)) are omitted.

When we use K-step futures, in the above theorem, we additionally incur |A|%|O]¥, which is coming
from a naive parameterization of G;,. In we will see that under the model-based
learning perspective (i.e., we parameterize T, O first and then construct IT and G using the model
class), we will get rid of the dependence |O|M+¥ and | A|%. This is because the complexity of the
model class is independent of M or K (i.e., number of parameters in T, O are O(|S|?|.A||O))).

L.2 Detail

To simplify the presentation, we focus on the case when %t = U(A).

Existence of future-dependent value functions. In the tabular case, by setting
%(27 tK) = 1(Z) ® 1(tK)a ¢h(za 3) = 1(2) Y 1(8)5 Ky, = H\Zh—l\ ® 0.

where 1(? is a one-hot encoding vector over Z;,_; and 1(¢%) is a one-hot encoding vector over
ZE = O x AK=1 we can regard the tabular model as an HSE-POMDP. Here is our assumption.

Assumption 9. (a) 0 < rj, < 1, (b) O is full-column rank and || {0O¥}T||; < 1/ay.

Recall we define OF in Since we assume the reward lies in [0, 1], value functions on the
latent state belong to {(6, @1 (-)) : ||0]lcc < H}. Here, letting V;7(-) = (67, ¢n(+)), future-dependent
value functions exist by taking (7, 1(z) ® {OK }11(¢K)). Hence, we take

G = {(2,t") = (07, 1(2) @ {O" }11(t7)); |67 [l < H}

so that the realizability holds. Importantly, we can ensure ||Gp,||cc < H/o1 asin Then, as
in[Section K| Gy, is contained in

{(6,1(z) @ 1(0)); 10|l < H|OMTHAM /o } .
PO-bilinear decomposition. Next, we derive the PO-bilinear decomposition:
Bl d(zn—1,t5) —h — Op10(2n—1, 15 ) arn—1 ~ 7 an ~ T ani1npr—1 ~ U(A)]
= {En} {0n — 07} — {Trn} " {Kns1} {0hs1 — 051}, Eldn(2n-1, sn); arin—1 ~ 7')).
Then, Bx = 1 and By = 4H|OMTAM Jo1. We use | Ky |2 = |[OF ]2 < 1, || T, )2 < 1.
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Sample Complexity. We can follow the same procedure in the proof of Let d, =
IS||OM|AM , dy = |O|M+E|A|M+E=1 Hence, the sample complexity is

5 <|A|3C2d?¢d¢H4 In(1 /5)>

252
€°07

By some algebra, the above is
O (|A|3M+K+2|O|3M+K|S|2H6 ln(1/5)>

2,2
€?o]

Using the more refined analysis later, we show we can remove |O3M+K in|Section Q

M Sample Complexity in LQG

In this section, we derive the sample complexity in LQG. We first explain the setting. Then, we prove
the existence of future-dependent value functions. [Lemma 3|is proved there. Furthermore, we show
the PO-bilinear rank decomposition in LQG. We prove [Lemma 3| there. Next, we show the uniform
convergence result in LQG. Finally, by invoking we calculate the sample complexity.

We study a finite-horizon discrete time LQG governed by the following equation:
s$1 = €1,8p+1 = Asp + Bap + €p,rp = sZQsh + aZRah, oy, = Osy, + 1,

where ¢;, is Gaussian noise with mean 0 and noise X, and 7, is a Gaussian noise with mean 0
and .. We use a matrix O instead of C' to avoid notational confusion later. With a linear policy
mr(ap | ony zh—1) = 0(an, = Ugpopn, + Usgpzp—1), this induces the following system:

2, 0 I 0

Op, = Zh—1 - = o T = o 0 O

an | = Ein(m) [ sh ] + Eop(m), Ean(m) = Ut » En(m) = Uy, U1, 0
Sh+1 BUlhT +e€ BUQh A + BUlhO

where z;, is the vector removing (oy, az,) from zj, and I’ is a matrix mapping zj to z;,. This is derived
by
Sh41 = Asp, + Bap, +e€ = Asy, + B{Ulhoh + Ughzh,l} + €
= (A + BUlhO)Sh + BUsgpzp_1 + €+ BUyyT,
ap, = Uipop + Uzpzp—1 = U108 + Uzpzp—1 + Ui,
op, = Osp, + 7.

We suppose the system is always stable in the sense that the operator norm of =1}, (7) is upper-bounded
by 1. Here is the assumption we introduce throughout this section.

Assumption 10. Suppose max(|[ ], | BI, O]l [Qll, | Rl < C. Suppose [Zxa(x)]| < 1 for any 7.
O is full-column rank.

We present the form of linear mean embedding operators in LQGs.
Lemma 26 (Linear mean embedding operator). Let z € Z,_1,0 € O,s € S. We have

1 1 1 0
e el BT W F b 2]) boofelo o
Proof. Here, we have
Beotn 5] @ [3]] = vee 2 Sor] | = vee[ [ 0o 4]
vl S]]+ [ ofefo & xvee[[ir i)
From the second line to the third line, we use formula vec[A; A3 A3] = (A ® Aj)vec(Asz). This

immediately concludes the result.
O
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Thus, the matrix K, has the left inverse when O is full-column rank as follows:

1 0

LB oleh ol (b 2]) boslef o

‘We use a block matrix inversion formula:
{ At ()HA1 O]I
—AlA AT Al A2 As '
M.1 Existence of Link Functions

Lemma 27 (Value functions in LQGs). Let 7y (a | 0,2) = §(a = Uypo+ Ugpz) for z € Z,_1,0 €
O. Then, a value function has a bilinear form:

Vit(z,8) = [2",s JAnlz",s"]T + .

For any h € [H|, these parameters Ay, Ty, are recursively defined inductively by

_ U;h,RUQh U;—hRUlhO . T
Am =1 Ul RULOYT Q+0 U, RU0| 0 08 = BULAUmE),
UJ, RU U], RU,,0
AL, =E Api1 2], YA D, = 2r V20 2 t1n
h = E1n(M)Ap1E15(T) + Za,s XA, [{U;LRUMO}T Q+0"UL,RU,O|"
0 0 0 0
B I »,. U, s, U[,BT
= trheZna )t O 20 = 1o uyy, U0, UpSULET
0 BUy%, BU,X,. U/, BU,E,ULBT 4+ %,

Proof. The proof is completed by backward induction regarding h, starting from level H. First, we
have

Vii(z,8) = 5" Qs + Eouo(s) [{U1no + Uapz}  R{U1p0 + Koz}]
= STQS + EONO(S)[{UlhOS + U+ UQhZ}TR{UlhOS + Ut + Ughz}]
=5'{Q+O0"U[,RU,0}s + 2U,;, RUqgz + 22" Uy, RU,0s + tr(U{, RU 1, %, )

71|  UnRUa U], RU,,0

— T .77 T
= [Z ;S {U;hRUlhO}T Q + OTUlThRUlhO [Z ;S ] + tr(UlhRUthT).

Here, we use induction. Thus, supposing the statement is true at horizon h + 1, we have

V}Zr(za 3) = Fh-l—l + STQS + EONO(S) [{Ulho + UQhZ}TR{UIhO + K2Z}]
+ EowO(s),aNW(o,z),s’NT(s,a) [[Z——rlv OTa aT7 S/T}Ah+l[z—|_—1; OTa aTa SIT]T]

where 2’ is a vector that removes the last component (0, a) from z and s’ is a state at h + 1. Here,
recall we have

()T, 0", a", 81T =21 (m) 2", s + Zan(m).
Then, the statement is concluded some algebra.

O

Lemma 28 (Norm constraints on value functions). We can set || Ay|| < Ca g, |Th|| < Cr,p, such
that

(CA,h = pOIY(C7 H)a CF,h = POIY(dm d87 d(la C? H)

Proof. We have
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Then,

AR < [[Ewn (@)1 An+1 HIE1n ()] 4 poly (C, H).
Since we assume ||Z;(7)|| < 1, this immediately leads to

1Akl < poly(C, H).

