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A ADDITIONAL METHODOLOGY DETAILS

A.1 DERIVATION OF EQUATION 4

We denote ⌧ := t�t0, ⌫ := s�s0, the variables t0 2 [0, T ], ⌧ 2 [0, ⌧max], s0 2 S and ⌫ 2 B(0, amax),
where the sets S, B(0, amax) ⇢ R2. Viewing the spatial and temporal variables, i.e., (t0, ⌧) and
(s0, ⌫), as left and right mode variables, respectively, the kernel function SVD (Mollenhauer et al.,
2020; Mercer, 1909) of k gives that

k(t0, ⌧, s0, ⌫) =
1X

k=1

�kgk(t
0
, ⌧)hk(s

0
, ⌫). (A.1)

We assume that the SVD can be truncated at k  K with a residual of " for some small " > 0,
and this holds as long as the singular values �k decay sufficiently fast. To fulfill the approximate
finite-rank representation, it suffices to have the scalars �k and the functions gk and hk so that the
expansion approximates the kernel k, even if they are not SVD of the kernel. This leads to the
following assumption:
Assumption A.1. There exist coefficients �k, and functions gk(t0, ⌧), hk(s0, ⌫) s.t.

k(t0, ⌧, s0, ⌫) =
KX

k=1

�kgk(t
0
, ⌧)hk(s

0
, ⌫) +O("). (A.2)

To proceed, one can apply kernel SVD again to gk and hk respectively, and obtain left and right
singular functions that potentially differ for different k. Here, we impose that across k = 1, · · · ,K,

the singular functions of gk are the same (as shown below, being approximately same suffices) set of
basis functions, that is,

gk(t
0
, ⌧) =

1X

l=1

�k,l l(t
0)'l(⌧).

As we will truncate l to be up to a finite rank again (up to an O(") residual) we require the (approx-
imately) shared singular modes only up to L. Similarly as above, technically it suffices to have a
finite-rank expansion to achieve the O(") error without requiring them to be SVD, which leads to the
following assumption where we assume the same condition for hk:
Assumption A.2. For the gk and hk in equation A.2, up to an O(") error,

(i) The K temporal kernel functions gk(t0, ⌧) can be approximated under a same set of left and right

basis functions, i.e., there exist coefficients �kl, and functions  l(t0), 'l(⌧) for l = 1, · · · , L, s.t.

gk(t
0
, ⌧) =

LX

l=1

�kl l(t
0)'l(⌧) +O("), k = 1, · · · ,K. (A.3)

(ii) The K spatial kernel functions hk(s0, ⌫) can be approximated under a same set of left and right

basis functions, i.e., there exist coefficients �kr, and functions ur(s0), vr(⌫) for r = 1, · · · , R, s.t.

hk(s
0
, ⌫) =

RX

r=1

�krur(t
0)vr(⌫) +O("), r = 1, · · · , R. (A.4)

Inserting equation A.3 and equation A.4 into equation A.2 gives the rank-truncated representation of
the kernel function. Since K, L, R are fixed numbers, assuming boundedness of all the coefficients
and functions, we have the representation with the final residual as O("), namely,

k(t0, ⌧, s0, ⌫) =
LX

l=1

RX

r=1

KX

k=1

�k�kl�kr l(t
0)'l(⌧)ur(t

0)vr(⌫) +O(").

Defining
PK

k=1 �k�kl�kr as ↵lr leads to equation 4.

A.2 ALGORITHMS
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Algorithm 1 Model parameter estimation
Input: Training set X , batch size M , epoch number E, learning rate �, constant a > 1 to update s
in equation 6.
Initialization: model parameter ✓0, first epoch e = 0, s = s0.
while e < E do

for each batch with size M do
1. For 1D temporal point process, compute `(✓), {�(tct)}ct=1,...,|Ubar,t|. For spatio-temporal
point process, compute `(✓), {�(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|Ubar,s|.

