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Abstract

Sequential learning methods, such as active learning and Bayesian optimization, aim to
select the most informative data to-learn-about-a—taskfor task learning. In many medieal
or-engineering-apphieations;—the-applications, however, data selection is constrained by &
prieri-unknown safety conditions— VQ\QQWMW%MM

A promising line of safe learning methods

s&fe%fpfeb&b}hby—aﬂd—pefiefm—&&ba—se}eemeﬁ—ﬁkuses Gauss1an rocesses to model safety
conditions restrlctm data selectlon to areas with hlgh safety conhdence However, aceurate

ters around

"observed data omts As

a_consequence, task exploration is slowed down and safe regions disconnected from the

initial seed dataset remain unexplored. In this paper, we propose te-consider—transfer-safe
Wgﬁg{;equenmal learnlng to accelerate %hHe&%m&g—e%s&M&%ufﬁhekeeﬂstéef

: . )
empirieally-demonstratethat-our-approachl)Jearnsatask-task learning and to expand the
explorable safe region. By leveraging abundant offline data from a related source task, our
approach guides exploration in the target task more effectively. We also provide a theoretical
analysis to explain why single-task method cannot cope with disconnected regions. Finally,
we introduce a computationally efficient approximation of our method that reduces runtime
through pre-computations. Our experiments demonstrate that this approach, compared to

state-of-the-art methods, learns tasks with lower data consumption 2)-glebally-explores-and

nhances lobal exploration across multlple dlSJOlllt safe reglons%der—gmdﬁﬁee»ef—%he—%eufee

fﬁeﬁhedb— while malntamm com arable computational efﬁmenc

1 Introduction

Despite the great success of machine learning, aceess 1S sk—acquiring data remains a
significant challenge. One prominent approach is to consider experlmental design (Lindley, 1956; Chaloner
& Verdinelli, 1995; Brochu et al., 2010). In particular, active learning (AL) (Krause et al., 2008; Kumar &
Gupta, 2020) and Bayesian optimization (BO) (Brochu et al., 2010; Snoek et al., 2012) resort to a sequential

data selection process in which the most informative data points are incrementally added to the dataset. The
methods initiate-begin with a small ameunt-of-datadataset, iteratively compute an acquisition function to

rioritize data points for querying, select new data based on this information, q&ew&e%d&%&aeee%&mg—%e
the-aequisition—seoresTeceive observations from the oracle, and update the behef' This process is repeated

until the learning goal is achieved, or until the acquisition budget is exhausted. These learning algorithms
often utilize Gaussian processes (GPs, Rasmussen & Williams (2006)) as surrogate models for the acquisition

computation (Krause et al., 2008; Brochu et al., 2010).
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Our transfer safe sequential learning
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Figure 1: Illustration: safe-Safe sequential learning with transfer (top) and conventional (bottom) learning.

The light vellow data points represent source data. The main benefit of transfer learning is to accelerate
exploration and identify larger and potentially disjoint safe regions by leveraging the source data.

In many applications, such as spinal cord stimulation (Harkema et al., 2011) and robotic learning (Berkenkamp

et al., 2016; Baumann et al., 2021), H&e»a}geﬁﬁhmsfﬁusﬁespeeesemea—pﬁemﬁmew&s&feﬁweeﬂeemsdata
acquisition can introduce safety risks due to unknown safety constraints in the input space. For instance,
tuning a robot controller requires testing various controller parameters; however, certain parameter settings
may lead to unsafe behaviors, such as a drone flying at high speed toward a human_—an issue ouly observed
after executing the controller (Berkenkamp et al., 2016). This scenario highlights the need for a safe learning
approach that selects data points being safe and maximally informative within safety limits. One effective

approach ef-perferming-to safe learning is to model the-safety—eonstraints—with-safety constraints usin
additional GPs (Sui et al., 2015; Schreiter et al., 2015; Zimmer et al., 2018; Sui et al., 2018; Turchetta et al.,

2019 Berkenkamp et al 2020 Sergeyev et al 2020 Baumann et al 2()21 Li et al. 2022) Sﬂheﬂ}gef&hms
o These algorithms begin with

a small set of safe observations and define a safe set to restrict exploratlon to regions with high safety

confidence. The-As learning progresses, this safe set expandsas—thelearning-proceeds;—and-thus—, allowing
the explorable area grewsto grow over time. Safe learning is-alse-considered-in-—related-demains-approaches

have also been explored in related fields, such as Markov Decision Processes (Turchetta et al., 2019) and
reinforcement learning (Garcia et al., 2015).

While safe learning methods have ae w—demonstrated significant impact, several
challenges remain. %&W@%ﬁmﬁ%@d—%ﬂ%@ﬁ—pﬂ@%@%@ﬂ@l@f&ﬁ%Flrst the GP hyperparameters
must be specified before exploration begins (Sui et al., 2015; Berkenkamp et al., 2016; 2020) or fitted—with

m&%&a&@e&eﬁ%&%em@%d&wﬁe@w}@mwww& (Schreiter
et al., 2015; Zimmer et al., 2018; Li et al., 2022). In addition, safe learning algorithms often suffer from
local explorann—GP% M/GAEA% are typlcally smootha&&é%he—&nee%aa&&merea&e%beyeﬂé%he Wlth
uncertainty increasing beyond the boundaries of the reachable safe set ‘ ' sted-st

will-be—, This results in slow convergence, and disconnected safe regions are often clas51ﬁed as unsafe
and wi-remain unexplored. We provide a detailed analysis and Hustration—ef-explorableregions—in—27-

Tn—realityvisual illustration of this issue in Section 5. In practice, local exploration inereases—the—effort—of

depleying-complicates the deployment of safe learning algorithmsbeeatse-the-domain-expertsneed-to-provide
. as domain experts must supply safe data from multiple distinct safe regions.
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Our contribution:
inttialized— %wmmth prior knowledge—we—%a&ﬂ%assﬂme
_(Schreiter et al., 2015; Sui et al., 2015; Berkenkamp et al., 2020). __We assume_that_correlated experi-
ments have been—performed-and-theresults—are—available—already been performed, and their results are
readily available. This assumption enables transfer learning——where-the-benefit-is—twofeld:—, offering two
key benefits (see also Figure 1): (1) exploration-as—wel-as-Exploration and expansion of safe regions are
significantly accelerated, and (2) disconnected safe_regions can be explored allowing to discover larger
&%&Wmmwmthe source tabkma%pfewé&g&mﬂee

appheat}onf We em iricall demonstrate both of the benefits and rovide a theoretical anal sis showin
that conventional single-task approaches cannot identify unconnected safe regions. Real-world applications

of this approach are ubiquitous, including simulation—te—realitysimulation-to-reality transfer (Marco et al.,
2017), serial production, and multi-fidelity modeling (Li et al., 2020).

Transfer learning can be achie onsidering Wmtm source and target tasks
jointhy-as multi-output GPs (Journel & Huljbregts 1976; Alvarez et al., 2012). However, GPs are notorious
for the-their cubic time complexity due to the inversion of Gram matrlces —Largearnemﬁ%(Sectlon 3.1).
Q%Wlmd source data thus-intreduee-pronouneed-significantly increase computational
time, which is often a bottleneck in W&MM@WM@M&

rnodularlze the rnultl-output GPss

i ; i b= et allovvln source-related
com onents to be precom uted and fixed, which reduces the computational complexity while retaining the
benefits of transfer learning.

In summary, we 1) introduce the idea of transfer—safe—sequentiallearning—suppeorted—by—a—thereugh
mathematicalformulationsafe transfer sequential learning, 2) derive that conventional ne-transter-approaches

have—an—upper—bound-of-explorableresiongingle-task approaches cannot _discover disjoint safe regions, 3)
provide a modularized approach to multi-output GPs that ean-alleviate-alleviates the computational bur—

den of incorporating the source data, wrtifeﬂr—teehmqﬁe—befngﬂnefeﬁgenera}%han—ﬂre—prewou&method
in-Tighineant-et-ak—2022)-and 4) demonstrate the empirical efficacy —on safe AL problems.

Related work: Safe learning is considered in many preblems—-sueh—as—applications
including AL, BO, Markov Decision Processes (Turchetta et al., 2019) and reinforce-
ment learning (Garcia et al, 2015) In this paper we focus on GP learning prob-
lems:- : a a a :

MWMWMMA%WMMM
uncertainties _which _is_ particularly important for safe learning under uncertainty. __ Previous
constrained learning with GPs —The-authors—integrated-by incorporating constraints directly into the
acquisition function (e.g., discounting the acquisition score by the probability of constraint violation). Fhese
works-However, these approaches do not exclude unsafe data from the search pool, and the-experimenting

examples-are-mostly-not-safety—eritiealgenerally address non-safety-critical applications. A safe set concept
was introduced for safe BO (Sui et al., 2015) and safe AL (Schreiter et al., 2015)—Fhe-concept—was—then
and later extended to BO with multlple safety constraints (Berkenkamp et al., 2020), to AL for time

series modeling (Zimmer et al., 2018), and to AL for multi-output problems (Li et al., 2022). For safe
BO,Sui-et-al- Sui et al. (2018) proposed to-eonduet-the-a two-stage approach, separating safe set exploration

and BOin—+two—distinguished-stages—Al-, However, all of these methods suffer from local exploration -
Sergeye%et—al—&()%@)—eens&derﬁ%(Sectlon 5). Some recent methods address disjoint safe regions—assuming

ap-. For example, Scr eyev et al. (2020 cons1dcrcd regions separated b

Nngangapsyvhere the constralnt : functions
briefly fall below, but remain near, the safety threshold. Baurnann et al. (2021) proposed a global safe BO
method en-for dynamical systems, assuming that unsafe areas-are-regions can be approached slowly enough

and—ﬂﬂtﬂi%%m an 1ntervent10n mechanism whieh-stops-the-system—euiekly-enongh—None-of
s—exists to stop the system in time. Despite these advances, none
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Table 1: Key Notation

Symbols Meaning
Nivis. number of initial target data points_
Navers. number of target data points added by AL
N = Nipitooo oo Ninis £ Navery. number of total target points
DNsource. number of source data points
DN = AZ1:0 0 2 dataset of the target task_
L I Neoeset 28,1 dataset of the source task

z=(25002l). safety variables of the target task_
Zo = (250028 safety variables of the source task

= f(z)+e model of the target observation y
P =¢ (@) teq model of the target safety observation 27

=fs(x) e model of the source observation ys_
2= gl(x) te model of the source safety observation zJ
L~ 9P (0. kg) single-output GP prior over target main function f
¢ 0 GP (0. kys) single-output GP prior over target safety function g/_
f~GP(0,kg) multi-output GP prior over main functions fs and
@ 2 GP(0.kgi). multi-output GP prior over safety functions ¢f and ¢/_

of these approaches leverages safe transfer learning, which can allow for global exploration en-any-systens
given-prior-seureeknowledge-by utilizing prior knowled e from source tasks for a wide range of scenarios.

Transfer learning and mwulti-tasklearninehave-eaught-multitask learning have gained increasing attention. In
particular, multi-output GP methods have been developed for malti-task-multitask BO (Swersky et al., 2013;

Poloczek et al., 2017), sim-to-real transfer for BO (Marco et al., 2017), and multi-task-multitask AL (Zhang
et al., 2016). However, GPs havetime-complexity-eubieface cubic time complexity with respect to the number

of observations, eompeted-by—-a challenge that grows with multiple outputs. In Tighineanu et al. (2022), the
authors assume a specific structure of the multi-output kernel, and-which allows to factorize the computation

with an ensembling technique. This eases the computational burdens-burden for transfer sequential learning.

In our paper, we propose a modularized %Paﬂsfeﬁsaf&}eaﬂfmg%e—ﬁ&eﬂhﬁﬁ&fea%expeﬂmeﬁwh&&m%ﬂg
safe transfer learning that avoids the cubic complexity. Ourmedlarizationtechnique—eanbegeneralized—to

Paper structure: The romdmmg of this papcr is structured as follows—we—p%oﬂée—%h&g@&l—ef—s&fe

. We provide the Setu and roblem statement in Sectlon 2 back round and assuin tlons of GPs and
multitask GPs in Section 3. Section 4 introduces the state-of-the-art safe AL algorithm. Sectlon 5 dlscusses

heoretlcal erspective of safe learning +27
272-and demonstrate that safe learning approaches based on standard GPs suffer from local ex loration.

Section 6 elaborates our safe transfer learning approach and our modular computation scheme. Section 7 is
the experimental studys#inedly, Finally, we conclude our paper in 2%Section 8.

2 Problem-statementSafe Transfer Active Learning Setu

Preliminary: Transfer Learning aims to transfer knowledge from previous, source, systems to a new, farget,
system. Usually, there exist a lot of data from one or more source systems and only few or no data from the
target system. Safe Transfer Active Learning will exploit the knowledge from the source systems’ data and
allows for safe and active data collection on the target system. Throughout this paper, we inspect regression
output-and-safety-values—aeh-problems.
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Target and Safety — Notation: Each D-dimensional input z € X C R has a corresponding
neisy—regression output y € R and %h&eeﬁespeﬂehﬁg—ﬂeis%safety values jointly expressed as a—veeter

J is the number of safet Varlables There are J thresholds T € R ...,J, and an input x is safe if

the corresponding safety values 2/ > T for all j =1,....J. It is assumed that the underlying functions of

z', ..., 2”7 are all unknown.