Besides,

ITall < poly(H, do, ds, da, C) | Apsal| + [[Thsa .
Thus,

Hrh” < pOIY(H> dmdsadmc)'

Next, we set the norm on the function class Gj,.
Lemma 29 (Realizability on LQGs). We set

Gn = {fh + (ZT,OT)Ah(zTaoT)T | ”]\h” < C[X,hv |Fh| < Cf‘,hvz € Zp_1,0€ O}a
C[\,h = pOIY(Hv do,ds,da, C, HOT”)a Cf‘,h = pOIY(Ha do,ds,dq,C, ||OT||)

A function class Gy, includes at least one value future-dependent value function for any linear policy
m=6(a =Upo+ Ugpz) for U < C, [[Uzp| < C.

Proof. Here, we have

T T
V() =Th +tr {Ah [ZT st} }

55
2z’ zo {OT}T
=Tn + Eono(s) {tr {Ah |:OTOZT Ot {ooT — %, } {O}T
0 0
= Fh —tr {Ah |:0 OTET{OT}T:| }
T T I 0 1 0 z

+ Eow@(s) |:[Z Y ] |:0 {OT}T Ap 0o oOf| lol]"

The norm constraint on A, is decided by the following calculation:
1 0 I 0

‘ [0 {oﬂ An [0 OT} H < |OY3| Anll = poly(H, do, d, da, C, ||O])).
Then, the norm on I'y, is decided by the following calculation:

F”_tr{Ah [8 szf?o*}quthtr{Ah [8 O*Ef({)OT}Tm

< [Tl + [[Sall2[lOT13Tr(E,)

< [Tal + [1Z4 20T 15Cd,

= poly(H, do, d, da, C, [|OT])).
From the first line to the second line, we use[Cemma 43]

M.2 PO-bilinear Rank Decomposition

Lemma 30 (Bilinear rank decomposition for LQG). For any gn+1 € Ghi1,9n € Gn, we have the
following bilinear rank decomposition:

Elgn+1(2n,0n41) + 71 — gn(2h—1,0n); a1:h—1 ~ 7', ap, ~ 7] = (X (7'), W (7))
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where

Xn(7") = (LE[[z4_1,5,]® [zn_1. 80 ) arn—1 ~ 7)) 7,

— 0] [1 07« I 0
tr ({Ah Ah} {O ) ] + [O OT} {Any1 — h+1} {O O] Ynn ()
I 0],« 0] - I 0], 7 o=
llo or] Be-ar |5 S| +=hm | or| i - Aid ] 9] =]
Here, Z1p, () and X, , () depend on a policy ©. The following norm constraints hold:

1Xn(")ll2 < poly(H, do, ds, da, C, |OF]), [|Wh(m)||2 < poly(H, do, ds, da, C,||OT]).

W (m) =

Proof. We have
E[gh(zhfla Oh) - Th(thl, Sh) — gh+1(zh,0h+1); A1.p—1 ~ 7_(_/’ ap, ~ 7_‘_]
= _E[’r‘h(Zh 175h).a/1 h—1 "~ 71'/ ap, ~ 7r]+

+E [Fh (Zh 170h)Ah(zh 1,0;) - 1;h%—l - (Zi—{aoz-&-l)]\h-i-l(zi—;aOi-lz—-&-l)—r;al:h—l ~ 7 ap ~ W] .
(22)

Since we have
E[rp(2h—1,58); @1:h—1 ~ T, ap ~ 7]

=-E [F* (Zh 170h)A*(zh 17011—)T - 7;+1 - (Zi;rv011—+1)AZ+1(Z;70}1—+1)T5a1:h71 ~ 7 ap ~ W] .
we focus on the term [(22)]

Hereafter, we suppose the expectation is always taken under a1.;,_1 ~ 7', a ~ 7. We also denote
Z=2p_1,0p = 0,041 = 0,8y = 8, Sp41 = & to simplify the presentation. Using this simplified
notation, we get

E[(z7, 0T )An(zT,0") T =E[(zT,(0s + 1) )An(zT, (0s +7)T)7]
—e[msn ) o]y o] []]+e(a]5 2])-
Besides,
E (27,0 ") Anpa (27,0 T)T]
=F [[z’T,s’T} [é OO‘I':l Apy1 [é O} { l” +tr (Ah [8 ng)
=E [[zT,ST] 1 () [é OOT:| Apia [0 O} E1n(m) { ” +tr (Ah [8 X(J)T]> +
+tr ({é OOT} Apia {é g] YA, (T )) :
Then, the bilinear decomposition is clear by using

Ag Ay A, = tr(A1 A, AJ) = vec(A] ) Tvec(Ay,AJ ) = (vec(A] ), Ay @ Aj).

where As is any vector and A; is any matrix.

[I]

First, we calculate the upper bounds of the norms.

IXn(7)II5 =1+ H]E(z,s>~d;f’ H ”
o
.

zS —
— 14 [y, [Eantr >[ ] ] + 2am

E prammran b ik
’
(z9)~di_y | 1527 ssT »

< 1A [ Xna (@3 + 1882 (1)1 -

< L+ ()2
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From the third line to the fourth line, we use ||Z15(m)|l2 < 1. Thus, [|Xp(n')|l2 <
poly(H, do, ds, da, |O1[], C).

Next, we consider W (). By some algebra, we can see

IW(mll2 < poly(|Aall, [Ans1l, C. oy d, da, [ Ean (m)]]))
< poly(H, do, ds, da, | O], C)
O

Lemma 31 (Variance of marginal distribution). Recall df(zn—1,sr) is a marginal distribution
over Zp_1 X S at h when we execute a1.,—1 ~ m. The distribution d},(zn—1, $p) is a Gaussian
distribution with mean 0. The operator norm on the variance of df, (zn—1, $1,) is upper-bounded by
poly(H, do, dq, ds, C).

Proof. We first calculate the operator norm of the variance of dJf (2,1, op,). The variance is
h h h
> (1T 2u) a0 T =him).
i=1 \t=i+1 t=it1

The statement is immediately concluded. O

Let uh(éh, Thy Ghy Oht1; 0) = 9;1/111(5]1) —ry — 9};r+11/}h+1(2h+1)~ Recall wh(zh) = [1, 2}1— (024 Z;LF]T.
We define

gn(al) = Ep{as(n(z)) 1120 ]| < Z0)U(Irall < Ze)(llons1]l < Z3)L(an = al)(1 +d°)
up(Zh, Thy @hy 0413 0); ar1:p—1 ~ 7' ap ~ U(1+d°)}

gn(al”) = Ep{{1 - Zaz m(zn)) H(a = O)I([|Za ]| < Z)I(|Irnll < Z2)I({lon41 ] < Z3)

( + d )uh('zh;Thaa/h70h+179);a1:h71 ~ 7T/7ah ~ U(l + dO)}

Then, the final estimator is constructed by

d<>
(a[O]) + Z gh(a[i])_
i=1
This is equal to

Ep[ln(Zn, an, T, 0ns1: 6, 7))

where

lh(Zh,CLh,Th,Oh+1, ) T 2051 +{1*ZO£1 Zh }]I 0) X

([ 2n | < Z0)I(|[rall < Z2)1 (||0h+1|\ < Z3)(1+d° )uh(zharh,ah,0h+179)~
‘We set
Z; = poly(In(m), ds, do, do, C, H, [|OF])).

for any i € [3].

M.3 Uniform Convergence

Recall that
II = {5(& =Ujpz + UQhO) | ||U1hH <C, ||U2hH < (C}
Besides, G, is included in

{(0. ¢ () | 10]] < poly(H,dy, ds,da,C,|JOT[)}.
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Lemma 32 (Concentration of loss functions). With probability 1 — §,

sup |(]ED - E){lh(zhva’h7rh70h+1;97ﬂ-)}|
Tell,peO®

is upper-bounded by
poly(In(m), ds, o, da, C, H, | O")) x /In(1/3)/m

Proof. Due to indicator functions, {1, (Zh, an, On, 0nt1; 0, 7) is bounded for any m, 6 by
poly(In(m), ds, da, d,, C, H, ||OT]).
Thus, for fixed 7 and 6, we can say that with high probability 1 — §
poly(In(m), ds, do, da, C, H, [ OT[|, In(1/6)) x \/1/m.