2. Set b = min{�(tct)}ct=1,...,|Ubar,t|�✏ (or min{{�(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|Ubar,s|�✏),
where ✏ is a small value to guarantee logarithm feasibility.
3. Compute L(✓) = �`(✓) + 1

wp(✓, b).

4. Update ✓e+1  ✓e � � @L
@✓e

.

5. e e+ 1, w  w · a
end for

end while

Algorithm 2 Synthetic data generation
Input: Model �(·), T,S , Upper bound of conditional intensity �̄.
Initialization: HT = ;, t = 0, n = 0
while t < T do

1. Sample u ⇠ Unif(0, 1).
2. t t� lnu/�̄.
3. Sample s ⇠ Unif(S), D ⇠ Unif(0, 1).
4. � = �(t, s|HT ).
if D�̄  � then
n n+ 1; tn = t, sn = s.
HT  HT [ {(tn, sn)}.

end if
end while
if tn >= T then

return HT � {(tn, sn)}
else

return HT

end if

A.3 GRID-BASED MODEL COMPUTATION

In this section, we elaborate on the details of the grid-based efficient model computation.

In Figure A.1, we visualize the procedure of computing the integrals of
R T�ti
0 'l(t)dt and

R
S
vr(s�

si)ds in equation 8, respectively. Panel (a) illustrates the calculation of
R T�ti
0 'l(t)dt. As explained

in Section 4.2, the evaluations of 'l only happens on the grid Ut over [0, ⌧max] (since 'l(t) = 0 when
t > ⌧max). The value of F (t) =

R t
0 'l(⌧)d⌧ on the grid can be obtained through numerical integration.

Then given ti, the value of F (T � ti) =
R T�ti
0 'l(t)dt is calculated using linear interpolation of F

on two adjacent grid points of T � ti. Panel (b) shows the computation of
R
S
vr(s� si)ds. Given

si,
R
S
vr(s � si)ds =

R
B(0,amax)\{S�si}

vr(s)ds since vr(s) = 0 when s > amax. Then B(0, amax)

is discretized into the grid Us, and
R
S
vr(s� si)ds can be calculated based on the value of vr on the

grid points in Us \ S � si (the deep red dots in Figure A.1(b)) using numerical integration.

To evaluate the sensitivity of our model to the chosen grids, we compare the performance of
DNSK+Barrier on 3D Data set 2 using grids with different resolutions. The quantitative re-
sults of testing log-likelihood and intensity prediction error are reported in Table A.1. We use
|Ut| = 50, |Us| = 1500 for the experiments in the main paper. As we can see, the model shows
similar performances when a higher grid resolution is used and works slightly less accurately but still
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Figure A.1: (a) Computation of
R T�ti
0 'l(t)dt computation based on grid Ut. Red dots represent grid

points. Line segments connecting two light or dark grey dots represent the linear interpolation of 'l

and Fl. Here ti is the time of the historical event which is fixed. (b) Computation of
R
S
vr(s� si)ds

based on grid Us. The background heatmap represents the evaluation of vr over S. Here the fixed
si is the location of the historical event. The integral is calculated based on the values of vr on grid
points with dark red color.
Table A.1: Comparison of DNSK+Barrier performance on 3D Data set 2 with different grid
resolutions. Testing log-likelihood per event and intensity MRE are reported. The highlighted ones
are the results in the main paper.

Spatial resolution: |Us|
Temporal resolution: |Ut| 1000 1500 3000

30 �2.272(0.005)/0.102 �2.252(0.002)/0.088 �2.250(0.002)/0.081
50 �2.257(0.002)/0.095 �2.251(0.001)/0.082 �2.249(0.001)/0.078

100 �2.255(0.001)/0.091 �2.252(0.001)/0.081 �2.250(0.001)/0.078

better than other baselines with less number of grid points. It reveals that our choice of grid resolution
is accurate enough to capture the complex dynamics of event occurrences for this non-stationary data,
and the model performance is robust to different grid resolutions.

