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A APPENDIX

A.1 CONVERGENCE ANALYSIS

Herein, we provide the proofs of the lemmas and theorem shown in Section 5.

A.1.1 PRELIMINARIES

FedLAMA periodically chooses a few layers that will be less frequently synchronized. We call these
layers Least Critical Layers (LCL) for short.

Notations – All vectors in this paper are column vectors. x ∈ Rd denotes the parameters of one
local model and m is the number of workers. The stochastic gradient computed from a single
training data point ξ is denoted by g(x, ξ). For convenience, we use g(x) instead. The full batch
gradient is denoted by∇F (x). We use ‖ · ‖ and ‖ · ‖op to denote l2 norm and matrix operator norm,
respectively.

Objective Function – In this paper, we consider federated optimization problems as follows.

min
x∈Rd

[
F (x) :=

m∑
i=1

piFi(x)

]
, (10)

where pi = ni/n is the ratio of local data to the total dataset, and Fi(x) = 1
ni

∑
ξ∈D fi(x, ξ) is the

local objective function of client i. n is the global dataset size and ni is the local dataset size. Note
that, by definition,

∑m
i=1 pi = 1.

Averaging Matrix – We define a time-varying averaging matrix Wk ∈ Rdm×dm as follows.

Wk =


P, if k mod τmin is 0
J, if k mod τmax is 0
I, otherwise

(11)

I is an identity matrix, P is also a time-varying averaging matrix, and J is a full averaging matrix.
First, P1

i is a d× d diagonal matrix that has 1 for the diagonal elements that correspond to the LCL
parameters and pi for all the other diagonal elements. Likewise, P0

i is another d×d diagonal matrix
that has 0 for the diagonal elements that correspond to the LCL parameters and pi for all the other
diagonal elements. Then, P is defined as follows.

P =

{
P1, for m diagonal blocks
P0, for all the other blocks

(12)

The ith block column of P consists of P1
i and P0

i following the above definition.

Here we present an example of P wherem = 2 and d = 2. In this example, p0 = 1/3 and p1 = 2/3.
Saying the LCL is the second parameter, P is defined as follows.

P1
0 =

[
1
3 0
0 1

]
,P0

0 =

[
1
3 0
0 0

]
,P1

1 =

[
2
3 0
0 1

]
,P0

1 =

[
2
3 0
0 0

]
(13)

P =

[
P1

0 P0
1

P0
0 P1

1

]
=


1
3 0 2

3 0
0 1 0 0
1
3 0 2

3 0
0 0 0 1

 . (14)

The full-averaging matrix J is defined as follows. First, Ji is a d× d diagonal matrix that has pi for
the diagonal elements. Then, J consists of m×m blocks of Ji such that each column block is m of
Ji blocks. Here we present an example of J where m = 2 and d = 2 as follows.

J0 =

[
1
3 0
0 1

3

]
,J1 =

[
2
3 0
0 2

3

]
(15)
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J =

[
J0 J1

J0 J1

]
=


1
3 0 2

3 0
0 1

3 0 2
3

1
3 0 2

3 0
0 1

3 0 2
3

 . (16)

The averaging matrix P and J have the following properties:

1. P1dm = 1dm, J1dm = 1dm.
2. The product of any two averaging matrices consists only of diagonal block matrices because

all the blocks in P and J are diagonal.
3. PJ = JP = J regardless of which layers are chosen as the LCL.
4. PP = P regardless of which layers are chosen as the LCL.

Vectorization – We define a vectorized form of m local model parameters xk ∈ Rdm, its stochastic
gradients gk ∈ Rdm, and the full gradients fk ∈ Rdm as follows

xk = vec
{
x1
k,x

2
k, · · · ,xmk

}
gk = vec

{
g1(x

1
k), g2(x

2
k), · · · , gm(xmk )

}
fk = vec

{
∇F1(x

1
k),∇F2(x

2
k), · · · ,∇Fm(xmk )

}
.

(17)

The full model aggregation can be written using the vectorized form of local models xk and the
averaging matrix J as follows.

Jxk =


1
3 0 2

3 0
0 1

3 0 2
3

1
3 0 2

3 0
0 1

3 0 2
3



x
(1,1)
k

x
(1,2)
k

x
(2,1)
k

x
(2,2)
k

 =


(x

(1,1)
k + 2x

(2,1)
k )/3

(x
(1,2)
k + 2x

(2,2)
k )/3

(x
(1,1)
k + 2x

(2,1)
k )/3

(x
(1,2)
k + 2x

(2,2)
k )/3

 (18)

where x(i,j)k is the jth model parameter of local model i at iteration k.