Besides, we can consider a covering number with respect to [°°-norm for the space of K and 6 since
both are bounded. The radius of each space is upper-bounded by

poly(In(m), ds, do, da, C, H, || OF|).

Thus, by taking uniform bound and considering the bias term due to the discretization as in the proof
of the statement is concluded. O

Lemma 33 (Bias terms 1). Expectation of iy, (a!l) and 4, (al)) are equal to

yn(a) + Errory,  y,(a¥) + Error,.
where

yn(all) = E {ai(ﬂ(fh))ﬂ(\lihﬂ < Z1)un(Zn, ans Thy Oh4150); arh—1 ~ ' ap ~ dO(am)} :

yn(a

Error; = m~ poly(ln(m),ds,do, ds,C, H, ||OT||)7 Errory = m ™ poly(In(m), d, do, da, C, H, ||OT||)

E{1- Zaz m(Z0)) M (120ll < Z0)un(Zn, an, 7hy 0nt150); arn—1 ~ ', ap ~ dO(O)] ;

Proof. We want to upper bound the difference of

E {ai(w(zh))H(HZhH < Z2)un (s s Ty Ons1; 0); arint ~ 7y ap ~ do<am)}
and
E [ (m(Z))L(1zal < Z0UIrall € Z2)W(llons1 |  Zs)un(Zh, ans va, 0n41:0)s avn—s ~ 7' ap ~ do(al?)]
By CS inequality, we have

[ ||ZhH < Zl){H(Hth < Z2) (||Oh+1|| S ZS) - 1}uh(2h7ah,’rh,0h+1; 9);&1:;1,1 ~ 7T/7ah ~ do(am)} ‘

<[e [{H Irall < Zo)W(lonsa ]l < Z5) = 1) ann1 ~ ', ~ do(al")]

(a)

2 — 2/ / [4] 1/2
X ‘]E [ai (m(Zn))un (Zn, @, Thy Ont1); G1:h—1 ~ T, ap ~ do(a )” .

(b)
We analyze the term (a) and the term (b). Before starting analysis, note (2, ,a,, ,7, , 0, ) follows
Gaussian distribution with mean 0 and variance upper-bounded by
poly(C, ds, do, da, H)
using Besides, a?(m,(2,)) < poly(ds,d,,d,, H) from Note we can use a
G-optimal design since we have a norm constraint on z;.
Regarding the term (a), by setting Zo = poly(C,ds,d,,ds, In(m), H, ||OT|) and Z3 =
poly(C, ds, dy, dq,In(m), H, |OT||) properly, we can ensure it is upper-bounded by
pOIy(C7 d57 do’ daJ HJ ||OT ||7 ln(m))
- .
Regarding the term (b), noting high order moments of Gaussian distributions can be always upper-

bounded, the term (b) is upper-bounded by poly(C, ds, d,, d, H, |OT||,In(m)). This concludes the
statement. O
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Lemma 34 (Bias terms 2). Recall we define yy,(al¥) and y;,(a!®)) in Then, we have

E[I(1zn]l < Z1)un(Zns an, rhy 0n4150); ar1:n—1 ~ 7'y an ~ 7(Z;)] = yn(a™) + th ).

Thus,
E(ln(Zn, an, Thy 0n415 0, 7)a1.n—1 ~ 7' ap ~ U(1 4+ d°))

4 Poy(C, ds, da, do, H, 1O™])
- :

= Elun(2n, an,h, 0n+1;0); a1:—1 ~ 7', ap ~ 7(Z;)]
Proof.

First Statement We have

E[I([|Zn] < Z1)un(Zn, an, rhy 0n41;50); a1:0—1 ~ 7', ap ~ w(Z;)]

=E[I(|zn]| < Z1)E[un(zh, an,rhy on+1;0) | Zn, Sh,y an); arn—1 ~ 7', ap ~ 7(z;)]

= E[I(||z2n]| < Z1)E[un(Zh, 7h(Z8): Thy 0h4150) | Zh, Shyan = Tr(Zn)]; a1n—1 ~ 7'].
Here, by some algebra, there exists a vector co

Elun(Zh, an, Ty 0n4150) | Zns snyan] = (2, [1, 2, 55, an | @ (2,55 ap )] ).
Thus, there exists cg and a vector ¢ such that
Elun(Zn, an, rh, 0n+130) | Zn, Sk, an] = co(Zn, Sn) + CI(Em sp)k(ap)

Recall we can write

dO
z0)) = Y ai(mn(z))r(al)
i=1

Using the above,
E[I(IZn]l < Z1)un(Zn, an, n, 0415 0); a1:n—1 ~ 7', an ~ 7(Z;)]
= E[I(||z]| < Z1){co(Zn,sn) + ¢1 (Zn, 1) Y6(mh(Z0)); a1:n1 ~ 7]
= EH(HZhH < Zl){CO(Zh,Sh) + chT(éhySh)ai(ﬂh(gh))ﬁ(a[i])};al;h,1 ~ 71-/]
= E[I(||Zn]] < Z1)[co(Zn, sn)+

+ > i(mn(Z)){El(Zn, 7 (Zn), mhy 0ng1) | Zry snyan = al] = co(Zn, sn) s arn 1 ~ 7]
co(Zn,sn) — »_ i(mn(Zn))co(Zn, sn) +th
[

—E [ﬂuzm < z)

Besides,
co(Zn, sn) = Elun(Zn, an, 7, 0ns130) | Zn, 51, an, = do(0)].
Thus,
I(|[znll < Z1) |co(Zh, sn) — Zai(ﬂh(ih))co(fmsh)H

=E[I(|1z]l < Z0){1 = > ci(wn(2))}E[un(Zn, an, 7, 0n1150) | Zn, sn, an = 0f; arn—1 ~ 7]
i

= E[I(|[zn]] < Z1){1 - Zai(ﬂh(ih))}uh(imahaTh,0h+1;9);a1:h71 ~ 7', ap = do(0)]

= yn(a).

In conclusion,

E[I([[zall < Z1)un(Zn, an,rhs 0415 0); arn—1 ~ 7', an ~ 7(Z;)] = yn(a™) + Z@/h ).
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Second Statement  As we see in the proof of the following term
E{I(||zn|| < Z1) — L}un(Zn, an, rhy 0nt1;0); a1n—1 ~ @' ap ~ m(2;)]
is upper-bounded by poly(C, ds, d,,, da, H,In(m))/m. Hence,

E[ln(Zn, an, Th, 0ny150,7)]

dO
= E[@h(a[o])] + Z E[@h(a[i])] (Definition)
i=1
d° ‘
= yp(a?) + Z yn(al™) + poly(C, dy, do, da, H, In(m)) /m (Statement of [Lemma 33)
i=1

= E[I(||Zn|| < Z1)un(Zn, an,rh, 0n4150); a1:n—1 ~ 7' ap ~ wh(Zn)] + poly(C, d, do, dg, H,In(m))/m
(First statement)

= E[un(Zn, an, 7h, 0n41;0); ar:n—1 ~ 7', ap ~ mr(2n)] + poly(C, ds, do, da, H,In(m)) /m
= Bry,(,0; ") + poly(C, ds, dy, do, H,In(m)) /m.

