
A Appendix: Additional Background, Derivations, and Algorithm Details

A.1 LOLA with Direct Update

Throughout this paper, we interpret LOLA as directly differentiating through L(πθ1 , πθ2−∆θ2(θ1));
we provide an algorithm box in Algorithm 3. We use this formulation of LOLA since it avoids using a
first-order approximation around the objective as in Foerster et al. [2018a], and forms the conceptual
basis for LOLA-DiCE [Foerster et al., 2018b]. In our experience, we find this formulation generally
provides better and more consistent results, and is easier to implement.

Algorithm 3 LOLA direct update 2-agent formulation: exact gradient update for agent 1

Input: Policy parameters θ = {θ1, θ2}, learning rates α, η
Initialize: θ′ ← θ
θ2′ ← θ2′ − η∇θ2′L2(πθ′) // Preserve Computation Graph
θ1′ ← θ1 − α∇θ′1L

1(πθ′) // Differentiate through agent 2’s update
Output: θ1′

A.2 POLA Invariance Proof

Proof. Consider arbitrary (θ1a, θ1b, θ2a, θ2b) such that πθ1a = πθ1b and πθ2a = πθ2b , and consider
u(θ1a, θ2a) and u(θ1b, θ2b).

u(θ1a, θ2a) = arg min
θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2a)) + βoutD(πθ1a ||πθ1′′)

)
u(θ1b, θ2b) = arg min

θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2b)) + βoutD(πθ1b ||πθ1′′)

)
Recall again that we assume all arg min to be unique. From Equation 2:

θ2′(θ1′′, θ2a) = arg min
θ2′′

(
L2(πθ1′′ , πθ2′′) + βinD(πθ2a ||πθ2′′)

)
θ2′(θ1′′, θ2b) = arg min

θ2′′

(
L2(πθ1′′ , πθ2′′) + βinD(πθ2b ||πθ2′′)

)
Since πθ2a = πθ2b , we get πθ2′(θ1′′,θ2a) = πθ2′(θ1′′,θ2b) because:

arg min
θ2′′

(
L2(πθ1′′ , πθ2′′) + βinD(πθ2a ||πθ2′′)

)
= arg min

θ2′′

(
L2(πθ1′′ , πθ2′′) + βinD(πθ2b ||πθ2′′)

)
Combining this with πθ1a = πθ1b , we get u(θ1a, θ2a) = u(θ1b, θ2b) because:

arg min
θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2a)) + βoutD(πθ1a ||πθ1′′)

)
=

arg min
θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2b)) + βoutD(πθ1b ||πθ1′′)

)
Thus, πu(θ1a,θ2a) = πu(θ1b,θ2b), so u is invariant to policy parameterization.

A.3 Proof of Connection Between POLA and LOLA

Here we show that LOLA is a version of POLA that uses first-order approximations to all objectives
and an L2 penalty on policy parameters rather than a divergence over policies. We assume the loss is
differentiable so first-order approximations are well-defined, and that all arg min are unique.

Lemma A.1. LOLA is equivalent to applying the proximal operator on a first-order approximation
(around θ1) of the modified objective L1(πθ1 , πθ2−∆θ2(θ1)).

Proof. Let f1(θ1) = L1(πθ1 , πθ2−∆θ2(θ1)).

14

Consider the first-order Taylor approximation f̂1(1)
θ1 of the modified objective function (around θ1):2

f̂
1(1)
θ1 (θ1′′) = f1(θ1) +∇θ1f1(θ1)T (θ1′′ − θ1)

Applying the proximal operator to the above, and using the results from Section 2.4 (with x = θ1′′

and v = θ1), we have:

prox
f̂
1(1)

θ1
(θ1) = arg min

θ1′′

(
f̂

1(1)
θ1 (θ1′′) +

1

2λ
||θ1 − θ1′′||22

)
= θ1 − λ∇θ1f1(θ1) = θ1 − λ∇θ1L1(πθ1 , πθ2−∆θ2(θ1))

which recovers the gradient update that LOLA does.

Lemma A.2. For any arbitrary fixed θ1, the naive gradient step in LOLA: θ2 − ∆θ2 = θ2 −
λ∇θ2L2(πθ1 , πθ2) is equivalent to applying the proximal operator on a first-order approximation
(around θ2) of the objective L2(πθ1 , πθ2).

The proof is similar to the one above for Lemma A.1:

Proof. Let θ1 be fixed. Let f2(θ2) = L2(πθ1 , πθ2).