We also define the following additional vectorized forms of the weighted model parameters and
gradients for convenience.

x̂k = vec
{√

p1x
1
k,
√
p2x

2
k, · · · ,

√
pmxmk

}
ĝk = vec

{√
p1g1(x

1
k),
√
p2g2(x

2
k), · · · ,

√
pmgm(xmk )

}
f̂k = vec

{√
p1∇F1(x

1
k),
√
p2∇F2(x

2
k), · · · ,

√
pm∇Fm(xmk )

} (19)

Assumptions – We analyze the convergence rate of FedLAMA under the following assumptions.

1. (Smoothness). Each local objective function is L-smooth, that is, ‖∇Fi(x) −∇Fi(y)‖ ≤
L‖x− y‖,∀i ∈ {1, · · · ,m}.

2. (Unbiased Gradient). The stochastic gradient at each client is an unbiased estimator of the
local full-batch gradient: Eξ[gi(x, ξ)] = ∇Fi(x).

3. (Bounded Variance). The stochastic gradient at each client has bounded variance:
Eξ[‖gi(x, ξ)−∇Fi(x)‖2 ≤ σ2],∀i ∈ {1, · · · ,m}, σ2 ≥ 0.

4. (Bounded Dissimilarity). For any sets of weights {pi ≥ 0}mi=1,
∑m
i=1 pi = 1, there exist

constants β2 ≥ 1 and κ2 ≥ 0 such that
∑m
i=1 pi‖∇Fi(x)‖2 ≤ β2‖

∑m
i=1 pi∇Fi(x)‖2+κ2.

If local objective functions are identical to each other, β2 = 1 and κ2 = 0.
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A.1.2 PROOFS

Theorem 5.1. Suppose all m local models are initialized to the same point u1. Under As-
sumption 1 ∼ 4, if FedLAMA runs for K iterations and the learning rate satisfies η ≤

min

{
1

2(τmax−1)L ,
1

L
√

2τmax(τmax−1)(2β2+1)

}
, FedLAMA ensures

E

[
1

K

K∑
i=1

‖∇F (uk)‖2
]
≤ 4

ηK
(E [F (u1)− F (u∗)]) + 4η

m∑
i=1

p2iLσ
2

+ 3η2(τmax − 1)L2σ2 + 6η2τmax(τmax − 1)L2κ2, (20)

where u∗ indicates a local minimum.

Proof. Based on Lemma 5.1 and 5.2, we have

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 2

ηK
(E [F (u1)− F (u∗)]) + 2η

m∑
i=1

p2iLσ
2

+ L2

(
η2(τmax − 1)σ2

j

1−A
+

Aβ2

KL2(1−A)

K∑
k=1

E
[
‖∇F (uk)‖2

]
+

Aκ2

L2(1−A)

)
.

After re-writing the left-hand side and a minor rearrangement, we have

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 2

ηK
(E [F (u1)− F (u∗)]) + 2η

m∑
i=1

p2iLσ
2

+
1

K

K∑
k=1

Aβ2

1−A E
[
‖∇F (uk)‖2

]
+ L2

(
η2(τmax − 1)σ2

1−A
+

Aκ2

L2(1−A)

)
.

By moving the third term on the right-hand side to the left-hand side, we have

1

K

K∑
k=1

(
1− Aβ2

1−A

)
E
[
‖∇jF (uk)‖2

]
≤ 2

ηK
(E [F (u1)− F (u∗)]) + 2η

m∑
i=1

p2iLσ
2

+ L2

(
η2(τmax − 1)σ2

1−A
+

Aκ2

L2(1−A)

)
. (21)

If A ≤ 1
2β2+1 , then Aβ2

1−A ≤
1
2 . Therefore, (21) can be simplified as follows.

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 4

ηK
(E [F (u1)− F (u∗)]) + 4η

m∑
i=1

p2iLσ
2 (22)

+ 2L2

(
η2(τmax − 1)σ2

1−A

)
+ 2

Aκ2

1−A
.

The learning rate condition A ≤ 1
2β2+1 also ensures that 1

1−A ≤ 1 + 1
2β2 . Based on Assumption 4,

1
2β2 ≤ 2

3 , and thus 1
1−A ≤

2
3 . Therefore, we have

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 4

ηK
(E [F (u1)− F (u∗)]) + 4η

m∑
i=1

p2iLσ
2

+ 3η2(τmax − 1)L2σ2 + 6η2τmax(τmax − 1)L2κ2.

We complete the proof.
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Learning Rate Constraints – In Theorem 5.3, we have two learning rate constraints, one from (22)
and the other from (51) as follows.

A <
1

2β2 + 1
from (22)

A < 1 from (51)
After a minor rearrangement, we have a unified learning rate constraint as follows.

