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Abstract

Sequential learning methods,
:
such as active learning and Bayesian optimization

:
,
::::
aim

:::
to

select the most informative data to learn about a task
::
for

:::::
task

:::::::
learning. In many medical

or engineering applications, the
:::::::::::
applications,

::::::::
however,

:
data selection is constrained by a

priori unknown safety conditions. ,
::::::::::
motivating

::::
the

:::::::::::
development

:::
of

:::
safe

::::::::
learning

:::::::::::
approaches.

A promising line of safe learning methods utilize Gaussian processes (GPs) to model the
safety probability and perform data selection in

:::
uses

:::::::::
Gaussian

:::::::::
processes

:::
to

::::::
model

::::::
safety

:::::::::
conditions,

::::::::::
restricting

::::
data

::::::::
selection

:::
to areas with high safety confidence. However, accurate

safety modeling requires prior knowledge or consumes data. In addition, the
:::::
these

::::::::
methods

:::
are

:::::::
limited

::
to

:::::
local

:::::::::::
exploration

:::::::
around

:::
an

::::::
initial

:::::
seed

:::::::
dataset,

:::
as

:
safety confidence cen-

ters around the given observations, which leads to local exploration. As transferable
source knowledge is often available in safety critical experiments

::::::::
observed

::::
data

:::::::
points.

::::
As

:
a
::::::::::::
consequence,

:::::
task

:::::::::::
exploration

::
is

:::::::
slowed

:::::
down

::::
and

:::::
safe

:::::::
regions

::::::::::::
disconnected

:::::
from

::::
the

:::::
initial

::::
seed

::::::::
dataset

::::::
remain

:::::::::::
unexplored.

:::
In

::::
this

::::::
paper, we propose to consider transfer safe

:::
safe

::::::::
transfer

:
sequential learning to accelerate the learning of safety. We further consider

a pre-computation of source components to reduce the additional computational load that
is introduced by incorporating source data. In this paper, we theoretically analyze the
maximum explorable safe regionsof conventional safe learning methods. Furthermore, we
empirically demonstrate that our approach1) learns a task

:::
task

::::::::
learning

::::
and

::
to

:::::::
expand

::::
the

:::::::::
explorable

::::
safe

:::::::
region.

:::
By

:::::::::
leveraging

:::::::::
abundant

::::::
offline

:::::
data

:::::
from

:
a
:::::::
related

::::::
source

:::::
task,

::::
our

::::::::
approach

::::::
guides

::::::::::
exploration

::
in

::::
the

:::::
target

:::::
task

::::
more

::::::::::
effectively.

::::
We

:::
also

:::::::
provide

::
a
::::::::::
theoretical

:::::::
analysis

::
to

:::::::
explain

::::
why

::::::::::
single-task

::::::::
method

::::::
cannot

:::::
cope

::::
with

::::::::::::
disconnected

:::::::
regions.

::::::::
Finally,

::
we

:::::::::
introduce

::
a

::::::::::::::
computationally

::::::::
efficient

:::::::::::::
approximation

::
of

::::
our

:::::::
method

::::
that

:::::::
reduces

::::::::
runtime

:::::::
through

::::::::::::::::
pre-computations.

:::::
Our

:::::::::::
experiments

:::::::::::
demonstrate

:::::
that

::::
this

:::::::::
approach,

:::::::::
compared

:::
to

:::::::::::::
state-of-the-art

:::::::::
methods,

:::::
learns

:::::
tasks

:
with lower data consumption , 2) globally explores

::::
and

::::::::
enhances

::::::
global

::::::::::
exploration

::::::
across multiple disjoint safe regionsunder guidance of the source

knowledge, and 3) operates with computation comparable to conventional safe learning
methods. ,

::::::
while

:::::::::::
maintaining

::::::::::
comparable

::::::::::::::
computational

:::::::::
efficiency.

1 Introduction

Despite the great success of machine learning, accessing data is a non-trivial task.
::::::::
acquiring

:::::
data

:::::::
remains

::
a

:::::::::
significant

:::::::::
challenge.

:
One prominent approach is to consider experimental design (Lindley, 1956; Chaloner

& Verdinelli, 1995; Brochu et al., 2010). In particular, active learning (AL) (Krause et al., 2008; Kumar &
Gupta, 2020) and Bayesian optimization (BO) (Brochu et al., 2010; Snoek et al., 2012) resort to a sequential
data selection process

::
in

:::::
which

::::
the

::::
most

:::::::::::
informative

::::
data

::::::
points

:::
are

:::::::::::::
incrementally

::::::
added

::
to

:::
the

:::::::
dataset. The

methods initiate
:::::
begin with a small amount of data

::::::
dataset, iteratively compute an acquisition function

::
to

::::::::
prioritize

::::
data

::::::
points

::::
for

::::::::
querying,

::::::
select

::::
new

:::::
data

:::::
based

:::
on

::::
this

:::::::::::
information, query new data according to

the acquisition score, receive observations from the oracle, and update the belief,
:
.
:::::
This

:::::::
process

::
is

::::::::
repeated

until the learning goal is achieved, or until the acquisition budget is exhausted. These learning algorithms
often utilize Gaussian processes (GPs

:
, Rasmussen & Williams (2006)) as surrogate models for the acquisition

computation
::::::::::::::::::::::::::::::::::::
(Krause et al., 2008; Brochu et al., 2010).

1
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Figure 1: Illustration: safe
::::
Safe sequential learning with transfer (top) and conventional (bottom) learning.

:::
The

:::::
light

::::::
yellow

:::::
data

::::::
points

:::::::::
represent

::::::
source

:::::
data.

:::::
The

:::::
main

:::::::
benefit

:::
of

:::::::
transfer

::::::::
learning

::
is

:::
to

:::::::::
accelerate

::::::::::
exploration

::::
and

:::::::
identify

::::::
larger

::::
and

::::::::::
potentially

:::::::
disjoint

::::
safe

:::::::
regions

::
by

::::::::::
leveraging

:::
the

::::::
source

:::::
data.

In many applications,
:
such as spinal cord stimulation (Harkema et al., 2011) and robotic learning (Berkenkamp

et al., 2016; Baumann et al., 2021), the algorithms must respect some a priori unknown safety concerns.
::::
data

:::::::::
acquisition

::::
can

:::::::::
introduce

::::::
safety

:::::
risks

::::
due

::
to

:::::::::
unknown

::::::
safety

::::::::::
constraints

:::
in

:::
the

::::::
input

::::::
space.

::::
For

::::::::
instance,

::::::
tuning

:
a
::::::
robot

:::::::::
controller

:::::::
requires

:::::::
testing

::::::
various

:::::::::
controller

:::::::::::
parameters;

::::::::
however,

:::::::
certain

::::::::::
parameter

:::::::
settings

::::
may

::::
lead

::
to

::::::
unsafe

::::::::::
behaviors,

::::
such

:::
as

:
a
::::::
drone

:::::
flying

:::
at

::::
high

::::::
speed

::::::
toward

::
a
:::::::::::
human—an

::::
issue

:::::
only

::::::::
observed

::::
after

:::::::::
executing

:::
the

:::::::::
controller

:::::::::::::::::::::::
(Berkenkamp et al., 2016)

:
.
:::::
This

:::::::
scenario

:::::::::
highlights

::::
the

::::
need

:::
for

::
a

:::
safe

::::::::
learning

::::::::
approach

::::
that

:::::::
selects

::::
data

::::::
points

::::::
being

::::
safe

::::
and

:::::::::
maximally

:::::::::::
informative

::::::
within

::::::
safety

::::::
limits. One effective

approach of performing
::
to

:
safe learning is to model the safety constraints with

:::::
safety

::::::::::
constraints

::::::
using

additional GPs (Sui et al., 2015; Schreiter et al., 2015; Zimmer et al., 2018; Sui et al., 2018; Turchetta et al.,
2019; Berkenkamp et al., 2020; Sergeyev et al., 2020; Baumann et al., 2021; Li et al., 2022). The algorithms
initiate with given safe observations. A safe set is then defined to restrict the

:::::
These

::::::::::
algorithms

:::::
begin

:::::
with

:
a
:::::
small

::::
set

::
of

::::
safe

:::::::::::::
observations,

::::
and

::::::
define

::
a

::::
safe

:::
set

:::
to

:::::::
restrict

:
exploration to regions with high safety

confidence. The
::
As

::::::::
learning

::::::::::
progresses,

::::
this

:
safe set expandsas the learning proceeds, and thus

:
,
::::::::
allowing

the explorable area grows
:
to

:::::
grow

::::
over

:::::
time. Safe learning is also considered in related domains

::::::::::
approaches

::::
have

::::
also

:::::
been

::::::::
explored

::
in

:::::::
related

::::::
fields,

:
such as Markov Decision Processes (Turchetta et al., 2019) and

reinforcement learning (García et al., 2015).

In this paper, we focus on GPs as they are often considered the gold-standard when it comes to calibrated
uncertainties. While such

:::::
While

:
safe learning methods have achieved a huge impact, few

::::::::::::
demonstrated

::::::::::
significant

:::::::
impact,

:::::::
several

challenges remain. Firstly, GP priors need to be given prior to the exploration
:::::
First,

:::
the

::::
GP

:::::::::::::::
hyperparameters

::::
must

:::
be

::::::::
specified

::::::
before

:::::::::::
exploration

::::::
begins (Sui et al., 2015; Berkenkamp et al., 2016; 2020) or fitted with

initial data (note that accessing the data is expensive)
::
be

:::::
fitted

::::::
using

::
an

::::::::
initially

:::::
small

::::::::
dataset (Schreiter

et al., 2015; Zimmer et al., 2018; Li et al., 2022). In addition, safe learning algorithms
::::
often

:
suffer from

local exploration. GPs
:
:
::::
GP

::::::
models

:
are typically smoothand the uncertainty increases beyond the ,

:::::
with

::::::::::
uncertainty

:::::::::
increasing

:::::::
beyond

::::
the

::::::::::
boundaries

::
of

::::
the reachable safe setboundary. Disconnected safe regions

will be
:
.
:::::

This
:::::::

results
:::
in

::::
slow

::::::::::::
convergence,

::::
and

::::::::::::
disconnected

:::::
safe

:::::::
regions

:::
are

::::::
often

:
classified as unsafe

and will remain unexplored. We provide a detailed analysis and illustration of explorable regions in ??.
In reality

:::::
visual

:::::::::::
illustration

::
of

::::
this

:::::
issue

::
in
:::::::::

Section 5
:
.
:::

In
::::::::
practice, local exploration increases the effort of

deploying
::::::::::
complicates

:::
the

:::::::::::
deployment

::
of

:
safe learning algorithmsbecause the domain experts need to provide

:
,
::
as

:::::::
domain

:::::::
experts

:::::
must

::::::
supply

:
safe data from multiple

:::::::
distinct safe regions.

2
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Our contribution: As safe learning (Schreiter et al., 2015; Sui et al., 2015) is always
initialized

::::
Safe

:::::::::
learning

:::::::::::
generally

::::::::
begins

:::
with prior knowledge, we fairly assume

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiter et al., 2015; Sui et al., 2015; Berkenkamp et al., 2020).

::::::
We

::::::::
assume

:::::
that

:
correlated experi-

ments have been performed and the results are available.
:::::::
already

::::
been

:::::::::::
performed,

::::
and

:::::
their

::::::
results

::::
are

::::::
readily

:::::::::
available.

:
This assumption enables transfer learning , where the benefit is twofold:

:
,
:::::::
offering

::::
two

:::
key

:::::::
benefits

:::::
(see

::::
also

::::::::
Figure 1

::
):

::
(1) exploration as well as

::::::::::
Exploration

::::
and

:
expansion of safe regions are

significantly accelerated, and
:
(2)

:::::::::::
disconnected

::::
safe

::::::::
regions

::::
can

:::
be

::::::::
explored

::::::::
allowing

:::
to

::::::::
discover

::::::
larger

:::
safe

::::::::
regions.

:::::
Both

:::::::::::
advantages

:::
are

::::::
made

::::::::
possible

:::
by

::::::::
guidance

:::::
from

:
the source taskmay provide guidance

on safe regionsdisconnected from the initial target data and thus helps us to explore globally.Concrete
applications

:
.
::::
We

::::::::::
empirically

::::::::::::
demonstrate

::::
both

:::
of

:::
the

::::::::
benefits

::::
and

:::::::
provide

::
a

::::::::::
theoretical

:::::::
analysis

::::::::
showing

::::
that

:::::::::::
conventional

::::::::::
single-task

::::::::::
approaches

:::::::
cannot

:::::::
identify

::::::::::::
unconnected

::::
safe

:::::::
regions.

::::::::::
Real-world

:::::::::::
applications

::
of

::::
this

::::::::
approach

:
are ubiquitous, including simulation to reality

::::::::::::::::::
simulation-to-reality

:::::::
transfer (Marco et al.,

2017), serial production, and multi-fidelity modeling (Li et al., 2020).

Transfer learning can be achieved by considering
:::::::::::
implemented

:::
by

::::::
jointly

:::::::::
modeling the source and target tasks

jointly as multi-output GPs (Journel & Huijbregts, 1976; Álvarez et al., 2012). However, GPs are notorious
for the

::::
their

:
cubic time complexity due to the inversion of Gram matrices . Large amount (Section 3.1).

::::::::::::
Consequently,

:::::
large

::::::::
volumes of source data thus introduce pronounced

::::::::::
significantly

::::::::
increase computational

time, which is often a bottleneck in real experiments. We further
:::::::::
real-world

::::::::::::
experiments.

:::
To

:::::::
address

::::
this,

:::
we

modularize the multi-output GPssuch that the source relevant components can be pre-computed and fixed.
This alleviates the complexity of multi-output GPs while the benefit is retained

:
,
::::::::
allowing

:::::::::::::
source-related

::::::::::
components

:::
to

:::
be

::::::::::::
precomputed

::::
and

:::::
fixed,

::::::
which

:::::::
reduces

:::
the

::::::::::::::
computational

::::::::::
complexity

:::::
while

::::::::
retaining

::::
the

:::::::
benefits

::
of

:::::::
transfer

::::::::
learning.

In summary, we 1) introduce the idea of transfer safe sequential learning supported by a thorough
mathematical formulation

:::
safe

:::::::
transfer

:::::::::
sequential

::::::::
learning, 2) derive that conventional no-transfer approaches

have an upper bound of explorable region
:::::::::
single-task

:::::::::::
approaches

::::::
cannot

::::::::
discover

::::::::
disjoint

::::
safe

:::::::
regions, 3)

provide a modularized approach to multi-output GPs that can alleviate
::::::::
alleviates the computational bur-

den of
:::::::::::
incorporating

::::
the

:
source data, with our technique being more general than the previous method

in Tighineanu et al. (2022), and 4) demonstrate the empirical efficacy .
::
on

::::
safe

::::
AL

::::::::
problems

:
.
:

Related work: Safe learning is considered in many problems such as
:::::::::::
applications

::::::::
including

::::::
AL,

::::::
BO,

::
Markov Decision Processes (Turchetta et al., 2019) and reinforce-

ment learning (García et al., 2015). In this paper, we focus on GP learning prob-
lems. In Gelbart et al. (2014); Hernandez-Lobato et al. (2015); Hernández-Lobato et al. (2016)
, the authors

:
,
::::

as
::::::

GPs
:::::

are
:::::::::::

considered
:::::

the
::::::::::::::

gold-standard
:::::::

when
:::

it
:::::::

comes
::::

to
:::::::::::

calibrated
:::::::::::
uncertainties

:::::::
which

:::
is
::::::::::::

particularly
:::::::::::

important
::::

for
::::::

safe
:::::::::

learning
:::::::

under
::::::::::::

uncertainty.
::::::::::::

Previous
:::::
works

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gelbart et al., 2014; Hernandez-Lobato et al., 2015; Hernández-Lobato et al., 2016) investigated

constrained learning with GPs . The authors integrated
::
by

::::::::::::
incorporating

:
constraints directly into the

acquisition function (e.g.
:
,
:
discounting the acquisition score by the probability of constraint violation). These

works
::::::::
However,

:::::
these

::::::::::
approaches

:
do not exclude unsafe data from the search pool, and the experimenting

examples are mostly not safety critical
::::::::
generally

:::::::
address

::::::::::::::::
non-safety-critical

:::::::::::
applications. A safe set concept

was introduced for safe BO (Sui et al., 2015) and safe AL (Schreiter et al., 2015). The concept was then
:
,
::::
and

:::::
later extended to BO with multiple safety constraints (Berkenkamp et al., 2020), to AL for time

series modeling (Zimmer et al., 2018), and to AL for multi-output problems (Li et al., 2022). For safe
BO,Sui et al. Sui et al. (2018) proposed to conduct the

:
a
:::::::::
two-stage

:::::::::
approach,

::::::::::
separating safe set exploration

and BOin two distinguished stages. All .
::::::::::

However,
:::
all

:
of these methods suffer from local exploration .

Sergeyev et al. (2020) considered (Section 5)
:
.
:::::
Some

::::::
recent

::::::::
methods

:::::::
address

:
disjoint safe regions, assuming

regions separated only by a small gap
:
.
::::
For

::::::::
example,

::::::::::::::::::::
Sergeyev et al. (2020)

::::::::::
considered

::::::
regions

:::::::::
separated

:::
by

:::::
small

::::
gaps

:
where the constraint function(s), with the noise, shortly goes beneath (but still close to)

::::::::
functions

::::::
briefly

:::
fall

::::::
below,

::::
but

::::::
remain

:::::
near,

:
the safety threshold. Baumann et al. (2021) proposed a global safe BO

method on
::
for

:
dynamical systems, assuming that unsafe areas are

::::::
regions

::::
can

:::
be approached slowly enough

and that there exists
::::
such

::::
that

:
an intervention mechanism which stops the system quickly enough. None of

these methods exploits transfer safe learning
:::::
exists

::
to

:::::
stop

:::
the

:::::::
system

::
in

:::::
time.

:::::::
Despite

:::::
these

:::::::::
advances,

:::::
none

3
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Table 1:
:::
Key

:::::::::
Notation

:::::::::
Symbols

:::::::::
Meaning

::::
Ninit: :::::::

number
::
of

::::::
initial

::::::
target

::::
data

::::::
points

:

::::::
Nquery :::::::

number
::
of

::::::
target

:::::
data

::::::
points

:::::
added

:::
by

::::
AL

:::::::::::::::::::::::::
N = Ninit, . . . , Ninit + Nquery: :::::::

number
::
of

:::::
total

::::::
target

::::::
points

::::::
Nsource: :::::::

number
::
of

::::::
source

:::::
data

::::::
points

:::::::::::::::::::::
DN = {x1:N , y1:N , z1:N}: :::::::

dataset
::
of

:::
the

::::::
target

::::
task

:

::::::::::::::::::::::::::::::::::::::::
Dsource

Nsource
= {xs,1:Nsource , ys,1:Nsource , zs,1:Nsource}: :::::::

dataset
::
of

:::
the

::::::
source

:::::
task

:::::::::::::
z = (z1, ..., zJ)

: :::::
safety

:::::::::
variables

::
of

:::
the

::::::
target

::::
task

:

::::::::::::::
zs = (z1

s , ..., zJ
s )

: :::::
safety

:::::::::
variables

::
of

:::
the

::::::
source

:::::
task

::::::::::::
y = f(x) + ϵf: :::::

model
:::

of
:::
the

::::::
target

:::::::::::
observation

:
y

::::::::::::::
zj = qj(x) + ϵqj

: :::::
model

:::
of

:::
the

::::::
target

::::::
safety

::::::::::
observation

:::
zj

:

::::::::::::::
ys = fs(x) + ϵfs: :::::

model
:::

of
:::
the

::::::
source

:::::::::::
observation

::
ys:

::::::::::::::
zj

s = qj
s(x) + ϵqj

s: :::::
model

:::
of

:::
the

::::::
source

::::::
safety

:::::::::::
observation

::
zj

s

:::::::::::::
f ∼ GP (0, kf )

: ::::::::::::
single-output

:::
GP

:::::
prior

::::
over

::::::
target

:::::
main

::::::::
function

::
f
:

::::::::::::::
qj ∼ GP

(
0, kqj

)
::::::::::::
single-output

:::
GP

:::::
prior

::::
over

::::::
target

::::::
safety

::::::::
function

::
qj

:

:::::::::::::
f ∼ GP (0, kf )

: :::::::::::
multi-output

::::
GP

:::::
prior

::::
over

:::::
main

:::::::::
functions

::
fs::::

and
::
f
:

:::::::::::::::
qj ∼ GP

(
0, kqj

)
:::::::::::
multi-output

::::
GP

:::::
prior

::::
over

::::::
safety

:::::::::
functions

::
qj

s::::
and

::
qj

:

::
of

:::::
these

::::::::::
approaches

:::::::::
leverages

::::
safe

:::::::
transfer

::::::::
learning,

:
which can allow for global exploration on any systems

given prior source knowledge
::
by

::::::::
utilizing

:::::
prior

:::::::::
knowledge

:::::
from

::::::
source

:::::
tasks

:::
for

::
a
:::::
wide

:::::
range

::
of
:::::::::
scenarios.