In practice, the grids can be flexibly chosen to reach the balance of model accuracy and computational
efficiency. For instance, the number of uniformly distributed grid points along one dimension can be
chosen around O(n0), where n0 is the average number of events in one observed sequence. Note
that |Ut| or |Us| would be far less than the total number of observed events because we use thousands
of sequences (2000 in our synthetic experiments) for model learning. And the grid size can be even
smaller when it comes to non-Lebesgue-measured space.

A.4 DETAILS OF COMPUTATIONAL COMPLEXITY

We provide the detailed analysis of the O(n) computation complexity of L(✓) in Section 4.3 as
following:

• Computation of log-summation. The evaluation of {ur}Rr=1 and { l}Ll=1 over n events costs
O((R + L)n) complexity. The evaluation of {'l}Ll=1 is of O(L|Ut|) complexity since it relies on
the grid Ut. With the assumption that the conditional intensity is bounded by a constant C in a finite
time horizon (Lewis and Shedler, 1979; Daley et al., 2003; Zhu et al., 2022), for each fixed j, the
cardinality of set {(i, j) | tj < ti  tj + ⌧max} is less than C⌧max, which leads to a O(RC⌧maxn)
complexity of {vr}Rr=1 evaluation.

• Computation of integral. The integration of {'l}Ll=1 only relies on numerical operations of {'l}Ll=1

on grids Ut without extra evaluations of neural networks. The integration of {vr}Rr=1 depends on the
evaluation on grid Us of O(R|Us|) complexity.

• Computation of barrier. {'l}Ll=1 on grid Ubar,t is estimated by numerical interpolation of previously
computed {'l}Ll=1 on grid Ut. Additional neural network evaluations of {vr}Rr=1 cost no more than
O(RC⌧maxn) complexity.
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B DEEP NON-STATIONARY KERNEL FOR MARKED STPPS

In marked STPPs (Reinhart, 2018), each observed event is associated with additional information
describing event attribute, denoted as m 2M ⇢ RdM . Let H = {(ti, si,mi)}ni=1 denote the event
sequence. Given the observed history Ht = {(ti, si,mi) 2 H|ti < t}, the conditional intensity
function of a marked STPPs is similarly defined as:

� (t, s,m) = lim
�t#0,�s#0,�m#0

E [N([t, t+�t]⇥B(s,�s)⇥B(m,�m)) | Ht]

|B(s,�s)||B(m,�m)|�t
,

where B(m,�m) is a ball centered at m 2 RdM with radius �m. The log-likelihood of observing
H on [0, T ]⇥ S ⇥M is given by

`(H) =
nX

i=1

log � (ti, si,mi)�
Z T

0

Z

S

Z

M

�(t, s,m)dmdsdt.

B.1 KERNEL INCORPORATING MARKS

One of the salient features of our spatio-temporal kernel framework is that it can be conveniently
adopted in modeling marked STPPs with additional sets of mark basis functions {gq, hq}Qq=1. We
modify the influence kernel function k accordingly as following:

k(t0, t� t
0
, s

0
, s� s

0
,m

0
,m) =

QX

q=1

RX

r=1

LX

l=1

↵lrq l(t
0)'l(t� t

0)ur(s
0)vr(s� s

0)gq(m
0)hq(m).

Here m
0
,m 2M ⇢ RdM and {gq, hq : M! R, q = 1, . . . , Q} represented by independent neural

networks model the influence of historical mark m
0 and current mark m, respectively. Since the mark

space M is always categorical and the difference between m
0 and m is of little practical meaning,

we use gq and hq to model m0 and m separately instead of modeling m�m
0.