Apply the first-order Taylor approximation f̂2(1)
θ2 of the objective function (around θ2), as in the

following:

f̂
2(1)
θ2 (θ2′′) = f2(θ2) +∇θ2f2(θ2)T (θ2′′ − θ2)

Applying the proximal operator to the above, and using the results from Section 2.4 (with x = θ2′′

and v = θ2), we have:

prox
f̂
2(1)

θ2
(θ2) = arg min

θ2′′

(
f̂

2(1)
θ2 (θ2′′) +

1

2λ
||θ2 − θ2′′||22

)
= θ2 − λ∇θ2f2(θ2) = θ2 − λ∇θ2L2(πθ1 , πθ2) = θ2 −∆θ2

thus recovering the gradient update.

Theorem A.3. POLA reduces to LOLA when replacing the divergence on policies with the L2 norm
on policy parameters and using a first order approximation of both agents’ objectives.

Proof. Recall the expression for POLA (Equations 1 and 2):

θ1′(θ1, θ2) = arg min
θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2)) + βoutD(πθ1 ||πθ1′′)

)
θ2′(θ1′′, θ2) = arg min

θ2′′

(
L2(πθ1′′ , πθ2′′) + βinD(πθ2 ||πθ2′′)

)
Replace L2(πθ1′′ , πθ2′′) with a first order approximation of L2(πθ1′′ , πθ2) around θ2, replace
D(πθ2 ||πθ2′′) with ||θ2 − θ2′′||22, and set βin = 1

2λ . Then by Lemma A.2, θ2′(θ1′′, θ2) =

θ2 −∆θ2(θ1′′), resulting in the following equation (which is Outer POLA in Section 3.3):

θ1′(θ1, θ2) = arg min
θ1′′

(
L1(πθ1′′ , πθ2−∆θ2(θ1′′)) + βoutD(πθ1 ||πθ1′′)

)
Replace D(πθ1 ||πθ1′′) with ||θ1 − θ1′′||22, set βout = 1

2λ , and replace L1(πθ1′′ , πθ2−∆θ2(θ1′′)) with
the first order approximation of L1(πθ1 , πθ2) around θ1, f̂1(1)

θ1 (θ1′′):

θ1′(θ1, θ2) = arg min
θ1′′

(
f̂

1(1)
θ1 (θ1′′) +

1

2λ
||θ1 − θ1′′||22

)
This is exactly prox

f̂
1(1)

θ1
(θ1), so by Lemma A.1, this reduces to LOLA.

2Note that this is different from the first-order approximation used in the original LOLA paper, as that
approximation is a Taylor series expansion of L1(πθ1 , πθ2), whereas here we use a Taylor series expansion of
L1(πθ1 , πθ2−∆θ2(θ1))

15

A.4 LOLA-DiCE

DiCE [Foerster et al., 2018b] introduces an infinitely differentiable estimator for unbiased higher-
order Monte Carlo gradient estimates. DiCE introduces a new operator which operates on a set of
stochastic nodesW , where:

(W) = exp(τ −⊥(τ)) and τ =
∑
w∈W

log p(w;θ). (4)

⊥ is a stop-gradient operator (detach in Pytorch). The loss for agent 1, on a single rollout using
policies (πθ1 , πθ2′), with LOLA-DiCE is:

L1

(πθ1 ,πθ2′)
= −

T∑
t=0

(a≤t)γ
tr1
t (5)

where a≤t denotes the set of actions all agents took at time step t or earlier. Algorithm 4 provides
pseudo-code for LOLA-DiCE.

Algorithm 4 LOLA-DiCE 2-agent formulation: update for agent 1

Input: Policy parameters θ = {θ1, θ2}, learning rates α, η, number of inner steps K
Initialize: θ′ ← θ
for k in 1...K do

Rollout trajectories using policies (πθ1 , πθ2′)
θ2′ ← θ2′ − η∇θ2′L2

(πθ1 ,πθ2′)

end for
Rollout trajectories using policies (πθ1 , πθ2′)
θ1′ ← θ1 − α∇θ1L1

(πθ1 ,πθ2′)

Output: θ1′

LOLA-DiCE [Foerster et al., 2018b] replicated the original LOLA policy gradient results [Foerster
et al., 2018a] in a way that was more direct, efficient, and stable, supported by experiments with
tabular policies in the one-step memory IPD.