Source and Safety — Notation: Similarly, there exist output and safety values of one or more source tasks
again from unknown underlying functions. The source output value is denoted by y, € R and source safet;

values by 2. = (21.....2/) € R, s is the index of source task(s). Fhesouree The source tasks are defined on
the same domain X. The source and target tasks may have different numbers of safety—eonditionsconstraint
variables, but we can add trivial constraints (e.g. 1 > —o0) to any of the tasks in order to have the same
number of-eonstraints-J. Thenotation-issummarized-in—Table-1Furthermore, the source data may or may

not be measured with the same safety constraints as the target task. For example, in a simulation-to-realit;
transfer (Marco et al., 2017), the source dataset can be obtained unconstrained.

Safe—learning—preblem—statementDatasets -~  Notation: We——are——-=siven
init —_ ) —
(1 Jy (] N SV | J\Y Ninit Tn N,
LIilNinie = F o 2 JiNinit = FLiNjui0 ) “1iNpie/ — P10 = Py *n/In=1 HE Prabuitts
S
psource . [ m oy 1 o — [ 1 v
P Noource W8T N gurcet Y5, TN source s 28, N souree I3 B TlNource - VB8, 15 5 B8, Noguree ) = 745
— [ Ir—TED — — (.1 J N\ 1 N 1r—m>J P |
Ys TN Gurce — WIS, 95, Nogurce J = 5 T Nsource - (AT — By 5 Zs ) 110 — *y o 2Vsource) = i
AWA dataset over the target task is denoted by D C

observed data In this paper, N is not fixed, as we ma, actlvel add new labeled data. We denote the

source data by D5uree T , Ze1: C X xR xR’, s is the index of source task
and Nyguree is the number of all source data points. In our main paper, we consider only one source task for

simplicity, while l?—pfewdesefefmul&tﬂeﬁfﬂ&dﬂb%&ﬁeﬁsmdie&A endix D.2 provides formulation on more

source tasks.

see Table 1 for a summary of our notation.

Safe Active Learning Procedure: The goal of safe AL is to collect data actively and safely on the target
system, such that the final dataset helps to model the regression output y on the safe region of input space
X i.e. subset of X corresponding to 21 > Ty.... 27 > T}.

Concretely speaking, we are given a small amount of data on the target task, i.e. Dy where the
mtlal size N = Ni,; is small. The initial data are typically given by a domain expert and are safe

se}ee%%ﬁeﬂ&t—m—eﬁ%,%&ewﬁu%eﬁ%%l’—At each [V, one sccks thc ncxt oint &, € Xpoot & X

to be evaluated. X,qq € X is the search pool which can be the entire space & or a predeﬁned sub-

space of X, dependlng on the applications. qlh%s—selee&iee—sheﬂ}d—fespeeéﬁbe—&—pﬂefﬂiﬂkﬁevm—s&fe%y

pfeees&eeeufs—ﬂﬁd—weﬂebﬁaﬁhThe evaluatlon is bud et _consumin and safet crltlcal and it w1ll return
a noisy y. and noisy safety values z.. Thelabeled—peints—arethen—-added+o—DPn—Ideally, we need
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..J and that

is informative for the modeling of target y. As the safety outputs are unknown when an =z, is selected
uaranteeln safet is challenging. Safe learnin methods resort to allowing queries that are safe only with

Afterward, the labeled point is added to Dy (observed dataset becomes Prr—rrDy1), and we proceed
to the next 1terat10ns—}ﬁ%h&feﬂew&g— N Vﬁ}b&%h&s&%e—ef—ebsewed—é%&%et—e%%he—ﬁafget—msk—aﬂéﬁt

Safe Transfer Active Learning Aim: In particular, this paper aims to build a new safe transfer AL, a

safe AL algorithm with multi-output GPs, so that we leverage the information of the source data D52"ree
to explore a larger safe area. Our algorithm aims to

o (i) collect as few (small NV, data as possible for building an accurate regression model of

the safe part of the input domain X;up-te-thesafetyconstraints—),
o (ii) collect the data in a safe way and hereby explore the safe region including its boundaries
e (iii) in particular explore larger safe areas than benchmarks in a faster way.

3 Background&-leeal-expleration—:_ Gaussian Processes of safe-learning
methodsSingle and Multiple Tasks

In this section, we introduce

&Héﬂﬂ&%m&@ﬁﬁaf—%hH@aﬂ—@xpl@m&@ﬂ—pr@bl%Gaussmn Processes GPs) and their multitagsk variant.

GPs are the workhorse of safe AL in which they are routinely applied to select safe and informative data
oints (Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022). Multitask GPs extend this role to safe

transfer AL by leveraging information across related tasks, enabling more efficient exploration of the target
system.

3.1 Gaussian Processes (GPs
1

Suppose we aim to model the output y and the safety observations 21, ..., 2/ with GPs. Here, we introduce the
modeling scheme and the underlying assumptions. The first assumption is that the data represent functional

values blurred with i.i.d, Gaussian noises.

Assumption 3.1 (Data: target task). Assume y = f(x)+ €7, where e; ~ N (0,0%), for our target

observations, We further assume that zJ = ., J indexes

the safety constraints. All of the noise variances {02,072 ,...,02,} are positive,

We then place a GP assumption on each of the underlying functions ! 7. A GP is a stochastic process
speeified-defined by a mean and a kernel function (Rasmussen & Wllhams 2006; Kanagawa et al., 2018;

Schoelkopf & Smola, 2002). %&h@ﬁH@S&ﬁ#geﬂera}&yﬁﬁe—&saﬁn&%h&GP&hweﬁereﬁw&ﬂ—Méehﬁeﬁ
witheut-prierknowledgete-In this work, we set the mean to zero — a common practice, as normalized data

typically justifies this assumption. The kernel function, X x X — R, specifies the covariance of function
values at different input points. Without prior knowledge of the data, it-is-common-—to-assume-the-we make
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the standard assumption that the governing kernels are stationary. The GP assumption is then formulated
as the following.

Assumption 3.2 (Model: single task). For WWWW
g~ GP(0, ky) and-with a stationary kernel with bounded variance, kq(x, ') = kq(x — ') < larestationary

Bounding the kernels by +-one provides advantages in theoretical analysis (Srinivas et al., 2012) and is not
restrictive beeatise-the-data-are-since the data is usually normalized to zere-mean—and-unit variance.

The—GJL&b%uﬁrpﬁeﬂf{Assumptlon 3.1 and Assumption 3.2 }—rﬁéﬂ:—&%%h&t—eaeh—ef—{j‘"—q—q—}—haﬁ—a

rovide the predictive distribution of the functions

We write down the dlstrlbutlon for the function f at a test point x.while-the-distributions-ef¢l—

pU@leny,yn) =N (g (@) op v (@) @
where
(2)

-1
U%N(a:*)z kp(x., ) — k;f(a:l;N,:L'*)T (Kf + UJQJ) k¢(xin, Ts).

We use the notation ks(@1.n, ) = (kr(@1, @), ... kr(xn, ) € RYNX! to denote the kernel vector between

the training points xi.y and the test point x,. The kernel matrix K; € RV*N contains the covariances

between the training points .

Typically, k is parameterized and can be jointly fitted with the noise variance 2. Common fitting techniques

involve computing the marginal likelihood, N (y1.x]0, K¢ + 021 ), where the the runtime complexit

-1
O (N?), dominated by the inversion of the Gram matrix (K¢ +o021) .

The predictive distributions of the safety functions ¢',...,q” can be obtained by replacing f with ¢land
! ....q” and the outputs y1.n with =2

—1
e N (@)= prn =kg(xin, z.)" (K/Jror?-f) Y1:N,

U%N(.’B*):Z U?’N =k¢(z., ) — k:f(a:LN,a:*)T (Kf + JJQJ) ki(zin, ),

Nxl__ J o i=1,..J in Equations (1) and (2).
Slmllarl the 10 hkehhood can be maxnnlzed for each J by omtl learnm k,; and %—E&Q@NX—NE—&
: c 1 oo ! b o f. M

the same manner, j = 1 ...,J.

3.2 Transfer Task GPs

In the presence of a source task, one can model the source task and the target task jointly with multi-output
GPs (Journel & Huijbregts, 1976; Alvarez et al., 2012; Ti idea is to augment
the input with a task index variable, allowing the model to_distinguish between tasks while sharing
information across them. Leveraging a source task in this way improves data efficiency on the target system,
as relevant information can flow from the source to the target task. To proceed, it is necessary to first make
a hypothesis on the source data, similar to Assumption 3.1.
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Assumption 3.3 (Data: source task). The source data are modeled as ys = fq(x) + € I(x) + e i

where { f,. ql. ..., ¢/} are unknown source main and safety functions, and s indexes the source task. We assume

additive noise distributed as e ~ N (0 02A SRS ! tepse 5 ~ N (0,02, ) with all
. . A . o . . -

2

L=ttt : : istrad : tor—qNext, _we_introduce
task indices, with s for the source task, and ¢ for the target task. These indices allow us to describe
the source and target functions jointly as multitask functions. The data are then concatenated with
the task indices, and, based on Assumption 3.1 and Assumption 3.3, we define the multitask functions
L ....q” : X x {task indices} — R, where

to the target safety constraint.We use bold symbols to indicate the multitask functions. Subsequently, we

assign GP priors to the multitask functions.

Assumption 3.4 (Model: multitask). For each multitask function g € {f,q*,....q’}, we assume
P (0, k,) with kernel k, : (X x {task index}) x (X x {task index}) — R.

1 J y g H 3 . : . ] source

source

source? JS,

: 5 f Note that the structure of our new assumption resembles Assumption 3.2.

@MMWMWWM@W
them. Example kernels are provided in Section 6.3. We proceed by presenting the predictive distribution
for_the main target task, leveraging source and target data. To incorporate task indices into the given
Mm@%@m

redictive distribution is then given by:
P(F (@, )|T1N Y1:N s T 1 Navreer Ys 1:Naomee) = N (105,80 (@4), 0F n () 5

where the predictive mean x,.) and variance o2  (x,) are given b

w/\(/\/\/\)l ,vf Q (ys 1: N::ource) ,

Y1:N

M): ke (s, 2y) — U?Q}lvf.

7 . s T3 Cq ) ¥
represents the covariances between the training points, aggregated over the source points &, ;. and
the target training points &1.n, and the target test point &,. It is defined as:

(ke (Zs 1 Neoureor ) (Naoureet N)x 1

The matrix €2¢ combines the kernel matrices and noise variances for both source and target tasks, formin

a block structure:

Kf + 02 In. Kf f

Q — s s source EX) R(Nsourcc+N) X (Nsourcc+N) 5
L ( Kff K+ o3Iy ) (€ ) 5)
where K = k¢(Zq1. L L 1N denotes the kernel matrix between the source data oints

between

between source and target trainin
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target training points. For brevity, we omitted the task index from the predictive terms x,.) and

02 (x,), as this paper focuses exclusively on predictions for the target task. For brevity, we present

formulas only for the main function: the safety functions are analogous.

The time complexity of the
redictive distribution is O ((Neource + N)3) due to the inversion of the Gram matrix Q. Similarl

the runtime for estimating the likelihood, and consequently for training the hyperparameters, is also
O ((Nypuree + N)?). While this higher time complexity introduces additional computational overhead

is offset by the benefit of improved data efficiency through the joint modeling of source and target tasks.

Remark 3.5. In our paper, all safety measurements z* 27 are modeled mde endently. If the variables
are not independent, our methods and analysis still a 1 as the dependent constraints can be grouped, and
the problem reduces back to the independent case.

4 Background: Safe Active Learnin

T ' ior;ker i = In this section, we introduce

s?

F~G PO multi-task-GP-prier; kernel-krparameterized-by 8=+ 1)-
state-of-the-art safe Active Learning (safe AL). The state-of-the-art of Safe AL can not exploit knowledge

in form of source data. Although source data is not considered in this section, we will still write target task
to make the distinction between the two tasks clear.

y q7

v
Safe AL (Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022) aims to select data actively and safely to

learn about a target task. At a given number of available target data IV, the goal is to select ¢, € X, CcCX
that gi 1z informative in the context of modelin

Safe—learning: The ke of safe AL is the safet and data _ selection _criteria.
Commonl these  criteria___emplo GPs due to  the well calibrated redictive

related field, safe Bayesian optimization (BO) (Sui et al., 2015; 2018; Berkenkamp et al., 2020), which

follows a similar procedure except that the goal is to search for an optimum v, subject to safety constraints

Algorithm 1 Safe AL

Require: Assumption 3.1, Assumption 3.2, Dy .