Transfer learning and multi-task learning have caught
::::::::
multitask

::::::::
learning

::::
have

::::::
gained

:
increasing attention. In

particular, multi-output GP methods have been developed for multi-task
:::::::::
multitask BO (Swersky et al., 2013;

Poloczek et al., 2017), sim-to-real transfer for BO (Marco et al., 2017), and multi-task
::::::::
multitask AL (Zhang

et al., 2016). However, GPs have time complexity cubic
:::
face

:::::
cubic

::::
time

::::::::::
complexity

:::::
with

:::::::
respect to the number

of observations, competed by
:
a
:::::::::
challenge

::::
that

::::::
grows

::::
with

:
multiple outputs. In Tighineanu et al. (2022), the

authors assume a specific structure of the multi-output kernel, and
:::::
which

::::::
allows

::
to

:
factorize the computation

with an ensembling technique. This eases the computational burdens
::::::
burden for transfer sequential learning.

In our paper, we propose a modularized transfer safe learning to facilitate real experiments while avoiding
:::
safe

::::::::
transfer

:::::::
learning

:::::
that

::::::
avoids

:::
the

:
cubic complexity. Our modularization technique can be generalized to

arbitrary multi-output kernels.

Paper structure: The remaining of this paper is structured as follows: we provide the goal of safe
sequential learning in ??; in ??, we introduce the background and analyze the local exploration problem
:
.
::::

We
:::::::
provide

::::
the

::::::
setup

::::
and

::::::::
problem

::::::::::
statement

::
in

:::::::::
Section 2

:
,
:::::::::::
background

::::
and

::::::::::::
assumptions

::
of

:::::
GPs

::::
and

::::::::
multitask

:::::
GPs

::
in

::::::::
Section 3

:
.
::::::::::

Section 4
:::::::::
introduces

:::
the

::::::::::::::
state-of-the-art

::::
safe

:::
AL

::::::::::
algorithm.

:::::::::
Section 5

::::::::
discusses

:::::::::
theoretical

:::::::::::
perspective

:
of safe learning ; ?? elaborates our approach under a transfer learning scenario;

??
:::
and

::::::::::::
demonstrate

::::
that

:::::
safe

::::::::
learning

::::::::::
approaches

::::::
based

:::
on

:::::::::
standard

::::
GPs

::::::
suffer

:::::
from

:::::
local

:::::::::::
exploration.

:::::::::
Section 6

:::::::::
elaborates

:::
our

::::
safe

:::::::
transfer

::::::::
learning

:::::::::
approach

::::
and

:::
our

::::::::
modular

::::::::::::
computation

:::::::
scheme.

::::::::::
Section 7 is

the experimental study; finally.
:::::::

Finally, we conclude our paper in ??.
::::::::
Section 8

:
.

2 Problem statement
:::::
Safe

::::::::::
Transfer

:::::::
Active

:::::::::::
Learning

:::::::
Setup

Preliminary:
:::::::
Transfer

::::::::
Learning

:::::
aims

::
to

:::::::
transfer

:::::::::
knowledge

:::::
from

::::::::
previous,

::::::
source

:
,
:::::::
systems

::
to

::
a

::::
new,

::::::
target,

:::::::
system.

:::::::
Usually,

:::::
there

:::::
exist

::
a

:::
lot

::
of

::::
data

:::::
from

::::
one

::
or

:::::
more

::::::
source

::::::::
systems

:::
and

:::::
only

:::
few

:::
or

::
no

:::::
data

:::::
from

:::
the

:::::
target

:::::::
system.

:::::
Safe

::::::::
Transfer

::::::
Active

:::::::::
Learning

:::
will

:::::::
exploit

:::
the

::::::::::
knowledge

:::::
from

:::
the

::::::
source

::::::::
systems’

:::::
data

::::
and

:::::
allows

:::
for

::::
safe

::::
and

::::::
active

::::
data

:::::::::
collection

:::
on

:::
the

::::::
target

:::::::
system. Throughout this paper, we inspect regression

output and safety values. Each
::::::::
problems.

:

4
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:::::::
Target

:::::
and

:::::::
Safety

:::
–

::::::::::
Notation:

:::::
Each

::::::::::::::
D-dimensional

:
input x ∈ X ⊆ RD has a corresponding

noisy regression output y ∈ R and the corresponding noisy safety values jointly expressed as a vector
z = (z1, ..., zJ) ∈ RJ . y = f(x) + ϵf , zj = qj(x) + ϵqj , where ϵf ∼ N

(
0, σ2

f

)
, ϵqj ∼ N

(
0, σ2

qj

)
. In

addition, ys = fs(xs) + ϵfs
, zj

s = qj
s(xs) + ϵqj

s
, where ϵfs

∼ N
(

0, σ2
fs

)
, ϵqj

s
∼ N

(
0, σ2

qj
s

)
. {f, qj} are our

target black-box function and safety functions; {fs, qj
s} are our source main and safety functions, where

:
J
::
is
::::

the
:::::::
number

:::
of

::::::
safety

:::::::::
variables.

::::::
There

::::
are

::
J

::::::::::
thresholds

:::::::::::::::::
Tj ∈ R, j = 1, ..., J ,

::::
and

:::
an

::::::
input

::
x

::
is

::::
safe

::
if

:::
the

:::::::::::::
corresponding

::::::
safety

::::::
values

:::::::
zj ≥ Tj:::

for
:::
all

:::::::::::
j = 1, ..., J .

::
It
:::

is
::::::::
assumed

::::
that

::::
the

::::::::::
underlying

:::::::::
functions

::
of

:::::::::
y, z1, ..., zJ

::::
are

:::
all

:::::::::
unknown.

:::::::
Source

::::
and

:::::::
Safety

:
–
::::::::::
Notation:

:::::::::
Similarly,

:::::
there

::::
exist

::::::
output

::::
and

::::::
safety

:::::
values

::
of
::::
one

::
or

:::::
more

::::::
source

:::::
tasks,

:::::
again

::::
from

:::::::::
unknown

::::::::::
underlying

:::::::::
functions.

:::::
The

::::::
source

::::::
output

:::::
value

::
is
::::::::

denoted
:::
by

::::::
ys ∈ R

::::
and

::::::
source

::::::
safety

:::::
values

:::
by

::::::::::::::::::::
zs = (z1

s , ..., zJ
s ) ∈ RJ ,

:
s is the index of source task(s). The source

::::
The

::::::
source

:::::
tasks

:::
are

:::::::
defined

:::
on

:::
the

:::::
same

:::::::
domain

:::
X .

::::
The

::::::
source

:
and target tasks may have different numbers of safety conditions

:::::::::
constraint

::::::::
variables, but we can add trivial constraints (e.g. 1 ≥ −∞) to any of the tasks in order to have the same
number of constraints J . The notation is summarized in Table 1

::::::::::::
Furthermore,

:::
the

::::::
source

:::::
data

::::
may

:::
or

::::
may

:::
not

:::
be

::::::::
measured

:::::
with

:::
the

:::::
same

::::::
safety

::::::::::
constraints

:::
as

:::
the

::::::
target

:::::
task.

:::
For

:::::::::
example,

::
in

::
a

::::::::::::::::::
simulation-to-reality

:::::::
transfer

::::::::::::::::::
(Marco et al., 2017),

::::
the

::::::
source

:::::::
dataset

::::
can

::
be

:::::::::
obtained

::::::::::::
unconstrained.

Safe learning problem statement
::::::::
Datasets

::::::
–
::::::::::::::

Notation: We are given
a small number of safe observations DNinit

= {x1:Ninit
, y1:Ninit

, z1:Ninit
},

x1:Ninit = {x1, ..., xNinit} ⊆ X , y1:Ninit = {y1, ..., yNinit} ⊆ R and safety observations
z1:Ninit

:= (z1, ..., zJ)1:Ninit
:= (z1

1:Ninit
, ..., zJ

1:Ninit
) = {zn = (z1

n, ..., zJ
n)}Ninit

n=1 . In practice,
the initial datausually meet the safety constraints, i.e. zj

n ≥ Tj for all
observation index n and constraint index j. We are further given source data
Dsource

Nsource
= {xs,1:Nsource , ys,1:Nsource , zs,1:Nsource}, xs,1:Nsource = {xs,1, ..., xs,Nsource} ⊆ X ,

ys,1:Nsource
= {ys,1, ..., ys,Nsource

} ⊆ R, zs,1:Nsource
= {zn = (z1

s,n, ..., zJ
s,n)|n = 1, ..., Nsource} ⊆ RJ , and

Nsource ::
A

:::::::
dataset

:::::
over

:::
the

:::::::
target

::::
task

::
is
::::::::

denoted
:::

by
:::::::::::::::::::::::
DN = {x1:N , y1:N , z1:N},:::::::::::::::::::::::

x1:N = {x1, ..., xN} ⊆ X ,
:::::::::::::::::::::
y1:N = {y1, ..., yN} ⊆ R,

::::::
safety

::::::::::::
observations

::::::::::::::::::::::::::::::::
z1:N := {zn = (z1

n, ..., zJ
n)}N

n=1 ⊆ RJ ,
::::

and
:::

N
::
is
::::

the
:::::::
number

:::
of

::::::::
observed

:::::
data.

:::
In

::::
this

:::::::
paper,

::
N

:::
is

:::
not

::::::
fixed,

:::
as

:::
we

::::
may

::::::::
actively

::::
add

::::
new

:::::::
labeled

:::::
data.

:::::
We

::::::
denote

::::
the

:::::
source

:::::
data

:::
by

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Dsource

Nsource
= {xs,1:Nsource , ys,1:Nsource , zs,1:Nsource} ⊆ X × R× RJ ,

:
s
:::

is
:::
the

::::::
index

::
of

:::::::
source

::::
task

:::
and

:::::::
Nsource:

is the number of all source data points. In our main paper, we consider only one source task for
simplicity, while ?? provides formulation and ablation studies

:::::::::::::
Appendix D.2

:::::::
provides

:::::::::::
formulation

:
on more

source tasks. We assume Nsource is large enough, and we do not need to explore for the source task. This
is often the case when there is plenty of data from previous versions of systems or prototypes.Notably, the
source data do not need to be measured with the same safety constraints as the target task. For example,
in a sim-to-real transfer (Marco et al., 2017), the source dataset can be obtained unconstrained

::::::
Please

::::
also

:::
see

:::::::
Table 1

:::
for

:
a
:::::::::

summary
::
of
::::

our
:::::::::
notation.

::::
Safe

:::::::
Active

::::::::::
Learning

:::::::::::
Procedure:

::::
The

::::
goal

::
of

::::
safe

:::
AL

::
is

::
to

::::::
collect

:::::
data

:::::::
actively

::::
and

:::::
safely

:::
on

:::
the

::::::
target

:::::::
system,

::::
such

::::
that

::::
the

::::
final

:::::::
dataset

:::::
helps

:::
to

::::::
model

:::
the

::::::::::
regression

::::::
output

::
y

:::
on

:::
the

::::
safe

::::::
region

::
of

::::::
input

:::::
space

::
X ,

:::
i.e.

:::::::
subset

::
of

:::
X

::::::::::::
corresponding

:::
to

::::::::::::::::::
z1 ≥ T1, ..., zJ ≥ TJ .

:::::::::
Concretely

::::::::::
speaking,

:::
we

::::
are

::::::
given

::
a
::::::

small
::::::::
amount

::
of

:::::
data

::::
on

::::
the

::::::
target

:::::
task,

::::
i.e.

::::::
DN ::::::

where
::::

the
:::::
initial

::::
size

::::::::::
N = Ninit::

is
:::::::

small.
:::::

The
::::::
initial

:::::
data

::::
are

::::::::
typically

::::::
given

:::
by

::
a
::::::::

domain
::::::
expert

:::::
and

:::
are

:::::
safe,

:::
i.e.

::::
for

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
DNinit = {x1:Ninit , y1:Ninit , z1:Ninit},∀n = 1, ..., Ninit, zn = (z1

n, ..., zJ
n)

::::::
satisfy

::::
the

::::::
safety

:::::::::::
constraints

:::::::::::::::::
z1

n ≥ T1, ..., zJ
n ≥ TJ .

The goal is to evaluate the function f : X → R where each evaluation is expensive. In each iteration, we
select a point x∗ ∈ Xpool ⊆ X to evaluate. Xpool ⊆ X ::

At
::::
each

:::
N ,

::::
one

:::::
seeks

::::
the

::::
next

::::::
point

::::::::::::::
x∗ ∈ Xpool ⊆ X

::
to

:::
be

::::::::::
evaluated.

::::::::::
Xpool ⊆ X:

is the search pool which can be the entire space X or a predefined sub-
space of X , depending on the applications. This selection should respect the a priori unknown safety
constraints ∀j = 1, ..., J, qj(x∗) ≥ Tj , where true qj are inaccessible. Then, a budget consuming labeling
process occurs, and we obtain

:::
The

::::::::::
evaluation

::
is

:::::::
budget

::::::::::
consuming

::::
and

::::::
safety

:::::::
critical,

:::::
and

::
it

::::
will

::::::
return

a noisy y∗ and noisy safety values z∗. The labeled points are then added to DNinit :::::::
Ideally,

:::
we

:::::
need

5
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::
to

:::::
make

:::::
sure

::::
that

:::::::::::::::
z∗ = (z1

∗, ..., zJ
∗ )

:::::::
respect

::::
the

::::::
safety

::::::::::
constraints

::::::::
zj

∗ ≥ Tj :::
for

:::
all

::::::::::
j = 1, ..., J

:::::
and

::::
that

:::
y∗

:
is
:::::::::::

informative
:::
for

::::
the

:::::::::
modeling

::
of

:::::::
target

::
y.

::::
As

:::
the

::::::
safety

::::::::
outputs

:::
are

:::::::::
unknown

::::::
when

:::
an

:::
x∗ ::

is
::::::::
selected,

:::::::::::
guaranteeing

::::::
safety

::
is

:::::::::::
challenging.

:::::
Safe

:::::::
learning

::::::::
methods

::::::
resort

:::
to

:::::::
allowing

:::::::
queries

:::::
that

:::
are

::::
safe

::::
only

:::::
with

::::
high

::::::::::
probability

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sui et al., 2015; 2018; Zimmer et al., 2018; Li et al., 2022)

:
.

:::::::::
Afterward,

::::
the

:::::::
labeled

:::::
point

::
is
::::::
added

:::
to

::::
DN (observed dataset becomes DNinit+1 :::::

DN+1), and we proceed
to the next iterations . In the following,

:
.
:
N will be the size of observed dataset of the target task, and it

varies from Ninit to Ninit + num_steps (number of AL steps, i.e. AL budget). The notation is summarized
in Table 1.

::
is

:::::::
initially

:::::
Ninit ::::

and
:::::
grows

:::
to

:::::::::::::
Ninit + Nquery.

:::::::
Nquery ::

is
:::
the

:::::::
number

:::
of

:::
the

::::::::
learning

:::::::::
iterations,

:::
i.e.

:::
the

:::::::
number

::
of

:::::
data

::::::
points

:::::::
actively

:::::::
added.

:

This problem formulation applies to both AL and BO. In this paper, we focus on AL problems. The goal
is using the evaluations to make accurate predictions f(X ), and the points we select would favor general
understanding over space

::::
Safe

:::::::::
Transfer

:::::::
Active

::::::::::
Learning

::::::
Aim:

::
In

:::::::::
particular,

::::
this

::::::
paper

:::::
aims

::
to

:::::
build

::
a
::::
new

::::
safe

:::::::
transfer

::::
AL,

::
a

:::
safe

::::
AL

:::::::::
algorithm

:::::
with

::::::::::::
multi-output

:::::
GPs,

::
so

:::::
that

:::
we

:::::::
leverage

::::
the

:::::::::::
information

::
of

::::
the

::::::
source

::::
data

::::::::
Dsource

Nsource

::
to

:::::::
explore

:
a
::::::
larger

::::
safe

:::::
area.

::::
Our

:::::::::
algorithm

:::::
aims

:::
to

•
::
(i)

::::::
collect

:::
as

::::
few

::::::
(small

:::::::
Nquery)

::::
data

:::
as

:::::::
possible

:::
for

::::::::
building

:::
an

::::::::
accurate

::::::::::
regression

:::::
model

:::
of

::
y

:::
(in

:::
the

::::
safe

::::
part

::
of

::::
the

:::::
input

:::::::
domain

:
X , up to the safety constraints.

::
),

•
:::
(ii)

::::::
collect

:::
the

:::::
data

::
in

::
a
::::
safe

::::
way

::::
and

::::::
hereby

:::::::
explore

::::
the

::::
safe

::::::
region

::::::::
including

:::
its

:::::::::::
boundaries,

•
:::
(iii)

:::
in

:::::::::
particular

:::::::
explore

:::::
larger

::::
safe

::::::
areas

::::
than

:::::::::::
benchmarks

:::
in

:
a
::::::
faster

::::
way.

:

3 Background& local exploration :
:::::::::::

Gaussian
::::::::::::
Processes

:
of safe learning

methods
:::::::
Single

:::::
and

::::::::::
Multiple

:::::::
Tasks

In this section, we introduce GPs, safe learning algorithms for GPs , and then provide detailed analysis
and illustration of the local exploration problem.

::::::::
Gaussian

:::::::::
Processes

::::::
(GPs)

::::
and

:::::
their

::::::::::
multitask

:::::::
variant.

::::
GPs

:::
are

::::
the

:::::::::
workhorse

:::
of

::::
safe

:::
AL

:::
in

::::::
which

::::
they

::::
are

::::::::
routinely

:::::::
applied

:::
to

:::::
select

:::::
safe

::::
and

::::::::::
informative

:::::
data

:::::
points

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022)

:
.
::::::::::

Multitask
::::
GPs

:::::::
extend

::::
this

::::
role

:::
to

::::
safe

:::::::
transfer

:::
AL

:::
by

:::::::::
leveraging

:::::::::::
information

::::::
across

:::::::
related

:::::
tasks,

::::::::
enabling

:::::
more

::::::::
efficient

::::::::::
exploration

:::
of

:::
the

::::::
target

:::::::
system.

Gaussian processes (GPs):

3.1
::::::::
Gaussian

::::::::::
Processes

::::::
(GPs)

:::::::
Suppose

:::
we

::::
aim

::
to

::::::
model

:::
the

::::::
output

::
y
::::
and

:::
the

:::::
safety

::::::::::::
observations

::::::::
z1, ..., zJ

::::
with

:::::
GPs.

:::::
Here,

:::
we

:::::::::
introduce

:::
the

::::::::
modeling

:::::::
scheme

:::
and

::::
the

::::::::::
underlying

:::::::::::
assumptions.