A.5 Loaded DiCE

Loaded DiCE [Farquhar et al., 2019] rewrites the DiCE objective (5) as:

L1

(πθ1 ,πθ2′)
= −

T∑
t=0

γt ((a≤t)− (a<t))

T∑
l=t

γl−tr1
l (6)

where a<t denotes the set of actions all agents took before time step t.

Farquhar et al. [2019] showed Equation 6 has the same gradients as Equation 5.
T∑
l=t

γl−tr1
l in Equation

6 is then replaced with an advantage function: A1(st, at). Thus, loaded DiCE incorporates a baseline
for variance reduction with DiCE.

In all our experiments with rollouts (Sections 4.2 and 4.3), we use loaded DiCE (Equation 6) with
generalized advantage estimation (see Appendix A.6 and Schulman et al. [2015b]) for the baseline.

A.6 Generalized Advantage Estimation

Generalized advantage estimation [Schulman et al., 2015b], introduces the following advantage
estimator for time step t:

Â
GAE(γ,λ)
t , (1− λ)(Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...)

Â
(k)
t ,

k−1∑
l=0

γlδVt+l = −V (st) + rt + γrt+1 + ...+ γk−1rt+k−1 + γkV (st+k)

16

When λ = 0, the advantage estimator is the one-step Bellman residual, whereas λ = 1 is equivalent
to Monte Carlo estimation (in the finite horizon setting, it extrapolates the Monte Carlo estimation
with the final state value). In our finite-horizon experiments, we use a finite sum:

Â
GAE(γ,λ,T)
t , (1− λ)

T∑
t′=1

λt
′−1Â

(t′)
t

which is the same as what loaded DiCE does [Farquhar et al., 2019].

When the value function V is not completely accurate, the advantage estimator is biased. Using a
lower value of λ increases bias, but reduces variance.

A.7 Training the Critic

Advantage estimation requires a value function (critic) V . To train the critic, we minimize the mean
squared error of the Monte Carlo return extended by the value in the final state:

Lcritic =

T∑
t=0

([−V (st)] + [rt + γrt+1 + ...+ γT−t−1rT−1 + γT−tV (sT)])2

averaged over samples in the batch.

A.8 POLA-DiCE with Repeated Training on the Same Samples

POLA-DiCE can require a lot of environment rollouts. One idea for improving sample efficiency
and reducing training time is developing a modification like Schulman et al. [2017] or Kakade and
Langford [2002] that allows for repeated training on the same set of samples.

We define a new operator similar to (4) from LOLA-DiCE:

(W) = exp(τ ′ −⊥(τ ′)) and τ ′ =
∑
w∈W

p(w;θ)/p(w;θold) (7)

where θold denotes policy parameters used on the first rollout (step k = 1 for the inner loop and step
m = 1 for the outer loop).

Our new loss for agent 1 is:

L1

(πθ1 ,πθ2′)
=

T∑
t=0

((a≤t)− (a<t)) γ
tA1(st, at)

This is the loaded DiCE formulation (6), but with probability ratios instead of log probabilities, which
lets us make multiple updates on the same batch of rollouts. We provide pseudo-code in Algorithm 5;
we call this POLA-DiCE-PPO.

On the first update step (m = 1 and k = 1), θold = ⊥(θ), so ∇θ2′′L2

(πθ1′′ ,πθ2′′)
=

∇θ2′′L2

(πθ1′′ ,πθ2′′)
and ∇θ1′′L1

(πθ1′′ ,πθ2′′)
= ∇θ1′′L1

(πθ1′′ ,πθ2′′)
. Thus, when inner steps K = 1,

outer steps M = 1, and βin, βout = 0, POLA-DiCE-PPO is equivalent to LOLA-DiCE.

Algorithm 5 repeats training only on the inner loop. A similar repeated training procedure can be
used on the outer loop, for even greater sample efficiency. However, this works only if the higher
order gradients calculated from the initial rollout remain accurate as the policy changes.

We present this section only in the Appendix because we empirically found a larger number of outer
steps to be more important than a larger number of inner steps, and that repeatedly training on the
same samples for the outer loop resulted in learning reciprocity-based cooperation significantly less
consistently. In future work, modifications such as periodic rollouts every x < M outer steps may
provide improved sample efficiency with less deterioration in performance.

This objective can also be clipped, like the clipped version of PPO [Schulman et al., 2017]; future
work could explore this and compare to the KL penalty version.

