
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 USING NEURAL NETWORKS TO APPROXIMATE MULTI-RESOURCE COVERAGE OBJECTIVES

(a) Areal Surveillance with feedforward NN. (b) Areal Surveillance with graph NN.

(c) Adversarial Coverage with feedforward NN. (d) Adversarial Coverage with graph NN.

Figure 5: MSE for reward prediction with feedforward and graph neural networks.

We explore the efficacy of using neural networks to learn approximate differentiable models of the
objectives. We trained neural networks, one per forest and per value of m (and n for two-agent
games), to predict the reward of the defender (and attacker in case of two-agent game) on a single
forest domain. The neural networks take as input the action uD of the defender (and uA also for
two-agent game) and outputs a prediction for the reward r̂D,1p (r̂D,2p and r̂A,2p for two-agent
game). Please see section A.6 for network architectures and hyperparameters. Figure 5 shows the
corresponding curves of mean square error (MSE) loss vs. training iterations for both games when
the neural networks are strictly feedforward and also when we use graph neural networks (Battaglia
et al., 2018), which treat each agent resource as a node in a graph and are much better at generalizing
in combinatorial interaction settings. We observe that while graph neural networks are better than
feedforward networks in approximating the coverage rewards, both of them still suffer from high
absolute values of MSE even after 10000 training iterations. The MSE is much higher when a larger
number of agent resources are used e.g., m(= n) = 4 cases (green lines) incur higher errors than
m(= n) = 1 cases (blue lines) under all settings. This demonstrates that multi-resource coverage
objectives are combinatorially hard to approximate even with graph neural networks, especially more
so as the number of agents’ resources and consequently combinatorial interaction between them
increases.

A.2 IMPLICIT BOUNDARY DIFFERENTIATION FOR GRADIENT SIMPLIFICATION

As mentioned in section 3.1, the term ∂qQ∩δSi
∂ui

T
nqQ∩δSi from eq 2 can be simplified further using

implicit differentiation of the boundary of Si. In our example domains, the coverage boundaries
induced by all resources (drones or lumberjacks) are circular. With the location of i-th drone as
ui = {pi, hi} and for the j-th lumberjack as uj = pj , the boundaries are given as:

δSi = {q | ||q − pi||2 = hi tan θ} for drones, and
δSj = {q | ‖q − pj‖2 = RL} for lumberjacks

11

Under review as a conference paper at ICLR 2021

We illustrate the calculation of the ∂qQ∩δSi
∂ui

T
nqQ∩δSi term for a drone below and the calculation

follows similarly for lumberjacks. Any point q ∈ Q ∩ δSi satisfies:

||q − pi||2 = hi tan θ

Differentiating this boundary implicitly w.r.t. pi and w.r.t. hi gives:(
∂q

∂pi

T

− I2

)
q − pi
||q − pi||2

= 0, and

∂q

∂hi

T q − pi
||q − pi||2

= tan θ.

Noting that the outward normal nq at any point q ∈ Q ∩ δSi is given by q−pi
||q−pi||2 , we now have:

∂q

∂ui

T

nq =


(
∂q

∂pi

T

nq

)T
,
∂q

∂hi

T

nq


=

{(
q − pi
||q − pi||2

)T
, tan θ

}

A.3 DIVIDE AND CONQUER BASED SHAPE DISCRETIZER

The python pseudo-code for the discretizer is shown below and makes use of a recursive geometric
map-filling method which uses divide and conquer to efficiently compute the interior, exterior and
boundary of any geometric shape stored in the Shapely geometric library format. Note that a minimal
functional pseudo-code using Numpy has been presented here to facilitate understanding. Our actual
code is more complex and allows working with PyTorch tensors on both CPU and GPU while also
supporting batches of geometric objects. We also have other specialized versions (not shown here)
which work faster for circular geometries.

import numpy as np
from s h a p e l y . geomet ry import Polygon , P o i n t

def ge t g map (geom , l ims , d e l t a s) :
’ ’ ’ Computes t h e g e o m e t r i c maps from geomet ry .
Args :

geom : S h a p e l y geome t ry o b j e c t
l i m s : Tup le (x min , x max , y min , y max) f o r g e n e r a t e d

g e o m e t r i c map
d e l t a s : D i s c r e t i z a t i o n b i n s i z e ; t u p l e (delX , de lY)

R e t u r n s :
g map : numpy . ndarray o f shape (nbinsX , nbinsY , 3)
c o n t a i n i n g (i n t e r i o r , boundary , e x t e r i o r) i n d i c a t o r o f
geomet ry i n t h e t h i r d d i m e n s i o n .