:::::
The

::::
first

::::::::::
assumption

::
is

::::
that

::::
the

::::
data

:::::::::
represent

:::::::::
functional

:::::
values

:::::::
blurred

:::::
with

::::
i.i.d.

:::::::::
Gaussian

:::::::
noises.

Assumption 3.1 (Data: target task).
:::::::
Assume

::::::::::::::
y = f(x) + ϵf ,

::::::
where

:::::::::::::::
ϵf ∼ N

(
0, σ2

f

)
,
::::

for
::::
our

::::::
target

:::::::::::
observations.

:::::
We

::::::
further

::::::::
assume

::::
that

::::::::::::::::
zj = qj(x) + ϵqj ,

::::::
where

:::::::::::::::
ϵqj ∼ N

(
0, σ2

qj

)
,
:::::

and
:::::::::::
j = 1, . . . , J

:::::::
indexes

:::
the

::::::
safety

::::::::::
constraints.

::::
All

::
of

:::
the

:::::
noise

:::::::::
variances

::::::::::::::::
{σ2

f , σ2
q1 , . . . , σ2

qJ}:::
are

::::::::
positive.

:

:::
We

::::
then

:::::
place

::
a

:::
GP

:::::::::::
assumption

::
on

:::::
each

::
of

:::
the

::::::::::
underlying

:::::::::
functions

::::::::::
f, q1, ..., qJ .

:
A GP is a stochastic process

specified
::::::
defined

:
by a mean and a kernel function (Rasmussen & Williams, 2006; Kanagawa et al., 2018;

Schoelkopf & Smola, 2002). Without loss of generality, we assume the GPs have zero mean . In addition,
without prior knowledge to

::
In

::::
this

:::::
work,

:::
we

:::
set

::::
the

:::::
mean

::
to

:::::
zero

::
—

::
a
::::::::
common

::::::::
practice,

::
as

::::::::::
normalized

:::::
data

::::::::
typically

:::::::
justifies

::::
this

:::::::::::
assumption.

:::::
The

::::::
kernel

:::::::::
function,

::::::::::::
X × X → R,

::::::::
specifies

::::
the

:::::::::
covariance

:::
of

::::::::
function

:::::
values

:::
at

::::::::
different

:::::
input

:::::::
points.

::::::::
Without

:::::
prior

:::::::::
knowledge

:::
of the data, it is common to assume the

:::
we

:::::
make

6
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:::
the

::::::::
standard

:::::::::::
assumption

::::
that

:::
the

:
governing kernels are stationary.

:::
The

::::
GP

::::::::::
assumption

::
is
:::::
then

::::::::::
formulated

::
as

:::
the

:::::::::
following.

:

Assumption 3.2 (Model: single task). For g = f, q1, ..., qJ ,
::::
each

::::::::
function,

::::::::::::::::
g ∈ {f, q1, ..., qJ},

:::
we

:::::::
assume

::::
that

g ∼ GP(0, kg) and
::::
with

::
a
:::::::::
stationary

::::::
kernel

:::::
with

::::::::
bounded

::::::::
variance,

:
kg(x, x′) := kg(x−x′) ≤ 1are stationary

.

Bounding the kernels by 1
:::
one provides advantages in theoretical analysis (Srinivas et al., 2012) and is not

restrictive because the data are
::::
since

::::
the

::::
data

::
is
:
usually normalized to zero mean and unit variance.

The GP assumptions (Assumption 3.1 and Assumption 3.2 ) indicate that each of {f, q1, ..., qJ} has a
predictive distribution given as the following

:::::::
provide

:::
the

:::::::::
predictive

:::::::::::
distribution

:::
of

:::
the

:::::::::
functions

::::::::::
f, q1, ..., qJ .

We write down the distribution for
:::
the

::::::::
function f at a test point x∗, while the distributions of qj

:
:
:

p (f(x∗)|x1:N , y1:N ) = N
(
µf,N (x∗), σ2

f,N (x∗)
)

,
:::::::::::::::::::::::::::::::::::::::::

(1)

:::::
where

:

µf,N (x∗)
:::::::

= kf (x1:N , x∗)T
(
Kf + σ2

f I
)−1

y1:N ,
:::::::::::::::::::::::::::::::

σ2
f,N (x∗)

:::::::

= kf (x∗, x∗)− kf (x1:N , x∗)T
(
Kf + σ2

f I
)−1

kf (x1:N , x∗).
::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::
We

:::
use

::::
the

:::::::
notation

::::::::::::::::::::::::::::::::::::::::::::::
kf (x1:N , x∗) = (kf (x1, x∗), ..., kf (xN , x∗)) ∈ RN×1

::
to

::::::
denote

::::
the

:::::
kernel

::::::
vector

::::::::
between

:::
the

:::::::
training

:::::::
points

:::::
x1:N ::::

and
:::
the

::::
test

::::::
point

:::
x∗.

:::::
The

::::::
kernel

:::::::
matrix

::::::::::::
Kf ∈ RN×N

::::::::
contains

:::
the

:::::::::::
covariances

:::::::
between

::::
the

:::::::
training

::::::
points

:::::
x1:N ::::

with
:::::::::::::::::::::::::::::::::::
[Kf ]m,n = kf (xm, xn), m, n = 1, ..., N .

:

:::::::::
Typically,

::
kf::

is
:::::::::::::
parameterized

:::
and

::::
can

::
be

::::::
jointly

::::::
fitted

::::
with

:::
the

:::::
noise

::::::::
variance

:::
σ2

f .
:::::::::
Common

:::::
fitting

::::::::::
techniques

::::::
involve

::::::::::
computing

::::
the

:::::::::
marginal

::::::::::
likelihood,

:::::::::::::::::::::
N
(

y1:N |0, Kf + σ2
f I
)

,
::::::
where

::::
the

:::
the

::::::::
runtime

:::::::::::
complexity

::
is

:::::::
O
(
N3),

::::::::::
dominated

:::
by

:::
the

:::::::::
inversion

::
of

:::
the

::::::
Gram

:::::::
matrix

::::::::::::::

(
Kf + σ2

f I
)−1

.

:::
The

::::::::::
predictive

::::::::::::
distributions

::
of

::::
the

::::::
safety

::::::::
functions

::::::::
q1, ..., qJ

:
can be obtained by replacing f with qj and

:::::::
q1, ..., qJ

::::
and

::::
the

:::::::
outputs

:
y1:N with zj

1:N : p (f(x∗)|x1:N , y1:N ) = N
(

µf,N (x∗), σ2
f,N (x∗)

)
,

µf,N (x∗)=: µf,N = kf (x1:N , x∗)T
(
Kf + σ2

f I
)−1

y1:N ,

σ2
f,N (x∗)=: σ2

f,N = kf (x∗, x∗)− kf (x1:N , x∗)T
(
Kf + σ2

f I
)−1

kf (x1:N , x∗),

where kf (x1:N , x∗) = (kf (x1, x∗), ..., kf (xN , x∗)) ∈ RN×1,
::::::::::::::
zj

1:N , j = 1, ..., J
::::

in
:::::::::::::::::::::

Equations (1) and (2).
::::::::
Similarly,

::::
the

:::::::::::::
log-likelihood

:::
can

:::
be

:::::::::::
maximized

:::
for

:::::
each

:::
qj

:::
by

::::::
jointly

::::::::
learning

::::
kqj

:
and Kf ∈ RN×N is a

matrix with [Kf ]ij = kf (xi, xj). Typically, kf is parameterized and can be fitted together with σ2
f .

:::
σ2

qj ::
in

:::
the

:::::
same

::::::::
manner,

:::::::::::
j = 1, . . . , J .

:

Key notation Symbols MeaningDN = {x1:N , y1:N , z1:N} dataset of the target task

3.2
:::::::
Transfer

:::::
Task

:::::
GPs

::
In

:::
the

::::::::
presence

::
of

::
a
::::::
source

:::::
task,

:::
one

::::
can

::::::
model

:::
the

::::::
source

::::
task

::::
and

::::
the

:::::
target

:::::
task

::::::
jointly

::::
with

::::::::::::
multi-output

::::
GPs

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Journel & Huijbregts, 1976; Álvarez et al., 2012; Tighineanu et al., 2022)

:
.
::::
The

:::
key

:::::
idea

::
is

::
to

::::::::
augment

:::
the

::::::
input

:::::
with

::
a

::::
task

::::::
index

:::::::::
variable,

::::::::
allowing

::::
the

:::::::
model

::
to

:::::::::::
distinguish

::::::::
between

::::::
tasks

:::::
while

::::::::
sharing

::::::::::
information

::::::
across

::::::
them.

::::::::::
Leveraging

::
a

::::::
source

::::
task

::
in

::::
this

::::
way

::::::::
improves

:::::
data

::::::::
efficiency

:::
on

:::
the

::::::
target

:::::::
system,

::
as

:::::::
relevant

:::::::::::
information

::::
can

::::
flow

:::::
from

:::
the

::::::
source

::
to

::::
the

::::::
target

::::
task.

::::
To

::::::::
proceed,

::
it

:
is
:::::::::
necessary

:::
to

::::
first

:::::
make

:
a
::::::::::
hypothesis

:::
on

:::
the

::::::
source

:::::
data,

:::::::
similar

::
to

:::::::::::::::
Assumption 3.1.

7
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Assumption 3.3 (Data: source task).
:::
The

::::::
source

:::::
data

:::
are

::::::::
modeled

:::
as

::::::::::::::::::::::::::::::
ys = fs(x) + ϵfs

, zj
s = qj

s(x) + ϵqj
s
,

:::::
where

:::::::::::::
{fs, q1

s , ..., qJ
s } :::

are
::::::::
unknown

::::::
source

:::::
main

:::
and

::::::
safety

:::::::::
functions,

::::
and

:
s
:::::::
indexes

:::
the

::::::
source

:::::
task.

:::
We

:::::::
assume

:::::::
additive

:::::
noise

:::::::::::
distributed

::
as

::::::::::::::::
ϵfs
∼ N

(
0, σ2

fs

)
, N = Ninit, ..., Ninit + num_steps

::::::::::::::
ϵqj

s
∼ N

(
0, σ2

qj
s

)
:::::
with

:::
all

::::
noise

:::::::::
variances

::::::::::::::::
{σ2

fs
, σ2

q1
s
, ..., σ2

qJ
s
}

:::::
being

::::::::
positive.

:

zj
1:N = {zj

1, ..., zJ
N} safety observations of the j-th constraint(unknown function qj)

:::::
Next,

::::
we

:::::::::
introduce

::::
task

:::::::
indices,

:::::
with

::
s
:::
for

::::
the

::::::
source

::::::
task,

::::
and

::
t
:::
for

::::
the

::::::
target

:::::
task.

:::::::
These

:::::::
indices

:::::
allow

:::
us

:::
to

::::::::
describe

:::
the

::::::
source

:::::
and

::::::
target

:::::::::
functions

:::::::
jointly

::
as

::::::::::
multitask

:::::::::
functions.

::::::
The

:::::
data

::::
are

::::
then

:::::::::::::
concatenated

:::::
with

:::
the

::::
task

::::::::
indices,

:::::
and,

::::::
based

:::
on

:::::::::::::::
Assumption 3.1

:::
and

:::::::::::::::
Assumption 3.3

:
,
:::
we

::::::
define

::::
the

:::::::::
multitask

:::::::::
functions

:::::::::::::::::::::::::::::::::
f , q1, ..., qJ : X × {task indices} → R,

:::::::
where

:::::::::::::
f(·, s) = fs(·)

::::::::::::
corresponds

:::
to

::::
the

:::::::
source

::::::
main

:::::::::
function,

:::::::::::
f(·, t) = f(·)

:::
to

:::
the

::::::
target

:::::
main

:::::::::
function,

:::::::::::::
qj(·, s) = qj

s(·)
::
to

::::
the

::::::
source

::::::
safety

:::::::::
constraint

::::
and

:::::::::::::
qj(·, t) = qj(·)

::
to

:::
the

::::::
target

::::::
safety

::::::::::
constraint.

:::
We

::::
use

::::
bold

::::::::
symbols

::
to

::::::::
indicate

::::
the

:::::::::
multitask

:::::::::
functions.

::::::::::::
Subsequently,

:::
we

:::::
assign

::::
GP

::::::
priors

::
to

:::
the

:::::::::
multitask

:::::::::
functions.

:

Assumption 3.4 (Model: multitask).
:::
For

:::::
each

::::::::::
multitask

::::::::
function

:::::::::::::::::::
g ∈ {f , q1, . . . , qJ},

:::
we

::::::::
assume

:::::::::::::
g ∼ GP (0, kg)

::::
with

::::::
kernel

::::::::::::::::::::::::::::::::::::::::::::::
kg : (X × {task index})× (X × {task index})→ R.

z1:N = (z1
1:N , ..., zJ

1:N ) safety observations of all constraints jointly Dsource
Nsource

dataset of the
source task {xs,1:Nsource , ys,1:Nsource , zs,1:Nsource}y = f(x) + ϵf observation of unknown function
f ∼ GP(0, kf ), ϵf ∼ N

(
0, σ2

f

)
:::::
Note

::::
that

::::
the

:::::::::
structure

::
of
::::

our
:::::

new
:::::::::::
assumption

:::::::::
resembles

:::::::::::
Assumption

::::
3.2.

::::::::
However,

:::
the

::::
GP

::
is

::::
now

:::::::
defined

::::::
jointly

::::
over

:::
the

::::::
source

::::
and

::::::
target

::::
task,

::::::::
allowing

:::::::::::
information

::
to

::::
flow

::::::::
between

:::::
them.

:::::::::
Example

:::::::
kernels

:::
are

::::::::
provided

:::
in

::::::::::
Section 6.3

:
.
::::
We

:::::::
proceed

:::
by

::::::::::
presenting

::::
the

:::::::::
predictive

:::::::::::
distribution

::
for

::::
the

:::::
main

::::::
target

::::::
task,

:::::::::
leveraging

:::::::
source

::::
and

::::::
target

:::::
data.

::::
To

:::::::::::
incorporate

:::::
task

::::::
indices

:::::
into

:::
the

::::::
given

:::::
input

:::::
data,

:::
we

:::
use

::
a
::::
hat

::::::::
notation:

::::
We

::::::
denote

::::
the

::::::
source

::::::
input,

::::::::::
xs,1:Nsource ,

::::::
paired

:::::
with

:::
the

:::::::
source

:::::
index

::
s,

::::
with

:::::::::::::::::::::::::::::::::::::
x̂s,1:Nsource := {(xs,i, s)|xs,i ∈ xs,1:Nsource}.::::::::::::

Analogously,
::::
the

::::::
target

::::::::
training

:::
and

::::
test

:::::::
points,

:::::
x1:N ::::

and
:::
x∗,

::::::
paired

:::::
with

::::
the

::::::
target

:::::
index

::
t,
::::

are
:::::::::::
represented

::
as

:::::::::::::::::::::::::
x̂1:N := {(xi, t)|xi ∈ x1:N}::::

and
::::::::::::
x̂∗ := (x∗, t).

:::::
The

:::::::::
predictive

::::::::::
distribution

::
is
:::::

then
:::::
given

::::
by:

p (f(x∗, t)|x1:N , y1:N , xs,1:Nsource , ys,1:Nsource) = N
(
µf ,N (x∗), σ2

f ,N (x∗)
)

,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

::::
the

:::::::::
predictive

:::::
mean

:::::::::
µf ,N (x∗)

::::
and

::::::::
variance

::::::::
σ2

f ,N (x∗)
::::
are

:::::
given

:::
by

µf ,N (x∗)
::::::::

= vT
f Ω−1

f

(
ys,1:Nsource

y1:N

)
,

:::::::::::::::::::::

σ2
f ,N (x∗)

:::::::

= kf (x̂∗, x̂∗)− vT
f Ω−1

f vf .
::::::::::::::::::::::

(3)

zj = qj(x) + ϵqj observation of unknown constraint qj ∼ GP(0, kqj ), ϵqj ∼ N
(

0, σ2
qj

)
:::
The

:::::::
vector

::::
vf

:::::::::
represents

:::
the

:::::::::::
covariances

::::::::
between

::::
the

:::::::
training

:::::::
points,

::::::::::
aggregated

:::::
over

::::
the

::::::
source

::::::
points

::::::::::
x̂s,1:Nsource ::::

and
:::
the

::::::
target

:::::::
training

::::::
points

::::::
x̂1:N ,

:::
and

::::
the

::::::
target

::::
test

:::::
point

:::
x̂∗.

:::
It

::
is

:::::::
defined

:::
as:

:

vf
::

=
(

kf (x̂s,1:Nsource , x̂∗)
kf (x̂1:N , x̂∗)

)
(∈ R(Nsource+N)×1).

:::::::::::::::::::::::::::::::::::::

(4)

:::
The

:::::::
matrix

:::
Ωf:::::::::

combines
:::
the

::::::
kernel

::::::::
matrices

::::
and

:::::
noise

:::::::::
variances

:::
for

:::::
both

::::::
source

::::
and

::::::
target

::::::
tasks,

:::::::
forming

:
a
:::::
block

:::::::::
structure:

:

Ωf
::

=
(

Kfs
+ σ2

fs
INsource Kfs,f

KT
fs,f Kf + σ2

f IN

)
(∈ R(Nsource+N)×(Nsource+N)),

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

:::::
where

::::::::::::::::::::::::::::::
Kfs

= kf (x̂s,1:Nsource , x̂s,1:Nsource)
::::::::

denotes
:::::

the
::::::
kernel

::::::::
matrix

::::::::
between

::::
the

:::::::
source

::::::
data

:::::::
points,

:::::::::::::::::::::::::
Kfs,f = kf (x̂s,1:Nsource , x̂1:N )

::::::::
between

::::::
source

::::
and

::::::
target

::::::::
training

::::::
points,

::::
and

:::::::::::::::::::
Kf = kf (x̂1:N , x̂1:N )

::::::::
between

8
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:::::
target

::::::::
training

:::::::
points.

::::
For

::::::::
brevity,

:::
we

::::::::
omitted

::::
the

::::
task

::::::
index

:::::
from

::::
the

:::::::::
predictive

::::::
terms

:::::::::
µf ,N (x∗)

::::
and

:::::::::
σ2

f ,N (x∗),
::
as

:::::
this

::::::
paper

:::::::
focuses

::::::::::
exclusively

:::
on

:::::::::::
predictions

:::
for

::::
the

::::::
target

:::::
task.

:::::
For

:::::::
brevity,

::::
we

:::::::
present

:::::::
formulas

:::::
only

:::
for

:::
the

:::::
main

:::::::::
function;

:::
the

::::::
safety

:::::::::
functions

:::
are

::::::::::
analogous.

:

qj(x) ≥ Tj j-th safety condition

ys = fs(xs) + ϵfs source taskobservation prior fs ∼ GP(0, kfs), ϵfs ∼ N
(

0, σ2
fs

)
:::
The

:::::
time

::::::::::
complexity

::
of
::::

the

:::::::::
predictive

:::::::::::
distribution

::
is
::::::::::::::::::
O
(
(Nsource + N)3)

::::
due

:::
to

::::
the

:::::::::
inversion

:::
of

:::
the

:::::::
Gram

:::::::
matrix

::::
Ωf .

::::::::::
Similarly,

:::
the

::::::::
runtime

:::
for

::::::::::
estimating

::::
the

::::::::::
likelihood,

:::::
and

::::::::::::
consequently

::::
for

::::::::
training

::::
the

::::::::::::::::
hyperparameters,

::
is
:::::

also
:::::::::::::::::
O
(
(Nsource + N)3).

:::::::
While

::::
this

::::::
higher

:::::
time

:::::::::::
complexity

:::::::::
introduces

::::::::::
additional

::::::::::::::
computational

:::::::::
overhead,

::
it

:
is
::::::
offset

::
by

::::
the

::::::
benefit

:::
of

::::::::
improved

:::::
data

:::::::::
efficiency

:::::::
through

::::
the

::::
joint

:::::::::
modeling

::
of

::::::
source

::::
and

::::::
target

::::::
tasks.

zj
s = qj

s(xs) + ϵqj
s

source task constraint prior qj
s ∼ GP(0, kqj

s
), ϵqj

s
∼ N

(
0, σ2

qj
s

)
Remark 3.5.