17

Algorithm 5 POLA-DiCE-PPO 2-agent formulation: update for agent 1

Input: Policy parameters θ1, θ2, learning rates α1, α2, penalty hyperparameters βin, βout, number
of outer steps M and inner steps K
Initialize: θ1′′ ← θ1

for m in 1...M do
Initialize: θ2′′ ← θ2

for k in 1...K do
if k = 1 then

Rollout trajectories using policies (πθ1′′ , πθ2′′). Save states sin
≤T from the trajectories

end if
θ2′′ ← θ2′′ − α2∇θ2′′(L2

(πθ1′′ ,πθ2′′)
+ βinD(πθ2 , πθ2′′ |sin

≤T))

end for
Rollout trajectories with states sout

≤T using policies (πθ1′′ , πθ2′′)

θ1′′ ← θ1′′ − α1∇θ1′′(L1

(πθ1′′ ,πθ2′′)
+ βoutD(πθ1 , πθ1′′ |sout

≤T))

end for
Output: θ1′′

A.9 POLA N-Agent Formulation

Consider again agent 1’s perspective. Agent 1 solves for the following policy:

θ1′(θ1, θ2, ..., θN) = arg min
θ1′′

(
L1(πθ1′′ , πθ2′(θ1′′,θ2,...,θN), ..., πθN′(θ1′′,θ2,...,θN)) + βoutD(πθ1 ||πθ1′′)

)
(8)

where D(πθi ||πθi′′) is again shorthand for a general divergence defined on policies. For θ2′, ..., θN ′

in Equation 8, we choose the following proximal updates:

θ2′(θ1′′, θ2, ..., θN) = arg min
θ2′′

(
L2(πθ1′′ , πθ2′′ , πθ3 ..., πθN) + βinD(πθ2 ||πθ2′′)

)
...

θN ′(θ1′′, θ2, ..., θN) = arg min
θN′′

(
LN (πθ1′′ , πθ2 , ..., πθN−1 , πθN′′) + βinD(πθN ||πθN′′)

)
In short, agent 1 assumes all other agents i find the argmin of their loss, assuming the policies of
other agents j 6= i are fixed (using agent 1’s updated policy θ1′′ and the original policies of all other
agents).

A.10 POLA-DiCE N-Agent Formulation

Let πθ−1,−i , {πθ2 , ..., πθN } \ πθi be shorthand for all of the policies except those of agent 1
and agent i. Algorithm 6 provides an N-agent formulation of POLA-DiCE. The idea is similar to
Appendix A.9; in the inner loop, each agent updates assuming other agents’ policies are fixed.

B Appendix: Experiment and Hyperparameter Details

B.1 One-Step Memory IPD

B.1.1 Exact Loss Calculation

With one step of memory, we can directly build the transition probability matrix P and starting state
distribution p0 given all agents’ policies. Foerster et al. [2018a] in their Appendix A.2 derived the
exact loss: Li = −pT0 (I − γP)−1Ri. This can then be directly used for gradient updates.

B.1.2 Example Showing how the Cooperation Factor Recovers the IPD Reward Structure

Below we show that f = 4/3 recovers the IPD from Foerster et al. [2018a]:

18

Algorithm 6 POLA-DiCE N-agent formulation: update for agent 1

Input: Policy parameters θ1, θ2, ..., θN , learning rates α1, α2, ..., αN , penalty hyperparameters
β2

in, ..., β
N
in , βout, number of outer steps M and inner steps K

Initialize: θ1′′ ← θ1

for m in 1...M do
for i in 2...N do

Initialize: θi′′ ← θi

for k in 1...K do
Rollout trajectories with states sin

≤T using policies (πθ1′′ , πθi′′ , πθ−1,−i)

θi′′ ← θi′′ − αi∇θi′′(Li
(πθ1′′ ,πθi′′ ,πθ−1,−i)

+ βiinD(πθi , πθi′′ |sin
≤T))

end for
end for
Rollout trajectories with states sout

≤T using policies (πθ1′′ , πθ2′′ , ..., πθN′′)

θ1′′ ← θ1′′ − α1∇θ1′′(L1

(πθ1′′ ,πθ2′′ ,...,πθN′′)
+ βoutD(πθ1 , πθ1′′ |sout

≤T))

end for
Output: θ1′′

Let M be the number of agents who cooperate, D(M) be the payoff to each defector, and C(M) be
the payoff to each cooperator. Then C(2) = 1/3, C(1) = −1/3, D(1) = 2/3, D(0) = 0, and we
have the payoff matrix:

P1/P2 C D
C (1/3, 1/3) (-1/3, 2/3)
D (2/3, -1/3) (0, 0)

Multiplying all rewards by 3 (equivalent to scaling the learning rate), subtracting 2 from all rewards
(which preserves the ordering of policies by expected reward, and is equivalent under an accurately
learned value function baseline), then gives the payoff matrix:

P1/P2 C D
C (-1, -1) (-3, 0)
D (0, -3) (-2, -2)

which is the 2-player IPD with the reward structure given in Foerster et al. [2018a].