1: for N = Ninit, -~-7Ninit + Nquery —1do
Fit GPs f,q1, . @z With Dy
W&%Mﬂ%ﬂMW%EQU&UOHS( ) and (6))

T, < argmax H, |x|D

uery x, to get evaluatlons « and z
D <— Dy U{x,, ys, 2.}, & — Xy

7: end for

8: Return Dy, _, trained models e

A
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Safety Condition: The safety variables are modeled by GP_functions ¢',....q’ (Section 3.1), and
the core is to compare the safety confidence bounds (Equation (2)) with the thresholds and—define

a—safe—set—&v—%—a%T ., T € R. At each iteration N, we can compute the safety probabilit
‘ J. Sui et al.

constraint Vj =1,...

defines the safe set Sy C X,

Sy = mf:l{m € XM@Www(@ - 51/20qa',1v(1‘) > Tj}, (6)

where 8 € RT is a parameter for probabilistic tolerance controHS&ret—al—%@l%—Befkeﬂkafﬂpft—al—%%—)
. This definition is equivalent to Va € Sy, p (¢ (x) > T4, ...,q" () > Ty) > (1 — @)’ when a =1 — ®(B1/2)
(@€ [0.1]) where ® is the standard Gaussian cumulative distribution function (CDF) (Schreiter et al., 2015;
Zimmer et al., 2018; Li et al., 2022). Note that a > 0.5 corresponds to 3 € C. 8"/ < 0 which is usually not
considered because safe learning aims for high safety confidence while o > 0.5 indicates a safety confidence
of at most 50% per constraint - so at most a random guess.

Information Criterion: Safe AL queries a new point is—eueried-by mapping safe candidate inputs to
acquisition scores:

T, = argmax,cgs, @ (.’B|DN> . (7)

where Pr—is-the-eurrent-observed-dataset-and-a—is-a(-) is an acquisition function. Notice here that a(:) and
Sy both depend on the observed dataset Dy. In AL problems, a prominent acquisition function is the pre-

dictive entropy—&é@-@yﬁ%]ﬁ—[f%ﬂ:—%bg—@%eﬁﬁwéﬁﬁ—) (Schreiter et al., 2015; Zimmer et al., 2018; Li

et al., 2022)—We—use-afetDn)="— o7 g7 o ®Pritez_a(z) = Hy [z|D Llog (2mea? y(x
where o2y is defined in Equation (2). To accelerate the exploration of safety—models— Tt—is
the safety functions, Berkenkamp et al. (2020) incorporate the information of the safety functions b

Qur acquisition function is built upon this and is written

in Algorithm 1.

Please note again the close connection to BO: it is possible to exchange the acquisition function by the
SafeOpt criteria fex-if one wants to address safe BO problems (Sui et al., 2015; Berkenkamp et al., 2020;

Rothfuss et al., 2022)).

)

Constralned Ac ulsltlon O timization: Solving E uatlon 7) is challenglng In the liter-

(Schveiter et b 2015 L et L. 2092 Su e L., 2015 Berkenlmp e al. 5020}, this s sl on a disretc
pool with finite elements, i.e. Npsor=1%5501] Npool =] Xnool) < 00. One would applyEeuation{2)-
%ﬁhﬁﬁwﬁw&%ﬁr&%ﬂmmm;%uﬁwo determine the safe set,
then optimize the acquisition scores over the safe set. The—timeecomplexity-of-makingGP—inferenee—is

In our paper, we

inherit this finite dlscrete ool setting.

Time Complexity: The complexity comprises O (N3) for GP training and O (N, N?) for GP
J

are already computed durin

the training (Equation (2)). Importantly, GP inference is onl erformed once per query, whereas GP

training (or more specifically, its most computationally expensive step, the matrix inversion) is repeated

multiple times during parameter learning. As a consequence, the size of the discretized pool is—net—the
W%GMW—HWW@WN can be much larger than the
training dataset IV, e. 1 can include up to tens or even hundreds of thousands —Fhe-mainbettleneek

10
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The whole learning process is summarizedin-Adgerithm—It—summarized in Algorithm 1.
Seq&eima}—hea%ﬁmg %%%M&{%—Wsﬁ%—%&fgm&s—&%%ﬁ%%

5 Safe Learning Solely on Target Task: Local Exploration

Before we introduce our safe transfer AL approach in the
WMMM@MM 1)._ We quantify the upper
bound for an explorable safe region, and prove that safe AL is limited to local exploration within the given
bound. Note. that the analysis will not involve the acquisition function. and therefore the result applies not
%cmmmmmmmmm

OA—aHe O3

ﬁﬂ@m—#{&@d—} -9—211%G1ven observatlons Dy, we Would hke to know, until how far into the input space
the safety confidence is sufficiently high.

)

Correlation weakened with increasing distance: The conventional safe AL (Algorithm 1) builds
models based on a standard GP assumption (Assumption 3.1, Assumption 3.2), and then the explorable
region is obtained by quantifying the safety confidence, conditioned on observed data Dy _(Equation (6)).
The safety confidence is calculated from the GP predictive distributions (Equation (2)), and it thus depends

on the kernel to correlate input points of various locations. Commonly used stationary kernels —measure
the-differenee-of-measure the distance between a pair of points, while the actual peint-output values do not

matter (for two points x, x’ € oints z, &' € X, ||z — || determines the covariance). These kernels have the property that

closer points eerrelate-stronegly-have higher kernel values, indicating stronger correlation, while distant points
result in small kernel values. We first formulate this property as the followingassumption—Given—a—kernel

fanetion—,

Definition 5.1. We call a kernel k a kernel with correlation weakened by distance if k: X x X — R ;-asstme
fulfills the following property: ¥o > 0, 3r > 0 s.t. ||x — &'|| > r = k(z,z’) < § under L2 norm. We-provide

expression—

This definition will later help us quantify the upper bound of an explorable region. We provide expressions

of popular stationary kernels (RBF kernel and Matérn kernels), as well as their relations between input
distance r and covariance ¢ in the ??—Appendix B.

Tn-the following - we-

WM@%M@ Wlth Deﬁmtlon 9.1, we can now derive a theorem
; ' sweasuring the explorable region.
The main idea is: when a-an unlabeled point x, is far away from the ebservations;—we-ean-get—verysmall
é-observed inputs, the value of 0 can become very small (i.e. small covariance measured by the kernel).
Thusthe-predietion-at-@-—is-weakly-correlated-, for each j = 1,.....J, the model weakly correlates ¢’(z,) to

the observations. As a result, the predictive mean is close to zero (GP _prior) and the predictive uncertamty

is large, both of which imply that the method has small safety confidence,ize-

small—Here-we-assumethat-¢l >T—is-! at least if Vj =1,...,J,¢7 > T} is not a trivial COIldlthIl——I—H—G%hef
words;—is-insensitive-demainof-, ¢.g. a tr1V1al condltlon Would be if a function ¢/ —has values majorly
dlstrlbuted in |[—1,1] but thresholded at T; =

1A small safety confidence indicates 3j = 1, ...
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77 ¢ f wed ! G g c scale: ez ] g R
W@—kﬁ%—ﬁ—a—%For any_safety constraint mdea:ed b —1 let 2y = (2, ..20)

be _the observed noisy safet values and_let_||(21,...24)| <

The safet value zJ = ¢’ (x) + e, satisfies the GP assumptions (Assumption 3.1, Assumption 3.2

i 18 a kernel with correlation weakened b

distance (Definition 5.1). Denote Kl i=maz kg (). Then V6 € (0,1/kl 4,00 /VN),3r > 0 s.t. when

Va, € X that fulfill ming, cq,.y|®« — x;i|| > 7, the probability thresholded on a constant T is bounded by

(( I(x.) > Ty)|z1.n, 2] ) No/y T ® 45 the CDF of standard Gaussian
pilq *) Z 4j 1I:Ny><1.N | = \/kscale (\/N&/aqj)Z . .

To prove this theorem, we need Equation (2) to compute the safety likelihood, and then we use the

eigenvalues of the kernel Gram matrix together with Definition 5.1 to derive the final bound (see Appendix C

for the detailed proof).

Our theorem {proefinthe—2provides the maximum safety probability of a point as a function of its distance
to the observed data in X'. Fherefere—it-The safe set tolerance parameter 5 or o (Equation (6)) can be used to
compute the covariance bound 8. For example, when J = 1 and 3'/2 = 2, which means x)>T) > P2

2_
is safe (Equation (6)), we choose a 0 such that ® Nofoy T < ®(2) (j omitted when J = 1). Such

Seale= T4
a § exists in all situation of our interest, as we will soon discuss. Given a J, we can then determine a

corresponding radius r (see e.g. Appendix B). Interpreting r as the radius around the observed data, the

safety confidence outside this region always remains low. Since safety confidence decides the explorable
regions (Equations (6) and (7)), this theorem measures an upper bound of explorable safe arca. Netiee-that

Il M-<~/N-The upper bound is given for one safety constraint, and we can see from Equation (6) that

the final bound of safety confidence is the product of the ® term over different j. In other words, the more
safety constraints, the smaller the explorable regions may be, which is intuitive.

This theorem indicates that a standard GP with commonly used kernels explores only nelghborlng regions
of the initial :cl N- = 3 .

The theorem is mde endent of the acquisition functions, and thus the local exploration problems present in
all safe learning methods based on standard GPs.

Existence of § for common safe learning situations: We would like to illustrate an example of usin
our theorem to compute an explorable bound. Before that, we will make a statement relating the safety level
to the quantity ¢ used in Theorem 5.2. This shows that a ¢ and, therefore, local exploration is present in

all but some (at least) uncommon scenarios, which are in fact out of interest for the sake of safe exploration.

Corollary 5.3 (Existence of 0d). We are given the assumptions in__Theorem 5.2. For _each
if either (1) T; > 0, 32 :

This corollary can be proved by inspecting the boundary of each constant (detailed in Appendix C).

12
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True safety constraint
\ Data, after exploration

y
| \ r ~ 0.56,
PR ——

Unfound safe region

~

,4
"

——T

<

|
~

lInitial safe region Surrogate model |
Initial data

Figure 2: A safety constraint (shown in black) with two safe regions above threshold zero. Left graphics:
Based on the initial data within one of the safe regions, a GP surrogate is trained. The blue line represents
the mean prediction, while the blue shaded area indicates the uncertainty (e.g., confidence interval) around
the mean. The green area indicates the learned safe area. Right graphics: After exploration, more points are
sampled within the first safe region. However, the gap to the second safe region exceeds r, preventing the
discovery of the second region, rendering the learned safe area almost unchanged. The true safety function
used here is ¢(z) = sin (102% — 52 — 10) + 122 — 1. The observations are with noise drawn from N (0,0.12).

The key insight is that, a § in Theorem 5.2, which bounds the safety likelihood, always exists for common
selection of safety level 81/2, There are two scenarios considered in Corollary 5.3. The first scenario

T; > 0,532 >0 is common because 3'/2 >0 is always desired for safe exploration and stricter safet
thresholds Ty > 0,...,T; > 0 may also occur. In the second scenario, the thresholds are softer, i.e. one

or more of the thresholds T°

is desired as well for safe learning.

not fulfilling the condition. We focus on normalized variable z:, where the underlying function is modeled
a GP ¢ ~GP(0,k,;). When this model extrapolates in regions where data are absent, the inference is

highly based on the prior ¢/ (z) ~ N (0, k’ . The safe set considers i(z) > T;) > ®(8Y2) as a safet

condition on the j-th constraint, but the prior indicates ® (-7} which becomes a trivial

condition when |T} kjl > 32 > 0. In other words, any input x has a safe prior unless the data disagree.
This is a scenario that is not of interest for safe learning.

Therefore, for all common selection of safety level 5/2. Corollary 5.3 implies that we can find a § and
apply Theorem 5.2 to quantify the upper bound of explorable safe set, which shows the presence of local
exploration.

Illustrating the theoretical result: In the following, we plug exact numbers into Theorem 5.2 for an
illustration.

Example 5.4. We consider a one-dimensional toy dataset visualized in Figure 2. Assume N = 10, 02 =0.01

and constraint 7' = 0. We omit safety constraint index jbeeatise-, since J =1 hefe—ﬁlv@ﬂsfeﬂ%‘gﬂ%
in this case. In this example, the generated data have ||z1.n]| < V1 N is roughly 0.0316. We train

an unit-variance (kscale = max ky(-,-) = theorem requires 9 < 0 0316 Matefﬁ—-agl;A/ 2 kernel on this
example, : 3 - strte 3 s isfiedresulting
in a learned len thscale of around 0. 1256 The Matern 5/2 kernel is a kernel w1th correlatlon weakened b

13
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distance (Definition 5.1). In particular, r = 4.485 % 0.1256 = 0.563316 = 0 < 0.002 (Appendix B), noticing
2

that 6 = 0.002 = & (%) ~ ®(2). Whenthesafety—tolerance-isset—to-Consider f1/2 = 2;-we
- then it is safe only when the safety likelihood is above ®(2). We can thus know from Theorem 5.2 that
safe regions that are 0.563316 further from the observed ones are always identified as unsafe and is not
explorable. In Figure 2, the two safe regions are more than 0.7 distant from each other, indicating that the
right safe region is never explored by conventional safe learning methods. Pleasesee-?7?fornumerieal-details
and-additional-illustrations—

GP might even explore less in practice: Our probability bound ‘T‘/ No/oy— \
\\/k scale ‘/70/%)2/

., J) is the worst case obtained with very mild assumptions. Em-

plrlcally, the explorable regions found by GP models are smaller (see Figure 2and-appendix—27).