:
In

::::
our

::::::
paper,

:::
all

::::::
safety

:::::::::::::
measurements

::::::::
z1, ..., zJ

:::
are

::::::::
modeled

::::::::::::::
independently.

::
If
::::
the

::::::::
variables

:::
are

:::
not

::::::::::::
independent,

:::
our

::::::::
methods

::::
and

::::::::
analysis

:::
still

::::::
apply,

:::
as

:::
the

::::::::::
dependent

::::::::::
constraints

:::
can

:::
be

::::::::
grouped,

::::
and

:::
the

::::::::
problem

:::::::
reduces

::::
back

:::
to

:::
the

::::::::::::
independent

::::
case.

:

f : X × {task indices} → R fs and f jointly as a multi-task function

4
::::::::::::::
Background:

::::::
Safe

:::::::
Active

:::::::::::
Learning

qj : X × {task indices} → R qj
s and qj jointly asa multi-task function

f ∼ GP (0, kf ) multi-task GP prior, kernel kf parameterized by θf = (θfs
, θf )

::
In

::::
this

:::::::
section,

:::
we

:::::::::
introduce

:::::::::::::
state-of-the-art

::::
safe

:::::::
Active

::::::::
Learning

:::::
(safe

:::::
AL).

::::
The

::::::::::::::
state-of-the-art

::
of

:::::
Safe

:::
AL

::::
can

:::
not

:::::::
exploit

::::::::::
knowledge

::
in

::::
form

:::
of

::::::
source

:::::
data.

:::::::::
Although

::::::
source

:::::
data

::
is

:::
not

::::::::::
considered

::
in

::::
this

:::::::
section,

:::
we

::::
will

::::
still

:::::
write

::::::
target

::::
task

::
to

:::::
make

:::
the

::::::::::
distinction

::::::::
between

::::
the

:::
two

:::::
tasks

::::::
clear.

qj ∼ GP
(
0, kqj

)
multi-task GP prior, kernel kqj parameterized by θqj = (θqj

s
, θqj )

::::
Safe

:::
AL

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022)

::::
aims

:::
to

:::::
select

::::
data

::::::::
actively

:::
and

::::::
safely

::
to

::::
learn

::::::
about

::
a

:::::
target

:::::
task.

:::
At

::
a

:::::
given

:::::::
number

::
of

::::::::
available

::::::
target

::::
data

:::
N ,

::::
the

::::
goal

::
is

::
to

::::::
select

::::::::::::::
x∗ ∈ Xpool ⊆ X ,

::::
that

:::::
gives

::
us

::
a
::::
safe

::::::::::::::
z∗ = (z1

∗, ..., zJ
∗ )

::::
and

:::::::::::
informative

::
y∗::::::::::::

(informative
::
in

:::
the

::::::::
context

::
of

::::::::::
modeling).

Safe learning:
::::
The

:::::
key

:::::
of

::::::
safe

::::::
AL

::::
is

::::::
the

::::::::
safety

::::::
and

::::::
data

:::::::::::
selection

:::::::::
criteria.

::::::::::
Commonly,

::::::::
these

::::::::::
criteria

::::::::::
employ

:::::::
GPs

:::::::
due

:::::
to

::::::
the

:::::::
well

::::::::::::
calibrated

::::::::::::
predictive

::::::::::
uncertainty

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022)

:
.
:::

It
::
is
::::::
worth

:::::::::::
highlighting

::
a
:::::::

closely
::::::
related

::::::
field,

::::
safe

:::::::::
Bayesian

::::::::::::
optimization

::::::
(BO)

::::::::::::::::::::::::::::::::::::::::::::
(Sui et al., 2015; 2018; Berkenkamp et al., 2020),

:::::::
which

::::::
follows

::
a

::::::
similar

:::::::::
procedure

:::::::
except

::::
that

:::
the

:::::
goal

::
is

::
to

::::::
search

:::
for

:::
an

::::::::
optimum

:::
y∗ :::::::

subject
::
to

::::::
safety

::::::::::
constraints

::::::::::::::::::
z1

∗ ≥ T1, ..., zJ
∗ ≥ TJ .

:

A core of safe learning methods (Sui et al., 2015; 2018; Berkenkamp et al., 2020; Baumann et al., 2021) is
to

Algorithm 1
::::
Safe

:::
AL

Require:
::::::::::::::
Assumption 3.1,

:::::::::::::::
Assumption 3.2,

::::::::::::
DNinit ,Xpool,::

β
::
or

:::
α,

:::::::
Nquery,

:::::::::
thresholds

:::::::::
T1, ..., TJ

1: for N = Ninit, ..., Ninit + Nquery − 1 do
2:

:::
Fit

::::
GPs

::::::::::
f, q1, ..., qJ ::::

with
::::
DN:

3:
:::::::::::::::::::::::::::::::::::::::::::::::
SN ← ∩J

j=1{x ∈ Xpool|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj}:(Equations (2) and (6))
4:

:::::::::::::::::::::::::::::::::::::::::::::::::::
x∗ ← argmaxx∈SN

a(x), a(x) =
∑

g∈{f,q1,...,qJ } Hg [x|DN ]
:

5:
:::::
Query

:::
x∗:::

to
:::
get

::::::::::
evaluations

:::
y∗::::

and
:::
z∗

6:
:::::::::::::::::::::::::::::::::::::::::::
DN+1 ← DN ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}

7: end for
8:

:::::::
Return

:::::::::::
DNinit+Nquery ,

:::::::
trained

:::::::
models

::::::::::
f, q1, ..., qJ :

9
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::::::
Safety

::::::::::::
Condition:

::::
The

::::::
safety

:::::::::
variables

:::
are

:::::::::
modeled

:::
by

::::
GP

:::::::::
functions

:::::::::
q1, ..., qJ

:
(Section 3.1),

:::::
and

:::
the

::::
core

:::
is

:::
to

:
compare the safety confidence bounds

:
(Equation (2)) with the thresholds and define

a safe set SN ⊆ Xpool as
::::::::::::
T1, ..., TJ ∈ R.

::::
At

:::::
each

:::::::::
iteration

:::
N ,

::::
we

::::
can

::::::::
compute

::::
the

::::::
safety

:::::::::::
probability

::::::::::::::::::::::::::::::::::::::::::
p
(

qj(x)|x1:N , zj
1:N

)
= N

(
µqj ,N (x), σ2

qj ,N (x)
)

,
:::
for

:::::
each

::::::
safety

:::::::::
constraint

::::::::::::
∀j = 1, ..., J .

:::::::::::::::::
Sui et al. (2015)

::::::
defines

:::
the

::::
safe

:::
set

:::::::::::
SN ⊆ Xpool::

as
:

SN = ∩J
j=1{x ∈ X poolpool

:::
|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj}, (6)

where β ∈ R+ is a parameter for probabilistic tolerance control (Sui et al., 2015; Berkenkamp et al., 2020)
. This definition is equivalent to ∀x ∈ SN , p

(
q1(x) ≥ T1, ..., qJ(x) ≥ TJ

)
≥ (1− α)J when α = 1− Φ(β1/2)

:::::::::
(α ∈ [0, 1])

::::::
where

::
Φ

::
is

::::
the

::::::::
standard

::::::::
Gaussian

:::::::::::
cumulative

::::::::::
distribution

::::::::
function

:::::::
(CDF) (Schreiter et al., 2015;

Zimmer et al., 2018; Li et al., 2022).
::::
Note

::::
that

:::::::
α > 0.5

:::::::::::
corresponds

:::
to

::::::::::::::
β ∈ C, β1/2 < 0

::::::
which

::
is

::::::
usually

::::
not

:::::::::
considered

::::::::
because

::::
safe

:::::::
learning

:::::
aims

:::
for

:::::
high

:::::
safety

::::::::::
confidence

:::::
while

:::::::
α > 0.5

:::::::::
indicates

:
a
::::::

safety
::::::::::
confidence

::
of

::
at

:::::
most

::::
50%

::::
per

:::::::::
constraint

::
-
::
so

::
at

:::::
most

::
a
:::::::
random

::::::
guess.

In each iteration,

::::::::::::
Information

:::::::::::
Criterion:

:::
Safe

::::
AL

:::::::
queries

:
a new point is queried by mapping safe candidate inputs to

acquisition scores:

x∗ = argmaxx∈SN
a

(
x|DN

)
, (7)

where DN is the current observed dataset and a is
:::
a(·)

::
is

:
an acquisition function.

::::::
Notice

::::
here

::::
that

::::
a(·)

::::
and

:::
SN ::::

both
:::::::
depend

:::
on

::::
the

::::::::
observed

:::::::
dataset

::::
DN . In AL problems, a prominent acquisition function is the pre-

dictive entropy: a(x|DN ) = Hf [x|DN ] = 1
2 log

(
2πeσ2

f,N (x)
)

(Schreiter et al., 2015; Zimmer et al., 2018; Li

et al., 2022). We use a(x|DN ) =
∑

g∈{f,q1,...,qJ } Hg [x|DN ] to
:
:
:::::::::::::::::::::::::::::::::::::

a(x) = Hf [x|DN ] = 1
2 log

(
2πeσ2

f,N (x)
)

,

:::::
where

::::::
σ2

f,N ::
is
::::::::

defined
:::

in
:::::::::::::

Equation (2).
::::::

To
:

accelerate the exploration of safety models. It is
:::
the

::::::
safety

::::::::::
functions,

::::::::::::::::::::::::
Berkenkamp et al. (2020)

::::::::::
incorporate

::::
the

:::::::::::
information

:::
of

::::
the

::::::
safety

::::::::::
functions

:::
by

:::::
using

:::::::::::::::::::::::::::::::::
a(x) = maxg∈{f,q1,...,qJ }{Hg [x|DN ]}.

::::::
Our

::::::::::
acquisition

::::::::
function

:::
is

:::::
built

::::::
upon

::::
this

::::
and

:::
is

:::::::
written

::
in

:::::::::::
Algorithm 1

:
.

:::::
Please

:::::
note

::::::
again

:::
the

:::::
close

::::::::::
connection

:::
to

::::
BO:

::
it
:::

is
:
possible to exchange the acquisition function by the

SafeOpt criteria for
:
if
::::
one

::::::
wants

::
to

::::::::
address safe BO problems (Sui et al., 2015; Berkenkamp et al., 2020;

Rothfuss et al., 2022)).

Notably, solving such a constrained optimization

::::::::::::
Constrained

::::::::::::::
Acquisition

::::::::::::::::
Optimization:

::::::
Solving

::::::::::::::
Equation (7) is challenging. In the liter-

ature (Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022; Sui et al., 2015; Berkenkamp et al., 2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schreiter et al., 2015; Li et al., 2022; Sui et al., 2015; Berkenkamp et al., 2020), this is solved on a discrete
pool with finite elements, i.e. Npool := |Xpool| <∞::::::::::::::::::

Npool := |Xpool| <∞. One would apply Equation (2)
to the entire pool Xpool ::::::::

compute
::::
the

:::
GP

::::::::::
posteriors

:::
on

::::
the

:::::
entire

:::::
pool

::::::
Xpool :

to determine the safe set,
then optimize the acquisition scores over the safe set. The time complexity of making GP inference is
O
(
NpoolN

2)+O
(
N3). Note that we compute the pool only once to solve ??. Usually

::
In

:::
our

:::::::
paper,

:::
we

::::::
inherit

::::
this

:::::
finite

:::::::
discrete

:::::
pool

:::::::
setting.

:

:::::
Time

::::::::::::::
Complexity:

:::
The

:::::::::::
complexity

::::::::::
comprises

::::::::
O
(
N3)

::::
for

::::
GP

::::::::
training

::::
and

:::::::::::::
O
(
NpoolN

2)
::::

for
::::
GP

::::::::
inference,

:::::::::
assuming

::::
the

::::::
Gram

:::::::::
matrices,

:::::::::::::::::::::::::::::::

(
Kg + σ2

gI
)−1

,∀g ∈ {f, q1, ..., qJ},
::::
are

:::::::
already

:::::::::
computed

:::::::
during

:::
the

::::::::
training

:
(Equation (2)).

:::::::::::::
Importantly,

::::
GP

:::::::::
inference

::
is

:::::
only

:::::::::
performed

:::::
once

::::
per

::::::
query,

::::::::
whereas

::::
GP

:::::::
training

:::
(or

::::::
more

::::::::::
specifically,

:::
its

:::::
most

:::::::::::::::
computationally

::::::::::
expensive

:::::
step,

:::
the

:::::::
matrix

:::::::::
inversion)

:::
is

::::::::
repeated

:::::::
multiple

::::::
times

::::::
during

::::::::::
parameter

::::::::
learning.

::::
As

::
a
::::::::::::
consequence, the size of the discretized pool is not the

main computational bottleneck, e.g. Npool can be up to perhaps tens or
::::
Npool::::

can
:::
be

:::::
much

::::::
larger

:::::
than

:::
the

:::::::
training

:::::::
dataset

:::
N ,

::::
e.g.

:::::
Xpool::::

can
:::::::
include

::
up

:::
to

::::
tens

:::
or

::::
even

:
hundreds of thousands . The main bottleneck

10
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is still the training of GPs which will be described later. Training a GP takes O
(
N3) for multiple times.

This factor depends on the optimizer, the number of kernel parameters, and numerical stability.Often, the
complexity of training is significantly larger than making a GP inference,despite Npool much larger than N .
In our paper, we inherit this finite discrete pool setting. The

::
of

::::::::
samples.

:::
The

:
whole learning process is summarized in Algorithm 1.

::::::::::
summarized

:::
in

:::::::::::
Algorithm 1

:
.

Sequential Learning DNinit
,Xpool, β or α Fit GPs (kf , kqj , σ2

f , σ2
qj ) x∗ ← argmaxx∈SN

a(x|DN ) Evaluate at
x∗ to get y∗ and z∗ DN+1 ← DN ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}

5
:::::
Safe

::::::::::
Learning

:::::::
Solely

::::
on

::::::::
Target

:::::::
Task:

:::::::
Local

:::::::::::::
Exploration

Safe learning suffer from local exploration:
:::::
Before

:::
we

:::::::::
introduce

:::
our

::::
safe

:::::::
transfer

::::
AL

::::::::
approach

:::
in

:::
the

::::
next

:::::::::
Section 6,

:::
we

::::::::
analyze

:
a
::::::::::::
shortcoming

::
of

::::
the

::::::::
standard

::::
safe

::::
AL

:
(Algorithm 1)

:
.
::::
We

::::::::
quantify

:::
the

::::::
upper

::::::
bound

::::
for

::
an

::::::::::
explorable

::::
safe

:::::::
region,

:::
and

::::::
prove

::::
that

::::
safe

::::
AL

::
is

::::::
limited

:::
to

:::::
local

::::::::::
exploration

::::::
within

::::
the

:::::
given

::::::
bound.

::::::
Note,

::::
that

:::
the

::::::::
analysis

::::
will

:::
not

:::::::
involve

:::
the

::::::::::
acquisition

:::::::::
function,

::::
and

::::::::
therefore

:::
the

::::::
result

::::::
applies

::::
not

::::
only

::
to

::::
safe

::::
AL

:::
but

::::
also

:::
to

:::
GP

::::::
based

::::
safe

:::
BO

::::::::
settings

::::
with

::::
safe

:::
set

:::
as

::
in

::::::::::::
Equation (6)

:
.

0.2in The safety function q(x) = sin
(
10x3 − 5x− 10

)
+ 1

3 x2 − 1
2 . The observations are with noise drawn

from N (0, 0.12). -0.2in
:::::
Given

::::::::::::
observations

::::
DN ,

:::
we

::::::
would

::::
like

::
to

::::::
know,

:::::
until

::::
how

:::
far

:::::
into

:::
the

::::::
input

:::::
space

:::
the

::::::
safety

:::::::::
confidence

::
is
::::::::::
sufficiently

:::::
high.

In this section, we analyze the upper bound of explorable safe regions.

:::::::::::
Correlation

:::::::::::
weakened

::::::
with

:::::::::::
increasing

::::::::::
distance:

:::
The

::::::::::::
conventional

::::
safe

::::
AL

:
(Algorithm 1)

:::::
builds

::::::
models

::::::
based

:::
on

::
a

::::::::
standard

::::
GP

:::::::::::
assumption

:::::::::::::::
(Assumption 3.1

:
,
::::::::::::::
Assumption 3.2

::
),

::::
and

::::
then

::::
the

::::::::::
explorable

:::::
region

::
is
:::::::::

obtained
:::
by

::::::::::
quantifying

::::
the

::::::
safety

::::::::::
confidence,

:::::::::::
conditioned

:::
on

::::::::
observed

:::::
data

::::
DN :

(Equation (6)).
:::
The

::::::
safety

::::::::::
confidence

::
is

:::::::::
calculated

:::::
from

:::
the

::::
GP

:::::::::
predictive

::::::::::::
distributions (Equation (2)),

::::
and

::
it

::::
thus

::::::::
depends

::
on

::::
the

::::::
kernel

::
to

:::::::::
correlate

:::::
input

::::::
points

:::
of

:::::::
various

:::::::::
locations. Commonly used stationary kernels measure

the difference of
:::::::
measure

:::
the

::::::::
distance

::::::::
between a pair of points,

:
while the actual point

::::::
output values do not

matter
::::
(for

:::
two

::::::
points

::::::::::
x, x′ ∈ X ,

::::::::
∥x− x′∥

::::::::::
determines

::::
the

::::::::::
covariance). These kernels have the property that

closer points correlate strongly
::::
have

::::::
higher

::::::
kernel

::::::
values,

:::::::::
indicating

::::::::
stronger

:::::::::::
correlation, while distant points

result in small kernel values. We first formulate this property as the followingassumption. Given a kernel
function .

:

Definition 5.1.
:::
We

:::
call

::
a
::::::
kernel

:
k
::
a
::::::
kernel

::::
with

::::::::::
correlation

:::::::::
weakened

::
by

::::::::
distance

::
if k : X ×X → R , assume

:::::
fulfills

::::
the

::::::::
following

:::::::::
property:

:
∀δ > 0, ∃r > 0 s.t. ∥x− x′∥ ≥ r ⇒ k(x, x′) ≤ δ under L2 norm. We provide

expression

::::
This

:::::::::
definition

::::
will

::::
later

:::::
help

::
us

::::::::
quantify

::::
the

:::::
upper

::::::
bound

:::
of

:::
an

:::::::::
explorable

:::::::
region.

:::
We

::::::::
provide

::::::::::
expressions

of popular stationary kernels (RBF kernel and Matérn kernels), as well as their relations between input
distance r and covariance δ in the ??.

:::::::::::
Appendix B.

:

In the following, we

::::
Low

:::::::::::
correlation

::::::::
leading

:::
to

:::::
small

:::::::
safety

::::::::::::
probability:

::::
With

:::::::::::::
Definition 5.1,

:::
we

::::
can

::::
now derive a theorem

showing that standard kernels only allow local exploration of safety regions
:::::::::
measuring

:::
the

::::::::::
explorable

::::::
region.

The main idea is: when a
::
an

:::::::::
unlabeled

:
point x∗ is far away from the observations, we can get very small

δ
:::::::
observed

:::::::
inputs,

::::
the

:::::
value

:::
of

:
δ
::::

can
::::::::

become
::::
very

::::::
small (i.e. small covariance measured by

:::
the

:
kernel).