B.1.3 Function Approximation Setup

With function approximation, our state representation is a one-hot vector with 3 dimensions (defect,
cooperate, and start state) for each agent’s past action. Thus, with two agents, each agent’s input
is two 3-d one-hot vectors, which we flatten to a single 6-d vector. We use this representation as it
has size Θ(N), whereas a single one-hot vector over all possible combinations of actions has size
Θ(2N); our representation is conducive to future experiments with large N .

B.1.4 Hyperparameter Settings

Typical neural network weight initializations (e.g. Gaussian) produce policies that are close to random
(cooperating with probability close to 0.5 in each state). Our policy probability initializations are
close to random throughout; this helps provide comparable results between tabular and neural network
policies. Naive learning can find TFT if initialized sufficiently close to it, but never finds TFT with
policies initialized close to random.

Empirically, for policies initialized close to random and for sufficiently large η, LOLA always updates
the policy toward cooperating iff the opponent last cooperated. Thus, with sufficiently large learning
rate α, LOLA finds TFT in the tabular setting (for f > 1). However, LOLA no longer finds TFT with
large learning rates when the policy parameterization is a neural network function approximator or a
transformed tabular policy (Figure 3).

For Figure 3, we show results from the best set of hyperparameters (highest % TFT found). We tuned
inner and outer learning rates (η, α) for LOLA using a greedy heuristic; we increased or decreased

19

Table 1: Average Policies (Probability of Cooperation by State) Learned in IPD for Various Policy
Parameterizations

Algorithm Parameterization DD DC CD CC Start
(Self & Opponent)

Contribution Factor 1.1

Naive Learning Tabular 0.00 0.06 0.06 0.16 0.01
LOLA Tabular 0.00 1.00 0.00 1.00 1.00
LOLA Neural net 0.00 0.01 0.00 0.03 0.02
LOLA Pre-condition 0.00 0.00 0.97 0.00 0.00
Outer POLA Tabular 0.00 0.97 0.45 1.00 0.94
Outer POLA Neural net 0.00 0.94 0.49 1.00 0.94
Outer POLA Pre-condition 0.01 0.29 0.26 0.87 0.60

Contribution Factor 1.25

Naive Learning Tabular 0.00 0.07 0.07 0.18 0.02
LOLA Tabular 0.00 1.00 0.00 1.00 1.00
LOLA Neural net 0.00 0.02 0.01 0.06 0.02
LOLA Pre-condition 0.00 0.00 0.96 0.00 0.00
Outer POLA Tabular 0.08 0.97 0.18 1.00 0.95
Outer POLA Neural net 0.01 0.87 0.47 1.00 0.85
Outer POLA Pre-condition 0.12 0.97 0.23 1.00 0.77

Contribution Factor 1.33

Naive Learning Tabular 0.00 0.07 0.07 0.19 0.02
LOLA Tabular 0.00 1.00 0.00 1.00 1.00
LOLA Neural net 0.03 0.35 0.06 0.41 0.15
LOLA Pre-condition 0.00 0.00 0.96 0.00 0.00
Outer POLA Tabular 0.13 0.96 0.08 1.00 0.94
Outer POLA Neural net 0.02 0.85 0.45 0.99 0.68
Outer POLA Pre-condition 0.18 0.99 0.30 1.00 0.76

Contribution Factor 1.4

Naive Learning Tabular 0.00 0.07 0.07 0.20 0.02
LOLA Tabular 0.00 1.00 0.00 1.00 1.00
LOLA Neural net 0.25 0.87 0.37 0.88 0.65
LOLA Pre-condition 0.00 0.00 0.96 0.00 0.00
Outer POLA Tabular 0.13 0.96 0.12 1.00 0.95
Outer POLA Neural net 0.02 0.87 0.44 0.99 0.76
Outer POLA Pre-condition 0.21 0.98 0.33 1.00 0.75

Contribution Factor 1.6

Naive Learning Tabular 0.00 0.09 0.09 0.23 0.05
LOLA Tabular 0.00 1.00 0.00 1.00 1.00
LOLA Neural net 0.15 0.98 0.41 0.97 0.67
LOLA Pre-condition 0.10 0.10 0.87 0.10 0.10
Outer POLA Tabular 0.05 0.90 0.07 1.00 0.91
Outer POLA Neural net 0.03 0.95 0.28 0.99 0.87
Outer POLA Pre-condition 0.08 0.98 0.20 1.00 1.00

values until we no longer got better results. For outer POLA, we tuned η and βout, and did less tuning
on the outer learning rate, which matters only for convergence speed and stability. For the exact set
of hyperparameters, see: https://github.com/Silent-Zebra/POLA.