η ≤ min

{
1

2(τmax − 1)L
,

1

L
√

2τmax(τmax − 1)(2β2 + 1)

}

Lemma 5.1. (Framework) Under Assumption 1 ∼ 3, if the learning rate satisfies η ≤ 1
2L , FedLAMA

ensures
1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 2

ηK
E [F (u1)− F (u∗)] + 2ηLσ2

m∑
i=1

(pi)
2

+
L2

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] . (23)

Proof. Based on Assumption 1, we have

E [F (uk+1)− F (uk)] ≤ −ηE

[
〈∇F (uk),

m∑
i=1

pigi(x
i
k)〉

]
︸ ︷︷ ︸

T1

+
η2L

2
E

∥∥∥∥∥
m∑
i=1

pigi(x
i
k)

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

(24)

First, T1 can be rewritten as follows.

T1 = E

[
〈∇F (uk),

m∑
i=1

pi
(
gi(x

i
k)−∇Fi(xik)

)
〉

]
+ E

[
〈∇F (uk),

m∑
i=1

pi∇Fi(xik)〉

]

= E

[
〈∇F (uk),

m∑
i=1

pi∇Fi(xik)〉

]

=
1

2
‖∇F (uk)‖2 +

1

2
E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2
− 1

2
E

∥∥∥∥∥∇F (uk)−
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2
 ,

(25)
where the last equality holds based on a basic equality: 2a>b = ‖a‖2 + ‖b‖2 − ‖a− b‖2 .

Then, T2 can be bounded as follows.

T2 = E

∥∥∥∥∥
m∑
i=1

pi
(
gi(x

i
k)− E

[
gi(x

i
k)
])

+

m∑
i=1

pi E
[
gi(x

i
k)
]∥∥∥∥∥

2


= E

∥∥∥∥∥
m∑
i=1

pi
(
gi(x

i
k)−∇Fi(xik)

)
+

m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥
m∑
i=1

pi
(
gi(x

i
k)−∇Fi(xik)

)∥∥∥∥∥
2
+ 2E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


= 2

m∑
i=1

p2i E
[∥∥gi(xik)−∇Fi(xik)∥∥2]+ 2E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


≤ 2σ2
m∑
i=1

p2i + 2E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2
 , (26)
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where the last equality holds because gi(xik) − ∇Fi(xik) has 0 mean and is independent across i,
and the last inequality follows Assumption 3.

By plugging in (25) and (26) into (24), we have the following.

E [F (uk+1)− F (uk)] ≤ −
η

2
‖∇F (uk)‖2 −

η

2
E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


+
η

2
E

∥∥∥∥∥∇F (uk)−
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2
+ η2Lσ2

m∑
i=1

p2i

+ η2LE

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


= −η
2
‖∇F (uk)‖2 −

η

2
(1− 2ηL)E

∥∥∥∥∥
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


+
η

2
E

∥∥∥∥∥∇F (uk)−
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2
+ η2Lσ2

m∑
i=1

p2i

If η ≤ 1
2L , it follows

E [F (uk+1)− F (uk)]
η

≤ −1

2
‖∇F (uk)‖2 + ηLσ2

m∑
i=1

p2i

+
1

2
E

∥∥∥∥∥∇F (uk)−
m∑
i=1

pi∇Fi(xik)

∥∥∥∥∥
2


≤ −1

2
‖∇F (uk)‖2 + ηLσ2

m∑
i=1

p2i (27)

+
1

2

m∑
i=1

pi E
[∥∥∇Fi(uk)−∇Fi(xik)∥∥2]

≤ −1

2
‖∇F (uk)‖2 + ηLσ2

m∑
i=1

p2i +
L2

2

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] ,
where (27) holds based on the convexity of `2 norm and Jensen’s inequality.

By taking expectation and averaging across K iterations, we have.

1

K

K∑
k=1

E [F (uk+1)− F (uk)]
η

≤ − 1

2K

K∑
k=1

‖∇F (uk)‖2 + ηLσ2
m∑
i=1

p2i

+
L2

2K

K∑
k−1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] .
18
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After a minor rearrangement, we have a telescoping sum as follows.

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤ 2

ηK
E [F (u1)− F (uk+1)] + 2ηLσ2

m∑
i=1

p2i

+
L2

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
≤ 2

ηK
E [F (u1)− F (u∗)] + 2ηLσ2

m∑
i=1

p2i

+
L2

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] ,
where u∗ indicates the local minimum. Here, we complete the proof.