M.4 Sample Complexity

Summarizing results so far, we have

sup |Ep[ln(Zn, an,Th, 0n+1;0,7)}] — Bry(m, 6; 7))
well,0eO

< poly(In(m), ds, do, da, C, H, | OT]]) x \/In(1/8)/m.
This is enough to invoke Here, recall we have
1Xn ()| < poly(H, do, da, ds, C, 0, |OT])),  [Wi(m)|| < poly(H, do, da, ds, C, ©, | OT])).
for any 7 € II using[Cemma 30] In addition, we showed the PO-bilinear rank is
poly(H,d,, da, ds).
Then, using the sample complexity is

_ 1
o) (poly(ln(m),ds,do,da,Q@,H, 10T, In(1/6)) x 2) )
€

N Sample Complexity in PSRs
To focus on the main point, we just use a one-step future. We first show the form of future-dependent
value functions to set a proper class for G;,. Next, we show the PO-bilinear decomposition.

We assume the following assumptions.
Assumption 11. (a) 7 C O is a core test and Q is a minimum core rest, (b) ||vec(J7)|| < © for any
7 € I where JT is in VI (1) = 1(21,-1) " IT dry -

N.1 Existence of Link Functions

Recall V™ (73) = 1(z_1) T J7qy, . where we use 1(z) € RICI"IAI™ (o denote the one-hot encoding

. .. M M
vector over Zj,_1, and J} is a matrix in RICIT AT X|T],

Then, g7 (21,—1,0) := 1(21,—1) "JF[1(t = 0)]1c7 is a value future-dependent value function. This is
because

Elgn(2n-1,0) | n] = E[1(zn-1) " JF[L(t = 0)se | 7]
=1(zp_1) ITay, .
Hence, we set G, to be
{(zn-1,0) = L(zp—1) " J[1(t = 0)]se : [Ivec(I)|| < ©}
so that the realizability holds.
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N.2 PO-bilinear Rank Decomposition

We show that PSR admits PO-bilinear rank decomposition (Definition 6). Here is the Bellman loss:
E[{gn+1(zn,0n41) + 71} — gn(2n-1,0n); ar:n—1 ~ 7', ap ~ 7).

To analyze the above, we decompose the above into three terms:

Elgnt1(2h, 0nt1);01:n—1 ~ 7, an ~ 7] + Elrp; arn—1 ~ 7', an ~ 7] + E[—gn(2n—1,0n); a1:h—1 ~ 7', an ~ 7] .
(@) ®) ©

Let Q be a minimum core test. Here, for any future ¢, there exists 71, such that P(¢ | 7,) = (1, qQr, )
where [P(- | 7,)] g is a | Q|-dimensional predictive state g, . This satisfies

Plon | Tas an)@r,,an,0n = Moy, a1, Ar, - (23)
where M, ., is a matrix whose i-th row is mjh,ah as we see in|Section E|

Term (¢). We have
Elgn(2h—1,0n) | 0] = L(zn—1) "JE[[L(t = on)]teT | 74]
=1(zp_1) I,

where J; € RITIXIQl is a matrix whose i-th row is mj The existence of J; is ensured since Q is a
core test.

Term (b). We have

Elry, | Thiap ~ 7] = Z w(an | on, 2h—1)Tn(an, on)P(op, | Th;ap)

Oh;Qh

= Z m(an | on, zn—1)rn(an, o) (Mo, ay > Ar,)

Oh,Qh

T ~
= 1(zh*1) ngTh
for some matrix J3. In the first inequality, we use the reward is a function of oy, a, conditioning on
the whole history. From the first line to the second line, we use a property of core tests.

Term (a). We have
E[gn+1(zn, 0n41) | Ty an ~ 7] = E[I(Zh)TJ[l(f = opt1)]ter | Thian ~ 7
= E[1(21) " IJsGry .an.0n | Thi an ~ 7]
for some matrix Js. Then, the above is further equal to
Z 1(z) "I0sm(an | zn—1,0n)P(on | Th3 an)@r,.an.0n

Qh ,0h

= Z I(Zh)TJJ;),ﬂ'(ah ‘ Zh*luoh)MOh,athh

Qh,0h

T ~
= l(zh—l) qum
for some matrix J7. From the first line to the second line, we use P(or, | Th;an)Ar,.an.0n =

Moh,ah (iTh iIl

Summary. Combining all terms, there exists a matrix J7 such that
E[{gn+1(2n,0n+1) + 70} — gn(2n—1,0n);a1n—1 ~ 7' ap ~ 7
= I(Zh—l)Teﬂg]E[(lm; a1:p—1 ~ W/]
= (Vec(J5), 1(zn-1) ® Elar,; 11 ~ 7'
Here, we suppose || Vec(JT)|| < O for any 7. Besides,
M(2n-1) ® Eldr, ; avn—1 ~ 7']ll2 < |El@r,; a1:n-1 ~ 7][l2 < E[llar, [l2; avn—1 ~ 7]
<Ellar,ll1;a1:n-1 ~ 7] = 1.

Thus, we can set By = 1.
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N.3 Sample Complexity
Suppose I1, G are finite and rewards at A lie in [0, 1]. Assume the realizability holds. Then,
€gen = cmax(0, 1) A|v/In(Gumax| e[ T H/3) /m.
Following the calculation in[Section 1| the sample complexity is
5 (OIQ(M‘UIAIQ(M‘UIQIQmaX(@, D HY AP In(|Gmax| Mimax| /0) 1n(9w)2) .

€2

Here, there is no explicit dependence on |7 |. Note the worst-case sample complexity of In |Gy,ax| is
O(|Z,-1||T]) and the worse-case sample complexity of In [TI,.x| is O(|Zr—1]|O||A]).

N.4 Most General Case

We consider the general case in Let G, be a function class consisting of 1(zj, 1) "Jn1(t)
where J;, satisfies Jj, € RZ+—1*I71 and ||vec(Js)|| < ©. When the realizability holds, we would get

0 (IO2<M—”|A2<M—1>|Q|2|TA|2 max (0, 1) H*|Al* (| Gimasx[Manax| /9) ln(Bwa>2>

€2
Here, there is no explicit sample complexity of |7©|. Note the worse-case sample complexity of
In |Gmax| is O(|Zr—1]|T]) and the worst-case sample complexity of In |II,ax| is O(| Zx—1]|O||A]).

O Proof of Theorem 8§

We fix the parameters as in[Theorem 8] Let
In(Ths s Ty ong 1 fom,9) = [Almn(an | Z0){rn + gns1 (Zre1) = gn(Z0)}f (1) — 0.5 ()%
From the assumption, Then, with probability 1 — d, we have Vt € [T],Vh € [H]

sup \ED,Q (b (Ths n, Thy 0ng1s fom, 9)] — E[]EDZ [n(Th, any Ty o1 o m )]l < €gens
mell,geg,feF
24
sup |Epo[g1(01)] — E[Epo[g1(01)]]| < €ins- (25

91€G1
We first show the following lemma. Recall 7% = argmax, o J(7).

Lemma 35 (Optimism). Set R := €gen. Forallt € [T), (n*,g™ ) is a feasible solution of the
constrained program. Furthermore, we have J(7*) < E|g} (01)] + 2€ini for any t € [T, where g" is
the value link function selected by the algorithm in iteration t.

Proof. For any 7, we have

Jf}elf’% |]E[ED; [n(Th, an, Ty 01 fom g7l = 0

since g™ is a value link function in G noting the condition (c) in[Definition 9 Thus,

max Bt (1 (7h, an, 7y on 15 7%, 67 I < €gen

using (24) noting 7 € II,g™ € G. Hence, (7*,¢" ) is a feasible set for any ¢+ € [T] and any
he[H].

Then, we have

J(m*) = E[g] (01)] < Epolg] (01)] + €ini (Uniform convergence result)
< Epolgh(01)] + €ini (Using the construction of algorithm)
< E[gi (01)] 4 2€ini- (Uniform convergence)

O

55



Next, we prove the following lemma to upper bound the per step regret.