Thusthe prediction at x∗ is weakly correlated
:
,
:::
for

::::
each

:::::::::::
j = 1, ..., J ,

:::
the

::::::
model

:::::::
weakly

:::::::::
correlates

::::::
qj(x∗)

:
to

the observations. As a result, the predictive mean is close to zero (
:::
GP

:
prior) and the predictive uncertainty

is large, both of which imply that the method has small safety confidence,i.e. p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
is

small. Here we assume that qj ≥ Tj is 1
::
at

:::::
least

:
if
:::::::::::::::::::
∀j = 1, ..., J, qj ≥ Tj ::

is
:
not a trivial condition. In other

words, Tj is in sensitive domain of
:
,
::::
e.g.

::
a

::::::
trivial

::::::::
condition

::::::
would

:::
be

::
if
::
a
::::::::
function qj .

:::
has

::::::
values

:::::::
majorly

::::::::::
distributed

::
in

::::::
[−1, 1]

::::
but

:::::::::::
thresholded

::
at

::::::::
Tj = −2.

:

1
:
A
:::::

small
:::::
safety

::::::::
confidence

:::::::
indicates

::::::::::
∃j = 1, ..., J ,

::::::::::::::::::::::
p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
:
is
:::

not
::::

high
:::::::
enough.

11
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Theorem 5.2 (Local exploration of single-output GPs). We are given ∀x∗ ∈ X , x1:N ⊆ X , a kernel
kqj satisfying ?? (distant points result in weak correlation) and kqj (·, ·) ≤ 1. Denote kj

scale := max kqj (·, ·).
qj ∼ GP(0, kqj ) is a GP,

:::
For

::::
any

:::::::
safety

::::::::::
constraint

:::::::
indexed

::::
by

:::::::::::
j = 1, ..., J ,

:::
let

::
zj

1:N := (zj
1, ..., zj

N )
is a set of observed noisy values and

::
be

::::
the

::::::::
observed

::::::
noisy

:::::::
safety

::::::
values

:::::
and

:::
let

:
∥(zj

1, ..., zj
N )∥ ≤√

N .
:::
The

::::::
safety

::::::
value

:::::::::::::::
zj = qj(x) + ϵqj

::::::::
satisfies

:::
the

::::
GP

::::::::::::
assumptions

::::::::::::::::
(Assumption 3.1,

:::::::::::::::
Assumption 3.2

:
):
::::::::::::::::::::::::::::::::::::::::::

qj ∼ GP(0, kqj ), kqj (·, ·) ≤ 1, ϵqj ∼ N
(

0, σ2
qj

)
.
:::::

The
::::::
kernel

::::
kqj

::
is

::
a

::::::
kernel

::::
with

::::::::::
correlation

:::::::::
weakened

:::
by

:::::::
distance

:
(Definition 5.1).

: ::::::
Denote

::::::::::::::::::::
kj

scale := max kqj (·, ·).
:
Then ∀δ ∈ (0,

√
kj

scaleσqj /
√

N),∃r > 0 s.t. when

::::::::
∀x∗ ∈ X ::::

that
:::::
fulfill

:
minxi∈x1:N ∥x∗ − xi∥ ≥ r, the probability thresholded on a constant Tj is bounded by

p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
≤ Φ

(
Nδ/σ2

qj −Tj√
kj

scale
−(

√
Nδ/σqj )2

)
.
::
Φ

::
is

:::
the

:::::
CDF

:::
of

::::::::
standard

:::::::::
Gaussian.

:

::
To

::::::
prove

::::
this

:::::::::
theorem,

::::
we

:::::
need

:::::::::::::
Equation (2)

::
to

::::::::
compute

::::
the

::::::
safety

::::::::::
likelihood,

:::::
and

:::::
then

:::
we

::::
use

::::
the

::::::::::
eigenvalues

::
of

:::
the

::::::
kernel

:::::
Gram

::::::
matrix

::::::::
together

:::::
with

::::::::::::
Definition 5.1

::
to

::::::
derive

:::
the

::::
final

::::::
bound

::::
(see

::::::::::::
Appendix C

::
for

::::
the

:::::::
detailed

:::::::
proof).

:

Our theorem (proof in the ??)provides the maximum safety probability of a point as a function of its distance
to the observed data in X . Therefore, it

::::
The

::::
safe

:::
set

::::::::
tolerance

:::::::::
parameter

::
β
::
or

::
α
:
(Equation (6))

:::
can

::
be

:::::
used

::
to

:::::::
compute

::::
the

::::::::::
covariance

::::::
bound

::
δ.

::::
For

::::::::
example,

:::::
when

::::::
J = 1

::::
and

::::::::
β1/2 = 2,

::::::
which

::::::
means

::::::::::::::::::
p(q(x) ≥ T ) ≥ Φ(2)

:
is
::::
safe

:
(Equation (6))

:
,
:::
we

::::::
choose

:
a
::
δ
::::
such

:::::
that

:::::::::::::::::::::::::::
Φ
(

Nδ/σ2
q −T√

kscale−(
√

Nδ/σq)2

)
≤ Φ(2)

:::
(j

:::::::
omitted

:::::
when

:::::::
J = 1).

:::::
Such

:
a
::
δ
::::::
exists

::
in

:::
all

:::::::::
situation

::
of

::::
our

::::::::
interest,

:::
as

:::
we

::::
will

:::::
soon

:::::::
discuss.

:::::::
Given

::
a
:::
δ,

:::
we

::::
can

::::
then

::::::::::
determine

::
a

::::::::::::
corresponding

::::::
radius

::
r
::::
(see

::::
e.g.

:::::::::::
Appendix B

::
).

:::::::::::
Interpreting

::
r
:::
as

:::
the

::::::
radius

:::::::
around

::::
the

::::::::
observed

:::::
data,

::::
the

:::::
safety

::::::::::
confidence

:::::::
outside

::::
this

::::::
region

:::::::
always

::::::::
remains

::::
low.

::::::
Since

::::::
safety

::::::::::
confidence

:::::::
decides

::::
the

::::::::::
explorable

::::::
regions

:
(Equations (6) and (7))

:
,
::::
this

::::::::
theorem measures an upper bound of explorable safe area. Notice that

∥zj
1:N∥ ≤

√
N

:::
The

::::::
upper

::::::
bound

::
is
::::::

given
:::
for

::::
one

::::::
safety

::::::::::
constraint,

::::
and

:::
we

:::
can

::::
see

:::::
from

::::::::::::
Equation (6)

::::
that

:::
the

::::
final

::::::
bound

:::
of

:::::
safety

::::::::::
confidence

::
is
::::
the

:::::::
product

::
of
::::
the

::
Φ

:::::
term

::::
over

::::::::
different

::
j.

:::
In

:::::
other

::::::
words,

::::
the

:::::
more

:::::
safety

:::::::::::
constraints,

:::
the

:::::::
smaller

::::
the

:::::::::
explorable

:::::::
regions

::::
may

::::
be,

:::::
which

::
is
:::::::::
intuitive.

:

::::::
Notice

:::::
that

:::::::::::::::::::
∥(zj

1, ..., zj
N )∥ ≤

√
N

::::::::::::::
(∀j = 1, ..., J)

::
is not very restrictive because an unit-variance

dataset has ∥zj
1:N∥ =

√
N .

::::::::::::::::::
∥(zj

1, ..., zj
N )∥ =

√
N .

::::::
Note

:::::::
further

:::::
that

::::::::::::::::::::::::
δ ∈

(
0,
√

kj
scaleσqj /

√
N

)
:::::::
implies

:::::::::::::::::::
kj

scale > (
√

Nδ/σqj )2,
:::::
which

:::::::
means

:::
the

::::::
bound

::::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
::
is
:::::::
always

:::::
valid.

This theorem indicates that a standard GP with commonly used kernels explores only neighboring regions
of the initial x1:N . In practice, we consider safe AL on a discrete pool Xpool ⊆ X , which means the GP
explores only neighboring discretized points. In ??, we will see thatour new transfer safe sequential learning
framework may explore beyond the neighborhood of target x1:N , taken the source data into consideration.
:::
The

::::::::
theorem

::
is
:::::::::::
independent

:::
of

:::
the

::::::::::
acquisition

:::::::::
functions,

::::
and

:::::
thus

:::
the

:::::
local

::::::::::
exploration

:::::::::
problems

:::::::
present

::
in

::
all

::::
safe

::::::::
learning

::::::::
methods

:::::
based

:::
on

:::::::::
standard

::::
GPs.

:

::::::::::
Existence

::
of

::
δ
:::
for

::::::::::
common

::::
safe

:::::::::
learning

:::::::::::
situations:

:::
We

::::::
would

:::
like

:::
to

::::::::
illustrate

:::
an

::::::::
example

::
of

:::::
using

:::
our

::::::::
theorem

::
to

::::::::
compute

:::
an

:::::::::
explorable

:::::::
bound.

::::::
Before

:::::
that,

:::
we

:::
will

::::::
make

:
a
:::::::::
statement

::::::::
relating

:::
the

::::::
safety

::::
level

:
β
:::
to

:::
the

::::::::
quantity

::
δ

::::
used

:::
in

::::::::
Theorem

::::
5.2.

:::::
This

:::::
shows

:::::
that

:
a
::
δ
::::
and,

:::::::::
therefore,

:::::
local

:::::::::::
exploration

::
is

:::::::
present

::
in

::
all

::::
but

:::::
some

:::
(at

:::::
least)

::::::::::
uncommon

:::::::::
scenarios,

::::::
which

:::
are

:::
in

::::
fact

:::
out

::
of

:::::::
interest

:::
for

::::
the

::::
sake

::
of
::::
safe

:::::::::::
exploration.

Corollary 5.3 (Existence of δ).
:::
We

::::
are

::::::
given

:::::
the

::::::::::::
assumptions

:::
in

:::::::::::::
Theorem 5.2

:
.
::::::

For
::::::

each

::::::::::
j = 1, ..., J ,

::
if
::::::
either

:::
(1)

:::::::::::::::
Tj ≥ 0, β1/2 > 0

:::
or

:::
(2)

:::::::::::::::::::::
Tj < 0, β1/2 >

|Tj |√
kj

scale

,
:::::

then
:::::::::::::::::::::::
∃δ ∈ (0,

√
kj

scaleσqj /
√

N)
:::
s.t.

::::::::::::::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
≤ Φ(β1/2).

::::
This

::::::::
corollary

::::
can

:::
be

::::::
proved

:::
by

:::::::::
inspecting

::::
the

:::::::::
boundary

::
of

:::::
each

::::::::
constant

::::::::
(detailed

::
in

::::::::::::
Appendix C

:
).

12
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::::
0.2in

:

Figure 2:
::
A

::::::
safety

:::::::::
constraint

:::::::
(shown

:::
in

::::::
black)

::::
with

::::
two

::::
safe

:::::::
regions

::::::
above

:::::::::
threshold

:::::
zero.

:::::
Left

::::::::
graphics:

:::::
Based

:::
on

:::
the

::::::
initial

:::::
data

::::::
within

::::
one

::
of

:::
the

::::
safe

::::::::
regions,

:
a
::::
GP

:::::::::
surrogate

::
is

:::::::
trained.

::::
The

:::::
blue

::::
line

:::::::::
represents

:::
the

:::::
mean

::::::::::
prediction,

:::::
while

::::
the

::::
blue

:::::::
shaded

::::
area

::::::::
indicates

::::
the

:::::::::::
uncertainty

:::::
(e.g.,

:::::::::
confidence

::::::::
interval)

:::::::
around

:::
the

::::::
mean.

::::
The

:::::
green

::::
area

:::::::::
indicates

:::
the

:::::::
learned

::::
safe

::::
area.

::::::
Right

:::::::::
graphics:

:::::
After

:::::::::::
exploration,

:::::
more

::::::
points

:::
are

:::::::
sampled

::::::
within

::::
the

::::
first

::::
safe

:::::::
region.

:::::::::
However,

:::
the

::::
gap

:::
to

:::
the

:::::::
second

::::
safe

::::::
region

:::::::
exceeds

::
r,
::::::::::

preventing
::::

the
::::::::
discovery

::
of

::::
the

::::::
second

:::::::
region,

:::::::::
rendering

:::
the

:::::::
learned

::::
safe

::::
area

:::::::
almost

::::::::::
unchanged.

: :::
The

::::
true

::::::
safety

::::::::
function

::::
used

::::
here

::
is
:::::::::::::::::::::::::::::::::::
q(x) = sin

(
10x3 − 5x− 10

)
+ 1

3 x2 − 1
2 .

::::
The

::::::::::::
observations

:::
are

::::
with

:::::
noise

::::::
drawn

:::::
from

::::::::::
N (0, 0.12).

:::::
-0.2in

:

:::
The

::::
key

:::::::
insight

::
is

:::::
that,

:
a
::

δ
:::
in

:::::::::::
Theorem 5.2

:
,
::::::
which

:::::::
bounds

:::
the

::::::
safety

::::::::::
likelihood,

::::::
always

::::::
exists

:::
for

::::::::
common

:::::::
selection

:::
of

::::::
safety

:::::
level

:::::
β1/2.

:::::::
There

::::
are

::::
two

:::::::::
scenarios

::::::::::
considered

:::
in

::::::::::::
Corollary 5.3

:
.
:::::

The
:::::

first
::::::::
scenario,

::::::::::::::
Tj ≥ 0, β1/2 > 0

::
is
:::::::::

common
::::::::
because

::::::::
β1/2 > 0

:::
is

::::::
always

::::::::
desired

:::
for

::::
safe

:::::::::::
exploration

:::::
and

:::::::
stricter

::::::
safety

:::::::::
thresholds

::::::::::::::::
T1 ≥ 0, ..., TJ ≥ 0

:::::
may

::::
also

::::::
occur.

:::
In

::::
the

:::::::
second

::::::::
scenario,

::::
the

::::::::::
thresholds

:::
are

:::::::
softer,

:::
i.e.

:::::
one

::
or

:::::
more

::
of

::::
the

:::::::::
thresholds

:::::::::
T1, ..., TJ :::

are
:::::::
smaller

::::
than

:::::
zero.

:::
It

:::::
turns

:::
out

:::::
that

::::::::::::::::::::::::::::
β1/2 > |Tj |/

√
kj

scale, j = 1, ..., J

:
is
:::::::
desired

::
as

::::
well

:::
for

::::
safe

:::::::::
learning.

::::::::
Consider

::::::::::::::::::::
|Tj |/

√
kj

scale ≥ β
1
2 > 0

:::
for

::
a
::::::::::::
j ∈ {1, ..., J},

::::::
which

::
is

:::
the

::::::::
scenario

:::
not

::::::::
fulfilling

:::
the

::::::::::
condition.

::::
We

:::::
focus

:::
on

::::::::::
normalized

:::::::
variable

::::
zj ,

:::::
where

::::
the

::::::::::
underlying

::::::::
function

::
is

::::::::
modeled

::
by

::
a
::::
GP

::::::::::::::
qj ∼ GP(0, kqj ).

::::::
When

::::
this

::::::
model

::::::::::::
extrapolates

::
in

:::::::
regions

::::::
where

:::::
data

:::
are

:::::::
absent,

:::
the

:::::::::
inference

::
is

:::::
highly

::::::
based

:::
on

:::
the

:::::
prior

:::::::::::::::::::
qj(x) ∼ N (0, kj

scale).
:::::

The
::::
safe

:::
set

:::::::::
considers

::::::::::::::::::::::
p(qj(x) ≥ Tj) ≥ Φ(β1/2)

::
as

::
a
::::::
safety

::::::::
condition

:::
on

:::
the

::::
j-th

::::::::::
constraint,

::::
but

:::
the

:::::
prior

::::::::
indicates

:::::::::::::::::::::::::
Φ(−Tj/

√
kj

scale) ≥ Φ(β1/2)
::::::
which

:::::::
becomes

::
a
::::::
trivial

::::::::
condition

:::::
when

:::::::::::::::::::::
|Tj |/

√
kj

scale ≥ β
1
2 > 0.

:::
In

:::::
other

::::::
words,

::::
any

:::::
input

::
x

:::
has

::
a
::::
safe

:::::
prior

:::::
unless

::::
the

::::
data

::::::::
disagree.

::::
This

::
is

::
a

:::::::
scenario

:::::
that

::
is

:::
not

::
of
::::::::
interest

:::
for

::::
safe

::::::::
learning.

:::::::::
Therefore,

:::
for

:::
all

:::::::::
common

::::::::
selection

:::
of

::::::
safety

::::
level

::::::
β1/2,

:::::::::::::
Corollary 5.3

::::::
implies

::::
that

::::
we

::::
can

::::
find

::
a
::
δ
::::
and

:::::
apply

::::::::::::
Theorem 5.2

::
to

::::::::
quantify

::::
the

::::::
upper

::::::
bound

::
of

::::::::::
explorable

::::
safe

::::
set,

::::::
which

::::::
shows

:::
the

:::::::::
presence

::
of

:::::
local

::::::::::
exploration.

:::::::::::
Illustrating

::::
the

::::::::::::
theoretical

:::::::
result: In the following, we plug exact numbers into Theorem 5.2 for an

illustration.
Example 5.4. We consider a one-dimensional toy dataset visualized in Figure 2. Assume N = 10, σ2

q = 0.01
and constraint T = 0. We omit safety constraint index jbecause

:
,
:::::
since J = 1 here. σq/

√
N is roughly 0.0316.

::
in

::::
this

::::
case.

:
In this example, the generated data have ∥z1:N∥ ≤

√
10.

:::::::
σq/
√

N
::
is

:::::::
roughly

:::::::
0.0316.

:
We train

an unit-variance (kscale = max kq(·, ·) = 1
:
,
::::::::
theorem

::::::::
requires

::::::::::
δ < 0.0316) Matérn -5

::::
rn-5/2 kernel on this

example, and we obtain lengthscale ≈ 0.1256. This kernel is strictly decreasing, so ?? is satisfied
::::::::
resulting

::
in

:
a
:::::::
learned

:::::::::::
lengthscale

::
of

:::::::
around

:::::::
0.1256.

::::
The

::::
Mat

:
é
::::::
rn-5/2

::::::
kernel

::
is

::
a

::::::
kernel

::::
with

::::::::::
correlation

:::::::::
weakened

:::
by

13
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:::::::
distance

:
(Definition 5.1). In particular, r = 4.485 ∗ 0.1256 = 0.563316⇒ δ ≤ 0.002 (Appendix B), noticing

that δ = 0.002 ⇒ Φ
(

Nδ/σ2
q −T√

1−(
√

Nδ/σq)2

)
≈ Φ(2). When the safety tolerance is set to

::::::::
Consider

:
β1/2 = 2, we

:
,
::::
then

::
it
::
is
::::

safe
:::::

only
:::::
when

::::
the

::::::
safety

:::::::::
likelihood

::
is

::::::
above

:::::
Φ(2).

::::
We

:
can thus know from Theorem 5.2 that

safe regions that are 0.563316 further from the observed ones are always identified as unsafe and is not
explorable. In Figure 2, the two safe regions are more than 0.7 distant from each other, indicating that the
right safe region is never explored by conventional safe learning methods. Please see ?? for numerical details
and additional illustrations.

:::
GP

::::::::
might

:::::::
even

:::::::::
explore

::::::
less

:::
in

:::::::::::
practice: Our probability bound Φ

(
Nδ/σ2

q −T√
kj

scale
−(

√
Nδ/σq)2

)
:::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
::::

(for
:::::
each

:::::::::::
j = 1, ..., J) is the worst case obtained with very mild assumptions. Em-

pirically, the explorable regions found by GP models are smaller (see Figure 2and appendix ??).