Lemma 5.2. (Model Discrepancy) Under Assumption 1 ∼ 4, if the learning rate satisfies η <
1

2(τmax−1)L , FedLAMA ensures

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] ≤ 2η2(τmax − 1)σ2

1−A
+

Aκ2

L2(1−A)

+
Aβ2

KL2(1−A)

K∑
k=1

E
[
‖∇F (uk)‖2

]
,

(28)

where A = 4η2(τmax − 1)2L2 and τmax is the largest averaging interval across all the layers.

Proof. We begin with rewriting the weighted average of the squared distance using the vectorized
form of the local models as follows.

m∑
i=1

pi
∥∥uk − xik

∥∥2 =

m∑
i=1

∥∥√pi (uk − xik
)∥∥2

= ‖Jx̂k − x̂k‖2 (29)

= ‖(J− I)x̂k‖2 ,

where (29) holds by the commutative property of multiplication.

Then, according to the parameter update rule, we have

(J− I)x̂k = (J− I)Wk−1(x̂k−1 − ηĝk−1)
= (J− I)Wk−1x̂k−1 − (J−Wk−1)ηĝk−1, (30)

where (30) holds because JW = J based on the averaging matrix property 3, and IW = W.

Then, expanding the expression of xk−1, we have

(J− I)x̂k = (J− I)Wk−1(Wk−2(x̂k−2 − ηĝk−2))− (J−Wk−1)ηĝk−1

= (J− I)Wk−1Wk−2x̂k−2 − (J−Wk−1Wk−2)ηĝk−2 − (J−Wk−1)ηĝk−1.

Repeating the same procedure for x̂k−2, x̂k−3, · · · , x̂2, we have

(J− I)x̂k = (J− I)
k−1∏
s=1

Wsx̂1 − η
k−1∑
s=1

(J−
k−1∏
l=s

Wl)ĝs

= −η
k−1∑
s=1

(J−
k−1∏
l=s

Wl)ĝs, (31)

where (31) holds because xi1 is the same across all the workers and thus (J− I)x̂1 = 0.
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Based on (31), we have

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
=

1

K

K∑
k=1

(
E
[
‖(J− I)x̂k‖2

])

=
1

K

K∑
k=1

η2 E
∥∥∥∥∥

k−1∑
s=1

(J−
k−1∏
l=s

Wl)ĝs

∥∥∥∥∥
2


=
1

K

K∑
k=1

η2 E
∥∥∥∥∥

k−1∑
s=1

(J−
k−1∏
l=s

Wl)(ĝs − f̂s) +

k−1∑
s=1

(J−
k−1∏
l=s

Wl)f̂s

∥∥∥∥∥
2


≤ 2η2

K


K∑
k=1

E

∥∥∥∥∥
k−1∑
s=1

(J−
k−1∏
l=s

Wl)(ĝs − f̂s)

∥∥∥∥∥
2


︸ ︷︷ ︸
T3

+

K∑
k=1

E

∥∥∥∥∥
k−1∑
s=1

(J−
k−1∏
l=s

Wl)f̂s

∥∥∥∥∥
2


︸ ︷︷ ︸
T4


(32)

where (32) holds based on the convexity of `2 norm and Jensen’s inequality. Now, we focus on
bounding T3 and T4, separately.

Bounding T3

K∑
k=1

E

∥∥∥∥∥
k−1∑
s=1

(J−
k−1∏
l=s

Wl)(ĝs − f̂s)

∥∥∥∥∥
2


=

K∑
k=1

k−1∑
s=1

E

∥∥∥∥∥(J−
k−1∏
l=s

Wl)(ĝs − f̂s)

∥∥∥∥∥
2
 (33)

≤
K∑
k=1

k−1∑
s=1

E

∥∥∥(ĝs − f̂s)
∥∥∥2 ∥∥∥∥∥(J−

k−1∏
l=s

Wl)

∥∥∥∥∥
2

op

 , (34)

where (33) holds because ĝs − f̂s has 0 mean and independent across s, and (34) holds based on
Lemma A.1.
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Without loss of generality, we replace k with aτmax+ b, where a is the communication round index
and b is the iteration index within each communication round. Then, we have

K/τmax−1∑
a=0

τmax∑
b=1

aτmax+b−1∑
s=1

E

∥∥∥(ĝs − f̂s)
∥∥∥2 ∥∥∥∥∥(J−

k−1∏
l=s

Wl)

∥∥∥∥∥
2

op


=

K/τmax−1∑
a=0

τmax∑
b=1

aτ∑
s=1

E

∥∥∥(ĝs − f̂s)
∥∥∥2 ∥∥∥∥∥(J−

aτmax+b−1∏
l=s

Wl)

∥∥∥∥∥
2

op


+

K/τmax−1∑
a=0

τmax∑
b=1

aτmax+b−1∑
s=aτmax+1

E

∥∥∥(ĝs − f̂s)
∥∥∥2 ∥∥∥∥∥(J−

aτmax+b−1∏
l=s

Wl)