Lemma 36. For anyt € [T], we have

H
J (7 Z ) Xn (7)) + 2€ini-
h=1
Proof.
J(7*) = J(%)
< 2€ini + E[gt(01)] — J(7) (From optimism)

H
= 2€in; + Z Elg),(2n) — {rn + 9h41(Zn+1)}; @10 ~ 7] (Performance difference lemma)

h=1
< 2€imi + Z Elg,(2n) = {rn + ghs1 (Zn+1)}s v ~ ']
h=1
H
< 260+ Y [(Waln', g'), Xn(a"))]. (From (a) in [Definition 3)
h=1
O
From [Cemma 22} we have
T-1 H
1 d TB?
= Xi( 1 <Hy/=In(1 X ).
LSS Il <y (1 222
Lemma 37.
HWh(Wtagt)HQEt,h < 2)\Bjy + T¢(2€gen).
Proof. We have
t—1
Wi (n', )15, , = NWa(r',g")I3 +Z Wi(r',g"), Xn (7))
The first term is upper-bounded by AB3,. The second term is upper-bounded by
t—1
Z<Wh(7rt7gt)7 Xh(ﬂ-T)>2
7=0
t—1 2
< ZC (]{Iéax \E[ln (Ths ans Thy 0ng1s £ 0")5 atinany—1 ~ T, anrnyin ~ 7Te(77)”>
k=0 h
t—1 2
S ZC (]I”relax EDk [lh(zhaahvrh70h+17f) 7gt)]‘ +€gen>
k=0 Fn
< t¢(2€4en).
From the first line to the second line, we use (b) in From the second line to the third
line, we use € is a non-decreasing function. In the last line, we use the constraint on (7, g*).
O
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Combining lemmas so far, we have

T—1 H
J(r* ﬁéfgj]hz:llwh 2 9"), Xn (7)) + 2€in
-1 H
f leWh Mo 1 Xn (T 51+ 2€imi (CS inequality)

dH TB2\\ ">
< H'Y? [2AB}, +T<2(26gen)]1/2 ( T In ( d;)) + 2€imi-

We set A such that B% /A = B, B% /(*(€gen)+1and T = [2HdIn(4Hd(B% B3, /(*(€gen) + 1)) ]
Then,
2 2 12
Hd\ (0 TBXY _Hd, (0 T (BRBY
T dA T d (%(egen)

Hd BZ.B
o Ha L[ bwbx
= < 7 (@)

Hd 2T [ B%, B
<—hn|=(2X<ZX+1))<1
T H( d <<2(59€n) * )) B

since aIn(bT")/T < 1 when T' = 2aIn(2ab).
Finally, the following holds
J(7*) — J(xT)
< HY? [2ABY, + T¢*(2¢gen)]
< H'Y2 [2AB}, + 2¢*(2¢gen) HdIn(AHd(B% B}y /2 (€gen) +1))] Y2 L i (Plug in T
[4C2(egen) + 2C%(2€gen) HA(AHA(B% By /¢ (Egen) + 1))]/* + 2615, (Plugin A)

1/2
/ +2€ini

S H1/2

P Sample Complexity in )/ -step Decodable POMDPs

We first give a summary of our results. Then, we show that an M -step decodable POMDP is a
PO-bilinear rank model. After showing the uniform convergence of the loss function with fast rates,
we calculate the sample complexity. Since we use squared loss functions, we need to modify the

proof of [Theorem 1

P.1 PO-bilinear Rank Decomposition (Proof of
In this section, we derive the PO-bilinear decomposition of M -step decodable POMDPs (Lemma 17|
).
First, we define moment matching policies following [19]. We denote M (h) = h — M.
Definition 10 (Moment Matching Policies). For h' € [M(h), h], we define
Thr = (SM(h):h's OM(h):h'» O (h):h/ —1) € Xl
where X; = S' x O' x A=Y and 1 = W — M(h) + 1. For an M-step policy = and h € [H], we
define the moment matching policy ™" = {,u;;}h s Xy — A(A) Z:M(h):
uZ}h(a;L/ | 2 := Elmp (aps | Zne) | zpes ).
Note the expectation in the right hand side is taken under a policy .
Using [19, Lemma B.2], we have
BY(W,Q;W/) =E[{gn(zn) = rn — gn41(Znt1)}; a1:M(h)—1 ~ ), QM (h):h ™ 7]

=E[{gn(Zn) = o = ghs1(Zny1) s a1 ny—1 ~ T aprnyn—1 ~ ™" ap ~

=E[E[{gn(zn) — rh — gnt1(Zas1)} | Snnys amrnyn—1 ~ 1" an ~ mli a1 ~ 7]

= <Xh(7r/)7 Wh(ﬂ'a g)> :
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where
Wi (m,g) = /E[{gh(ih) = = Gn1(Zor )} | Snaenys ananyin—1 ~ W an ~ mlp(sarn))d(sarn)),
Xp(n') = E[p(sar(h)—1> Anr(h)—1)5 G1:0M(R)—1 ~ ']

Thus, the first condition in [Definition 9] ((12)) is satisfied

Next, we show the second condition in [Definition 9| ((T3)). This is proved as follows
0.5
Tapr (X (@), Wi, 9)’ 26)
0.5 ) i ) / e
= A (IE [(gh(zh) — (Brgn+1)(Z0)) ; @ronsiny—1 ~ s ansinyn—1 ~ p D
0.5 ) ) L , B -
: WE [(gh(zh) = (Bign+1)(20))"5 Grsna(ny—1 ~ T, Ans(ryihor ~ 47 ] (Jensen’s inequality)

< AT max E [(gh(fh) — (Bhgn+1)(Zn)) f(Zn) — 0.5F(Z0)%; araarny—1 ~ T Qar(nyn—1 ~ M”’h]

1 ™
= [ e E (A8 (@nl20) (9 (20) = 0 = gna (Zns1)) F(Zn) = 05F(20)s @ranrny 1 ~ 75 @aruyn 1 ~ 1" an ~ UA)]
h

< max E [|Almn(an|Zn) (gn(2n) — Th — ghs1(Zns1)) F(Zn) — 0.5 (Zn)%; arnsny—1 ~ ' ansqnyn ~ U(A)]
h

= maxE [lh(Zh, an, Thon+1; o7, 9); Qrinr(ny—1 ~ T anrnyin ~ U(A)] . (€2))
h

From the first line to the second line, we use [19, Lemma B.2]. From the third to the fourth line, we
use the Bellman completeness assumption: f(ng) + G;, C Fj,. From the fourth line to the fifth
line, we use importance sampling.

Finally, we show the third condition in[Definition 9|[(T4)}

jax Eln(Thy an, Thy 0ng1s [ 7, 97)s arnany—1 ~ 5 angnyan ~ U(A)]| = 0. (28)
h

This follows since

E[lh(Thy @y Thy Ong1s £r7,97 )5 @i (ny—1 ~ T ang(nyn ~ U(A)]

= E [|Almn(anlzn) (97 (20) = 7 = 911 (Zns1)) [(Z0) = 0.5F(Z0) %5 arnsny—1 ~ 7' ans(nyn ~ U(A)]

=E [E[|Almn(an|zn) (g7 (Z0) — b — ghy1(Zos1)) | Z6)f (Z) — 0.5f(Z0)% arar(ny—1 ~ 75 ang(nyin ~ U(A)]
=E [-0.5f(21) ar.nmny—1 ~ T angnyn ~ UA)] .