6 Modularized GP transfer learning

::::::::
Transfer

:::::::::
learning

:::::
may

:::::::::::
overcome

::::
the

:::::
local

:::::::::::::
exploration:

:::
We

::::::::
extended

::::
the

::::::::::::
Example 5.4

::
to

::::::::
compare

:::
the

:::::::::
standard

::::
GP

::::::
model

::::::::
against

::
a
::::::::

transfer
:::::

task
::::
GP

:
(Section 3.2)

:
.
::::

In
:::::::::

Figure 3,
::

a
:::::::

linear
::::::
model

:::
of

:::::::::::::::
corregionalization

:::
is

:::::::
trained

::
(a

:::::
kind

:::
of

:::::::::
multitask

::::
GP,

:::::::::::::::::::
Álvarez et al. (2012)

:
).
::::

On
::::

the
:::::
right

:::::::
region,

::::::
which

:
is
:::::::
beyond

::::
the

:::::::::
explorable

:::::::
bound

::
of

::
a

::::::::
standard

::::::
single

::::
task

::::
GP,

:::
the

::::::::
transfer

::::
task

::::
GP

:::::::::::
incorporates

::::
the

::::::
source

::::
data

::::::::
allowing

::
to

:::::
build

::::
high

::::::
safety

::::::::::
confidence.

:::
As

:
a
::::::
result,

::::
the

::::
right

::::::
region

::::
can

::
be

::::::::
included

::::
into

:::
the

::::::::::
explorable

:::
safe

:::
set

::::::
(next

:::::::::
Section 6

:
).

::::
We

::::
also

:::::::
confirm

::
in
::::

our
:::::::::::
experiments

:::
in

:::::::
Section

::
7

::::
that

::::::::
guidance

:::::
from

::::::
source

:::::
data

::::::
enables

::::
our

::::
new

::::
safe

::::::::
transfer

:::
AL

::::::::::
framework

:::
to

:::::::
explore

:::::::
beyond

::::
the

:::::::::
immediate

:::::::::::::
neighborhood

::
of
::::

the
::::::
target

:::::
points

::::::
x1:N .

:

In theprevious section, we introduced GP safe learning technique, and we analyzed the local exploration
problem. Inthis section, we present our transfer learning strategy,where the aim is to facilitate safe learning
and to enable global exploration if properly guided by the source data

::
To

:::::::::::
summarize,

:::
we

:::
see

::
in

::::
this

:::::::
section

::::
that

:::
the

::::
safe

:::
set

::
of

:::::::::
standard

::::
GPs

:
(Equation (6))

:
is

:::::::
limited

::
to

::
a

::::
local

:::::::
region.

:::
In

:::
the

:::::
next

:::::::
section,

:::
we

:::::::
transfer

:::::::::
knowledge

:::::
from

:::
the

::::::
source

:::::
data

::
to

:::::::
expand

::::
the

::::::::::
exploration

:::::::
beyond

::::
the

::::
seed

:::::::
dataset

::
of

::::
the

::::::
target

::::
task.

Modeling the data with source knowledge: The idea is to extend the GPs to multi-output
models (Journel & Huijbregts, 1976; Álvarez et al., 2012; Tighineanu et al., 2022). We have source task
index s, as described previously. We say here that t is the index of our target task (note that we have
only one target task). For example, t = 0 can be target task, s = 1, ... can be indices of multiple source
tasks. In our main paper, we consider one source task, so the task indices s, t are just binary. Scenarios
of more source tasks are provided in ??. We concatenate the source and target tasks and then define
notation f : X × index_space→ R and qj : X × index_space→ R, where f(·, s) = fs(·), f(·, t) = f(·),
qj(·, s) = qj

s(·) and qj(·, t) = qj(·). Please also see Table 1 for the summary of our notation. The multi-task
functions can then be modeled with GP as well.

f ∼ GP (0, kf ) and qj ∼ GP
(
0, kqj

)
for some stationary kernels kf , kqj : (X × index_space)× (X × index_space)→ R.

6
:::::
Safe

::::::::::
Transfer

:::::::
Active

:::::::::::
Learning

::::
and

:::::::::
Source

::::::::::::::::::::
Pre-Computation

Then, we can concatenate the data with task indices and express the GP predictive distributions. Recall
first that Nsource is the number of

::
In

::::
this

:::::::
section,

:::
we

::::::::::
formulate

:::
our

:::::
safe

:::::::
transfer

::::
AL

::::::::
method.

::::
We

:::::
start

::::
from

::::::::::
leveraging

:::
the

::::::
source

:::::
data

::::
and

:::::::::
multitask

::::
GPs

:::::::::::
(introduced

:::
in

::::::::::
Section 3.2

:
)
::
to

::::::
adapt

:::::::::::
Algorithm 1

:
.
::::

We
::::
state

::::
the

::::::::
resulting

::::
new

:::::::::
constraint

:::::::::::
optimization

::::::::
problem

:::
for

::::
safe

:::::::
transfer

::::
AL.

:::
We

:::::
then

:::::::
explain

:::
the

::::::::::
complexity

:::
and

::::::::
consider

::
a

::::::::
modular

:::::::::::
computation

:::
to

::::::::
facilitate

:::
the

::::::::::
algorithm.

::::
We

::::::::
conclude

:::
the

:::::::
Section

:::
by

:::::::::
describing

::::
our

:::::
kernel

:::::::
choices

:::
for

:::
the

::::::::::::
experiments.

:
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::::
0.2in

:

Figure 3:
:::
The

:::::
same

::::::
safety

::::::::::
constraint

::
as

::
in

:::::::::
Figure 2

::::
with

::::
two

::::
safe

:::::::
regions.

:::::
Left:

::::
the

:::::
single

:::::
task

:::
GP

:::::::
cannot

:::::
reach

:::
the

:::::
right

::::
safe

::::::
region

::
as

::::
the

::::::::
distance

::
is

:::::::
greater

::::
than

::::
the

::::::
radius

::
r.

::::::
Right:

:::::
The

:::::::::
multitask

:::
GP

::
is
::::
able

:::
to

::::::
exploit

::::::::::
knowledge

:::::
from

:::
the

::::::
source

:::::
data

::::
and

:::::
build

:::::
high

::::::
safety

:::::::::
confidence

:::
on

::::
the

:::::
right

::::::
region.

::::::
The

::::::
source

::::
data

::::::
comes

:::::
from

:::
the

::::::::
function

::::::::::::::::::::::::::::::::::::::
qs(x) = sin

(
10x3 − 5x− 10

)
+ sin(x2)− 1

2 :::
and

::
is
::::::
shown

:::
in

::::::
yellow.

:

:::::
-0.2in

:

6.1
::::
Safe

:::
AL

:::::
with

::::::::
Transfer

:::::
Task

:::::
GPs

:::
We

::::::::
employ

::::::::::
multitask

::::::
GPs

:::
to

:::::::
model

:::::
the

:::::::
target

::::::
task

:::::::
jointly

::::::
with

:::::
the

::
source data. Let

x̂s,1:Nsource
:= {(xs,i, s)|xs,i ∈ xs,1:Nsource

} and x̂1:N := {(xi, t)|xi ∈ x1:N} denote the input data
concatenated with the task indices. x̂∗ := (x∗, t) is a test point with

::
As

::::::::::
introduced

:::
in

:::::::::::
Section 3.2

:
,
::::
the

:::::::::
multitask

:::::::::
functions

:::::::::::::::::
g ∈ {f , q1, ..., qJ}

:::
are

:::::::::
assumed

:::
to

:::
be

:::::
GPs.

::::
At

::::
an

::::::::::
unobserved

::::::
point

:::::::
x ∈ X ,

::::::::::::::::::::::::::::::::::::::::::
p
(
g(x, t)|DN ,Dsource

Nsource

)
= N

(
µg,N (x), σ2

g,N (x)
)

::
(t

::
is

:::
the

:
target task index. Then the predictive distribution

given in Equation (2) becomes (similarly, we write down the distribution for f , while distributions for qj

can be obtained by replacing f with qj and y· with zj
· )

µf ,N (x̂∗)= vT
f Ω−1

f

(
ys,1:Nsource

y1:N

)
,

σ2
f ,N (x̂∗)= kf (x̂∗, x̂∗)− vT

f Ω−1
f vf ,

vf = kf

((
x̂s,1:Nsource

x̂1:N

)
, x̂∗

)

Ωf =
(

Kfs + σ2
fs

INsource Kfs,f

KT
fs,f Kf + σ2

f IN

)
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:
,
:::::::::::
Equation (3)

::
).

::::
The

::::
safe

:::
set

::::
and

:::
the

::::::::::
acquisition

::::::::
function

::::
may

:::::
then

::::::::::
incorporate

::::
the

::::::
source

::::
task

:::::::::::
information:

SN
::

= ∩J
j=1{x ∈ Xpool|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj},

:::::::::::::::::::::::::::::::::::::::::::

a (x)
::::

=
∑

g∈{f ,q1,...,qJ }

Hg

[
x|DN ,Dsource

Nsource

]
::::::::::::::::::::::::::::::

=
∑

g∈{f ,q1,...,qJ }

1
2 log

(
2πeσ2

g,N (x)
)

,

:::::::::::::::::::::::::::::::

x∗
::

= argmaxx∈SN
a (x) .

::::::::::::::::::

(8)

where Kfs
= kf (x̂s,1:Nsource

, x̂s,1:Nsource
), Kfs,f = kf (x̂s,1:Nsource

, x̂1:N ) and Kf = kf (x̂1:N , x̂1:N ). The GP
model

::
In

::::::::
contrast

::
to

::::
the

::::::::
standard

::::
safe

::::
AL,

::::
a(·)

::::
and

::::
SN ::::

here
:::::::
depend

:::
on

:::
the

:::::::::
observed

::::::
target

::::
data

::::
DN ::::

and
:::
the

::::::
source

:::::
data

::::::::
Dsource

Nsource
,
::
as

:::::
they

::::
rely

:::
on

:
q
::::

and
:

f (and qj)is governed by the multitask kernel kf (and kqj

for each safety function) and noise parameters σ2
fs

, σ2
f (and σ2

qj
s
, σ2

qj ) which can be fitted with observations.

::::::::
multitask

:::::::::
functions

::
in

:::::
bold

:::::::::
symbols),

:::::
which

:::::::::
represent

:::
the

:::::::::
multitask

:::::
GPs

:::::
based

:::
on

::::::
source

::::
and

::::::
target

:::::
data.

:

In this formulation, the covariance bound δ in Theorem 5.2 takes the source input xs,1:Nsource into
consideration. Thus, comparing to modeling solely with target task, incorporating a source task provides
the potential to significantly enlarge the area with high safety confidence (i.e. region not bounded
by Theorem 5.2). We show empirically in ?? that global exploration is indeed easier to achieve with
appropriate xs,1:Nsource

.
:::
The

::::::
whole

::::::::
learning

::::::::
process

::
is

:::::::::::
summarized

:::
in

::::::::::::
Algorithm 2.

::::
Its

::::::::::::::
computational

::::::::::
complexity

::
is

:::::::::::
dominated

:::
by

:::::::
fitting

::::
the

:::::
GPs

:::::
(line

:::
2).

:::::::::::
Common

:::::::
fitting

::::::::::
techniques

:::::::
include

::::::
Type

:::
II

::::
ML,

:::::
Type

:::
II

::::::
MAP

::::
and

:::::::::
Bayesian

:::::::::
treatment

::::::::::::::::::::::::::::::::::
(Snoek et al., 2012; Riis et al., 2022)

::::
over

::::::
kernel

:::::
and

:::::
noise

::::::::::
parameters

::::::::::::::::::::::::::::
(Rasmussen & Williams, 2006).

:::::
All

::
of

::::::
these

::::::::::
approaches

:::::
have

:::
in

::::::::
common

:::::
that

:::::
they

:::::::
require

:::::::::
computing

::::
the

::::::::
marginal

::::::::::
likelihoods,

:

N
((

ys,1:Nsource

y1:N

)
|0, Ωf

)
and N

((
zj

s,1:Nsource

zj
1:N

)
|0, Ωqj

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::

::
for

:::::
each

::::::
safety

::::::::::
constraint

:::::::::::
j = 1, ..., J .

:::
In

::::
this

::::::
work,

:::
we

:::
do

::::
not

::::::::
consider

::::::::
Bayesian

:::::::::::
treatments

::::
due

::
to

::::
the

::::
high

:::::::::::::
computational

::::
cost

:::
of

::::::
Monte

:::::
Carlo

::::::::::
sampling.

:::::::::
Obtaining

:::::
Ω−1

f :::::
(and

:::::::::::::::
Ω−1

qj , j = 1, ..., J)
:::
for

::::
the

::::::::
marginal

::::::::
likelihood

::::::
takes

:::::::::::::::::
O
(
(Nsource + N)3)

:::::
time,

::::::
where

:::::::
Nsource::::

can
:::
be

:::::
large

::
in

::::
our

::::::
set-up.

::::::::::
Moreover,

::::
the

:::::::
process

::::
must

:::
be

:::::::
iterated

:::
for

:::::::::::::::::::::::::
N = Ninit, ..., Ninit + Nquery ::::::

adding
::
to

::::
the

:::::::::::::
computational

:::::::
burden.

::
In

::::
the

::::
next

:::::::
section,

:::
we

:::::::::::
demonstrate

::::
how

:::
the

:::::::::::::
computational

:::::::
burden

:::
can

:::
be

:::::::::::
significantly

:::::::
reduced

:::
by

:::::::::::::
pre-computing

:::
the

:::::::::::::
source-specific

:::::
terms

:::::::::
necessary

:::
for

:::
the

:::::::
matrix

:::::::::
inversion.

:

In our paper, we assume all safety constraints are independent. If this is not the case, one
may still model different safety constraints with our notation. This has no impact on any
of our arguments. For example, we have J unknown constraints where the first three of the
target task q1, q2, q3 are not independent, and the corresponding source q1

s , q2
s , q3

s may or may
not be independent. Then Assumption 3.4 still holds if we consider the safety functions in
the following way: we have safety functions q123, q4, ..., qJ and q123

s , q4
s , ..., where joint functions

q123(·, j = 1, 2, 3) := qj(·), q123
s (·, j = 1, 2, 3) := qj

s(·), qj>3(·, j) := qj(·), qj>3
s (·, j) := qj

s(·). This allows one to
model the dependent safety constraints jointly with q123 (and q123

s ) , and can be simply achieved by
augmenting the data such that they have not only task indices but also safety constraint indices. If we
consider the safety function in this way, we resort the problem back to J − 2 independent safety constraints.
Thus, dependent safety constraints have no impact to the argument that single-task methods explore locally
around the scarce target data while multi-task approaches expand the exploration by incorporating the
source knowledge.

In-experiment speed-up via source pre-computation: Computation of Ω−1
f (and Ωqj ) has

cubic complexity O
(
(Nsource + N)3) in time, for N = Ninit, ..., Ninit + num_steps. This computation
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is also required for fitting the models: common fitting techniques include Type II ML,
Type II MAP and Bayesian treatment (Snoek et al., 2012; Riis et al., 2022) over kernel and noise
parameters (Rasmussen & Williams, 2006), all of which involves computing the marginal likelihoods

N
((

ys,1:Nsource

y1:N

)
|0, Ωf

)
and N

((
zj

s,1:Nsource

zj
1:N

)
|0, Ωqj

)
. In our paper, Bayesian treatment is not

considered because MC sampling is time-consuming.

The goal now is to avoid

6.2
::::::
Source

:::::::::::::::::
Pre-Computation

::
In

::::
this

:::::::
section,

:::
we

:::::::
propose

:::
an

:::::::
efficient

::::::::::
algorithm

::
to

::::::::
mitigate

:::
the

::::::::::::::
computational

::::::
burden

:::
of

:::::::::
repeatedly

:
calcu-

lating Ω−1
f and Ω−1

qj repeatedly in the experiments. For brevity
::
in

::::
full.

::::
For

::::::
clarity, we describe how we do

this with
::
the

:::::::::
approach

:::
for

:
Ω−1

f , while the same principle applies
:::
the

:::::
same

:::::::::
principles

::::::
apply to Ω−1

qj .
::
for

:::
all

:::::::::::
j = 1, . . . , J .

:

For GP models, the inversion is
::::::
matrix

::::::::
inversion

::
is

::::::::
routinely

:
achieved by performing a Cholesky decomposition

L(Ωf ), i.e.
:::::
which

::::
has

:::::
cubic

:::::::::::
complexity.

:::::
This

:::::::::::
decomposes

:::
Ωf:::

as
:
Ωf = L(Ωf )L(Ωf )T , where L(Ωf ) is a

lower triangular matrix (Rasmussen & Williams, 2006).
::::::

Once
::::
the

:::::::::::::
decomposition

::
is

:::::::::
obtained,

::::::::::
operations

::::
such

::
as

::::::::::
L(Ωf )−1C, and then for any matrix C, L(Ωf )−1C is

:::
can

::
be

:::::::::
efficiently

:
computed by solving a linear

system .
::::
with

:::::
minor

:::::::::::
complexity.

::::
The

:::::::::
Cholesky

:::::::::::::
decomposition

::
is

::::
well

::::::
known

:::
for

:::
its

::::::::::
numerically

::::::::
stability

::::
and

::::::::::::::
computationally

:::::::::
efficiency,

:::::::
making

::
it
::
a
::::::
widely

:::::::::
preferred

::::::::
approach

:::
for

::::::::
efficient

:::
GP

:::::::::::::
computations.

:

We propose to perform the cholesky
::::::::
Cholesky

:
decomposition in two steps, as described below. The

aim here is to compute part of L(Ωf ) beforehand. The key idea is to cluster the parameters of kf into
::::::::::
precompute

::::
the

:::::::::::::
source-specific

::::::
terms

::
of

::::
the

::::::::
Cholesky

::::::::::::::
decomposition,

::::::
which

:::::::
account

:::
for

::
a
:::::
large

::::::::
amount

::
of

:::
the

:::::::::::::
computational

::::::
costs.

:::::::::::::
Importantly,

:::
our

::::::::::
technique

::
is

:::::::
general

::::
and

::::
can

:::
be

:::::::
applied

:::
to

::::
any

::::::::::::
multi-output

::::::
kernel.

::::::
Recall

:::::
from

:::::::::::::
Equation (5)

::::
that

:::
the

::::::::::
covariance

:::
Ωf::::

has
::
a
:::::
block

:::::::::
structure,

:::
in

::::::
which

:::
the

:::::::
source

:::::
block

:::::::::::::::
Kfs

+ σ2
fs

INsource :::
has

::::
size

::::::::::::::::
Nsource ×Nsource ::::

that
::::::::::
dominates

:::
the

::::::::::::
computation.

:::::
The

:::::::::
Cholesky

:::::::::::::
decomposition

:::
can

::::
also

:::
be

:::::::::
expressed

::
as

:::::
block

::::::::::
structure,

L(Ωf ) =
(

Lfs
0

Lfs,f Lf

)
,

::::::::::::::::::::

:::::
where

::::::
the

::::::::
source

:::::::
block

::::::
Lfs::::::

can
:::::

be
::::::::::::::

precomputed
:::::::::::::::

independently
:::::

of
:::::

the
::::::::::::

remaining
::::::::::
covariances

::::::::::::::::::
(Press et al., 1988).

:::::::
Once

:::::
Lfs ::

is
::::::::::

obtained,
:::

it
::
is
:::::

then
::::::

used
:::
to

:::::::::
compute

::::
the

::::::::::
cross-term

::::
Lfs,f::::

and
::::::
target

:::::
block

::::
Lf ::::

that
:::
are

:::::
both

::
a

:::::::
function

:::
of

:::
the

::::::
source

::::::
block

::::::::::
Lfs

(details
::
in

:::::::::::::
Appendix D.1

:
).
:::

If
:::
the

:::::
source

:::::::::::
covariance,

::::::::::::::::
Kfs

+ σ2
fs

INsource ,
:::::::
remains

::::::::::
unchanged

::::::::
between

::::::::
different

::::::::::
covariances

::::
Ωf ,

:::
its

::::::::::::
precomputed

::::::::
Cholesky

:::::::::::::
decomposition

::::
Lfs :::

can
:::
be

:::::::
reused,

:::::::::::
significantly

::::::::
reducing

:::::::::::::
computational

:::::::::
overhead.