B.2 LOG-BARRIER AND MODEL COMPUTATION

The conditional intensity for marked spatio-temporal point processes at (t, s,m) can be written as:

�(t, s,m) = µ+
X

l,r,q

↵lrq

X

(ti,si,mi)2Ht

 l(ti)'(t� ti)ur(si)vr(s� si)gq(mi)hq(m).

We need to guarantee the non-negativity of � over the space of [0, T ] ⇥ S ⇥M. When the total
number of unique categorical mark in M is small, the log-barrier can be conveniently computed as
the summation of � on grids Ubar,t ⇥ Ubar,s ⇥M. In the following we focus on the case that M is
high-dimensional with O(n) number of unique marks.

For model simplicity we use non-negative gq and hq in this case (which can be done by adding a
non-negative activation function to the linear output layer in neural networks). We re-write �(t, s,m)
and denote as following:

�(t, s,m) = µ+
X

q

0

@
X

l,r

↵lrq

X

(ti,si,mi)2Ht

 l(ti)'(t� ti)ur(si)vr(s� si)gq(mi)

1

A

| {z }
F̂q(t,s)

hq(m).

Note that the function in the brackets are only with regard to t, s. We denote it as F̂q(t, s) (since
it is in the rth rank of mark). Since hq(m) � 0, the non-negativity of � can be guaranteed by the
non-negativity of F̂q(t, s). Thus we apply log-barrier method on F̂q(t, s). The log-barrier term
becomes:

p(✓, b) := � 1

Q|Ubar,t ⇥ Ubar,s|

|Ubar,t|X

ct=1

|Ubar,s|X

cs=1

QX

q=1

log(F̂q(tct , scs)� b),
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Since our model is low-rank, the value of Q will not be large.

For the model computation, the additional evaluations for {gq}Qq=1 on events is of O(Qn) complexity
and the evaluations for {hq}Qq=1 only depends on the unique number of marks which at most of
O(n). The log-barrier method does not introduce extra evaluation in mark space. Thus the overall
computation complexity for DNSK in marked STPPs is still O(n).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide details of data sets and experimental setup, together with additional
experimental results.

Synthetic data sets. To show the robustness of our model, we generate three temporal data sets and
three spatio-temporal data sets using the following kernels:

(i) 1D Data set 1 with exponential kernel: k(t0, t) = 0.8e�(t�t0).

(ii) 1D Data set 2 with non-stationary kernel: k(t0, t) = 0.3(0.5 + 0.5 cos(0.2t0))e�2(t�t0).
(iii) 1D Data set 3 with infinite rank kernel:

k(t0, t) = 0.3
1X

j=1

2�j

✓
0.3 + cos(2 + (

t
0

5
)0.71.3(j + 1)⇡)

◆
e
�

8(t�t0)2
25 j2

(iv) 2D Data set 1 with exponential kernel: k(t0, t, s0, s) = 0.5e�1.5(t�t0)
e
�0.8s0 .

(v) 3D Data set 1 with non-stationary inhibition kernel:

k(t0, t, s0, s) = 0.3(1� 0.01t)e�2(t�t0) 1

2⇡�2
s0
e
�

ks0k2

2�2
s0

cos (10ks� s
0k)

2⇡�2
s(1 + e10(ks�s0k�0.5)

e
�

ks�s0k2

2�2
s

, where �s0 = 0.5,�s = 0.15.
(vi) 3D Data set 2 with non-stationary mixture kernel:

k(t0, t, s0, s) =
2X

r=1

2X

l=1

↵rlur(s
0)vr(s� s

0) l(t
0)'l(t� t

0)

, where u1(s0) = 1�as(s02+1), u2(s0) = 1�bs(s02+1), v1(s�s0) = 1
2⇡�2

1
e
�

ks�s0k2

2�2
1 , v2(s�

s
0) = 1

2⇡�2
2
e
�

ks�s0�0.8k2

2�2
2 , 1(t0) = 1 � att

0
, 2(t0) = 1 � btt

0
,'1(t � t

0) =

e
��(t�t0)

,'2(t� t
0) = (t� t

0� 1) · I(t� t
0
< 3), and as = 0.3, bs = 0.4, at = 0.02, bt =

0.02,�1 = 0.2,�2 = 0.3,� = 2, (↵11,↵12,↵21,↵22) = (0.6, 0.15, 0.225, 0.525).