P.2  Uniform Convergence

We define the operator
(Br9)(Zr) := Elrn + gnt1(Zn41) | Znsan ~ 7).
and
(Bhg)(zn) = —(Brg)(zn) + gn-
Lemma 38 (Uniform Convergence). Let |D| = m. Suppose || Fp|lco < 3H for h € [H). Fix 7’ € 1L

1. Take a true future-dependent value function g* € G. Then, it satisfies
max [Ep (| Almn(an | 20){g7 (Zn) — rh — g1 (Zo1) }n(Zn) — 0.5 fn(Z0)%5 ararny—1 ~ 75 ang(nyn ~ U(A)]
h h

2
< (H|A|) ln(lnmaX”]:maXHQmaxvé).
m

2. Suppose g(m) satisfies
max [En[|Almn(an | Z1){gn()(Zn) = ra = gni1(7)(Znia) fn(Zn) — 0.50n(20)°; ariarny—1 ~ 75 anrnyn ~ U(A)]]
<A,
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and the Bellman completeness B};Q C Fn(Vm € II) holds. Then, with probability 1 — 6,
we have

]E[(BZQ(W))Q(E}L); a1:M(h)—1 ™~ ﬂJvaM(h);h_l ~ U(A)]
(H|A|)2 1n(|Hrﬂax| ‘fmax| |gmax|/6) )

m

<A+co

Proof. To simplify the notation, we define
an(Zn, an, Thyont1: 9) = malan | 2p)[A{gn(Zn) — rn — ght1(2n41)}
Given g € G, we define fh(~; g) as the maximizer:

argmax |Ep[|Alms(an | 20){gn(Zn) — 7 — gn+1(Zn1) fa(Zn) — 0.5 f1(20)?; arar(ny—1 ~ ™ anegnyn ~ U(A)]|.

hESh

In this proof, the expectation is always taken for the data generating process D. We first observe
Eplon(Zn, an, Thy 0ns15 9) fu(Zn) — 0.5 fn(zn)7]
= 0.5Ep[an(Zh, an, 7y 0415 9)* = {n(Zh, ans Ty ont15.9) — fr(zn)}?).

Then, we define

Ery(f,9) := 0.5{an(Zn, an,mh, 0n4139) — fu(20)} — 0.5{an(Zn, an, rn; ont13 9) — (Big)(2)}7]-
As the first step, we prove with probability 1 — &

. e 12H | A|In(2|F4|||Gn||Gn+11/9)
Vg; |Ep[Ern(fr(:59),9)]| < - .

(29)

We first fix g. Then, from the definition of fh(~; ¢) and the Bellman completeness B;;g C Fp, we
have

Ep[Ern(fu(::9),9)] < 0. (30)
Here, we invoke Bernstein’s inequality:

I@IF9) | (CHIAY m@IF) )

Vf € Fn; (E —Ep)Ern(f, 9))| < \/E[El"h(ﬂ 9)]
Hereafter, we condition on the above event. Then, combining (30) and (3I)), we have

]E[th(fh('§g)79)] < ED[th(fh(ﬁg)ag)] + [(E — ED)Erh(fh(';g)vg)|
< \/E[Eri(fh(-;g),gﬂ In(2|74|/0)(6H| A (6H|AJ)* In(2]Fn| /)

m m

Here, we use
E[Ers(fu(-59),9)] = 0.5E[{ fn(2) — (B g)(zn)}],

E[Ern(fa(;9),9)°) < E{fn(20) — (Big)(2)} /(6 H|A|)? = E[Ers(fn (-5 9))(6H|A|).
Thus, by some algebra,

(12H|A))* In(2|.F3|/3)

m

E[Ern(fa(-;9),9)] <
Besides,
[Ep[Ern(fn(:39), 9)]]
< E[Ers(fu(59))] + [(E — Ep)[Ern(fn(+ 9), 9)]]
< BfEr (g0, 4 % BB (fu(+0). 0 (GHIAY I2I7,1/5)  (6GHIA) @70

m m
3(12H|A|)? In(2|Fn|/6) | 2TH|A|In(2|74]/9)

m m '
Lastly, by union bounds over Gy, Gj11, the statement is proved. Note B}{ g™ =0.
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First Statement.

\Ep[an(Zh, an, Th, 0nt1;97) fr(Zn; 97) — 0.5F4(Zh; ™)

= |0.5Ep[an(Zn, an, h, 0ns1;9™)] — 0.5Ep[{an(Zn, an, hy ont1;9™) — fr(Zn) ¥
< CH|A\1H(\fh\gh||gh+1/5)

< p- .

From the second line to the third line, we use

Second Statement. Now, we use the assumption on g(7):

Ep[on (2, ans Ty 0ns1; 9(m)) fi (2 g(m)) — 0.5 f (203 9(m))?] < A
From what we showed in[(29)] this implies
12H|A|)? In(|F||Gn|Gn+1l/9)

Bolan (2, s s 0ns139(m) BT (m)) o) — 0.5(Bfg(m) ()] < A+ =

Recall we want to upper-bound the error for E[0.5(B] g(r))?(z),)]. Here, we use the following
observation later:

Elan (Zn, an, s on415.9(m)) (Brg(m)) (2r) — 0.5(Bfg(m))* (21)] = E[0.5(Bf g(m))? (Zn)]-
We use Bernstein’s inequality: with probability 1 — d, for any g € G,
(E — Ep)[an(Zn, an, mh, 0nt15 9)(B19)(Zn) — 0.5(B79)%(zn)]|
< \/E[(3IAIH)2(B;’ZQ)2(%)} (2GnllGn+11/9) | (BIAIH)? In(Gnl|Gn+11/6)

m m

Here, we use
E[{an(Zn, an,mh, on11;9) (B g)(Zn) — 0.5(B}9)% (2n)}]
< E[{ah(?h,ah,rh, 0h+1;9)(B}7{9)(5h) - 0-5(329)2(5h)}](6\A|H)2~
Hereafter, we condition on the above event.
Finally, we have
E[0.5(B5g(m))*(z1)]
< Eplan(Zn, an, h, ont1; 9(m)) (B g(m)) (zn) — 0.5(Bf g(m))? (zn))+
+ [(E — Ep)[an(Zn, an, mh, ont1; 9(m)) (Bhg(m)) (2n) — 0.5(Bf g(m))? (zn)]
3(12H | A})? In(4]Fp||Gr|Gr1]/9)

+[(E — Ep)[on(Zn, an, h, 0n+1; 9(7)) (B g(m))(Zn) — 0.5(B} g(m))*(Zn)]]

<A+

3(12H|A|)? In(4] Fn||Gn|Gn+11/9) n \/E[O'E)(BZQ(W)V(?}L)} n(4|Gn||Gn+1]/6) n 1n(|gh|\gh+1|/5)_

m

<A+

m m

Hence,

Vi € T1, g(m); EL0.5(B]g(m)) ()] < A + o THA I(FHIGu]Gn11/0)

P.3 Proof of Main Statement

We define

‘fmax| = max |~Fh|a |Hmax| = max |Hh|7 |gmax| = max |gh|
he[H] he[H] he[H]
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Let

o (HIAD? (| Max | [ Finax||Gmasx | T(H + 1)/6)
gen — ¢1 m ,
2 (HIAD? In(|Minax| | Fmax | [Gmax| (H + 1) /6)
gen m R
oo, \/(H|A|)21H(|Q1|T(H+ 1)/9)
m 3 m R
B% B3
T = 2Hdn <4Hd (XW N 1)) CR—e
6gen

Then, from the first statement in [Cemma 38] with probability 1 — 4, Vt € [T'],Vh € [H],Vr € II

fmea]):( |ED]t (| Almn(an | Z20){gh (Zn) — Th — gha1(Zht1) } fr(Z0) — 0.5fh(2h)2;a1:M(h)71 ~ Wt,CLM(h);h ~U(A)]|
h h v
(32)
(H|A])? In(|Mmax || Fmax ||Gmax | T (H 4 1) /6)

§C1 .
m

Besides, from the second statement in for 7 € I,Vt € [T],Vh € [H], when g(r)
satisfies

jmax |Epy [|Almn(an | 20){gn(m)(Zn) = = g1 (m) (Zn41) } fn(Zn) = 0.5/n(2h)%; arins(ny—1 ~ s ansuysn ~ U(A)]]
h h

H|A)? In(|Mimax| [ Fmax| |Gmax | T (H + 1) /5)

I

§C1( p—

we have

H|A|)? In(|Tmax| | Fmax||Gmax| TH/S
E[(Brg(m)) (Zn); a1ar(hy—1 ~ T aninyn—1 ~ U(A)] < (c1 +Cz)( AD” In(] 1 [[Gma | T H/ ).

m
(33)

We first show the optimism. Recall 7* = argmax  cp; J(7).