Algorithm 2 Modularized SL
:::
Full

::::
safe

::::::::
transfer

:::
AL

Require: Dsource
Nsource

,DNinit
,Xpool, :::::::::::::

Assumption 3.1
:
,
::::::::::::::
Assumption 3.3

:
,
::::::::::::::
Assumption 3.4,

::::::::::::::::::::
DNinit ,Dsource

Nsource
,Xpool, β

or α,
:::::::
Nquery,

::::::::::
thresholds

::::::::
T1, ..., TJ:

1: for N = Ninit, ..., Ninit + Nquery − 1 do
2: Fit GPs and then fix

::::::::::
f , q1, ..., qJ ::::

with
::::::::::::
DN ,Dsource

Nsource

3:
:::::::::::::::::::::::::::::::::::::::::::::::
SN ← ∩J

j=1{x ∈ Xpool|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj}:(Equation (8))
4:

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
x∗ ← argmaxx∈SN

a(x), a(x) =
∑

g∈{f ,q1,...,qJ } Hf

[
x|DN ,Dsource

Nsource

]
:

5:
:::::
Query

:::
x∗:::

to
:::
get

::::::::::
evaluations

:::
y∗::::

and
:::
z∗

6:
:::::::::::::::::::::::::::::::::::::::::::
DN+1 ← DN ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}

7: end for
8:

:::::::
Return

:::::::::::
DNinit+Nquery ,

:::::::
trained

:::::::
models

:::::::::::
f , q1, ..., qJ

17
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::::::
Fixed

:::::::
source

:::::::::::
parameters

::::
for

::::::::
efficient

:::::::::
training:

:::
To

:::::::
leverage

::::
the

:::::::::::
precomputed

:::::::::
Cholesky

:::::::::::::
decomposition

:::
Lfs::::::

during
::::
our

::::
safe

:::::::
transfer

::::
AL

:::::::
scheme,

::::
the

::::::::::
parameters

:::::::::
governing

::::
the

::::::
source

::::::::::
covariance,

::::::::::::::::
Kfs

+ σ2
fs

INsource ,
::::
must

:::::::
remain

:::::
fixed

::::::::::
throughout

::::
the

:::::::::
algorithm.

::
To

::::::::
achieve

::::
this,

::::
we

:::::
split

:::
the

:::::::
kernel

::::::::::
parameters

::::
θf ::::

into
::::
two

::::::::
groups,

:
θf = (θfs

, θf ), where the source
kf ((·, s), (·, s)) is independent of θf . Then, as xs,1:Nsource is invariant, ,

::::::
where

::::
θfs :::::::

include
::
all

:::::::::::
parameters

:::::::
required

:::
for

::::::::::
computing

:
Kfs

adapts only to θfs . Given that the source tasks are well explored,the source
likelihood p(ys,1:Nsource

|xs,1:Nsource
) = N (ys,1:Nsource

|0, Kfs
+ σ2

fs
INsource

) can be barely increased while we
explore for the target task. Thus we assume Kfs

(i.e. θfs
)and σ2

fs
remain fixed in the experiments, thisallows

us to isolate the source relevant computations, as the source relevant block (top left block) of L(Ωf ) is also
fixed. We can then prepare a safe learning experiment with pre-computed Lfs = L(Kfs + σ2

fs
INsource).The

same procedure applies to each qj . The
::
θf::::::::

contains
::::
the

:::::::::
remaining

:::::::::::
parameters.

::::
We

::::
first

:::::
train

::
on

::::
the

::::::
source

::::
data

::::::::
Dsource

Nsource :::::
alone,

:::::
then

:::
fix

::::
θfs ::::

and
::::
σ2

fs
.
::::::

Once
:::::
these

:::::::::::
parameters

::::
are

:::::
fixed,

::::
the

:::::::::
Cholesky

:::::::::::::
decomposition

:::
Lfs::::

can
::
be

::::::::::::
precomputed

::::
and

:::::::
reused

::::::
across

::
all

:::::::::::
subsequent

:::::::::
iterations

:::::
when

:::::::::
acquiring

:::
the

::::::
target

:::::::
dataset

::::
DN .

::::::
During

::::
this

::::::
phase,

:::
we

::::
can

::::
still

::::::
update

::::
the

::::::::::
parameters

:::
θf ::::

and
:::
the

::::::
target

:::::
noise

::::::::
variance

:::
σ2

f .

:::
The

:
learning procedure is summarized in ??

::::::::::
Algorithm 3. In each iteration (line 4 of ??

:
5
:::
of

:::::::::::
Algorithm 3),

the time complexity becomes O(N2
sourceN) +O(NsourceN2) +O(N3) instead of O

(
(Nsource + N)3)

:::::::
reduces

::::
from

::::::::::::::::::
O
(
(Nsource + N)3)

::
to

:::::::::::::::::::::::::::::::::::
O(N2

sourceN) +O(NsourceN2) +O(N3). We provide mathematical details in
the ??. Our technique can be applied to any multi-output kernel because the clustering θf = (θfs

, θf ) does
not require independence of kf ((·, s), (·, t)) and kf ((·, t), (·, t)) from θfs

. The same principle applies to qj .
::::::::::::
Appendix D.1

:
.
:::::
Note

:::::
that

:::
our

:::::::::
approach

::::::
offers

:
a
:::::::::

trade-off:
:::

it
:::::::
reduces

::::::::::
parameter

:::::::::
flexibility

::
in

:::::::::
exchange

:::
for

:::::::::::::
computational

::::::::
efficiency.

::::
We

::::
will

::::::
discuss

::::
the

::::
pros

::::
and

::::
cons

::
of
::::
this

:::::::::
approach,

::::::::::
depending

:::
on

:::
the

::::::
kernel

::::::
choice,

::
in

:::::
more

:::::
detail

:::
in

:::
the

::::::::
following

::::::::
section.

:

Kernel selection: In the following, we briefly review existing multi-output GP models and motivate
selection of the model we use later in our experiments.

6.3
::::::
Kernel

:::::::::
Selection

::::::::
Multitask

:::::::
kernels

:::
are

:::::
often

:::::::
defined

::
as

:
a
:::::::
matrix

::
of

::::::::
functions

::::::::::::::::::::::::::::::::::::::::::::
(Journel & Huijbregts, 1976; Álvarez et al., 2012)

:
,
::::::
where

::::
each

::::::::
element

:::::
maps

::::::::::::
X × X → R

::::::
similar

:::
to

::
a
:::::::::
standard

::::::
kernel.

:::::
The

:::::
task

::::::
indices

::::::::::
determine

::::::
which

:::::::
element

::
of

:::
the

:::::::
matrix

::
is

:::::
used.

:::::::::::
Specifically,

:::
for

::::
task

:::::::
indices

:::::::::::
i, i′ ∈ {s, t},

::::
the

:::::
kernel

::::
can

:::
be

:::::::::
expressed

::
as

:

kg((·, i), (·, i′)) =
(

kg ((·, s), (·, s)) kg ((·, s), (·, t))
kg ((·, t), (·, s)) kg ((·, t), (·, t))

)
i,i′

,

::::::::::::::::::::::::::::::::::::::::::::::::

Algorithm 3
:::::::::::
Modularized

::::
safe

:::::::
transfer

::::
AL

Require:
::::::::::::::
Assumption 3.1,

::::::::::::::::
Assumption 3.3,

:::::::::::::::
Assumption 3.4

:
,
:::::::::::::::::::::
DNinit ,Dsource

Nsource
,Xpool, :::

β
:::

or
::::

α,
::::::::

Nquery,
:::::::::
thresholds

::::::::
T1, ..., TJ:

1:
:::
Fit

::::
GPs

:::::::::::
f , q1, ..., qJ ::::

with
::::::::
Dsource

Nsource
2:

:::
Fix

::::::
source

:::::::
specific

::::::::::
parameters

:
θfs

, θqj
s
, σfs

, σqj
s:
,
:::::::::::
∀j = 1, ..., J

:

3: Compute and fix Lfs
, Lqj

s:
,
:::::::::::
∀j = 1, ..., J

:::::
(line

::
5,

::
6,

::
7

:::::
below

:::::::
faster)

4: for N = Ninit, ..., Ninit + Nquery − 1 do
5: Fit GPs (remaining

::::
with

:::
DN::::

and
::::::::
Dsource

Nsource ::::
(free

:
parameters θf , θqj , σf , σqj ,

:::::::::::
∀j = 1, ..., J)

6: x∗ ← argmaxx∈SN
a(x|DN )

:::::::::::::::::::::::::::::::::::::::::::::::
SN ← ∩J

j=1{x ∈ Xpool|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj}:(Equation (8))
7: Evaluate at

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
x∗ ← argmaxx∈SN

a(x), a(x) =
∑

g∈{f ,q1,...,qJ } Hf

[
x|DN ,Dsource

Nsource

]
:

8:
:::::
Query

:
x∗ to get

:::::::::
evaluations

:
y∗ and z∗

9: DN+1 ← DN ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗} :::::::::::::::::::::::::::::::::::::::::::
DN+1 ← DN ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}

10: end for
11:

:::::::
Return

:::::::::::
DNinit+Nquery ,

:::::::
trained

:::::::
models

:::::::::::
f , q1, ..., qJ

18
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:::::
where

::::
the

::::
dots

:
·
:::
are

::::::::::::
placeholders

:::
for

:::::
input

:::::
data

::::
from

:::
X . Here, each g ∈ {f , q1, ..., qJ} is a multi-output GP

correlating source and target tasks . The task indices are binary: s = 0 is source and t = 1 is target.
:::
for

:::
the

::::
main

::::
and

::::::
safety

:::::::::
functions.

:

::::::
Linear

:::::::
model

:::
of

::::::::::::::::::
coregionalization

::::::::
(LMC): A widely investigated multi-output framework is the lin-

ear model of corregionalization
:::::::::::::::
coregionalization

:
(LMC) : kg =

∑
l

(
W 2

l,s + κs Wl,sWl,t

Wl,sWl,t W 2
l,t + κ

)
⊗ kl(·, ·) , i.e.

a 2× 2 matrix specified by task indices, where kl(·, ·) is a standard kernel as in Assumption 3.2, and
(WlW

T
l + diag(κs, κ)) learns the task correlation

:::::
which

:::
we

::::
also

::::
use

::
in

::::
our

::::::::::::
experiments.

:::
In

:::
our

::::::
setup,

::::
the

:::::
kernel

::
is
:::::::
defined

:::
as

kg((·, {s, t}), (·, {s, t})) =
2∑

l=1

(
WlW

T
l +

(
κs 0
0 κ

))
⊗ kl(·, ·),

:::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::
⊗

::::::
denote

::::
the

::::::::::
Kronecker

::::::::
product.

::::
We

:::::::
assume

::::
two

::::::
latent

::::::
effects

::::
and

:::::
each

::::::
latent

:::::
effect

:::
is

::::::::
specified

::
by

::::
the

::::
base

::::::
kernel

:::::::::::::::::::
kl(·, ·) : X × X → R.

:::::
The

::::::::::
parameters

:::::::::::::::::::
Wl ∈ R2×1, κs, κ > 0

:::::
model

::::
the

::::
task

:::::::::::
correlations

induced by the l-th latent function
:::::::
pattern

:::::::
encoded

:::
by

:::
kl (Álvarez et al., 2012). Here, each g has its own

kernel, but
::
for

::::::::
brevity, we omit g in the parameter subscriptsfor brevity. When pairing this kernel with our

??, we observe that the
:
.
::::::::::::
Furthermore,

::
if

::
kl::::::::

includes
:
a
::::::::
variance

:::::::
scaling

:::::
term,

::::
e.g.

::::
Mat

:
é
::
rn

:::::::
kernels,

::
it
::
is
:::::
fixed

::
to

:
1
::::::::
because

:::
the

:::::
scale

::::
can

::
be

:::::::::
absorbed

::::
into

::::::
Wl, κs::::

and
::
κ.

:

::::
This

::::::
kernel

::::::
design

:
is
::::
tied

:::
to

:::
our

::::::::::::
experimental

:::::
setup

::::
and

:::::::::
facilitates

:::
the

:::::::
transfer

::
of

:::::::::::
information

:::::
from

:::
the

::::::
source

::
to

:::
the

::::::
target

:::::
task.

:::::::::
However,

::::::
when

::::::
paired

::::
with

::::::::::::
Algorithm 3,

:
training can become unstabledue to multiple

local optima in the first phase (line 1 of ??). This may be because LMClearns joint patterns from all present
tasks. ,

::::::::
because

:::
the

:::::::::
algorithm

::::::::
assumes

::::
that

::::
the

::::::
kernel

::::::::::
parameters

::::
can

::
be

:::::::
cleanly

:::::::::
separated

::::::::
between

::::::
source

:::
and

:::::
task

::::::
terms.

:::
In

::::
the

::::
case

:::
of

:::
the

::::::
LMC,

::::
this

::::::::::
separation

:::
is

:::
not

:::::::::::::::
straightforward:

:::::
The

::::::
latent

:::::::::::
components

:::
Wl ::::::

encode
:::::::
shared

::::
task

:::::::::::
correlations,

::::::
while

::
κs::::

and
::
κ
:::::::::
represent

:::::::::::
task-specific

:::::::
effects.

::::::::
Training

:::
on

::::::
source

:::::
data

:::::
alone

:::::::
provides

:::::::::::
insufficient

::::::::::
information

:::
to

::::::::::
disentangle

:::::
these

:::::::
shared

::::
and

:::::::::
individual

:::::::::::::
contributions,

::::::::::
potentially

::::::
leading

:::
to

::::::::::
suboptimal

::::::::
solutions

:::::
that

::::::::::
destabilize

:::
the

::::::::
training

:::::::
process.

:

::::::::::::
Hierarchical

::::
GP

:::::::::
(HGP): In Poloczek et al. (2017); Marco et al. (2017); Tighineanu et al. (2022), the

authors consider a hierarchical GP (HGP) : kg =
(

ks(·, ·) ks(·, ·)
ks(·, ·) ks(·, ·) + kt(·, ·)

)
. Similarly, each g has its own

kernel, but we omit g in the parameter subscripts for brevity
:::::::::
framework,

::::::
where

:::
the

::::::
kernel

::
is
:::::::
defined

:::
as:

:

kg((·, {s, t}), (·, {s, t})) =
(

ks(·, ·) ks(·, ·)
ks(·, ·) ks(·, ·) + kt(·, ·)

)
,

::::::::::::::::::::::::::::::::::::::::::::::

::::
with

:::::::::::::::::
ks, kt : X × X → R

:::
as

::::
base

:::::::
kernels. HGP is a variant of LMC, where the target task is treated as a

:::::::
modeled

:::
as

:::
the

:
sum of the source (modeled by

:::::
kernel

:
ks ) and the target-source residual (modeled by

:::
and

:::
the

:::::::::::::
target-specific

:::::::
residual

:
kt):::::::::::::::::::::::

(Tighineanu et al., 2022). This formulation has the benefit that the fitting
of source (

:::::
terms

:
ks ) and residual (kt) are separated and thus makes HGP a good model to run ?? (set θgs

the parameters ofks and θgs the parameters of kt ).
:::
can

::
be

::::::
easily

::::::::::
decoupled,

:::::::
making

:::::
HGP

:::::::::::
particularly

::::
well

:::::
suited

:::
for

::::
the

:::
use

::
of
::::::::::::

Algorithm 3.
:

In Tighineanu et al. (2022), the authors derived an ensembling technique allowing also for a
::::
that

::::
also

::::::::
supports

source pre-computation. Their technique
::::::
While

:::::
their

::::::::
approach

:
is equivalent to our method when we use

HGP, but our approach can be generalized
::::::
applied

:::
to

::::::
HGP,

::::
our

::::::::::
framework

::::::::::
generalizes to any multi-output

kernels (with implicit restriction that a source
::::::
kernel,

::::::::
provided

::::
that

:::
the

:
fitting of the chosen model needs to

be accurate) while
:::::
source

::::
and

::::::
target

::::::::::
parameters

::::
can

:::
be

::::::::::
decoupled.

::
In

:::::::::
contrast, the ensembling technique is

limited to HGP .
::::::::
explicitly

:::::::
tailored

:::
to

:::::
HGP

::::
and

::::
does

::::
not

:::::::::
generalize

::
to

::::::
other

:::::
kernel

::::::::::
structures.

:

:::::::
Kernel

:::::::::
selection

:::
in

::::
our

::::::::::::::
experiments: In our experiments, we perform ??

:::::::::::
Algorithm 3 with HGP as

our main pipeline
::::::
method, and Algorithm 1 with LMC (more flexible in learning yet slow) andwith HGP
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as full transfer scenarios. The base kernels ks, kt, kl are all Matérn-5
:::::::::::
Algorithm 2

::::
with

:::::
LMC

::::
and

:::::
HGP

:::
as

:::::::
ablation

:::::::::
methods.

::::::
While

::::
our

:::::
main

:::::::
method

::
is

:::::
more

:::::::::::::::
computationally

::::::::
efficient,

:::::
LMC

:::::
offers

:::::::
greater

:::::::::
flexibility

::
in

::::::
model

::::
task

:::::::::::
correlations.

::::::::
Running

:::::
HGP

:::::
with

::::::::::::
Algorithm 2

:::
and

::::::::::::
Algorithm 3

:::::
allows

::
us

:::
to

:::::
study

::::
the

:::::
effect

::
of

:::::::::
sequential

:::::::::
parameter

::::::::
learning

:::::::
against

::::
joint

::::::::::
parameter

::::::::
learning,

:::::
with

:::
the

:::::
latter

:::::::
having

:::
an

::::::::
increased

::::::::
runtime.

:::
For

:::::
both

::::
HGP

::::
and

::::::
LMC,

:::
we

::::::::
construct

::::
the

::::::
kernels

:::::
using

:::::::::
Matérn-5/2 kernel

::::::
kernels

:
with D lengthscale param-

eters(X ⊆ RD). The scaling variance of kl is fixed to 1 because it can be absorbed into the output-covariance
terms (see above). One can of course change the base kernel as long as it is suitable for the application. .
::::
This

::::::
choice

::
is

:::
not

::::::::::
restrictive

::::
and

:::
can

:::
be

::::::::
replaced

::::
with

::::::
other

::::
base

:::::::
kernels

::::::
suited

::
to

:::::::
specific

::::::::::::
applications.

:

Although we did not pair ??
:::::::::::
Algorithm 3 with LMC as discussed above, note that our modularized computa-

tion scheme can still benefit the general LMC
:::::::
provide

:::::::
benefits

:
in closely related settings, e.g. (i) datasets in

which more than one source task is available
::::
with

::::::::
multiple

:::::::
sources or (ii) sequential learning schemes that

only refit the GPs after receiving
::::::::::
frameworks

:::::
where

:::::
GPs

:::
are

:::::::
refitted

::::
only

:::::
after

:
a batch of query points

:::
has

::::
been

::::::::
acquired.

7 Experiments

0.2in

Safe AL experiments on Hartmann3 and two types of engine modeling problems. Hartmann3: Nsource = 100,
N is from 20 to 120, results are mean and one standard error of 25 experiments. PEngine: Nsource = 500,
N is from 20 to 120, results are mean and one standard error of 5 repetitions. GEngine: Nsource = 500, N
is from 20 to 220, plotted every 50 queries, results are mean and one standard error of 5 repetitions. Please
see Figure 5 for the zoom-in RMSE plot of GEngine. -0.2in

Number of discovered regions methods GP1D+z GP2D+z Braninnum_steps 50 100 100EffTransHGP
1.79± 0.07 2.77± 0.13 2± 0FullTransHGP 1.78± 0.07 3± 0.14213 2± 0FullTransLMC 1.78± 0.08
2.68± 0.14 2± 0Rothfuss2022 1.22± 0.05 1.07± 0.03 1± 0SAL 1± 0 1.29± 0.09 1± 0Transfer learning
discovers multiple disjoint safe regions while baselines stick to neighborhood of the initial region. In
appendix Figure 11, we track the number of explored regions per iteration.