’ ’ ’
x min , x max , y min , y max = l i m s
delX , delY = d e l t a s
nbinsX = round ((x max − x min) / delX)
nbinsY = round ((y max − y min) / delY)

g map = np . z e r o s ((nbinsX , nbinsY , 3)) # (i n t , bound , e x t)
f i l l (geom , g map , 0 , nbinsX , 0 , nbinsY , l ims , d e l t a s)
re turn g map

def f i l l (geom , g map , i1 , i2 , j1 , j2 , l ims , d e l t a s) :

12

Under review as a conference paper at ICLR 2021

’ ’ ’ F i l l s g map o f shape (nbinsX , nbinsY , 3) w i t h 1 s a t
a p p r o p r i a t e l o c a t i o n s t o i n d i c a t e i n t e r i o r , e x t e r i o r and
boundary o f t h e shape geom . T h i s method makes r e c u r s i v e
c a l l s t o i t s e l f and f i l l s up t h e g map t e n s o r in−p l a c e .

Args :
geom : A s h a p e l y . geome t ry o b j e c t , e . g . Polygon
g map : A numpy . ndarray o f shape (nbinsX , nbinsY , 3)
i 1 : l e f t x−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
i 2 : r i g h t x−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
j 1 : bo t tom y−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
j 2 : t o p y−coord o f r e c u r s i v e r e c t a n g l e t o check a g a i n s t
l i m s : Tup le (x min , x max , y min , y max) f o r g e n e r a t e d

g e o m e t r i c map
d e l t a s : D i s c r e t i z a t i o n b i n s i z e ; t u p l e (delX , de lY)

’ ’ ’
x min , x max , y min , y max = l i m s
delX , delY = d e l t a s

box = Polygon ([(x min + i 1 ∗delX , y min + j 1 ∗delY) , \
(x min + i 2 ∗delX , y min + j 1 ∗delY) , \
(x min + i 2 ∗delX , y min + j 2 ∗delY) , \
(x min + i 1 ∗delX , y min + j 2 ∗delY)])

i f box . d i s j o i n t (geom) :
g map [i 1 : i2 , j 1 : j2 , 2] = 1 . 0

e l i f box . w i t h i n (geom) :
g map [i 1 : i2 , j 1 : j2 , 0] = 1 . 0

e l s e : # box . i n t e r s e c t s (geom)
i f (i 2 − i 1 <= 1) and (j 2 − j 1 <= 1) :

g map [i 1 : i2 , j 1 : j2 , 1] = 1
e l i f (i 2 − i 1 <= 1) and (j 2 − j 1 > 1) :

j m i d = (j 1 + j 2) / / 2
f i l l (geom , g map , i1 , i2 , j1 , j mid , l ims , d e l t a s)
f i l l (geom , g map , i1 , i2 , j mid , j2 , l ims , d e l t a s)

e l i f (i 2 − i 1 > 1) and (j 2 − j 1 <= 1) :
i m i d = (i 1 + i 2) / / 2
f i l l (geom , g map , i1 , i mid , j1 , j2 , l ims , d e l t a s)
f i l l (geom , g map , i mid , i2 , j1 , j2 , l ims , d e l t a s)

e l s e : # (i 2 − i 1 > 1) and (j 2 − j 1 > 1) :
i m i d = (i 1 + i 2) / / 2
j m i d = (j 1 + j 2) / / 2
f i l l (geom , g map , i1 , i mid , j1 , j mid , l ims , d e l t a s)
f i l l (geom , g map , i mid , i2 , j1 , j mid , l ims , d e l t a s)
f i l l (geom , g map , i1 , i mid , j mid , j2 , l ims , d e l t a s)
f i l l (geom , g map , i mid , i2 , j mid , j2 , l ims , d e l t a s)

A.4 MITIGATING LOCAL OPTIMA IN BEST RESPONSES

During our preliminary experiments, we observed that learning to optimize resource locations or
mixed strategies using purely gradient-based optimization can easily get stuck in local minima. While
multiple re-runs in single-agent games can generate a reasonably good local minimum, in multi-agent
games where the loss functions of agents are non-stationary due to changes in the other agents’
mixed strategies, this leads to agents getting stuck in very sub-optimal local best responses. DeepFP
maintains stochastic best responses to partially alleviate this issue, but doesn’t completely mitigate it
(for an example, see Figure 6).