∥∥∥∥∥
2

op


=

K/τmax−1∑
a=0

τmax∑
b=1

aτmax+b−1∑
s=aτmax+1

E

∥∥∥(ĝs − f̂s)
∥∥∥2 ∥∥∥∥∥(J−

aτmax+b−1∏
l=s

Wl)

∥∥∥∥∥
2

op

 (35)

=

K/τmax−1∑
a=0

τmax∑
b=1

aτ+b−1∑
s=aτmax+1

E
[∥∥∥(ĝs − f̂s)

∥∥∥2] (36)

=

K/τmax−1∑
a=0

τmax∑
b=1

aτmax+b−1∑
s=aτmax+1

m∑
i=1

pi E
[∥∥(gi(xis)−∇Fi(xis))∥∥2]

≤
K/τmax−1∑

a=0

τmax∑
b=1

aτmax+b−1∑
s=aτmax+1

m∑
i=1

piσ
2 (37)

=

K/τmax−1∑
a=0

τmax∑
b=1

(b− 1)σ2 =

K/τmax−1∑
a=0

τmax(τmax − 1)

2
σ2

≤ K (τmax − 1)

2
σ2. (38)

Remember FedLAMA synchronizes the whole parameters at least once after every τmax iterations.
Thus, (35) holds because

∏aτmax+b−1
l=s Wl is J when s ≤ aτmax, and thus J −

∏aτmax+b−1
l=s Wl

becomes 0. (36) holds based on Lemma A.2. (37) holds based on Assumption 3.

Bounding T4
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K−τmax∑
k=1

E

∥∥∥∥∥
k−1∑
s=1

(J−
k−1∏
l=s

Wl)f̂s

∥∥∥∥∥
2


=

K/τmax−1∑
a=0

τmax∑
b=1

E

∥∥∥∥∥
aτ+b−1∑
s=1

(J−
aτmax+b−1∏

l=s

Wl)f̂s

∥∥∥∥∥
2


=

K/τmax−1∑
a=0

τmax∑
b=1

E

∥∥∥∥∥
aτmax+b−1∑
s=aτmax+1

(J−
aτmax+b−1∏

l=s

Pl)f̂s

∥∥∥∥∥
2
 (39)

≤
K/τmax−1∑

a=0

τmax∑
b=1

(b− 1)

aτmax+b−1∑
s=aτmax+1

E

∥∥∥∥∥(J−
aτmax+b−1∏

l=s

Pl)f̂s

∥∥∥∥∥
2
 (40)

≤
K/τmax−1∑

a=0

τmax∑
b=1

(b− 1)

aτmax+b−1∑
s=aτmax+1

E

∥∥∥f̂s∥∥∥2
∥∥∥∥∥(J−

aτmax+b−1∏
l=s

Pl)

∥∥∥∥∥
2

op

 (41)

≤
K/τmax−1∑

a=0

τmax∑
b=1

(
(b− 1)

aτmax+b−1∑
s=aτmax+1

E
[∥∥∥f̂s∥∥∥2]) (42)

≤ τmax(τmax − 1)

2

K/τmax−1∑
a=0

(
aτmax+τmax−1∑
s=aτmax+1

E
[∥∥∥f̂s∥∥∥2])

≤ τmax(τmax − 1)

2

K∑
k=1

E
[∥∥∥f̂k∥∥∥2]

=
τmax(τmax − 1)

2

K∑
k=1

m∑
i=1

pi E
[∥∥∇Fi(xik)∥∥2] , (43)

where (39) holds because J −
∏aτmax+b−1
l=s Pl becomes 0 when s ≤ aτ . (40) holds based on the

convexity of `2 norm and Jensen’s inequality. (41) holds based on Lemma A.1. (42) holds based on
Lemma A.2.

Final Result

By plugging in (38) and (43) into (32), we have

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
≤ 2η2

K

(
K

(τmax − 1)

2
σ2 +

τmax(τmax − 1)

2

(
K∑
k=1

m∑
i=1

pi E
[∥∥∇Fi(xik)∥∥2]

))

= η2(τmax − 1)σ2 +
η2τmax(τmax − 1)

K

(
K∑
k=1

m∑
i=1

pi E
[∥∥∇Fi(xik)∥∥2]

)
(44)

The local gradient term on the right-hand side in (44) can be rewritten using the following inequality.