6 Moedularized-GP-transferlearning

Transfer learning may overcome the local exploration: We extended the Example 5.4 to compare
the standard GP model against a_transfer task GP_(Section 3.2). _In Figure 3, a linear model of
corregionalization is trained (a kind of multitask GP, Alvarez et al. (2012)). On the right region, which
is beyond the explorable bound of a standard single task GP, the transfer task GP incorporates the source
data allowing to build high safety confidence. As aresult, the right region can be included into the explorable
safe set_(next Section 6). We also confirm in our experiments in Section 7 that guidance from source data
enables our new safe transfer AL framework to explore beyond the immediate neighborhood of the target

+To summarize, we see in this section

that the safe set of standard GPs Equatioﬁ (6)) is limited to a local region. In the next section, we transfer
knowledge from the source data to expand the exploration beyond the seed dataset of the target task.

6 Safe Transfer Active Learning and Source Pre-Computation

first—that-Nsoureeis-the-mumber—of-In_this section, we formulate our safe transfer AL method. We start

from leveraging the source data and multitask GPs (introduced in Section 3.2) to adapt Algorithm 1. We
state the resulting new constraint optimization problem for safe transfer AL. We then explain the complexity
and consider a modular computation to facilitate the algorithm. We conclude the Section by describing our

14
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0.2in

r = 0.563316

task GP transfer task GP

Figure 3: The same safety constraint as in Figure 2 with two safe regions. Left: the single task GP cannot
reach the right safe region as the distance is greater than the radius r. Right: The multitask GP is able to
exploit knowledge from the source data and build high safety confidence on the right region. The source
data comes from the function g,(z) = sin (10z* — 5z — 10) + sin(z?) — 1 and is shown in yellow.

We employ multitask GPs to model the target task jointly with the source data. e

S, L:lNsource ™ 5,1 S, S, L:Nsource - C 1

- : As introduced in Section 3.2
S L ...,g’} are assumed to be GPs. At an unobserved point & € X

the multitask functions

x,1)| Dy, DV ) = N x),02 y(x)) (tis the target task index-

O —wh e—cis butions =

s - y ;1:Nsource
oy (@)= 07 Q! < S 1Z/l-N ) 7

0% N (@)= kg (2, &2) — v Q7 oy,

T 1. .
,vf: kf 571A~Nsource ’w*
— L1:N

Qf: (Kfs +0’z§INsource Kfsy.é >

15




Under review as submission to TMLR

Equation (3)). The safe set and the acquisition function may then incorporate the source task information:

§va: mj:l{m € Xpool|fgi N () — ﬂl/QUqf,N(m) > Ty},

a(@= Y = Hglz[Dy, DR ]
ge{f.qt,....q’}

1
= Z 3 log (27rea§7N(w)) ,

ge{f.q',..q"}

T, = argmax,c s, a(T).

Ts — As, Nsource? As, B . T f — A87 : : = BTN TR TIV )

model-In contrast to the standard safe AL, a(-) and Sy here depend on the observed target data Dy and
the source data D™ | as they rely on g and f (and-glyis-geverned-bythe-multitask kernel-ky{andfgr
o A N RODAN 2 o 2 _2 i

appropriate—Es v ———1lhe whole learning process is summarized in Algorithm 2. Its computational

complexity is dominated by fitting the GPs (line 2). Common fitting techniques include Type II

ML, Type II MAP and Bayesian treatment (Snoek et al., 2012; Riis et al., 2022) over kernel and noise

arameters (Rasmussen & Williams, 2006). All of these approaches have in common that they require
computing the marginal likelihoods

J
N ((ys,l:Nsource> |07 Qf) and N Zs,l:é_\fsourcc |O, qu )
Yi1:N leN

for each safety constraint j =1,....J. In this work, we do not consider Bayesian treatments due to the
high computational cost of Monte Carlo sampling. Obtaining Q7' ! i =1...J) for the marginal

likelihood takes O ((Nuource + N)?) time, where N, can be large in our set-up. Moreover, the process
must be iterated for N = Ninit, ..., Ninit + Nauery @dding to the computational burden. In the next section, we

demonstrate how the computational burden can be significantly reduced by pre-computing the source-specific
terms necessary for the matrix inversion.

vsource



Under review as submission to TMLR

6.2 Source Pre-Computation

In this sectlon we ro ose an efficient algorithm to mitigate the computational burden of repeatedly calcu-
lating Q7 P 1 and Q ! repeatedly—intheexperiments—For-brevityin full. For clarity, we describe hew—we-de

m@wm&%@ﬁﬁ W%%WW%WB%M@W to Q' —for all
For GP models, the inversiondis-matrix inversion is routinely achieved by performing a Cholesky decomposition

L(Qy), i-e—which has cubic complexity. This decomposes Qf as Qf = L(Qf)L(Q2f)", where L(Qy) is a
lower triangular matrix (Rasmussen & Williams, 2006). Once the decomposition is obtained, operations
such as L(Qy) 7 'C, and-thenfor any matrix C, £{Q3}—1E-is—can be efficiently computed by solving a linear
system —with minor complexity. The Cholesky decomposition is well known for its numerically stability and
computationally efficiency, making it a widely preferred approach for efficient GP computations.

We propose to perform the ehelesky—Cholesky decomposition in two steps, as described below. The

atmhere—is—to—ecompute-part—of L{Qs)beforehand—Thekey idea is to elustertheparameters—ofky—inte
recompute the source-specific terms of the Cholesky decomposition, which account for a large amount of
the computational costs. Importantly, our technique is general and can be applied to any multi-output

kernel. Recall from Equation (5) that the covariance ¢ has a block structure, in which the source block

Ky 402 Iy has size N, X N, that dominates the computation. The Cholesky decomposition
can also be expressed as block structure

L 0
L) = (Lf]»csf Lf) ’

where the source block L can  be recomputed independentl of the remainin

covariances (Press et al., 1988). Omnce Ly is obtained, it is then used to compute the cross-term
L and target block L that are both a function of the source block L (details in Appendix D.1). If the

source covariance, K¢ + o2 In. . remains unchanged between different covariances Q¢, its precomputed
Cholesky decomposition L can be reused, significantly reducing computational overhead.

Algorithm 2 Medularized-SEFull safe transfer AL

Require: P Dy Ao Assumption 3.1, Assumption 3.3, Assumption 3.4, D Duree 1. B

source

or &, Ngyery, thresholds 17, ..., T
: for N = Nlmt, woey Ninit + Nquery 1 do

Fit GPs mwwmgﬂﬁ;
Sy +N_{z X, iz 24 x) > T;} (Equation (8))

1

2

3

4: T, < argmax a(x), a(z) = v gin iy 2| Dy, DR
. Gy

6

uery x, to get evaluations y, and z
D <— Dy U{x,y, ys, 2.}, & — Xy

7: end for

8: Return Dy, _, trained models gy

17
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Fixed source parameters for efficient training: To leverage the precomputed Cholesky decomposition

L during our safe transfer AL scheme, the parameters governing the source covariance, K¢ + o2 Iy
must remain fixed throughout the algorithm.

To_achieve this, we split the kernel parameters 0z into two groups, 05 = (0;,,05)—where—the—souree
: is4 s . dant—, where 0 include all parameters

) S, LilNsource i

O
A

P o

a
a HE—€XP W - v fs . K
6, contains the remaining parameters. We first train on the source

data D™ alone, then fix #; and g% . Once these parameters are fixed, the Cholesky decomposition

L can be precomputed and reused across all subsequent iterations when acquiring the target dataset Dy.
2

During this phase, we can still update the parameters @, and the target noise variance o%.
The learning procedure is summarized in ?ZAlgorithm 3. In each iteration (line 46225 of Algorithm 3),
2 3\

the time complexity 2 — - — 3Yreduces
from O ((Nupuwee + N)2) to O(N2 N) + O(NyowreeN?) + O(N3). We provide mathematical details in

s s

)

Appendix D.1. Note that our approach offers a trade-off: it reduces parameter flexibility in exchange for
computational efficiency. We will discuss the pros and cons of this approach, depending on the kernel choice
in more detail in the following section.

K I seleetion: In_the followine. brief . " ap el i .
Toction of i1 el Iter i : .

6.3 Kernel Selection

Multitask kernels are often defined as a matrix of functions (Journel & Huijbregts, 1976; Alvarez et al., 2012

where each element maps X x X — R similar to a standard kernel. The task indices determine which
element of the matrix is used. Specifically, for task indices 7,7’ € {s,t}, the kernel can be expressed as

hg((1), (1) = (kf, ((9), ) ’ZZ((ﬁ’s)’(f’t))> .

Algorithm 3 Modularized safe transfer AL

AR RARAAAAN R AARAARAAARNRARANA A

DSOUI‘CE

Require: Assumption 3.1, Assumption 3.3, Assumption 3.4, D Xooat, B _or a, N,
thresholds 73, .... T

L. Fit GPs f.qu.... gz with DUee

2 Fix source specific parameters 0y,,0,5, 0., 0,5, Vi = L oo d

3 Compute and fix Ly, Ly, ¥ = L...J (lne 5, 6.7 below faster)

4: for N = Nipjt, -~-7Ninit + Nquery —1do

5: Fit GPs {remaining-with Dy and D™ (free parameters 0, 04,07,04, Vi =1,.....J)
6 @t egmaxges @Dy Sy o 01 {2 € Mool n(2) = 82041 x(2) > T;} (Equation (8))
. Evalateatz,  argmaxacs, A(Z), A(T) = 3 geisqtgry e [T DN DN |

8: Query ., to get evaluations y, and z. )

9: PPy zt—Yoor~—%por {0 — DyU{x 25 b &

10: end for

11: Return Dyt Voo tr210ed models f.q1..... 91
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where the dots - are placeholders for input data from X. Here each g 6 {f, q R } isa multl -output GP
correlating source and target tasks - : —for the

main and safety functions.

Linear model of coregionalization (LMC): A widely investigated multi-output framework is the lin-
/Wls“i”fe Wlewlt\

3
)5 Es

T~

eeﬂlegreﬂ&h%&&tefrw —Hg %
ear model of coregionalization (LMC) => \VVZ SWH Wz - K} 1

M&W&%ﬁ%ﬂm—%&%@eﬁ%whlch we also use in our experiments. In our setu the

kernel is defined as

Fol( 5,11), - £5,1)) ZXﬁmf+(% SIELS!

where ® denote the Kronecker product. We assume two latent effects and each latent effect is specified

by the base kernel & : X x X = R. The parameters W, € R**! k. x > 0 model the task correlations
induced by the I-th latent funetionpattern encoded by k; (Alvarez et al., 2012). Here, each g has its own

kernel, but for brevity, we omit g in the parameter SubSCflptSfGbeeﬂHkﬂkpﬂiﬁﬂg—%ﬁts—kefﬂe}%ﬁh—ﬁﬁf
2?7 swe-observe-that-the-, Furthermore, if k; includes a variance scaling term, e.g. Matérn kernels, it is fixed

to 1 because the scale can be absorbed into Wi ks and k.

This kernel design is tied to our experimental setup and facilitates the transfer of information from the source
to the tar et task However When aired with Al orithm 3 trammg can become unstableérue%eﬁﬂu}%lp}e

MWWMMW
and task terms, In the case of the LMC, this separation is not straightforward: The latent components
W, _encode shared task correlations, while #s and x represent task-specific effects. Training on source data
alone provides insufficient information to disentangle these shared and individual contributions, potentially
leading to suboptimal solutions that destabilize the training process.

Hierarchical GP (HGP): In Poloczek et al. (2017); Marco et al. (2017); Tighineanu et al. (2022), the
authors consider a hierarchical GP (HGP) -
kwwmﬁmmfmm

bl (s s = (107 S5

with ks, b : X X X — R as base kernels. HGP is a variant of LMC, where the target task is %re&teéﬂs—&

modeled as the sum of the source {medeled-bykernel k, }ﬂﬂéﬂi&%&rge’ﬁ-seﬁre&re%ﬂﬁl—érﬁede}eé—bf
the target-specific residual k MMMM ThlS formulatlon has the benefit that the ﬁttlng
of seuree—{terms ks }+ ;i :
the-parameters-ofks-and f; —the parameters-of-k; HWWMM&Q
suited for the use of Algorithm 3.

In Tighineanu et al. (2022), the authors derived an ensembling technique aHlewing-alsefor-a-that also supports
source pre-computation. Theirteehnieque-While their approach is equivalent to our method when we-se
HGP but-eur-approach-can-be-generalized-applied to HGP, our framework generalizes to any multi-output
kernels{with-implieitrestrietion—that-aseureekernel, provided that the fitting of the ehesenmeodelneedste
be-aectrate)while-source and target parameters can be decoupled. In contrast, the ensembling technique is
limited-to-HGP—explicitly tailored to HGP and does not generalize to other kernel structures.