B.1.5 Additional Detailed IPD Results

In Table 1, we show the average probability of cooperation in each state of the IPD for each of the
algorithms and contribution factors shown in Figure 3. Here, DD denotes both agents last defected,

20

https://github.com/Silent-Zebra/POLA

Table 2: Average Policies (Probability of Cooperation by State) Learned in IPD for Various Opponent
Model Policy Parameterizations

Algorithm Parameterization DD DC CD CC Start
(Opponent Model)

Contribution Factor 1.33

LOLA Tabular 0.02 0.99 0.17 1.00 0.93
LOLA Neural net 0.00 0.99 0.03 1.00 0.97
LOLA Pre-condition 0.00 0.10 0.07 0.23 0.08
POLA Tabular 0.01 0.97 0.05 1.00 0.97
POLA Neural net 0.01 0.97 0.05 1.00 0.97
POLA Pre-condition 0.12 0.94 0.02 1.00 0.85

DC denotes the agent last defected while the opponent last cooperated, CD denotes the agent last
cooperated while the opponent last defected, CC denotes both agents last cooperated, and Start is the
starting state. Numbers are averaged over 20 runs and averaged over both agents. Outer POLA learns
reciprocity-based cooperation across contribution factor and policy parameterization settings much
more consistently than LOLA.

B.1.6 IPD Experiments with Varying Opponent Model Parameterizations

We revisit the IPD with opponent modeling, considering agents with tabular policies but varying
parameterizations of opponent models: tabular, neural network function approximation, and pre-
conditioned tabular models. These parameterizations are the same as described previously except for
the pre-conditioned tabular model, for which we now use:

Q1 =

(1 0 0 0 0
−2 1 0 0 0
−2 0 1 0 0
−2 0 0 1 0
−2 0 0 0 1

)
,Q2 =

(1 0 0 0 0
−2 1 0 0 0
−2 0 1 0 0
−2 0 0 1 0
−2 0 0 0 1

)
This set of transformations again only changes basis and lets us illustrate the difference between
LOLA and POLA. We show results in Table 2. LOLA fails to learn reciprocity-based cooperation for
the pre-conditioned tabular opponent model, whereas POLA learns reciprocity-based cooperation
across all parameterizations.

LOLA learns reciprocity-based cooperation well even with a neural net opponent policy. We believe
this is because the inner player policy update (usually towards defecting in each state) is less sensitive
to policy parameterization than the outer player policy update which requires second order gradients
and learning reciprocity.

The version of POLA we use here is similar to POLA-DiCE (Algorithm 2) except with exact losses
and the uniform distribution KL penalty; we provide pseudocode in Algorithm 7.

Algorithm 7 POLA direct approximation 2-agent formulation: update for agent 1

Input: Policy parameters θ1, θ2, learning rates α1, α2, penalty hyperparameters βin, βout, number
of outer steps M and inner steps K
Initialize: θ1′′ ← θ1

for m in 1...M do
Initialize: θ2′′ ← θ2

for k in 1...K do
θ2′′ ← θ2′′ − α2∇θ2′′(L2(πθ1′′ , πθ2′′) + βin(Es∼U(S)[DKL(πθ2(s)||πθ2′′(s))]))

end for
θ1′′ ← θ1′′ − α1∇θ1′′(L1(πθ1′′ , πθ2′′) + βout(Es∼U(S)[DKL(πθ1(s)||πθ1′′(s))]))

end for
Output: θ1′′

We use 100-200 inner steps for POLA and 1 outer step; since we are only changing the opponent model
parameterization, invariance on the inner loop is most important. This is a fairly small number of steps
which does not achieve full invariance, causing results to vary slightly across parameterizations. We

21

assume unlimited batch size for learning the opponent model, which is equivalent to directly learning
from the policy, to separate the effects of noise from opponent modeling. Detailed hyperparameters
are available in the codebase (https://github.com/Silent-Zebra/POLA).