E
[∥∥∇Fi(xik)∥∥2] = E

[∥∥∇Fi(xik)−∇Fi(uk) +∇Fi(uk)∥∥2]
≤ 2E

[∥∥∇Fi(xik)−∇Fi(uk)∥∥2]+ 2E
[
‖∇Fi(uk)‖2

]
(45)

≤ 2L2 E
[∥∥uk − xik

∥∥2]+ 2E
[
‖∇Fi(uk)‖2

]
, (46)
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where (45) holds based on the convexity of `2 norm and Jensen’s inequality.

Plugging in (46) into (44), we have

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
≤ η2(τmax − 1)σ2 +

2η2τmax(τmax − 1)L2

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
+

2η2τmax(τmax − 1)

K

K∑
k=1

m∑
i=1

pi E
[
‖∇Fi(uk)‖2

]
(47)

After a minor rearranging, we have

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2] ≤ η2(τmax − 1)σ2

1− 2η2τmax(τmax − 1)L2

+
2η2τmax(τmax − 1)

K(1− 2η2τmax(τmax − 1)L2)

K∑
k=1

m∑
i=1

pi E
[
‖∇Fi(uk)‖2

]
(48)

Let us define A = 2η2τmax(τmax − 1)L2. Then (48) is simplified as follows.

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]
≤ η2(τmax − 1)σ2

1−A
+

A

KL2(1−A)

K∑
k=1

m∑
i=1

pi E
[
‖∇Fi(uk)‖2

]
Based on Assumption 4, we have

1

K

K∑
k=1

m∑
i=1

pi E
[∥∥uk − xik

∥∥2]

≤ η2(τmax − 1)σ2

1−A
+

Aβ2

KL2(1−A)

K∑
k=1

E

∥∥∥∥∥
m∑
i=1

pi∇Fi(uk)

∥∥∥∥∥
2
+

Aκ2

L2(1−A)
(49)

=
η2(τmax − 1)σ2

1−A
+

Aβ2

KL2(1−A)

K∑
k=1

E
[
‖∇F (uk)‖2

]
+

Aκ2

L2(1−A)
, (50)

where (50) holds based on the definition of the objective function (10).

Note that (49) is true only when 1− A > 0. Thus, after a minor rearrangement, we have a learning
rate constraint as follows.

η <
1

2(τmax − 1)L
(51)

Here, we complete the proof.

A.1.3 PROOF OF OTHER LEMMAS

Lemma A.1. Consider a real matrix A ∈ Rmdj×mdj and a real vector b ∈ Rmdj . If b 6= 0mdj ,
we have

‖Ab‖ ≤ ‖A‖op‖b‖ (52)
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Proof.

‖Ab‖2 =
‖Ab‖2

‖b‖2
‖b‖2

≤ ‖A‖2op‖b‖2 (53)

where (53) holds based on the definition of operator norm.

Lemma A.2. Suppose an md×md averaging matrix P and the full-averaging matrix J, then

‖J−P‖2op = 1. (54)

regardless of which layers are chosen as the LCL.

Proof. First, by the definition of averaging matrix P, all the columns that do not correspond to the
LCL are zeroed out in J−P. Then, based on the averaging matrix property 1 and 2, the remaining
columns in P has 1 at all different rows. By the definition of J, all the non-zero elements in ith
column are the same pi, i ∈ {1, · · · ,m}. Consequently, the remaining columns in J − P are
always orthogonal regardless of which layers are chosen as the LCL, and thus the eigenvalues of
J − P are either 1 or −1. Finally, by the definition of the matrix operator norm, ‖J − P‖2op =
max{|λ(J−P)|} = 1, where λ(·) indicates the eigenvalues of the input matrix.
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a) CIFAR-10 IID setting learning curves

b) CIFAR-10 non-IID setting learning curves

Figure 4: The learning curves of CIFAR-10 (ResNet20) training (128 clients). a): The curves for
IID data distribution. b): The curves for non-IID data distribution (α = 0.1). FedAvg (x) indicates
FedAvg with the interval of x. FedLAMA (x, y) indicates FedLAMA with the base interval of x
and the interval increase factor of y. As the aggregation interval increases, FedAvg rapidly loses the
convergence speed, and it results in achieving a lower validation accuracy within the fixed iteration
budget. In contrast, FedLAMA effectively increases the aggregation interval while maintaining the
convergence speed.
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a) CIFAR-100 IID setting learning curves