Lemma 39 (Optimism). Set R = €2,,,. Forall t € [T), (7*,g™ ) is a feasible solution of the

gen*

constrained program. Furthermore, we have J(1*) < E[g}(01)] + 2€ni for any t € [T].

Proof. For any w € I, letting g™ € G be a corresponding value future-dependent value function, we
have

;Ié%__)’i |IE'Df2 [lh(zhm QhyThyOh+1; fa , gﬂ)” < 652](371'

using (32)). This implies
gen*

Vt € [T),Yh € [H], max [Ep: [I4(Zn, an, mhy ongr; f,75 97 )] < €2
fe€Fn h

Hence, (%, g™ ) is a feasible set for any ¢ € [T']. Then, we have

J(r*) = Elg7 (01)] < Epy[g (01)] + €ini
< Ep: (98 (01)] + €ini < E[g}(01)] + 2€imi-
O]

Next, recall the following two statements. The following statements are proved as before in the proof

of Theorem 11

 Forany t € [T,

H
J(r) = J(x) <3 [Wi(r', g'), Xn(mh))] + 26
h=1
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e Let Xy, = M + Zj;lo Xu(77)Xn(77)T. We have
T—1 H
d TB2
— < — X ).
T: ZHXh ‘i_H\/Tln(l—i— dA)

Wi (x", g")I3, , < 2AB}, + T|AMe2,,

Lemma 40.

Proof. We have
t—1

Wi (7', "5, ., = AIWa(r', g" ||2+Z Wa(r',g"), Xn(n7)).

The first term is upper-bounded by AB3;. The second term is upper-bounded by

t—1

Z<Wh(7rtvgt)a Xh(ﬂj)>2

7=0
t—1

< |AM ZE[EHAWE(% | Z0)gn(Zn) = rh — gh1(Zn1) | Znsan ~ U(A)P avarmy—1 ~ 77 anrnyn—1 ~ U(A)]
7=0

=AM ZE )2(Zn); @r.na(ny—1 ~ T anrny—1 ~ U(A)]

(H|A])? In(|Tmax]| | Finax||Gmax| TH/9)
m
From the first line to the second line, we use Here, from the third line to the fourth line, we use

(33) O
The rest of the argument is the same as the proof in Finally, the following holds
J(7*) = J(7) < Begen| AM/? [H2dIn(AHA(B% B, Zgen +1))] % + 2€1ns.

< |.A|MT(61 + 02) < T|A‘M €gen-

Sample Complexity Result. We want to find m such that

\/H2|Al2+M ([T || Frnae || Grnece T H /)
m

[H?dIn(HdB% B3,m)]*/? < e.

where
T = HdIn(HdB% Bjym).
By organizing terms, we have

\/ Hd| AP In(|Minax || Finax||Gmax | Hd/6) n(HdBY Biyym) _

€.

m
Thus, setting the following m is enough:

O (H4d|A|2+M 1n(|Hmax||fmax||gmaX|/5)>

€2

The total sample we use m1'H is
0 <d2H6A|2+M 1n<|nmax||fmax|gmax/a>>

€2

Q Sample Complexity in Observable POMDPs with Latent Low-rank
Transition

This section largely follows the one in[Section P|
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Q.1 Existence of Value Future-Dependent Value Functions

Since we consider the discrete setting, we can set the value future-dependent value function class as

Hence, we set
Gn = {(0,1(2) ©0™1(0)); |0]]cc < H}.

Then, we can ensure |G| < H/oy. Then, from the construction of 3, we can also ensure
| Fnll < 4H/o:.

Q.2 PO-bilinear Rank Decomposition (Proof of

In this section, we derive the PO-bilinear decomposition of observable POMDPs with the latent
low-rank transition. We want to prove Recall M (h) = max(h — M, 1).

Using [19, Lemma B.2], we have
Br(m, g;7') = E[{gn(2n) — 7n — gnh+1(Zat1)}; r:nrny—1 ~ 75 ang(nyen ~ 7
=E[{gn(zn) — rn — gh41(Zn1) 5 @1nr(n)—1 ~ T anp(nysh—1 ~ p™" ap ~ )

=EE[{gn(zn) — h — gnr1(Zas1)} | svnys anrnynr ~ 0" an ~ wlsarnmy—1 ~ 7]
= (Xp(7"), Wh(m,9))

where

Wi (m,g) = /E[{gh(ih) — 7 = ght1(Znr )} | Sy @nrnyn—1 ~ 1" an ~ wlp(san))d(Sarn))s

Xh(W/) = E[¢(3M(h)717 aM(h)q); ai:mM(h)—1 ~ 7T/]-

Thus, the first condition in [Definition 9]is satisfied

Next, we show the second condition in This is proved as follows:
i (X5, Wit 0))°

= G [(94(30) = (BRane)(m)) san a1 ~ 7 annr ~ 7]

< ‘S‘%E [(gh(fh) — (Bhgns1) (1)) @rar(ny—1 ~ Ty anrnyn—1 ~ ,uﬁ’h]

IN

1 T s
W }Iééjl_}; E [(gh(ih) - (Bh9h+1)(Th)) f(Th) - O-5f(7'h)2§ a1:M(R)—1 ™~ 7Tl7 AN (h):h—1 ~ ’h]

1 / ™
= W max E [|A\7rh(ah|5h) (gn(Zn) — 70 — gnt1(Zn+1)) f(mn) — 0'5f(7—h)2§a1:M(h)—1 ~ T AN (h):h—1 ™~ M ’haah ~ U(A)}

fEFR
< max E [|A|mn(an|zn) (gn(Zn) — i — ghs1(Zng1)) f(Th) — 0.5f(1h)%; arm(hy—1 ~ Ty ani(nyn ~ UA)]
h

= }Iel?rXE [lh(Thy an, ThyOns1; 7, 9)s Ataa(hy—1 ~ T 5 @ar(nyn ~ U(A)]
h

From the first line to the second line, we use [19, Lemma B.2]. From the third to the fourth line, we

use the Bellman completeness assumption: —(BZQ ) 4+ G1, C Fp,. From the fourth line to the fifth
line, we use importance sampling.

The third condition

J?é%EXhE[lh(Th, Ay Thy Ont 15 f T 97 ) @iy =1 ~ T 5 @arry:n ~ U(A)]| = 0.

is easily proved.

Finally, the following norm constraints hold:

IWh(m,9)| < 3CoVd, | Xpn(x)| <1.
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Sample Complexity Result. Following the same procedure as[Section P} here, we want to find m
such that

¢ CBI AR (Mo || Frna || G TH/)

m

[H?dIn(HdB% B%,m)]'/? < e.

where
T = HdIn(HdB% Bjym).

By organizing terms, we have

<e.

\/C§H2dA|2+M In(|Mmax|[Fmax||Gmax | Hd/6) In(HdB% B, m)
m

Thus, setting the following m is enough

o (H4d|A|2+M 1n(|nmax||fmax|gmax|/a>>

€20?
The total sample we use m1'H is

0 <d2H6A|2+M P e G 1))

2,2
€?oq

Finally, we plug-in In(|ILax || Fmax||Gmax| /) = In(|]M]).

R Exponential Stability for POMDPs with Low-rank Transition

In this section, we prove that the short memory policy is a globall near optimla policy in low-rank
MDPs. We first introduce several notation. Next, we prove the exponential stability of Bayesian
fileters, which immediately leads to the main statement.

Notation. Given a belief b € A(S), an action and observation pair (a, 0), we define the Bayesian
update as follows. We define B(b, 0) € A(S) as the operation that incorporates observation o, i.e.,
b = B(b,0) with b/ (s) = O(0]s)b(s)/(D>_; O(0|5)b(5)), and T, b as the operation that incorporates
the transition, i.e., (Tob)(s") = >, b(s)T(s'|s, a). Finally, we denote U (b, a, 0) as the full Bayesian
filter, i.e.,

S

U(b,a,0) = B(T,b,0).