B.2 IPD Full History Details

We use the state representation as discussed in Appendix B.1.3. Agents condition actions on the
entire state history up to the current time step. Policies are parameterized by a fully connected input
layer with 64 hidden units, a ReLU nonlinearity, a GRU cell, and a fully connected output layer.
We use a batch size of 2000 (parallel environment rollouts), discount rate γ = 0.96, and rollout for
T = 50 steps in the environment. For both LOLA-DiCE and POLA-DiCE, we use a simple gradient
step on the inner loop and the Adam optimizer with default betas on the outer loop, as LOLA-DiCE
[Foerster et al., 2018b] does.

For all algorithms, we use loaded DiCE (Appendix A.5) with GAE (Appendix A.6) with λ = 1,
an outer learning rate of 0.003, and a learning rate for the critic (value function) of 0.0005. For
LOLA-DiCE, we use an inner learning rate of 0.05, but we also tried the values: [0.005, 0.015,
0.02, 0.03, 0.07, 0.1, 0.2] and got similar or worse results. We also tried a few settings with lower
and higher outer learning rates and value function learning rates, and 2 inner steps; none learned
reciprocity-based cooperation more consistently.

For POLA-DiCE, we use 2 inner steps and 200 outer steps, with βin = 10 and βout = 100, and
an inner learning rate of 0.005. Results are not very sensitive to βout; we got similar results with
βout = 30 and βout = 200. We did not extensively tune hyperparameters for POLA-DiCE in this
setting, so it is likely that similar results can be reproduced with fewer outer steps. Results are more
sensitive to the inner learning rate and βin, but we expect using more inner steps would lessen this
sensitivity. One challenge with taking more inner steps is the memory requirement, which forces a
tradeoff with batch size. We update the critic after each policy update on both the inner and outer
loop (for the corresponding agent or opponent model).

To learn the opponent model in POLA-OM, we use 200 environment rollouts (of 2000 batch size
each) between each set of POLA updates. The opponent model architecture is the same as the agent’s.
We learn the opponent’s value function in the same way as the agent’s own value function, but with
the reward and states of the other agent. We use learning rates of 0.005 for the policy model and
0.0005 for the value model. For other hyperparameters, we use the same settings for POLA-DiCE
with and without opponent modeling.

In Figure 4 we choose the number of outer steps as the x-axis because the outer steps are policy
updates that are actually made; inner step updates are not saved, and are used only in the gradient
calculation of outer step updates. Each inner step currently requires an environment rollout, though
this can be mitigated in future work (e.g. Appendix A.8), another reason why we consider outer steps
more representative of sample efficiency. Strictly comparing environment rollouts would horizontally
stretch the lines for POLA-DiCE relative to LOLA-DiCE by a factor of 1.5 (3 environment rollouts
per outer step for POLA-DiCE vs. 2 for LOLA-DiCE); this would not change the conclusions drawn
in the paper.

B.3 Coin Game Details

Our environment implementation adheres to Figure 3 in Foerster et al. [2018a] where two agents that
step on the same coin at the same time both collect the coin. In previous experiments, splitting the
coin 50-50 between agents gave very similar results.

The LOLA results in Figure 5 cannot be directly compared with those in Foerster et al. [2018a] for
several reasons. Our implementation of the coin game environment fixes bugs such as ties always
being broken in favour of the red agent (see: https://github.com/alshedivat/lola/issues/9), which
make the original results irreproducible. We use LOLA-DiCE instead of the original LOLA-PG
formulation. We rollout for fewer steps to reduce computation time and memory requirements. Our
policy parameterization has more hidden units and uses a GRU, which should make it more expressive
than the originally used RNN, and may also make optimization more difficult.

Same as the IPD with full history, our GRUs use 64 hidden units with a fully connected input layer
with ReLU nonlinearity and a linear output layer. We use a batch size of 2000 (parallel environment

22

https://github.com/Silent-Zebra/POLA
https://github.com/alshedivat/lola/issues/9

rollouts), discount rate γ = 0.96, and rollout for T = 50 steps in the environment. For both LOLA-
DiCE and POLA-DiCE, we use a simple gradient step on the inner loop and the Adam optimizer
with default betas on the outer loop, as LOLA-DiCE [Foerster et al., 2018b] does.

For all algorithms, we use loaded DiCE (Appendix A.5) with GAE (Appendix A.6) with λ = 1,
an outer learning rate of 0.003, and a learning rate for the critic (value function) of 0.0005. For
LOLA-DiCE, we use an inner learning rate of 0.003, but we also tried the values: [0.001, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2] and got similar results. We also tried a few settings with lower and higher outer
learning rates and value function learning rates, and 2 inner steps; none learned reciprocity-based
cooperation more consistently.