Kernel selection in our experiments: In our experlments we perform ILAl orithm 3 with HGP as
our main pipelinemethod, and ‘ori S
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as—ful-transferseenarios—Thebasekernelsfkrf—are—al-Matéern-5Algorithm 2 with LMC and HGP as
ablation methods. While our main method is more computationally efficient, LMC offers greater flexibilit,
in model task correlations. Running HGP with Algorithm 2 and Algorithm 3 allows us to study the effect of

sequential parameter learning against joint parameter learning, with the latter having an increased runtime.
For both HGP and LMC, we construct the kernels usin, Matern 5/2 kernel-kernels Wlth D lengthscale param—

This choice is not restrictive and can be replaced with other base kernels suited to specific applications.

Although we did not pair ??-Algorithm 3 with LMC as discussed above, nete-that-our modularized computa-

tion scheme can still benefit-the-general EMC-provide benefits in closely related settings, e.g. (i) datasets in
which-morethan-one seuree—task-is-available-with multiple sources or (ii) sequential learning sehemes—that

onlyrefit-the-GPs-afterreceiving-frameworks where GPs are refitted only after a batch of query points has
been acquired.

7 Experiments

B oFA afa A ....... o A ..--.,

Lrete—In thls section, we em 1r1ca11 evaluate our approach against state-of- the art competitors on a
range of synthetic and real-world datasets. We first provide details on the experimental setup in Section 7.1.

Then, we analyze whether our transfer learning scheme is more data-efficient than conventional methods in
MWWleammg of dlsconnected safe reglons 2} isit-more-data—efficientto

how—is-in Section 7.3, and

ARARRLARRAASNRARAR

how the runtlme of our modularlzed approach eefﬁpafeéwrththeb&sehﬂelcwovnvl\pgggm&w@gggléw
Our code will be published on GitHub after acceptance.

7.1 Experimental Details
First, we describe comparison partners and the datasets we use in our experiments.
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7.1.1 Comparison Partners

We compare five experimental-setupsdifferent methods: 1) Eff TransHGP: 22-Algorithm 3 with multi-output
HGP, 2) FullTransHGP: Adgerithm—+-Algorithm 2 with multi-output HGP, 3) FullTransLMC: Adgerithm1-
Algorithm 2 with multi-output LMC, 4) Rethfuss-et-al—2622Rothfuss2022: GP model meta learned with the
source data by applying Rothfuss et al. (2022), and 5) SAL: the conventional Algorithm 1 with single-output

GPsand-Matérn-5/2kernel.

The first_three methods are our proposed approaches, listed in order of increasing complexity. The HGP
kernel is a variant of the LMC kernel. We test two variations of the HGP: one using our modularized
implementation_(Algorithm 3), with a runtime complexity comparable to_the single-task approach, and
another one using a naive implementation (Algorithm 2) that has a similar runtime complexity as LMC. For
the safety tolerance, we always fix 3 = 4, e—which corresponds to a = 1 — ®(3'/2) = 0.02275 (Equations (6)
and (8)), implying that each fitted GP safety model allows 2.275% unsafe tolerance. Netieethat—withFor
the baseline following Rothfuss et al. (2022), the GP model parameters are meta learned up-front with-using
source data, and remain fixed during-throughout the experiments. Rethfuss-et-al—2022-considered-While

the authors of the original paper applied this approach to safe BO problems—W&eh&ng&w@vglvg@@the
acqulsltlon functlon to entropyse—it—beeomes—, transforming it into a safe AL method. Our—code—will-be

7.1.2 Datasets

We benchmark our methods on six datasets. An overview of the datasets is given in Table 2.

7.2 Al-—results-onproeblems—with-tractable saferegions
Datasets: We adapt
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Table 2: Dataset Summary: For each dataset, we list the input dimension D, the size of the source dataset
Nsowce: the size of the initial target dataset Ninys, the number of queries Nouery, decription, safety threshold
and whether the disjoint safe regions can be tracked. Datasets are listed in order of increasing complexity.
Each task has one safety variable.

Dataset DN
GP1D L 1

2 2
Branin_ 21
Hartmanng 31
PEngine 25
GEngine 134

Synthetic Datasets: We first create two low-dimensional synthetic datasets, GP1D (D = 1) and GP2D
D = 2), generating multi-output GP samples following algorithm 1 of Kanagawa et al. (2018)te-generate

miti-output-GP-samples— The-first-outputistreated-asour—. For each dataset, we treat the first output as
the source task and the second eutput-as the target task. We-have-ene-Each dataset has a main function f

and an additional safety function q. Numeﬁea%de%aﬂs—&ﬁéex&mp}&d&mte%&&f&p}e%eéﬂ%lLWe generate
10 datasets and repeat the-Al—experiments—each experiment five times for each method on every dataset.

For Bf&mfkd&%a—weu&ake%he—mmeﬂea%se%ﬁﬁgu the Branin dataset, we follow the settings from Rothfuss
et al. (2022); Tighineanu et al. (2022) to ¢ fve—i With-each-data

experiments for-five times.—

Result: 272 —we showtheresults-ofproduce five datasets and run five repetitions for each method on

each dataset. Unlike GP1D and GP2D, Branin uses the same function for both main and safety tasks. In
these initial experiments, we simulate multiple datasets but retain only those in which the target task has
at least two disjoint safe regions, ‘G S S ata—W F Al [ § Al

7.2 Al—results-ongeneral-test-andreal-werld-preblems

Hartmannpreblem: Wetakethenumeriealsettingsource dataset. This design aligns with our use of the
Matérn-5/2 kernel, which measures similarity between data points based on proximity. Our fourth synthetic
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dataset is the Hartmann3 dataset (D = 3), created using the settings from Rothfuss et al. (2022); Tighineanu
et al. (2022)%&ge&er&t&ﬁv&d+ﬁere&%ﬁ&rtm&&m3&&tasets—%kr&th&s%&e&t&sk We generate five datasets
and repeat experiments on each datasets five times. Here, the source data-and-the-initial-target-date—are-alt

and initial target datasets are sampled randomly, frreeﬂtm&ret&unhke the structured, disj 01nt safe regions
in GPlD GP2Da ¥ i : :

Branin. All datasets are normalized, and the constraint thresholds are set to zero. Further detalls on our

synthetic datasets are provided in Appendix E.2.

%%d])ataset(PEngmed&&aseﬁs) @his—fs—&—rea}—wer}é—preb}erﬁ—wrt%ﬂﬂterpel&treﬂ

WW%MWMMMMM%EM@IWWMMWM@@&@&%&@QQ
the same engine prototype under varying conditions. The outputs temperature, roughness, emission-HC, and
emission-NOx-INOx emissions are recorded. We perform independent-separate AL experiments to learn about
reﬁghﬂesfrggglvlgegsw(ﬂgure 4) and temperature (putﬂﬁ&ppeﬁdﬁewA\RRg}/@g{\Flgure 12), both constrained
by 3 W
mmmmm
covering approximately 52.93% of the input space.? The upper bound constraint is equivalent to —z > —~1.0
MM@MMMMWMWMWMMM
variables: two free variables and two contextual i
WWMWWWmCOMed with nmse—s&weﬂftefpe%&te
the-valwes—with—,_To fix the contextual inputs at constant values, we interpolate these noisy values using a
multi-output GP simulator +-trained on the full datasets. Thus-this-experiment-isperformed-on-a-Lhis allows
Wﬁ@%

a semi-simulated W

Real-World Dataset (GEngine): Our_final benchmark is a high-dimensional, real-world problem
eonsisting-of-involving two datasets, each recorded by a related but distinct engine —with-ene—serving
(one as the source ask-and the other as the target taskBeth-datasetswere-published-by) from Li et al. (2022).
Baeh-dataset-is-The original dataset are split into training set-and-test-set—We-use-the sourcetrainingset
and-target-training set-torunour-Alexperiments—and we-use-test sets, and we conduct AL experiments
on the training sets, while RMSE and safe set performance are evaluated on the target test setto-evaluate
the-RMSE-and-the-safeset—The-. These datasets are dynamic, and our model applies a history structure is
&pph&keeﬁe&teﬂ&m%thelgxgggwmw\grelevant past points into the inputs, whieh—results-resulting in
an input dimension of D = 13. Weprovidefurther-detailsin"27—

This-problem—measures-the-The recording include emissions and temperature&%weﬂ—%Mlearn the
normalized emission ( f), subject to normalized temperature —- -

st s—Eb<g - . threshold on noisy value —L5 < = < 0.5% The upper
bound_on_temperature is_crucial for safety, while the lower hound_increases robustness. against.outlicrs.
Overall, the safe region covers approximately 65% of the target dataset. For the source tasks;the-constraint
is—2-<¢<0-5—Thetemperaturelower-bound-matters—mainlyto—the-outherstask, we sample the data

2 In general, we use the notation z = {z1,..., 27} to represent J safety constraints. However, since all datasets in our

experiments involve only a single safety constraint, we simplify the notation to z.
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under a different constraint of —2 < z; < 0.5 to make the model more resistant to outliers. More details can

be found in Appendix E.2.

7.2 Modeling Performance & Safety Coverage

In the following, we study the empirical performance of our algorithms to find out whether our methods can
accelerate space exploration and model convergence while maintaining safety.

Metrics: We evaluate model convergence of the main function f using root mean square error (RMSE
between the GP predictive mean and test y sampled from true safe regions. To measure the performance of
our safety function g, we use the area of Sy (Equation (6)), as this indicates the explorable coverage of the

space. Specifically, we consider the area of Sy N Sie (true positive or TP area, the larger the better) and
Sy N (X St false positive or FP area, the smaller the better). Here, Siine € Xyaa denotes the set

of true safe candidate inputs, which we can precompute as we use a fixed data pool. Area of X, Sy, S
are all measured by counting the number of points.

Results: We report results in Figure 4.

Results on GP1D, GP2D, Branin: We begin by focusing on the GP1D, it—is—the-upper-bound-0-5

%@Mmﬁ
only methods capable of jumping between regions can achieve optimal performance. In Figure 4, we observe
that our transfer learning approaches achieve lower RMSE and significantly greater safe set coverage than
competing methods, while maintaining small false detection rate of safe area. These results suggest that
our methods can successfully identify and explore disconnected safe regions, while our competitor methods
cannot. We will conduct an in-depth analysis of this aspect in the next section. The higher RMSE of our
competing methods can be partially attributed to the evaluation approach: test points are sampled from
the entire safe area, including regions that competing methods fail to explore. Additional safe query ratios,
provided in Appendix Table 5, confirm that our methods maintain high levels of safety.

Overallwe observe a clear out performance of-

Results on Hartmann, PEngine: In the Hartmann and PEngine experiments. our transfer learning
approaches demonstrate superior performance, achieving lower RMSEs and broader safe area coverage with
fewer data points than competing methods (see Figure 4). Since SAL eventually covers the entire safe area
by the end of the iterations, we hypothesize that the target task do not contain clearly separated disjoint
regions. Nonetheless, conventional SAL requires more queries to achieve the same performance, as they lack
the efficiency of our approach.

Results _on GEngine: Our final dataset, GEngine, has a larger input space, resulting in_more
hyperparameters and making GP fitting more computationally expensive (see also Table 4). Given that each
individual query minimally affects the GP hyperparameters, we update them every 50 queries to enhance
runtime efficiency and report results at the same interval. Overall, the HGP-based multitask-approaches
WIWWMWMMMHQQ as they explore the safe set with significantly
fewer target task queries while : : QQ}AnAeAVAng

better or equal test error and

%he—ﬁ&f&set—Ffemﬂi&R%ISEs—HGP—false safe positive rates Zooming into the RMSE results in Figure 5
we find that the HGP approaches learns the main function as well as the baseline SAL —Jnthis—problem;
training-. Training the LMC model&e%mm be more challenglng—Qﬁ}yLWAxafter the

second training #eration-(iteration 100) -, the RMSE stabilizes and
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Table 3: Identified Disjoint Safe Regions: We count the number of safe regions explored by the queries. The
total numbers of queries are listed in Table 2. Transfer learning discovers multiple disjoint safe regions while
baselines stick to neighborhood of the initial region.

EfTranslGP | 179 £007 2074013 2%0

SAL | 140 1294009 140

the number of false safe-classifieations-positives reduces. Initially, LMC appearsseems to be overconfident

regarding safety conditions, which we think might—be-can be attributed to overfitting caused by the larger
number of hyperparameters due to the higher input dimensionsleading-to-a-dimension.