Let us denote by € A(S) as the initial latent state distribution. Given the first observation 01 ~
O(+]s), s ~ by, we denote by = B(bp, 01) as the initial belief of the system conditioned on the first
observation o;. Given two beliefs b, b’, we define the distance Do (b, V') := logEsp[b(s)/b(s")]

Consider a POMDP whose latent transition is low rank, i.e., T(s|s, a) = pu(s") T ¢(s, a). For notation
simplicity, we still consider discrete state, action, and observation space to avoid using measure
theory languages.

Design of initial distribution. We want to design a good distribution for the initial distribution in
an artificial Bayesian filter ignoring the history other than the short history.

The following lemma is from [23| Lemma 4.9] that quantifies the contraction of a Bayesian map.

Lemma 41 (Contraction propery of beliefs). Suppose b,b" € A(S) and ||b/V || < c0. Then we
have:

B [ \/exp (DQ(B(b, oi,B(b/,o)) i 1)1 (1= oty \/exp ( %ﬁ,) ) B

Next, we compute the G-optimal design using feature ¢(s,a) : S x A — R. Denote the G-optimal
design as p € A(S x A). Here, we use assumption ||¢(s,a)|| < 1 for any (s,a) in Assumption
[l which ensures that ¢(s, a) lives in a compact space for any (s, a). The property is given as in
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In summary, the support of p (denoted by .S,,) is at most d(d + 1)/2 points and for any
@(s,a), there exists «(s, a) such that

S,

a) = Zai(s,a)¢(si,ai)p1/2(si7ai), ai(s,a)/p'/?(s',a’) < d (34)

where we denote the points on the support S, as {s’, a’} Lipl‘.

We set our “empty"” belief as follows:

A
Zp 5,a)T(-|5,a) = Zp(si,ai)T(~|si,ai).
5,a i=1

Note that this belief by does not depend on any history. We aim to bound D5 (b, 50) using the following

lemma where b is some belief resulting from applying T, for any a to a belief b € A(S). This is a
newly introduce lemma.

Lemma 42 (Distance between the actual belief and the designed initial distribution). For any
distribution b € A(S) that results from a previous belief b and a one-step latent transition under
action a, i.e., b(s) = Tyb(§), we have:

Dy (b, by) < In(d).

Proof. For any b € A(S), using its definition, we have:

b(s) = Y _b(3)¢(5,a) " pu(s) (Definition)
P
= Z b(3) Z ai(3,a)p?(s', a Yo (s', a®) T pu(s) (Property of G-optimal design)
SP
- (Zwm (5, ) /2(s',a >> B(s',a!) T u(s)
i=1 s
=Bi
Similarly, the construction of by implies that 50( )= o(st, ai)qﬁ(si ai)Tﬂ(s), thus, we have:
S, o S, T
7 Bio(s',a') T ,a') " u(s)
b(s)/bo(s) =
(8)/%l) ; Zfﬁl p(s?, aj)qb(sﬂ al)T z:: s, az Szvaz)—rﬂ(s)
a;(3,a) il a;(3,a)
= Z Sz az ZZ 1/2 si,af) = Zb(8)2p1/2(5i7ai)
< Z b(3)d® = d®. (Use propety of G-optimal design[(34))
Thus, Ds(b, by) = In (EM b*’(())) <Indd. O

Now we prove the exponential stability by leveraging [Lemma 42| and [Lemma 41}

Theorem 14 (Exponential stability for POMDPs with Low-rank Latent Transition). Consider at >
Cv~*In(d/e€). Consider any policy (full history dependent) m and a trajectory a1.j4¢—1,01:h1t ~ T
for h > 1. Denote by, as the (true) belief conditioned on a1.p4¢—1, 01.n+¢. For approximated belief,
first for h = 1, we define by 4 as:

b1 =bi, bitr (01147, a140-1) = U(bp (017, A1:7-1), 0147, @147-1), 1 < 7 < 8
for h > 2, we define by, ¢ as:

bp = B(bo,01), bnir(Onintr aningr—1) = U(bntr—1(0n:hgr—15 Qhingr—2)s Ohprs Ghr—1), 1 <7 < 8
Then we have:

Vh>1: E[th-s-t(Ol:hH, a1:h4t—1) = bngt (Onehits ah:h-‘,—t—l)Hl ja1nyi—1 ~ T <€
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Proof. We define

Yh+n (01:h+n7 al:h+n—1) = \/GXP(Dz (bh+7z(01:h+n7 al:h+n—1)a l_)h+7l (Oh:h+n7 ah,:h+n,—1))/4) —1.

Hereafter, we omit (01. 45, @1:h4+n—1) to simplify the notation.

We start from the base case Y}, (i.e., n = 0).

First case, consider o > 1, by, = U(bp—1, 0n,ap—1). Denote bj, = Tq, _, by, 1. From|Lemma 42| we
know that:

E[Ds(b}, b0) | 01:h—1,an—1;a1.n—1 ~ 7] < In(d?).

Thus, noting by, = B(b},, 0,) and by, = B(lN);L7 on), we have:

Eo,~ob, {\/QXP(DQ(me(BOa on))/4) = 1] o1h—1,a1:n—1;Q1:h—1 ~ W]

< Eop,noby, [\/GXP(DQ(()?N bo)/4) — 1| 01:h—1,01:h—1; Q1ih1 ~ 77} (From [Lemma 41)
<(1- 0411/240)033/2
which implies the base case:
E[Yh | 0151, Gh—1;a1:h—1 ~ 7] < (1 — o} /210)d3/2.
Now for any n > 1, we have:
E[Yrin | 01:n-1,01:0-15 @1:h4n—1 ~ T

=E [\/exp (DQ(bh+n76h+n)/4) -1 ‘ O01:h—1,Q1:h—1;A1:h4n—1 ~ T

<(1—-01/2")E {\/exp (D2 ((Tapyn1bntn—1)s (Tapsn bngn—1)) /4) = 1| 01:h—1, A1:h—1; Qlihgn—1 ~ T

<(1-01/2")E {\/exp (D2 (bhin—1,bnin-1)) /4) = 1] 01:n—1, 1015 G1hin—1 ~ W]
(Data processing inequality from [23, Lemma 2.7])
= (1 — U%/240)E[Yh+n—1 | O01:h—1,41:h—15Q1:h4n—1 ™~ TF]-

This completes the induction step. Adding expectation with respect to the history ai.5—1,01.n—1
back, we conclude the proof.

When h = 1, we simply start with the original belief ;. For any 0 < n < ¢, we simply set
b14+n = b14n, thus the conclusion still holds.

O

The above indicates that in order to approximate the ground truth belief by, y; that is
conditioned on the entire history, we only need to apply the Bayesian filter on the M memory Z, ¢

starting from a fixed distribution bo. The existence of such by is proven by construction where we rely
on the low-rankness of the latent transition and a D-optimal design over S x A using the feature ¢.

The above together with the proof of Theorem 1.2 in [23] immediately implies for
M = ©(C(o1)"*In(dH/€)) (with C being some absolute constant), there must exists an M-memory
policy 7*, such that J(y;) — J(7*) < € — thus a globally optimal policy can be approximated by a
policy that only relies on short memories.

S Auxiliary Lemmas

We use the following in [Section 4.2}

Lemma 43 (Useful inequalities).
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|AB|| < [[A[[| B, [[AB|[r < [|All||Bllr
vec(aa') = a ® a, ||vec(A) |2 = ||A||p, Tr(AB) = vec(AT) Tvec(B).
» When A and B are semi positive definite matrices, we have
Tr(AB) < [|A|Te(B).

The following lemma is useful when we calculate the sample complexity.
Lemma 44. The following is satisfied

B
\/1 In?(Bym + Bs) < ce
m

when

m = c%{ln(m(Bg + B3 +1))}%

for some constant c.
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