Appendices: Contextually Affinitive Neighborhood Refinery for
Deep Clustering

A More Experimental Results

A.1 Training Efficiency

Table 3: Comparison of the average training speed (it/s) using batch size 256 on a single 3090 RTX
GPU across different methods on five benchmarks (it/s: iterations per second).

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImagNet-Dogs

BYOL 7.74 7.63 5.11 5.39 5.33
ConNR(Ours) 7.68 7.58 5.04 5.36 5.28

We show the training efficiency of ConNR by comparing its training speed with a standard efficient
SSL baseline BYOL. As shown in Table 3, our method ConNR has a slightly slower training speed,
however, introduces no additional heavy computational burden and is comparably efficient with the
state-of-the-art methods. In fact, we ascribe the efficiency of ConNR to the highly parallelized cuda
implementation and the online manner of ConAff neighborhood discovery, incurring negligible time
overhead in stark contrast to conventional methods taking re-ranking as an offline post-processing
technique over the entire dataset.

A.2 Migration to Other Self-supervised Frameworks

Table 4: Performance of ConNR migrated to other self-supervised learning frameworks. ConNR* is
simply notated as an add-on module to distinguish itself from ConNR based on BYOL.

CIFAR-10 CIFAR-20
Method
NMI ACC ARI NMI ACC ARI
SimSiam 78.6 85.6 73.6 52.2 48.5 32.7
SimSiam + ConNR*  85.2 (+6.6) 91.4 (+4.8) 83.6 (+10.0) 594 (+7.2) 59.2 (+10.7) 43.1(+10.4)
MoCo v2 66.9 77.6 60.8 39.0 39.7 24.2

MoCo v2 + ConNR*  81.4 (+14.5) 88.9 (+11.3) 79.1 (+18.3) 52.6 (+13.6) 54.5(+14.8) 37.7(+13.5)

In this section, we underline that our method ConNR can be actually viewed as a plug-in-and-play
module, which can be easily integrated into other contrastive and non-contrastive self-supervised
learning frameworks with slight modifications. Then we will detail the implementation of the
integration of ConNR* to SimSiam and MoCo v2. Specifically, ConNR* refers to the modules
without considering the BYOL baseline.

A.2.1 SimSiam + ConNR*

Since SimSiam simply encourages the similarity of two augmented features without any negative
samples, following the notation of [5], the loss function of SimSiam + ConNR* can be expressed as:
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where V¢, is the ConAff neighborhood retrieved by z;. In this way, the contextual knowledge of
ConAff neighborhood can be injected into the group-aware concordance loss.
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A.2.2 MoCo v2 + CoNR*

Similarly, referring to the original loss function in MoCo v2 [13], we can generalize the loss function
into CoNR* version, which can be formally represented as:
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The results are shown in Table 4 with significant performance gains on both SimSiam and MoCo
v2. Specifically, our method improves SimSiam and MoCo v2 by at least +4.8% and +11.3% w.r.t
ACC on CIFAR-10, respectively. The flexible feasibility and evident performance gains validate the
effectiveness of our design.

A.3 Results on Large-scale Datasets

Previous experiments are based on moderate-scale datasets following the state-of-the-arts [17, 38, 40],
where the total number of classes is limited. Here, we testify our method on a large-scale dataset
Tiny-ImageNet which consists of 200 classes with 10,0000 training images in total. The results in
Table 5 indicate that our approach can successfully scale to large datasets. Specifically, we observed
a notable increase of +2.7% in NMI and +3.2% in ARI, surpassing the performance of state-of-
the-art techniques. These outcomes demonstrate the effectiveness and scalability of our proposed
method when applied to Tiny-ImageNet. The enhancements achieved in NMI and ARI highlight
the superiority of our approach in boostrapping the underlying structures via ConAff neighborhood
consistency and progressive boundary sample filtering.

Table 5: Performance comparison on Tiny-ImageNet.

Tiny-ImageNet

Method

NMI ACC ARI

DCCM 224 108 3.8
PICA 27.7 9.8 4.0

CC 340 140 7.1

GCC 347 138 7.5
TCL 435 30.6 152
BYOL 36.5 199 10.0
ProPos 405 256 143

ConNR (Ours) 46.2 30.8 184

B Relations to Existing Deep Clustering Methods

Although there are some representative prior works [14, 15, 42] that encourage group-aware concor-
dance, proving to be effective in deep clustering, our proposed method extends the current paradigm
by further exploiting neighborhoods in a contextually affinitive (ConAff) metric space rather than
the metric space defined by cosine similarity or euclidean distance. We underline this makes our
method ConNR fundamentally different from previous works. Moreover, our method proposes a
progressively relaxed boundary filtering strategy to efficiently filter out unreliable candidates and
relax the constraints in later iterations. Importantly, both the ConAff neighborhood and the filtering
strategy consider the efficiency of implementation in a totally online manner. Additionally, our
extended approach proves to be more effective when compared to the vanilla method maintaining
Euclidean neighborhood consistency, as validated in our ablation experiments in the main manuscript.

C Visualizations of Boundary Sample Detection

To provide a more intuitive understanding of how the boundary selection strategy is conducted and
why it is beneficial, we add a visualisation of feature representation before and after using boundary
filtering. As can be observed in Figure 4(a), the overlapped regions of the 2D cluster boundaries
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Figure 4: (a) T-SNE visualizations of all samples in CIFAR-10, where boundary samples are shown
as small dots, non-boundary samples are shown as large dots. (b) T-SNE visualizations of boundary
samples in CIFAR-10, where boundary samples are shown as small dots.

predominantly consist of our identified boundary samples. To provide a more focused view, Figure
4(b) exclusively displays these detected boundary samples, effectively highlighting the contours of
the clusters.

D More Visualizations of Neighborhoods

We provide more visualizations of top-10 neighborhoods on ImageNet-10 using the checkpoints
pre-trained with BYOL. As seen in Figure 5, we could draw a general conclusion that the Euclidean
neighborhood struggles to capture the subtle differences between intra-class objects, while the
ConAff neighborhood is more capable of grouping instances of the same class together. More
specifically, we observe that airliners are the most common classes that could easily treat other
classes as their neighbors, such as airships and container ships. Admittedly, these three classes
resemble each other, making the Euclidean neighborhood hard to distinguish them. However, our
proposed ConAff neighborhood, as shown in the fifth and sixth row of Figure 5, can better deal with
the subtle differences in most cases. Interestingly, in the fourth row, the Euclidean neighborhood
mistakenly treats the soccer ball held by a person and a Maltese dog held by a person as the same
class, which focuses more on human-object interaction but lacks the crucial details of objects. By
contrast, the ConAff neighborhood manages to disentangle the dogs from their owners, demonstrating
the robustness of eliminating the background noises.
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Figure 5: More visualizations of top-10 neighborhood on ImageNet-10.
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