Note that kernel (iii) is the one we illustrated in Figure 1, which is of infinite rank according to the
formulas. In Figure 1, the value matrix of k(t0, t) and k(t0, t � t

0) are the kernel evaluations on a
same 300⇥ 300 uniform grid. As we can see, the rank of the value matrix of the same kernel k is
reduced from 298 to 7 after changing to the displacement-based kernel parameterization.

Details of Experimental setup. For RMTPP and NH we test embedding size of {32, 64, 128} and
choose 64 for experiments. For THP we take the default experiment setting recommended by Zuo
et al. (2020). For NSMPP we use the same model setting in Zhu et al. (2022) with rank 5. Each
experiment is implemented by the following procedure: Given the data set, we split 90% of the
sequences as training set and 10% as testing set.

We use independent fully-connected neural networks with two-hidden layers for each basis function.
Each layer contains 64 hidden nodes. The temporal rank of DNSK+Barrier is set to be 1 for
synthetic data (i), (ii), (iv), (v), 2 for (vi), and 3 for (iii). The spatial rank is 1 for synthetic data
(iv), (v) and 2 for (vi). The temporal and spatial rank for real data are both set to be 2 through cross
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Figure A.2: Kernel recovery results of 2D exponential kernel. The first two columns show the true
kernel and kernel learned by DNSK+Barrier. The last two columns shows the true and predicted
conditional intensity functions of a test sequence. The line charts visualize the conditional intensity
average over the 1D mark space at any given time for the ease of presentation. The red dots indicate
the time of observed events.

validation. For each real data set, the ⌧max is chosen to be around T/4 and smax is 1 for each data set
since the location space is normalized before training. The hyper-parameter of DNSK+Softplus
are the same as DNSK+Barrier. For RMTPP, NH, and THP the batch size is 32 and the learning
rate is 10�3. For others, the batch size is 64 and the learning rate is 10�1. The quantitative results are
collected by running each experiment for 5 independent times. All experiments are implemented on
Google Colaboratory (Pro version) with 25GB RAM and a Tesla T4 GPU.

C.1 SYNTHETIC RESULTS WITH 2D & 3D KERNEL

In this section we present additional experiment results for the synthetic data sets with 2D exponential
and 3D non-stationary mixture kernel. Our proposed model successfully recovers the kernel and
event conditional intensity in both case. Note that the recovery of 3D mixture kernel demonstrates the
capability of our model to handle complex event dependency with mixture patterns by conveniently
setting time and mark rank to be more than 1.

C.2 ATLANTA TEXTUAL CRIME DATA WITH HIGH-DIMENSIONAL MARKS

Figure A.4 visualizes the fitting and prediction results of DNSK+Barrier. Our model presents
an decaying pattern in temporal effect and captures two different patterns of spatial influence for
incidents in the northeast. Besides, the in-sample and out-of-sample intensity predictions demonstrate
the ability of DNSK to characterize the event occurrences by showing different conditional intensities.
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Figure A.3: Kernel recovery results of 3D non-stationary mixture kernel. The first two columns show
snapshots of the true kernel and kernel learned by DNSK+Barrier. The last two columns shows
snapshots of the true and predicted conditional intensity functions of a test sequence.
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Figure A.4: Model fitting and prediction for high-dimensional real data. First column shows the
learned temporal functions. Four panels in the middle shows the learned spatial functions, Deeper
color depth indicates higher function value. Last four panels show the predicted conditional intensity
over space at two in-sample times and two out-of-sample times, respectively. The dots represent
event occurrences at that day.
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