In the main experiments, Nyoree (the number of source datapoints)—is fixed for each datasetr——In

our Appendix F. we provide ablation studies on the Branin dataset, in which %@%@é‘ﬂ’f@ E‘umbgr of source
data points and number of source tasks. I FullTransHGP

N Rothfuss et al. 2022

u= & Baseline SAL
Summary: OQur approaches generally demonstrate improved &wetgentéin terms of model performante
and the extent of explored safe regions, while maintaining safety| levely compatable to the baseline SAL. The
benefits of our methods are most pronounced when multiple un¢onfiegted safe'segions exist,.as our methofls
mewwmmgm%m%@%c
struggles when the input space is high-dimensional and data is scarce, botéhtiafly dug 8 tHE ldiber ufiher

of hyperparameters I\‘ItVULthC}CBD7 the ¢ GHeries e e e e e 90 19 o reonteast—the

HGP-based methods show consistently strong performance acrosg. gzri t

SE zoom-in version of
GEngine in Figure 4.

7.3 Disconnected Regions

Next, we examine in more detail whether the increased safe coverage observed in the previous section can
be attributed to our transfer learning approaches effectively jumping between disconnected regions.

We analyse the number of disjoint regions for our synthetic problems with input dimension D =1 or
D =2 (GP1D, asshownin-appendix—Fable-5—GP2D, Brainin). For these datasets, it is analytically and

computationally possible to cluster the disconnected safe regions via connected component labeling (CCL
algorithms (He et al., 2017). Please see Appendix E.1 for further discussion of the CCL algorithm and its
applicability. This allows us to track, in each experiment iteration, the specific safe region to which each
observation belongs and count the number of disconnected regions (see Appendix Figure 11). At the end of
the AL algorithm, we report the number of explored safe regions in Table 3. We say a region is explored if
at least one query is in the region. This is valid because the safe set can expand from the at least one point.
The results confirm the ability of our transfer learning approaches to explore disjoint safe regions, while the
baseline methods cannot jump to disconnected regions. Notably, the Branin function is smooth and has
two well-defined safe regions, while the GP data exhibit high stochasticity, leading to a range of small or
large safe regions scattered throughout the space. While limited exploration is expected for the single-task
approach SAL, it is surprising that the metaclearning approach Rothfuss2022 also fails to reach disconnected
regions. This could be due to having only a single source task, which is uncommon for meta-learning as it
typically involves multiple source tasks to differentiate between common and task-specific effects.

For the remaining datasets (Hartmann3, PEngine and GEngine), we cannot count the number of disconnected
regions since the CCL algorithm cannot be applied. This is due to its limitations in dealing with nois
measurements (PEngine, GEngine) and dimensions greater than D = 2 (Hartmann, GEngine).

Our findings demonstrate that our transfer learning approaches effectively identify and explore multiple
disjoint safe regions when they are present. a capability lacking in competing methods.
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Table 4: Training Time of in seconds) at the last AL training: We observe that runtime increases

sequentially from SAL to EffTransHGP, then to FullTransHGP, and finally to FullTransLMC. Rothfuss2022
erforms only an initial training upfront which is not included in our runtime estimate, resulting in zero

7.4 Runtime Analysis

Finally, we report training times in Table 4, measured as the time (in seconds) required to optimize the GP
hyperparamters at the final iteration.

We observe that runtime increases sequentially from SAL < Eff TransHGP < Full TransHGP < Full TransLMG,
which aligns_with_our_theoretical findings in Section 6. _While both, SAL and EffTransHGP, scale
cubically with the number of target points IV, EffTransHGP takes longer due to the increased number
of hyperparameters to optimize. FullTransHGP and FullTransLMC, in contrast, scale cubically with the
combined number of source and target data Nsource £ N, with Full TransLMC requiring additional runtime
due to an even larger number of hyperparameters.

The flexibility of our transfer approaches is inversely proportional to the training time. However, in our
experiments, we do not observe a significant advantage of the Full TransLMC approach over HGP, likely due
to the increased hyperparameter count in Full TransLMC, which can lead to overfitting issues. In summary,
HGP proves to be the strongest approach, offering high efficiency without compromising on performance.

8 Conclusion

We propose a tramsfer—safe—safe transfer sequential learning
to facilitate real-real-world experiments. We demonstrate
its pronounced acceleration of learningwhich—ean—-beseen—by

a—faster—drop—of RMSE—and—a—targer—, evidenced by faster
RMSE reduction and a greater safe set coverage. At-the-same

timeAdditionally, our modularized multi-output modeling 1)
retains the potential ef-perferminefor global GP safe learn-
ing and 2) alleviates the cubic complexity #—the-experiments;
leading—to—a—considerablereduece—of time—eomplexityfrom the
source data, significantly reducing the runtime.

Limitations: Our modularized method is in theory compat-
ible with any multi-output kernel, in contrast to the ensemble
technique in Tighineanu et al. (2022) which is enly—validfer
limited to a specific kernel structure. However, one limitation
of source precomputation is that it requires to fix correct source
relevant hyperparameters solely with source datafe.e—HGP
is-a-good-eandidate-._For example, HGP is well-suited due to

its separable source-target structure while LMC, which learns

joint patterns of tasks, will-net—-befixed—eorreetly—with—only
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multi-task-eorrelationsbut-thissmay not correctly optimize with source data only.
While we only explored linear task correlations in this work, more sophisticated multi-output kernels, such
as those in Alvarez et al. (2019), or the use of more complex base kernels. could support richer multitask

correlations. However, investigating these approaches is beyond the scope of this paper (seee-g:, e.g., Bitzer
et al. (2022) for kernel seleetions)—selection strategies).

When no correlation exists between the source and the target data, two outcomes are possible dependin
on the kernel design: (i) if the multi-output kernel includes the standard single-task kernel as a special case

erformance may revert to that of baseline methods; (ii) if the standard kernel is not included as a special

case, the signal may not be effectively modeled, resulting in suboptimal performance.

Future work: In this paper, we focus on problems of hun-
dreds or up to thousands of data points (source and target
data). H-we—wish—te—sealefurther—up-Scaling further to tens
of thousands or millions of data points ;appreximated-models

may require approximations, such as sparse GP models (Tit-
sias, 2009; Hensman et al. 2015)ﬂiﬂy—b€—f€qﬁﬁf€d.—¥h€s€—5ﬁa¥b€

M@%&b&@@é

set of inducin 01nts to re resent the original data. However
the optimal selection strategy for inducing points for sequential

learning approaches is still an open research question (Moss
et al., 2023; Pescador-Barrios et al 2024). Fer—eae&mp}ej:g)g

1nstance the safety model nee
MMS&& set, Whlle the
W&W&MM&&GY each query (or each-batch of querles)
—to appropriately reflect changes in uncertainty.

requires mducm omtb tha
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A Appendix Overview

27 provides-detailed-analysisand-illustrations-Appendix B lists commonly used kernels and the r-0 relation
needed for our theoretical analysis. Appendix C provides the proof of our main theorem. In ?ZAppendix D
, we demonstrate the math of our source pre-computation technique —?7?-as well as general transfer task

GPs with more than one source tasks. Appendix I contains the experiment details and ??-Appendix F the
ablation studies, additional plots and tables.

B GPs with classical
oriary kermol R
unsafe-valleyCommon Kernels and r-9_Relation
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—to_measure the

covariance with respect to the distance of datas:

Definition 5.1. We call a kernel k a kernel with correlation weakened by distance if k: X x X — R ;-asstume
fulfills the following property: ¥o > 0, 3r > 0 s.t. ||z —&'|| > r = k(z,z’) < § under L2 norm. We-provide
expresston—

Notice that this assumption—property is weaker than k being
strictly decreasing (see e.g. Lederer et al. (2019));and-. In

addition, it does not explicitly force stationarity—, while not

all stationary kernels have this property, e.g. cosine kernel

k(x,xz') = cos (||lx — x’ does not follow this definition.

Here we want to find the exact r for commonly used kernels,
given a §. The following kernels (denoted by k(-, -)) are described
in their standard forms In the experiments, we often add a
lengthscale - [ >0 and variance kscate > 0,
ie. kparameterized(ma :B/) = kscale (:B/lv ml/l) where kscale and !
are trainable parameters. The lengthscale [ can also be a vector,
where each component is a scaling factor of the corresponding
dimension of the data.

vscale

RBF kernel
k(z,x') = exp (— |z — «'||?/2):

k(z,2') <0< [le— /| > y/log 35

E.g 6§ <03 < ||z — /| > 1.552
§<0.1 <« ||z—2| > 2146
§ <0.002 <= ||z — | > 3.526

Matérn-1/2 kernel
k(z,x') = exp (—||z — @'): k(z,@') <6< ||z — /|| > log ;.

Eg <03 < |z —2'|| > 1.204
§<0.1<« ||z—2| >2.303
§<0.002 < ||l — || > 6.217
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Matérn-3/2 kernel
k(z,2') = (1+ V3||lz — 2'|]) exp (- V3] = — a'[]):

E.g 6 <03 < ||z — 2| > 1.409
§<01 < ||z—a'| > 2246
§ <0.002 < ||x — || > 4.886

Matérn-5/2 kernel
k(z,2') = (1+ V5|z —a'[| + 5[z — a'|]?) exp (—V5lx — a'):

Eg 6§ <03 < ||z —a'|| > 1457
§<01 < |jx—a'| >2214
6 <0.002 < ||z — | > 4.485

B.1 Proof of our main theorem
C GP Local Exploration - Proof

In our main script, we provide a bound of the safety probability. In this section, we provide the proof of this
theorem.

We first introduce some necessary theoretical properties in 27
Appendix C.1, and then use the properties to provetheorem

3-3-in-22 Theorem 5.2 and Corollary 5.3 in Appendix C.2.

C.0.1 Additional lemmas

C.1 Additional Lemmas

Definition C.1. Let £ : X x X — R be a kernel, A C X
be any dataset of finite number of elements, and let o be any
positive real number, denote €, 4 ,2 = k(A, A) + o?I.

Definition C.2. Given a kernel £ : X x X — R, dataset
A C X, and some positive real number o, then for x € X', the
k-, A-, and o?-dependent function h(x) = k(A, a:)TQ,;;’O_Q is
called a weight function (Silverman, 1984).

Proposition C.3. C € RM*M s g positive definite matriz
and b € RM s a vector. Amas is the maximum etgenvalue of
C. We have ||Cbll2 < Apmaz||bl2-

Proof of Proposition C.3.

Because C' is positive definite (symmetric), we can find or-
thonormal eigenvectors {ey, ...,eps } of C that form a basis of
RM . Let \; be the eigenvalue corresponding to e;, we have
A > 0.
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As {ey,...,ep} is a basis, there exist by,...,byr € Rs.t. b=
2?11 bie;. Since {e;} is orthonormal, ||b||3 =}, b?. Then

M

M
ICblly = > bidieilla = (| Y b2A?

=1 =1

IN

Z bz2/\12naa: = Amaz

M
D0 = Amaa[B2
i=1

O

Proposition C.4. VA C X, any kernel k, and any positive
real number o, an eigenvalue A of Qi 4 2 (Definition C.1) must
satisfy A > o2.

Proof of Proposition C.4.
Let K = k(A, A). We know that

. K is positive semidefinite, so it has only non-negative eigenval-
ues, denote the minimal one by Ag, and

. 0% is the only eigenvalue of o21.

Then Weyl’s inequality immediately gives us the result: A >
Ak + 02 > o2 O

Corollary C 5. We are gwen Ve, € X, A C X, any ker-

nel k st on—3-2-with _correlation weakened by
W{Deﬁmtwn 5.1), and any positive real number o. Let
M = number of elements of A, and let B € R be a vector.
Then ¥6 > 0,3r > 0 s.t. when ming call@. — '] > r, we have

. |h(z.)B| < VMS§||B||/o? (see also Definition C.2),
k(e @) — k(A 2) T k(A 7)) > BT, 2) — M6 [o?
(see also Definition C.1).

Proof of Corollary C.5.
Let K :==k(A, A).

Proposition C.4 implies that the eigenvalues of (K + 021)71
are bounded by %

In addition, Definition 5.1 gives us mingrcall@z. — @'|| > r =
all components of row vector k(x., A) are in region [0, d].

. Apply Cauchy-Schwarz inequality (line 1) and Proposition C.3
(line 2), we obtain

k(A z.)" (KA, A) +0°1) " B| < k(A w*)THII (K +0°1)" B
< KA, z.)]l 25| B

< I\(&-.-,5)II7IIBII
\ﬁ5||BH

o2
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. (K + 021 )71 is positive definite Hermititian matrix, so

IN

HA, @) (K + 1) k(A 2.) < k(A2

IN

1
— M&2.
J2

Then, we immediately see that

k(a:*,:c*) - k(szn*)T (K + U2I)_1 k(A,:B*) 2 k(w*vw*) - i2||k(*47:1:>*<)||2
g

1
> k(e xy) — —2M52.
o

Remark C.6. AGBFE® is the cumulative density function (CDF) of a standard Gaussian distribution

MWW?M—@MGQ%—N%%MM@(I< -T) =
(=T o(T) =p(z = T).