While computing a global best response at every iteration of DeepFP can be costly (often infeasible),
in practice it suffices to have a discontinuous exploration technique available in the best response

13

Under review as a conference paper at ICLR 2021

(a) Iter 0 (b) Iter 200 (c) Iter 400 (d) Iter 800 (e) Iter 1300 (f) Iter 1900

Figure 6: A sample sequence of iterations for DeepFP with m = n = 1 to demonstrate the attacker’s
best responses getting stuck in non-stationary local minima generated due to eventual adaptation by
the defender; The drone (blue dots sampled from the defender’s stochastic best response) eventually
drives the lumberjack (red dots) into a corner from where it cannot cross over to other parts of the
forest, because gradient-based optimization cannot jump over walls of high loss values.

update step. Hence, we propose a simple population-based approach wherein we maintain a set of
K deterministic best responses brkp(σ−p), for p ∈ {D,A} and ∀k ∈ [K]. During the best response
optimization step for agent p, we optimize the K best responses independently and play the one
which exploits agent −p the most. After the optimization step, the top K

2 best responses are retained
while the bottom half are discarded and freshly initialized with random placements for the next
iteration. This allows retention and further refinement of the current best responses over subsequent
iterations, while discarding and replacing the ones stuck due to the opponent exploiting them. Since
best responses get re-ranked every iteration, neither agent can excessively exploit a best response and
cause the opponent to get stuck, because the opponent just switches to a different best response from
its population in subsequent iterations.

A.5 CHOOSING POPULATION SIZE K

Finally since the number of population members K is an important hyperparameter for our proposed
approach, we show the effect on defender’s exploitability by increasingK in Table 3. As expected, the
exploitability decreases when using larger population sizes due to better exploration and finding more
optimal (local) best responses while running DeepFP. Increasing K also reduces the variance of our
metrics considerably. However using large population sizes also directly increases the computational
burden and hence we have used K = 4 in all our experiments as a reasonable trade-off between
achieving better metrics and having manageable run-times.

Table 3: Exploitability of defender for m = n = 2 averaged across forest instances with increasing
population size K.

Variant εD(σD)
brnet 399.9488± 57.7006
pop1 348.9498± 98.4338
pop2 189.8122± 73.6444
pop4 141.0912± 13.8966
pop6 127.9152 ± 12.8323

A.6 HYPERPARAMETERS AND MODEL ARCHITECTURES

A.6.1 LEARNING DIFFERENTIABLE REWARD MODELS

While learning differentiable reward models with neural networks, we trained all networks for 10, 000
iterations with the Adam optimizer having learning rate 0.01 and a batch size of 64. The network
architectures used are shown in Table 4.

A.6.2 DEEPFP

For DeepFP, we run a total of 1000 outer fictitious play iterations and 100 inner optimization iterations
to update best responses using the Adam optimizer with learning rate 0.001 and batch size 16. The
network architecture for best response nets in brnet variant are shown in Table 5.

14

Under review as a conference paper at ICLR 2021

Table 4: Network architectures for reward models

Game Net type Structure

Areal Surveillance nn Rm×3 R128 R512 R128 R1fc,relu fc,relu fc,relu fc,relu

Areal Surveillance gnn

Rm×3, , R32, , R32,R16,

R32,R16, R32,R16,R16

R32,R16,R16 R32,R16,R16

R1

node enc

3→32

edge net

64→16

node net

48→32

glob net

48→16

edge net

96→16

node net

64→32

glob net

64→1

Adversarial Coverage nn

Rm×3 R128 R128 R1

R256 R512

Rn×2 R128 R128 R1

fc,relu

cat

fc,relu fc

fc,relu

fc,relu

cat

fc,relu fc

Adversarial Coverage gnn

R(m+n)×3, , R64, , R64,R32,

R64,R32, R64,R32,R32

R64,R32,R32 R64,R32,R32

R2

node enc

3→64

edge net

128→32

node net

96→64

glob net

96→32

edge net

192→32

node net

128→64

glob net

128→2

Table 5: Network architectures for DeepFP brnet best responses

Net type Structure

Defender’s brnet

Rm×2

R32 R256

Rm×1

fc,tanh

fc,relu

fc,relu

Attacker’s brnet R32 R256 Rn×2fc,relu fc,tanh

15