b) CIFAR-100 non-IID setting learning curves

Figure 5: The learning curves of CIFAR-100 (WideResNet28-10) training (128 clients). a): The
curves for IID data distribution. b): The curves for non-IID data distribution (α = 0.1). FedAvg
(x) indicates FedAvg with the interval of x. FedLAMA (x, y) indicates FedLAMA with the base
interval of x and the interval increase factor of y. While FedAvg significantly loses the convergence
speed as the aggregation interval increases, FedLAMA has a marginl impact on it which results in a
higher validation accuracy.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide extra experimental results with extensive hyper-parameter settings. We
commonly use 128 clients and a local batch size of 32 in all the experiments. The gradual learning
rate warmup (Goyal et al. (2017)) is also applied to the first 10 epochs in all the experiments. Overall,
the learning curve charts and the validation accuracy tables deliver the key insight that FedLAMA
achieves a comparable convergence speed to the periodic full aggregation with the base interval
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Figure 6: The learning curves of FEMNIST (CNN) training. FedAvg (x) indicates FedAvg with
the interval of x. FedLAMA (x, y) indicates FedLAMA with the base interval of x and the interval
increase factor of y. FedLAMA curves are not strongly affected by the increased aggregation interval
while FedAvg significantly loses the convergence speed as well as the validation accuracy.

(τ ’) while having the communication cost that is similar to the periodic full aggregation with the
increased interval (φτ ′).

Artificial Data Heterogeneity – For CIFAR-10 and CIFAR-100, we artificially generate the het-
erogeneous data distribution using Dirichlet’s distribution. The concentration coefficient α is set to
0.1, 0.5, and 1.0 to evaluate the performance of FedLAMA across a variety of degree of data hetero-
geneity. Note that the small concentration coefficient represents the highly heterogeneous numbers
of local samples across clients as well as the balance of the samples across the labels. We used the
data distribution source code provided by FedML (He et al. (2020)).

CIFAR-10 – Figure 4 shows the full learning curves for IID and non-IID CIFAR-10 datasets. The
hyper-parameter settings correspond to Table 4 and 1. First, as the aggregation interval increases
from 6 to 24, FedAvg suffers from the slower convergence, and it results in achieving a lower val-
idation accuracy, regardless of the data distribution. In contrast, FedLAMA learning curves are
marginally affected by the increased aggregation interval. Table 6 and 7 show the CIFAR-10 classi-
fication performance of FedLAMA across different φ settings. As expected, the accuracy is reduced
as φ increases. The IID and non-IID data settings show the common trend. Depending on the system
network bandwidth, φ can be tuned to be an appropriate value. When φ = 2, the accuracy is almost
the same as or even slightly higher than FedAvg accuracy. If the network bandwidth is limited, one
can increase φ and slightly increase the epoch budget to achieve a good accuracy. Table 8 shows the
CIFAR-10 accuracy across different τ ′ settings. We see that the accuracy is significantly dropped as
τ ′ increases.

CIFAR-100 – Figure 5 shows the learning curves for IID and non-IID CIFAR-100 datasets. Likely
to CIFAR-10 results, FedAvg learning curves are strongly affected as the aggregation interval in-
creases from 6 to 24 while FedLAMA learning curves are not strongly affected. Table 9 and 10
show the CIFAR-100 classification performance of FedLAMA across different φ settings. Fed-
LAMA achieves a comparable accuracy to FedAvg with a short aggregation interval, even when
the degree of data heterogeneity is extreamly high (25% device sampling and Direchlet’s coefficient
of 0.1). Table 11 shows the FedAvg accuracy with different τ ′ settings. Under the strongly het-
erogeneous data distributions, FedAvg with a large aggregation interval (τ ≥ 12) do not achieve a
reasonable accuracy.

FEMNIST – Figure 6 shows the learning curves of CNN training. Likely to the previous two
datasets, the periodic full aggregation suffers from the slower convergence as the aggregation in-
terval increases. FedLAMA learning curves are not much affected by the increased aggregation
interval, and it results in achieving a higher validation accuracy after the same number of iterations.
Table 12 shows the FEMNIST classification performance of FedLAMA across different φ settings.
FedLAMA achieves a similar accuracy to the baseline (FedAvg with τ ′ = 10) even when using a
large interval increase factor φ ≥ 4. These results demonstrate the effectiveness of the proposed
layer-wise adaptive model aggregation method on the problems with heterogeneous data distribu-
tions.
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Table 6: (IID data) CIFAR-10 classification results of FedLAMA with different φ settings.
# of clients Local batch size LR Averaging interval: τ ′ Interval increase factor: φ Validation acc.

128 32

0.8

6

1 (FedAvg) 88.37± 0.1%

0.5
2 88.41± 0.04%
4 86.33± 0.2%
8 85.08± 0.04%

Table 7: (Non-IID data) CIFAR-10 classification results of FedLAMA with different φ settings.
# of clients Local batch size LR τ ′ Active ratio Dirichlet coeff. φ Validation acc.