For POLA-DiCE, we use 2 inner steps and 200 outer steps, with βin = 5 and βout = 150, and an
inner learning rate of 0.02. We update the critic after each policy update on both the inner and outer
loop (for the corresponding agent or opponent model).

To learn the opponent model in POLA-OM, we use 200 environment rollouts (of 2000 batch size
each) between each set of POLA updates. The opponent model architecture is the same as the agent’s.
We learn the opponent’s value function in the same way as the agent’s own value function, but
with the reward and states of the other agent. We use learning rates of 0.005 for the policy model
and 0.0005 for the value model. For POLA-OM, we use 4 inner steps with βin = 10 and an inner
learning rate of 0.01; other hyperparameters are the same as POLA-DiCE without opponent modeling.
The additional inner steps and higher βin provide greater invariance to the opponent model, which
helps in the coin game. We tried a few settings with even more inner steps but those did not learn
reciprocity-based cooperation more consistently. We believe this may be due to memory constraints
forcing smaller batch sizes (and thus more noise from environment rollouts) with more inner steps.

In Figure 5 we choose the number of outer steps as the x-axis because the outer steps are policy
updates that are actually made; inner step updates are not saved, and are used only in the gradient
calculation of outer step updates. Each inner step currently requires an environment rollout, though
this can be mitigated in future work (e.g. Appendix A.8), another reason why we consider outer steps
more representative of sample efficiency. Strictly comparing environment rollouts would horizontally
stretch the lines for POLA-DiCE relative to LOLA-DiCE by a factor of 1.5 (3 environment rollouts
per outer step for POLA-DiCE vs. 2 for LOLA-DiCE); this would not change the conclusions drawn
in the paper.

B.4 Code Details

Parts of code were adapted from https://github.com/alexis-jacq/LOLA_DiCE [Foerster
et al., 2018b] and https://github.com/aletcher/stable-opponent-shaping [Letcher et al.,
2018]. Both use the MIT license, which grants permission free of charge for subsequent use,
modification, and distribution.

B.5 Compute Usage

For the IPD with one-step memory (Section 4.1), experiments were run on CPUs provided free of
charge by Google Colaboratory. Most experiments required only a small amount of compute (taking
minutes to run).

For the IPD with full history (Section 4.2) and the coin game (Section 4.3), experiments were run
on GPUs on an internal cluster. GPUs were either NVIDIA Tesla T4 or NVIDIA Tesla P100. Coin
game experiments took around 1 full day (24 hours) to run for 1 seed on 1 GPU, whereas the IPD
with full history experiments took around 8-10 hours for each seed.

The total amount of compute used, including during the experimentation phase, was significantly
higher than that used for Figures 4 and 5.

C Societal Impact

We do not anticipate any immediate societal impact from this work; at the time of writing, there
is no direct real world application. That said, we hope this work helps produce socially benefi-
cial outcomes when autonomous learning agents interact, which is critical for future real-world

23

https://github.com/alexis-jacq/LOLA_DiCE
https://github.com/aletcher/stable-opponent-shaping

deployment. However, while opponent shaping helps in the social dilemma settings we tested, it
could cause undesirable consequences in other settings. For example, pricing algorithms learning
reciprocity-based cooperation would be tantamount to collusion. In such cases, POLA could learn
undesirable behaviour in a way that is invariant to policy parameterization. Overall though, we expect
the potential positive impact of our work to outweigh the potential negative impact.

24

	Appendix: Additional Background, Derivations, and Algorithm Details
	LOLA with Direct Update
	POLA Invariance Proof
	Proof of Connection Between POLA and LOLA
	LOLA-DiCE
	Loaded DiCE
	Generalized Advantage Estimation
	Training the Critic
	POLA-DiCE with Repeated Training on the Same Samples
	POLA N-Agent Formulation
	POLA-DiCE N-Agent Formulation

	Appendix: Experiment and Hyperparameter Details
	One-Step Memory IPD
	Exact Loss Calculation
	Example Showing how the Cooperation Factor Recovers the IPD Reward Structure
	Function Approximation Setup
	Hyperparameter Settings
	Additional Detailed IPD Results
	IPD Experiments with Varying Opponent Model Parameterizations

	IPD Full History Details
	Coin Game Details
	Code Details
	Compute Usage

	Societal Impact