C.2 Main Proof

The theorem is restated again.
Theorem 5.2 (Local exploration of smgle—output GPs). We are

M%%Em&%@y

constraint indezed b s let 2] = =(,... N) i5-t-set
%emﬁyﬁaéﬁe&&‘% e the observed noisy safety values

and let ||(2, ..., 23)|| < V'N._The safety value 27 = ¢/ (x) + eg
satisfies the GP assum tzons Assumption 3.1, Assumption 3.2

The kernel

ko is_a_kernel with correlation weakened by distance (Def-
inition 5.1)._ Denote ko i=max kei(;:).  Then V5 €

(O,Q/kicaleaqj/\/ﬁ),ﬂr > 0 s.t. whenYx, € X that fulfill

MiNg,car.y || Tx — Xi|| > 7, the probability thresholded on a con-

stant T} is bounded by p ((qj(w*) > Tj)|w1:N,z{:N) <o (

N5/0'2
\/kscale \/76/0. ])

). ® is the CDF of standard

Gaussian.
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Proof.
From Equation (2) in the main script, we know that

p (¢ @ )lein, 5y ) = N (g v (@), 0% (@)
-1 .
fog N (Ts) = K (1.8, )T (kqj (1.8, T1.N) + UngN) 2N

1
U;-’N(iv*) = kg (2o, Ts) — ko (1.8, 24) T <kq1 (1N, T1N) + 0 IN) kgi(x1:n, T4 ).

We also know that (Remark C.6)

p <(qj(w*) > Tj)|w1:N’Z{:N) =1-° <m>

()

Poi n (@) =T

qu,N(m*)

From  Corollary  C.5, we  get <
VNG||2], yll/o2; =T
\/kqj (m*,w*)szV/sz ’
0 < \/kgcaleaqj/\/N. Then with |27, 4] < VN and the fact
that @ is an increasing function, we immediately see the result

This is valid because we assume

N5/U

\/kscale - \/]V(S/O—qj)2
O

p((@ @) > Dy ) <

Then, we would like to prove the Corollary 5.3 which is restated here.
Corollary 5.3 (Existence of d). We are given the assumptions in__Theorem 5.2. For _each
] . J, if either (1) T; >0, 5/? — T then 35 € (0 i/VIN) s.t.

scale

Proof. This can be proved by substituting the constants.
Condition (1) T; > 0,62 > 0:
N6/02-—T» N6/a
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D Multi-output GPs with
seuree-pre-computationSource Pre-Computation

D.1 Two-steps Cholesky Decomposition

Given a multi-output GP g ~ GP (0,kg), g € {f,q",....q”},
where kg is an arbitrary kernel, the main computational chal-
lenge is to compute the inverse or Cholesky decomposition

of
Qg — (Kgs + U;s INsource Kgsag ) .
Kg.g Kg+o5ln
Such computation has time complexity

Q‘&NWJFM—}O Ny + N)3 We wish to avoid

this computation repeatedly As in our main script, kg is
parameterized and we write the parameters as 84 = (0,,,0,),
where kg ((+, 5), (-, 5)) is independent of 8. kg{—s){~t)and

g

9s

Here we propose to fix K, (e——H0,, must be fixed)

and 03 and precompute the Cholesky decomp051t10n of

the source components
L, =L(K, +02 Iy

L (Q ) Lgs 0
P _ T ~ B
! (Lg' Kqg..g) L (K:) (9)
Ky =Ky + 02y — (L Ky, 0) " Ly K, .

source /)

This is obtained from the definition of Cholesky decomposition,
ie. Q= L(Q,)L(Q,)", and from the fact that a Cholesky
decomposition exists and is unique for any positive definite
matrix.

The complexity of Computlng L(Q) thus becomes

%MWM' In partlcular, computing
L Kg o is ONZANYO(NZ eoN),  acquiring  matrix
product K; is O NemreeN2—O(NygureeN?)_and  Cholesky
decomposition L(K;) is O(N?).

The learning procedure is summarized in ??-Algorithm 3 in
the main script. We prepare a safe learning experlment
with Diperee D and initial Dy; we fix 64
0£..0,0:04,0,0.0 =1 ...J to appropriate values, and we pre—
compute L fs,'ng. During the experiment, the fitting and in-
ference of GPs (for data acquisition) are achieved by incorpo-
rating Equation (9) in 22-Equation (3) of the main script (Sec-
tion 6).

D.2 Transfer Task GPs beyond One Source Tasks

We extend Section 3.2 beyond one single source task. Let us say we have a total of P source tasks, and
the source task index is s = 1,.... P. In our main paper (Section 3), D" is the source data with onl
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is the dataset of source

task indexed by s, M “is the numbér of data of task s,land Neonree = P M, is still the number of data of
all P source tasks jointly.

oint and ¢ is the index of target task. We color the modification compared to single source task (Equa—
tion (3)).

Nsource

Y1,1:M;
pg (@)= vi Q! : :
ARG Re: YrP1:Mp
Y1:N

07 N (@)= kg (&, 8.) — v Q 0y,
kf(:fjl,l:Mlai*)
vl

kg(&p1:mp, Tx)
kf(ilzl\h -’f}*)

O-J2‘IIM1 0
Q= (Knppeetn) + | 0 -0 ,
~ 0 of Iy 0
0 O';IN
(10)

re-computation will fix the part of all source tasks (still the top left N by N, block of €2

Multitask Kernels: Few examples of actual GP models, i.e. actual kernels, are described as the following.
The LMC, linear model of corregionalization, can be taken simply by adding more dimension:

K1 0
P+1 ]
kg(('7')7('7')) = Z VVZVVIT+ 0 ’ 0 ®kl('a')a
1=1 0 Kp 0

where g is a multitask function but does not matter to the expression here, each k : X x X - R is a
standard kernel such as a Matérn-5/2 kernel encoding the [-th latent pattern, ® is a Kronecker product, and

W, € READXL and gy, ..., kp, k > 0 are task scale parameters (Alvarez et al.. 2012). [ is a numbering index
used only here.
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The HGP can be extended in two ways, models in Poloczek et al. (2017) or in Tighineanu et al. (2022). Here

we take the model from Tighineanu et al. (2022):

P y ) )
Qixi 01,><(P+1—z)
() () =3 (g i anmer- ) © K0
=0

where 0™ and 1™*" are matrices of shape m by n with all elements being zero and one, respectivel

E Experiment details& Numerical Details

E.1 Labeling saferegionsSafe Regions

The goal is to label disjoint safe regions, so that we may

track the exploration of each land. In—eur-experiments;—the

safety values as binary labels of equidistant rlds as if these
are pixels). This is always possible for synthetic problems. We

then perform connected component labehng (CCL see He et al.
(2017)) to the safety classeseve . ‘
MWH%WJWW&S@&W

into _connected lands. When D = 1, this labeling is trivial.

When D = 2, we consider 4- nelghbors of each pixel (He et al.,

2017). W&hﬂﬁm&&t@d—d&ﬁ&%&s—the—gfeﬁﬂé%ﬁﬁhﬂs—avaﬂah}e

ane-thus For noise-free ground truth safety values, the CCL is deterministic. The-CCh-ean-This algorithm
can however be computationally intractable on high dimension (number of grids grows exponentially), and
this method-can be inacurrate over real data where-because the observations are noisy and the grid values
need interpolation from the measurements.

After clustering the safe regions over grids, we identify which
safe region each test point x, belongs to by searching the grid

nearest to x,. The accuracy can be guaranteed by considerin

rids denser than the pool. This is computationally possible
only for D =1,2. See main Table 3 and the queried regions

count of Figure 11 for the results.

E.2 Numerical detailsSettup & Datasets

When—we—run—salgorithmtand-2{in—the-mainpaperFor our main experiments (Algorithm 1, Algorithm 2
Algorithm 3), we set NpzrNijni (number of initial observed target data), NsgmreeNso (number of observed

source data) aﬁé—%r, number of AL queries/ learning iterations) and Npeer (size of discretized

input space a1 Xpeel) as follows:

1. GP1D: Neguree= i e
%HQ—%QP&H@H%:—&H&—AW—J%@N co.= 100, Niyie = 10
N, = 50, Npoa1 = 5000, constraints ¢ > 0 up to noise;

2. GP2D:

Noyery = 100, N, = 5000 constraints g > 0 up to noise;

3. Branin & Hartmann3:
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poor—o000.1N, =100 Ninit, = 20 N, =100
Nipool = 5000, g = f > 0 up to noise;

. PEngine: source —

Nauery = 100, and Nyoal = 3000 constraints ¢ < 1 up to noise;

. GEngine: = St oritht 27
MQ%WWWM
N, = 200, N, = 10000, —1.5 < ¢ < 0.5 up to noise.

In the following, we describe in details how to prepare each
dataset.

E.2.1 Synthetic Datasets of Tractable Safe Regions

We first sample source and target test functions and then sample
initial observations from the functions. With GP1D, GP2D
and Branin problems-, we reject the sampled functions unless
all of the following conditions are satisfied: (i) the target task
has at least two disjoint safe regions, (ii) each of these regions
has a common safe area shared with the source, and (iii) for
at least two disjoint target safe regions, each aforementioned
shared area is larger than 5% of the overall space (in total, at
least 10% of the space is safe for both the source and the target
tasks).

GP dataData: We generate datasets of two outputs. The
first output is treated as our source task and the second output
as the target task.

To generate the multi-output GP datasets, we use GPs with
zero mean prior and multi-output kernel 212:1 WWE @ k(-,-),
where ® is the Kronecker product, each W; is a 2 by 2 matrix
and k; is a unit variance Matérn-5/2 kernel (Alvarez et al.,
2012). All components of W; are generated in the following way:
we randomly sample from a uniform distribution over interval
[-1,1), and then the matrix is normalized such that each row
of W; has norm 1. Each k; has an unit variance and a vector
of lengthscale parameters, consisting of D components. For
GP1D and GP2D problems, each component of the lengthscale
is sampled from a uniform distribution over interval [0.1,1). We
adapt algorithm 1 of Kanagawa et al. (2018) for GP sampling,
detailed as follows:

. sample input dataset X € R"*? within interval [—2,2], and
n = 1007,

. for I = 1,2, compute Gram matrix K; = k;(X, X).
. compute Cholesky decomposition L, = L(W,W/! @ K;) =
LOWWE) ® L(K)) (ie. WWT @ K, = LiLY, L; € R2*nx2mn),
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- for L= 1,2, draw g ~ N(0, Io.n) (w € RE41),

. obtain noise-free output dataset F = 7 | Lju

. reshape F = (;Eiﬁ’i;) e R**Xl into F =

(F(X,s) f(X,t)) € R™2,

. normalize F' again s.t. each column has mean 0 and unit
variance.

. generate initial observations (more than needed in the exper-
iments, always sampled from the largest safe region shared
between the source and the target).

During the AL experiments, the generated data X and F' are
treated as grids. We construct an oracle on continuous space
[—2,2]P by interpolation. During the experiments, the training
data and test data are blurred with a Gaussian noise of standard

deviation 0.01 NV (0,0.012).

Once we sample the GP hyperparameters, we sample one main
function f and an additional safety function from the GP.
During the experiments, the constraint is set to g=0z,,2 > 0

Zs, %2 _are noisy ¢s,q). For each dimension, we generate 10

datasets and repeat the AL experiments 5 times for each dataset.
We illustrate examples of X and F' in Figure 6 and Figure 7.

Branin dataData: The Branin function is a function defined
over (z1,x2) € X =[-5,10] x [0,15] as

faberst ((x1,22)) = a(xy — ba? + cxy — 1) + s(1 — t)cos(zy) + s,

where a,b,c,r,s,t are constants. It is common to set
(a,b,c,r,8,t) = (1, %, %,6,10, S%T), which is our setting for
target task.

We take the numerical setting of Tighineanu et al. (2022);
Rothfuss et al. (2022) to generate five different source datasets
(and later repeat 5 experiments for each dataset):

a ~Uniform(0.5,1.5),

b ~Uniform(0.1,0.15),

¢ ~Uniform(1.0,2.0),

r ~Uniform(5.0,7.0),

s ~Uniform(8.0,12.0),

t ~Uniform(0.03,0.05).

After obtaining the constants for our experiments, we sample
noise free data points and use the samples to normalize our
output

o fa,b,c,r,s,t (($1, :I/'Z)) - mean(fa,b,c,r,s,t)

fa,b,c,r,s,t ((‘rl? mQ))normalize - Std(fa,b,c,r,s,t)

Then we set safety constraint +=-6-y > 0 (y is noisy f) and sam-
ple initial safe data. The sampling noise is Gaussian N (0, 0.01?
during the experiments.
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E.2.2 Hartmann3, PEngine, Gengine

Hartmann3 dataData:The- Unlike GP and Branin data, we do not enforce disjoint safe regions, and
do not track safe regions during the learning. The task generation is not restricted to any safe region

The Hartmann3 function is a function defined over z € X = [0,1]% a;

S

4 3
far,a2,a3,a4 ((z1,22,23)) = — Zaiexp - ZAi,j(-Tj - Pi,j)2 )
i j=1

3 10 30
0.1 10 35
A= 3 10 30)°
0.1 10 35
3689 1170
-4 | 4699 4387
p=10 1091 8732
381 5743

2673
7470
5547 |
8828

where a1, as, as, aq are constants. It is common to set (a1, a9, as,as) = (1,1.2,3,3.2), which is our setting for

target task.