128 32

0.8

6

100% 1
1 (FedAvg) 90.79± 0.1%

2 89.01± 0.04%
4 87.84± 0.01%

100% 0.5
1 (FedAvg) 90.53± 0.18%

2 89.21± 0.2%
4 86.68± 0.12%

100% 0.1
1 (FedAvg) 89.52± 0.11%

2 89.00± 0.1%
4 84.82± 0.08%

50% 1
1 (FedAvg) 90.34± 0.12%

2 89.56± 0.13%
4 87.48± 0.21%

50% 0.5
1 (FedAvg) 89.86± 0.13%

2 88.44± 0.15%
4 87.29± 0.18%

50% 0.1
1 (FedAvg) 87.83± 0.2%

2 87.40± 0.17%
4 85.92± 0.21%

0.6

25% 1
1 (FedAvg) 88.97± 0.03%

2 87.89± 0.2%
4 86.61± 0.1%

25% 0.5
1 (FedAvg) 87.59± 0.05%

2 87.12± 0.08%
4 86.57± 0.02%

0.3 25% 0.1
1 (FedAvg) 84.02± 0.04%

2 83.55± 0.02%
4 83.06± 0.03%

Table 8: (Non-IID data) CIFAR-10 classification results of FedAvg with different τ ′ settings.
# of clients Local batch size LR τ ′ Active ratio Dirichlet coeff. φ Validation acc.

128 32 0.8
6

100% 0.1
1 (FedAvg) 89.52± 0.11%

12 1 (FedAvg) 87.29± 0.05%
24 1 (FedAvg) 84.82± 0.1%

128 32 0.3
6

25% 0.1
1 (FedAvg) 84.02± 0.1%

12 1 (FedAvg) 82.48± 0.2%
24 1 (FedAvg) 76.72± 0.1%

Table 9: (IID data) CIFAR-100 classification results of FedLAMA with different φ settings.
# of clients Local batch size LR Averaging interval: τ ′ Interval increase factor: φ Validation acc.

128 32 0.6 6

1 (FedAvg) 76.50± 0.02%
2 75.99± 0.03%
4 76.17± 0.2%
8 76.15± 0.2%
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Table 10: (Non-IID data) CIFAR-100 classification results of FedLAMA with different φ settings.
# of clients Local batch size LR τ ′ Active ratio Dirichlet coeff. φ Validation acc.

128 32

0.4

6

100% 1
1 (FedAvg) 80.34± 0.01%

2 78.92± 0.01%
4 77.16± 0.05%

100% 0.5
1 (FedAvg) 80.19± 0.02%

2 78.88± 0.1%
4 78.03± 0.08%

0.2 100% 0.1
1 (FedAvg) 79.78± 0.02%

2 79.07± 0.02%
4 79.32± 0.01%

0.4

50% 1
1 (FedAvg) 79.94± 0.1%

2 78.98± 0.01%
4 77.50± 0.02%

50% 0.5
1 (FedAvg) 79.95± 0.05%

2 78.37± 0.05%
4 76.93± 0.1%

0.2 50% 0.1
1 (FedAvg) 79.62± 0.06%

2 78.76± 0.02%
4 77.44± 0.02%

0.4
25% 1

1 (FedAvg) 78.78± 0.02%
2 78.10± 0.02%

0.2 4 76.84± 0.03%

0.4
25% 0.5

1 (FedAvg) 78.81± 0.01%
2 77.86± 0.04%
4 77.01± 0.1%

25% 0.1
1 (FedAvg) 79.06± 0.03%

2 78.63± 0.02%
0.2 4 77.17± 0.01%

Table 11: (Non-IID data) CIFAR-100 classification results of FedAvg with different τ ′ settings.
# of clients Local batch size LR τ ′ Active ratio Dirichlet coeff. φ Validation acc.

128 32 0.4
6

100% 0.1
1 (FedAvg) 79.78± 0.02%

12 1 (FedAvg) 77.71± 0.1%
24 1 (FedAvg) 69.63± 0.1%

128 32 0.4
6

25% 0.1
1 (FedAvg) 79.06± 0.03%

12 1 (FedAvg) 76.16± 0.05%
24 1 (FedAvg) 67.43± 0.1%

Table 12: FEMNIST classification results of FedLAMA with different φ settings.
# of clients Local batch size LR Averaging interval: τ ′ Active ratio Interval increase factor: φ Validation acc.

128 32 0.04 12

100%

1 (FedAvg) 85.74± 0.21%
2 85.40± 0.13%
4 84.67± 0.1%
8 84.15± 0.18%

50%

1 (FedAvg) 86.59± 0.2%
2 86.07± 0.1%
4 85.77± 0.15%
8 85.31± 0.03%

25%

1 (FedAvg) 86.04± 0.2%
2 86.01± 0.1%
4 85.62± 0.08%
8 85.23± 0.1%
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