We take the numerical setting of Tighineanu et al. (2022) to
generate five different source datasets (and later repeat 5 ex-
periments for each dataset):

a1 ~Uniform(1.0,1.02),
as ~Uniform(1.18,1.2),
az ~Uniform(2.8,3.0),
aq ~Uniform(3.2,3.4).

After obtaining the constants for our experiments, we sample
noise free data points and use the samples to normalize our
output

o fa17a23a33a4 ((xla T2, 1'3)) — mean(fahaz,az,a4)

fal-,a2,a3,¢l4 ((1317 L2, x3))normalize - Std(fal,ag,ag,m;)

Then we set safety constraint +=-6-y > 0 (y is noisy f) and

sample initial safe data. The sampling noise is Gaussian during

the experiments A (0,0.012).

PEngine dataData: We have 2 datasets, measured from
the same prototype of engine under different conditions. Both
datasets measure the temperature, roughness, emission HC, and
emission NOx. The inputs are engine speed, relative cylinder
air charge, position of camshaft phaser and air-fuel-ratio. The
contextual input variables "position of camshaft phaser" and
"air-fuel-ratio" are desired to be fixed. These two contextual
inputs are recorded with noise, so we interpolate the values with
a multi-output GP simulator. We construct a LMC trained with
the 2 datasets, each task as one output. During the training,
we split each of the datasets (both safe and unsafe) into 60%
training data and 40% test data. After the model parameters
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are selected, the trained models along with full dataset are

utilized as our GP simulators (one simulator for each output channel, e.g. temperature simulator, roughness
simulator, etc). The first output of each GP simulator is the source task and the second output the target
task. The simulators provide GP predictive mean as the observations. During the AL experiments, the
input space is a rectangle spanned from the datasets, and &psar-Apool is a discretization of this space from
the simulators with Npeer=-3008 N0 = 3000. We set NMsozree="500N50urce = 500, N = 20 (initially) and
we query for 100 iterations (N = 20 + 100). When we fit the models for simulators, the test RMSEs (60%
training and 40% test data) of roughness is around 0.45 and of temperature around 0.25.

In a sequential learning experiment, the surrogate models are
trainable GP models. These surrogate models interact with the
simulators, i.e. take “psa-AXpgel from the simulators, infer the
safety and query from &555r X001, and then obtain observations
from the simulators. In our main +-?%ZAlgorithms 1 to 3, the
surrogate models are the GP models while the GP simulators
are systems that respond to queries x,.

GEngine dataData: This problem has two datasets, one

taken as the source task and one as the target task. Both

datasets were published by Li et al. (2022). Each dataset is

split into training set and test set. The original datasets have the

following inputs: (1) the first dataset has speed, load, lambda,

ignition angle, and fuel cutoff (dimension D = 5) which we take

as the source task (2) speed, load, lambda, and ignition angle

(D = 4, no fuel cutoff) which we take as the target task. The

5th input of the source data, fuel cutoff, is irrelevant and we

exclude it (not used in the original paper). Please see Figure 8

for the data histogram. The datasets are dynamic and are

available with a nonlinear exogenous (NX) history structure,

concatenating the relevant past points into the inputs (handled

by Li et al. (2022) in their published code). The final input dimension of this problem is D = 13. As outputs,
the source dataset measures the temperature, emission particle numbers, CO, CO2, HC, NOx, O2 and
temperature. The target dataset measures particle numbers, HC, NOx and temperature. We take HC as our
main learning output and temperature as the constraints.

Both the source and target datasets have hundreds of thousands
of data, but Li et al. (2022) discover that the performance
saturates with few thousand randomly selected points or with
few hundred actively selected points. We thus decide to run
our experiments with Npgs—=-=+0000.V, = 10000, a random
subset of the training set. This pool subset is sampled before we
compute the acquisition scores in each iteration. Furthermore,
we start our AL experiments with Amr=20-Nipi, = 20 and
we query for 200 iterations. The initial target data are sampled
from the following input domain (written in the original space,
no NX history structure here) [—1, —0.7] x (—o00, —0.5] x [0, 0.5] x
[0,0.2]. This domain is chosen by taking the density peak of
the inputs, see row 3 of Figure 8 for the data histogram. Note
that values of datasets were normalized.

In this problem, the effect of one single query on the GP hy-
perparameters is not obvious. Therefore, to speed up the
experiments, we train the hyperparameters only every 50
queries (and at the beginning). The constraint is temper-
ature —5-<¢<0-5-1.5 < 2z < 0.5, and source temperature
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—2<¢+<05-2 < 2z, < 0.5. The temperature lower bound
matters only to the outliers, it is the upper bound 0.5 that
plays the major role. The overall safe set is around 65% of the
input space (target test set).

F Ablation Studies and Further Experiments

In this section, we provide ablation studies on the size of source
dataset.

One seuree—taskSource Task, wvaried—Ngyree Varied
Nsource: We perform experiments on the Branin function.
The results are presented in Figure 9. The first conclusion is
that all of the multioutput-multitask methods outperform base-
line safe AL (safe AL result shown in ??Figure 4). Note again
that the RMSEs are evaluated on the entire space while the
baseline safe AL explore only one safe region. In addition, we
observe that more source data result in better performances, i.e.
lower RMSE and larger safe set coverage (TF area), while there
exist a saturation level at around Nesyree=2+00Ngource = 100.

Multiple seuree—tasksSource Tasks: Next, we wish to
manipulate the number of source tasks. Before-presenting—the

)

source —

The transfer task GP formulation and the exact models are described in Appendix D.2. We take LMC and
HGP with Matérn-5/2 kernels as the base kernels. In this study, we generate source data with constraints,

but disjoint safe regions requirement when we sample the source tasks and data (in ??Figure 4, the data are
generated s.t. source and target task has large enough shared safe area). We consider 1, 3 or 4 source tasks,
and we generate 20 or 30 data points per task (Figure 10). In general, we see that 3 source tasks significantly
outperform 1 source task while the performance saturates as adding 10 more points per source task seems to
benefit more than adding one more source task. Note here that all source data are generated independently,
i.e. the observations of each task are not restricted to the same input locations.

Further plets-Plots and experimentsExperiments: safer ac 3

iments. 3 Hing—t i —The main Table 3 and Table 4
present only the summary results. In Figure 11, we additionally provide the region clustering and fitting
time w.r.t. AL iterations. Furthermore, Table 5 counts ameng-the AL selected queries which, after a safety
measurements are accessed, actually satisfy the safety constraints. This table is a sanity check that the
methods are selecting points safely.
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Table 5: Ratio of safe-queriesafe Queries

methods GP1D+—= GP2D+—= Branin Hartmann3 GEngine
nam—steps—Nqyery. 50 100 100 100 200
EffTransHGP | 0.986 + 0.001 0.974+0.002  0.999 £ 0.0006 0.972 +0.003 0.936 + 0.003
FullTransHGP | 0.979 +0.004 0.952 +0.005 0.9996 4+ 0.0004 0.972 +£0.003 0.947 £0.01
FullTransLMC | 0.984 + 0.002 0.969 £ 0.002  0.993 £0.0009 0.968 + 0.003  0.91 £ 0.008
Rothfuss2022 | 0.975 £ 0.003 0.905 4 0.006 1.0+ 0.0 0.84+0.011  0.765 + 0.035
SAL | 0.995+£0.001 0.958 £ 0.005 1.0+£0.0 0.966 4+ 0.002  0.954 4+ 0.005

Ratio of all queries selected by the methods which are safe in the ground truth (initial data not included,
see 22-Section 7 for the experiments). This is a sanity check in additional to FP safe set area, demonstrates
that all the methods are safe during the experiments. Note that our benchmark problems all have around
35% to 65% of the space unsafe. Note that S = 4 implies that, with a well-fitted safety GP, we tolerate a
2.275% probability of unsafe evaluations. PEngine results are not shown because the queries are all safe (the
modeling FP safe set area is almost zero in this problem, see ??-Figure 4 and Figure 12).

With the PEngine datasets, we perform additional experiments
of learning f = q =temperature, and the results are shown
in Figure 12.
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Figure 4: Safe-Al-experiments-on—three-Empirical performance across all six benchmark datasets—GP-data:
f—&ﬂd—ﬁ&fet—yﬁiﬁeb}eﬂ—q%&eveﬁl’—[—Q—Q—kRMSE to assess model convergence, D—}—GAW)&

M%M@%M%TP rate to measure the coverage of }GGjLGP—d&EfQ—ef—Q—Ev—QBﬁmm—dﬁm—)

the true-safe areaspace explored, ineluding

%H@gi%%ﬁ&h&&uﬂ%%ﬁh@d&{&ﬁ%}—m&%@gwwmtrm WMMM
approach.

Vﬁ%h—N—}G—%&Both TP %and FP s&febafea%&fe»pefﬂefke# Wthe mp&t—sp&ee»rates to the area of
Kool Ground-true The ground truth safe area portlon of-for each dataset is marked-indicated by a black

line in the second column.

Our approach generally shows
improved convergence in terms of model erformance and regien—ehaster—the extent of each—eueryexplored

safe regions, while maintaining safety levels comparable to the baseline SAL. On GEngine, we additionall
provide a zoomed-in RMSE ficure (Ficure 5).
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Figure 6: Example simulated GP data of D = 1, f is the function we want to learn (top), under an additional
safety constraint ¢ > 0 (bottom). The curves are true source (yellow) and target (black) functions. The dots
are safe source data and a pool of initial target ticket (this pool of target data are more than those actually
used in the experiments).
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Figure 7: Example simulated GP data of D = 2, f is the function we want to learn (left), with an additional
safety function g (middle), and the green is true safe regions g > 0 (right). The top is source task and the
bottom is target task. The dots are safe source data and a pool of initial target ticket (this pool of target
data are more than those actually used in the experiments).
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Figure 8: The historgram of GEngine data. The first 5 columns are inputs without NX history structure, the
second last column is the output we model with f, fs, and the last column is the temperature constraint.
The rows are the following in order: (1) source task training set, (2) source task test set (not used in the
experiments), (3) target task training set, and (4) target task test set. Blues are the histograms of raw data,
and oranges are subsets if we add constraints on the temperature channel.
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Figure 9: Safe AL experiments: Branin data with different number of source data. Each multi-task-multitask
method is plotted in one column. The results are mean and one standard error of 25 experiments per setting.
Koo Xpool 18 discretized from X with Nooer=-50888Npoa = 5000. The TP/FP areas are computed as number
of TP /FP points divided by Nps5-Npaal (i.e. TP/FP as portion of #555rXp001). The third row shows the
number of disjoint safe regions explored by the queries. The fifth row, the unsafe queries ratio, are presented
as percentage of number of iterations (e.g. at the 2nd-iteration out of a total of 100 iterations, one of the two
queries is unsafe, then the ratio is 1 divided by 100). The last row demonstrates the model fitting time. At
the first iteration (iter 0-th), this includes the time for fitting both the source components and the target
components (EffTransHGP). With Rothfuss et al. 2022, source fitting is the meta learning phase.
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Figure 10: Safe AL experiments with more than one source tasks: Branin data with multiple source tasks.
Each multi-task-multitask method is plotted in one column. We consider 1, 3 or 4 source tasks and sample

20 or 30 data points per task. The remaining setting is the same as described in Figure 9. RMSE plots are
plotted in log scale.
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Figure 11: Safe AL experiments on three benchmark datasets: GP data with X = [-2,2]”, D =1 or 2,
constrained to ¢ > 0, and the benchmark Branin function with constraint f > 0. The results are mean and
one standard error of 100 (GP data) or 25 (Branin data) experiments. “5s5-~Xpoq is discretized from X
with Mpmer=-5000Np001 = 5000. We set NMgrree="200-Nyource = 100 and N is from 10 (0th iteration) to 60
(50th iteration) for GP1D, NMeomree=258:ANNyqurce = 250, N is 20 to 120 for GP2D, and Negmree=2106-7F
Nsowree = 100, IV is 20 to 120 for Branin. The first, second and fourth rows are presented in ??-Figure 4
of the main paper. The TP/FP areas are computed as number of TP/FP points divided by Mpzor-Npaal
(i.e. TP/FP as portion of #555:Xp001). The third row shows the number of disjoint safe regions explored by
the queries (main Table 3 is taken from the last iteration here). The fifth row, the unsafe queries ratio, are
presented as percentage of number of iterations (e.g. at the 2nd-iteration out of a total of 50 iterations, one
of the two queries is unsafe, then the ratio is 1 divided by 50). The last row demonstrates the model fitting
time. At the first iteration (iter 0-th), this includes the time for fitting both the source components and the
target components (Eff TransHGP). With Rothfuss et al. 2022, source fitting is the meta learning phase.
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Figure 12: Safe AL experiments on PEngine temperature, AL on f (temperature) constrained by ¢ = f < 1.0.
Baseline is safe AL without source data. Transfer is LMC without modularization. Efficient transfer is HGP
with fixed and pre-computed source knowledge. Nesyree="500Nggurce = 500, Nis from 20 to 120. The results

are mean and one standard error of 5 repetitions. The fitting time is in seconds.
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