Training time of f and q datasets EffTransHGP FullTransHGP FullTransLMC
Rothfuss2022 SAL(Nsource, N)GP1D+z 8.947± 0.198 9.171± 0.133 26.56± 0.628 0.0± 0.0
6.881± 0.083(100, 10 + 50)GP2D+z 10.73± 0.190 39.31± 0.639 202.8± 12.43 0.0± 0.0 8.044± 0.142
(250, 20 + 100)Branin 3.754± 0.121 8.129± 0.267 21.16± 1.207 0.0± 0.0 4.691± 0.078
(100, 20 + 100)Hartmann3 3.662± 0.089 9.092± 0.467 34.43± 1.664 0.0± 0.0 4.073± 0.083
(100, 20 + 100)PEngine 9.596± 0.418 124.99± 5.608 615.7± 27.99 0.0± 0.0 4.686± 0.243
(500, 20 + 100)GEngine 18.525± 2.508 503.11± 63.94 4357.8± 661.4 0.0± 0.0 10.485± 0.578
(500, 20 + 150)

In this section, we perform safe AL experiments to answer the following questions: 1) do multi-output GPs
facilitate

:
In

:::::
this

:::::::
section,

:::
we

:::::::::::
empirically

::::::::
evaluate

::::
our

:::::::::
approach

:::::::
against

::::::::::::::
state-of-the-art

:::::::::::
competitors

:::
on

::
a

:::::
range

::
of

:::::::::
synthetic

:::
and

::::::::::
real-world

::::::::
datasets.

::::
We

::::
first

:::::::
provide

::::::
details

:::
on

:::
the

::::::::::::
experimental

:::::
setup

:::
in

:::::::
Section

:::
7.1.

:::::
Then,

:::
we

:::::::
analyze

::::::::
whether

:::
our

::::::::
transfer

::::::::
learning

::::::
scheme

::
is
:::::
more

::::::::::::
data-efficient

:::::
than

::::::::::::
conventional

::::::::
methods

::
in

::::::
Section

::::
7.2,

::::::::
whether

::
it

:::::::::
facilitates

::::
the learning of disconnected safe regions , 2) is it more data efficient to

learn with transfer safe learning than applying a conventional method, and 3) how is
::
in

:::::::
Section

::::
7.3,

::::
and

:::
how

:
the runtime of our modularized approach compared with the baseline?

::::::::
compares

::
in

:::::::
Section

::::
7.4.

:

:::
Our

:::::
code

::::
will

:::
be

:::::::::
published

::
on

::::::::
GitHub

::::
after

:::::::::::
acceptance.

:

7.1
::::::::::::
Experimental

:::::::
Details

:::::
First,

:::
we

:::::::
describe

:::::::::::
comparison

::::::::
partners

::::
and

:::
the

::::::::
datasets

:::
we

:::
use

:::
in

:::
our

::::::::::::
experiments.

:
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7.1.1
::::::::::
Comparison

:::::::::
Partners

We compare five experimental setups
:::::::
different

::::::::
methods: 1) EffTransHGP: ??

::::::::::::
Algorithm 3 with multi-output

HGP, 2) FullTransHGP: Algorithm 1
:::::::::::
Algorithm 2 with multi-output HGP, 3) FullTransLMC: Algorithm 1

:::::::::::
Algorithm 2 with multi-output LMC, 4) Rothfuss et al. 2022

::::::::::::
Rothfuss2022: GP model meta learned with the

source data by applying Rothfuss et al. (2022), and 5) SAL: the conventional Algorithm 1 with single-output
GPsand Matérn-5/2 kernel.

:::
The

:::::
first

:::::
three

::::::::
methods

::::
are

:::
our

:::::::::
proposed

:::::::::::
approaches,

::::::
listed

::
in

:::::
order

:::
of

:::::::::
increasing

:::::::::::
complexity.

:::::
The

:::::
HGP

:::::
kernel

::
is
::

a
:::::::

variant
:::

of
::::
the

:::::
LMC

:::::::
kernel.

::::
We

::::
test

::::
two

::::::::::
variations

::
of
::::

the
::::::
HGP:

::::
one

:::::
using

::::
our

::::::::::::
modularized

::::::::::::::
implementation

:
(Algorithm 3)

:
,
:::::
with

::
a

:::::::
runtime

:::::::::::
complexity

:::::::::::
comparable

::
to

::::
the

::::::::::
single-task

::::::::::
approach,

::::
and

:::::::
another

:::
one

:::::
using

::
a
:::::
naive

::::::::::::::
implementation

:
(Algorithm 2)

:::
that

::::
has

:
a
:::::::
similar

:::::::
runtime

::::::::::
complexity

:::
as

::::::
LMC. For

the safety tolerance, we always fix β = 4, i.e.
:::::
which

:::::::::::
corresponds

:::
to α = 1−Φ(β1/2) = 0.02275 (Equations (6)

and (8)), implying that each fitted GP safety model allows 2.275% unsafe tolerance. Notice that with
:::
For

:::
the

:::::::
baseline

:::::::::
following Rothfuss et al. (2022), the GP model parameters are meta learned up-front with

:::::
using

source data, and remain fixed during
::::::::::
throughout the experiments. Rothfuss et al. 2022 considered

:::::
While

:::
the

:::::::
authors

::
of
::::

the
:::::::
original

::::::
paper

:::::::
applied

::::
this

:::::::::
approach

::
to

:
safe BO problems. We change

:
,
:::
we

::::::
modify

:
the

acquisition function to entropyso it becomes ,
::::::::::::

transforming
:::

it
::::
into

:
a safe AL method. Our code will be

published on GitHub.

Track safe regions: We start from 3 simple simulated problems with input dimension D = 1 or D = 2
(GP1D, GP2D, Branin problems). In such cases, it is analytically and computationally possible to cluster
the disconnected safe regions via connected component labeling (CCL) algorithms (He et al., 2017). This
means, in each iteration of the experiments, we track to which safe region each observation belongs . In
these initial experiments, we generate one source dataset and one target dataset such that the target task
has at least two disjoint safe regions, each of which has a portion also safe in the source problem. The
design is due to the selection of our kernels. Our base kernel, the Mat

:::
All

::::::::
methods

::::
use

::::
Matérn-5/2 kernel,

correlates closeness of data points, and LMC and HGP rescale the Matérn-5/2 kernel measures for different
tasks, which means patterns of the same area in the space are transferred. Modeling a more complicated
transferring pattern, e.g. correlation on an abstract feature space, may require a careful selection of an
appropriate base kernel (see e.g. Bitzer et al. (2022)).

::::::
kernels

::
as

::::
the

::::
base

:::::::
kernels.

:

General test and real-world problems, no safe regions clustering: We further consider 3
problems Hartmann3 (D = 3), PEngine (D = 2) and GEngine (D = 13). PEngine datasetshave noisy
measurements where true grid values cannot be accessed, which makes the CCL algorithm inaccurate. The
safe region clustering is thus not performed in this problem. Hartmann3 has higher dimension, so it is
computationally not possible to cluster the safe regions. GEngine datasets have noisy measurements and
are high dimensional. The CCL algorithm cannot be leveraged.

Metrics: The learning result of f is shown as RMSEs between the GP predictive mean and test y sampled
from true safe regions. To measure the performance of q, we use the area of SN , as this indicates the
explorable coverage of the space. In particular, we look at the area of SN ∩ Strue (true positive or TP
area, the larger the better) and SN ∩ (X \ Strue) (false positive or FP area, the smaller the better). Here,
Strue ⊆ Xpool is the set of true safe candidate inputs, and this is available since our datasets in the experiments
are prepared as executed queries. With

7.1.2
::::::::
Datasets

:::
We

::::::::::
benchmark

::::
our

::::::::
methods

::
on

::::
six

:::::::
datasets.

::
An

:::::::::
overview

::
of

:::
the

::::::::
datasets

::
is
:::::
given

:::
in

:::::
Table

::
2.
:

7.2 AL results on problems with tractable safe regions

Datasets: We adapt
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Table 2:
:::::::
Dataset

:::::::::
Summary:

::::
For

:::::
each

:::::::
dataset,

:::
we

::::
list

:::
the

:::::
input

::::::::::
dimension

:::
D,

:::
the

::::
size

::
of

::::
the

::::::
source

:::::::
dataset

:::::::
Nsource,

:::
the

::::
size

::
of

:::
the

::::::
initial

::::::
target

:::::::
dataset

:::::
Ninit,::::

the
:::::::
number

::
of

:::::::
queries

:::::::
Nquery,

::::::::::
decription,

:::::
safety

:::::::::
threshold

:::
and

::::::::
whether

:::
the

::::::::
disjoint

::::
safe

:::::::
regions

:::
can

:::
be

::::::::
tracked.

::::::::
Datasets

::::
are

:::::
listed

:::
in

:::::
order

::
of

::::::::::
increasing

::::::::::
complexity.

::::
Each

:::::
task

:::
has

::::
one

::::::
safety

::::::::
variable.

:

:::::::
Dataset

: ::
D

: ::::::
Nsource: ::::

Ninit: ::::::
Nquery ::::::::::

Description
: :::::::::

Threshold
:::::::
Disjoint

:::::::
regions

:

GP1D
:
1

:::
100

::
10

: ::
50

: :::::::::
Synthetic,

::::::
f ̸= q,

:::
≥ 0

::::::
Tracked

:

GP2D and Branin data, CCL (He et al., 2017) is performed to cluster which safe region each query belongs to
:
2

:::
250

::
20

: :::
100

::::::::
Synthetic,

:::::::
f ̸= q,

:::
≥ 0

::::::
Tracked

:

::::::
Branin

: :
2

:::
100

::
20

: :::
100

::::::::
Synthetic,

:::::::
f = q,

:::
≥ 0

:::::::
Tracked

::::::::::
Hartmann3

: :
3

:::
100

::
20

: :::
100

:::::::::
Synthetic,

::::::
f = q

:::
≥ 0

::::::::::
Intractable

::::::::
PEngine

:
2

:::
500

::
20

: :::
100

::::::::::::::
Semi-real-world,

::::::
f ̸= q

: :::::
≤ 1.0

::::::::::
Intractable

::::::::
GEngine

::
13

: :::
500

::
20

: :::
200

::::::::::
Real-world,

::::::
f ̸= q

: :::::::
≥ −1.5,

:::::
≤ 0.5

: ::::::::::
Intractable

:::::::::
Synthetic

:::::::::::
Datasets:

::
We

:::::
first

:::::
create

::::
two

:::::::::::::::
low-dimensional

:::::::::
synthetic

::::::::
datasets,

::::::
GP1D

::::::::
(D = 1)

::::
and

::::::
GP2D

:::::::
(D = 2),

::::::::::
generating

::::::::::::
multi-output

::::
GP

:::::::
samples

:::::::::
following algorithm 1 of Kanagawa et al. (2018)to generate

multi-output GP samples. The first output is treated as our
:
.
::::
For

::::
each

::::::::
dataset,

:::
we

::::
treat

::::
the

::::
first

:::::::
output

::
as

:::
the source task and the second output as the target task. We have one

::::
Each

:::::::
dataset

:::
has

::
a
:
main function f

and an additional safety function q. Numerical details and example datasets are plotted in ??. We generate
10 datasets and repeat the AL experiments

::::
each

:::::::::::
experiment

:
five times for each

::::::
method

:::
on

::::::
every dataset.

For Branin data, we take the numerical setting
:::
the

:::::::
Branin

:::::::
dataset,

:::
we

::::::
follow

::::
the

:::::::
settings

:
from Rothfuss

et al. (2022); Tighineanu et al. (2022) to generate five different datasets . With each dataset, we repeat the
experiments for five times.

Result: In ??, we show the results of
:::::::
produce

:::
five

::::::::
datasets

::::
and

::::
run

::::
five

::::::::::
repetitions

:::
for

:::::
each

:::::::
method

:::
on

::::
each

:::::::
dataset.

:::::::
Unlike

:
GP1D

:::
and

:::::::
GP2D,

:::::::
Branin

::::
uses

::::
the

:::::
same

::::::::
function

:::
for

:::::
both

:::::
main

::::
and

:::::
safety

::::::
tasks.

:::
In

::::
these

::::::
initial

::::::::::::
experiments,

:::
we

::::::::
simulate

::::::::
multiple

::::::::
datasets

::::
but

::::::
retain

::::
only

:::::
those

:::
in

:::::
which

::::
the

::::::
target

::::
task

::::
has

::
at

::::
least

::::
two

:::::::
disjoint

::::
safe

:::::::
regions, GP2D and of Branin data. We see that EffTransHGP, FullTransHGP and

FullTransLMC experiments achieve accurate and much larger safe set coverage (larger TP area and small FP
area). In addition, the learning of f is more efficient with EffTransHGP, FullTransHGP and FullTransLMC
as the RMSE drops faster compared to the baseline methods. Note that the test points are sampled from
all of the true safe area, including the part baseline SAL fails to explore. It is thus not guaranteed that
RMSE of SAL monotonically decreases (Branin ). We observe from the experiments that the meta learning
approach, Rothfuss et al. 2022, fails to generalize to larger area, which might be due to a lack of data in
target task representativeness (one source, very few for meta learning) or/and in quantity.

In Table 3, we count the number of safe regions explored by the queries. This confirms the ability to
explore disjoint safe regions. One remark is that Branin function is smooth and has two clear safe regions;
while huge stochasticity exists in GP data and we may have various number of small or large safe regions
scattered in the space. Table 4 shows the model fitting time, confirming that EffTransHGP has comparable
time complexity as baseline SAL, as opposed to FullTransHGP and FullTransLMC. We provide additional
ratios of safe queries in appendix Table 5, which is a sanity check that the methods are indeed safe.

Please note the learning flexibility is FullTransLMC > FullTransHGP > EffTransHGP, and our experimental
results are consistent to this intuition (RMSE of FullTransLMC in 1D data is worse because we starts with
10 data points which is less than the number of LMC parameters, ??).

In the main experiments, Nsource (the number of source data points ) is fixed for each problem. In our ??,
we provide ablation studies on

::::
with

::::
each

:::::::
disjoint

::::::
region

::::
also

:::::::
having

:
a
::::
safe

:::::::::::
counterpart

::
in

:
the Branin dataset

, where we vary the number of source data points and number of source tasks.

7.2 AL results on general test and real-world problems

Hartmann problem: We take the numerical setting
::::::
source

:::::::
dataset.

:::::
This

::::::
design

:::::
aligns

:::::
with

:::
our

:::
use

:::
of

:::
the

::::::::::
Matérn-5/2

::::::
kernel,

::::::
which

:::::::::
measures

::::::::
similarity

::::::::
between

:::::
data

::::::
points

:::::
based

:::
on

:::::::::
proximity.

::::
Our

::::::
fourth

:::::::::
synthetic
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::::::
dataset

::
is
::::
the

::::::::::
Hartmann3

:::::::
dataset

::::::::
(D = 3),

:::::::
created

:::::
using

:::
the

::::::::
settings from Rothfuss et al. (2022); Tighineanu

et al. (2022)to generate five different Hartmann3 datasets . Here the source task
:
.
:::
We

::::::::
generate

::::
five

::::::::
datasets

:::
and

::::::
repeat

::::::::::::
experiments

::
on

:::::
each

::::::::
datasets

:::
five

::::::
times.

:::::
Here, the source data and the initial target data are all

:::
and

::::::
initial

::::::
target

::::::::
datasets

:::
are

:
sampled randomly, in contrast to

:::::
unlike

::::
the

::::::::::
structured,

:::::::
disjoint

::::
safe

:::::::
regions

::
in GP1D, GP2Dand Branin, where we enforce disjoint safe regions and overlapped source and initial target
region.

With each dataset, we repeat the experiments for five times. Please see ?? for details . In this experiment,
EffTransHGP, FullTransLMC and FullTransHGP provide much smaller RMSEs and larger safe area

:
,
::::
and

:::::::
Branin.

:::
All

::::::::
datasets

::::
are

:::::::::::
normalized,

::::
and

:::
the

::::::::::
constraint

:::::::::
thresholds

::::
are

:::
set

::
to

:::::
zero.

::::::::
Further

::::::
details

:::
on

::::
our

::::::::
synthetic

::::::::
datasets

:::
are

::::::::
provided

:::
in

::::::::::::
Appendix E.2.

:::::::::::::::::
Semi-Real-World

:::::::::
Dataset

::
(PEnginedatasets

:
): This is a real world problem, with interpolation

performed for our experiments. We have two datasets , measured from the same prototype of engine under
different conditions. Both datasets measure the

::::
The

::::::::
PEngine

:::::::
dataset

:::::::
consists

:::
of

:::
two

::::::::
datasets

:::::::::
measured

:::
on

:::
the

:::::
same

::::::
engine

:::::::::
prototype

:::::
under

::::::::
varying

::::::::::
conditions.

::::
The

:::::::
outputs

:
temperature, roughness, emission HC, and

emission NOx
::::
NOx

::::::::
emissions

::::
are

::::::::
recorded. We perform independent

:::::::
separate

:
AL experiments to learn about

roughness
:::::::::
roughness

:
(Figure 4) and temperature (put in appendix

:::::::::
Appendix Figure 12), both constrained

by the normalized temperature values q ≤ 1.0. The safe set is around 0.5293 of the entire space.The raw
datasets have

:
a

::::::::::
normalized

::::::::::::
temperature

::
q,

:::::::::
threshold

:::
on

:::::
noisy

:::::::::::
observation

::::::::
z ≤ 1.0,

::::::::
resulting

:::
in

::
a

::::
safe

:::
set

:::::::
covering

:::::::::::::
approximately

:::::::
52.93%

::
of

::::
the

:::::
input

::::::
space.2

:::
The

::::::
upper

::::::
bound

:::::::::
constraint

::
is
::::::::::
equivalent

::
to

::::::::::
−z ≥ −1.0

::
as

:::::::::
described

::
in

:::
our

:::::::::
Section 2,

::::
−z

:::::
being

:::
the

::::::::
negative

:::::
noisy

::::::::::::
temperature.

::::
The

::::
raw

::::::::
datasets

:::::::
contain

::::
four

:::::
input

::::::::
variables:

:
two free variables and two contextual inputs which are supposed to be fixed, i.e. a total of D = 4

inputs. The contextual inputs are
::::::::
variables,

::::
with

::::
the

:::::::::
contextual

::::::
inputs

:
recorded with noise, so we interpolate

the values with
:
.
:::
To

:::
fix

:::
the

::::::::::
contextual

::::::
inputs

:::
at

::::::::
constant

::::::
values,

:::
we

:::::::::::
interpolate

:::::
these

:::::
noisy

::::::
values

:::::
using

:
a

multi-output GP simulator , trained on the full datasets. Thus this experiment is performed on a
::::
This

::::::
allows

::
us

::
to

::::::::
perform

::::::
active

:::::::
learning

:::::::::::
experiments

::::::
solely

:::
on

:::
the

:::::::::::::::
two-dimensional

:::::
space

::
of

::::
the

:::
free

:::::::::
variables,

::::::::
creating

:
a
:
semi-simulated condition (free input variablesD = 2). Details are given in ??.

:::::::::::
environment.

::::::::
Further

::::::
details

:::
are

::::::::
provided

::
in

::::::::::::::
Appendix E.2

:::
and

:::
we

::::
will

:::::::
provide

:
a
::::::::
GitHub

::::
link

::
to

::::
the

:::::::
dataset

::::
after

:::::::::::
acceptance.

:

The safe set of this target task is not clearly separated into multiple disjoint regions. Thus the conventional
method can eventually identify most part of the safe area. Nevertheless, we still see a much better RMSEs
and much less data consumption for large safe set coverage . We also observe that Rothfuss et al. 2022 failed
to generalize the meta-learned source knowledge to the entire target space exploration.

GEngine datasets: Next, we apply our method to

::::::::::::
Real-World

:::::::::
Dataset

::::::::::::
(GEngine):

:::
Our

:::::
final

:::::::::::
benchmark

:::
is

:
a high-dimensional, real-world problem

consisting of
::::::::
involving

:
two datasets, each recorded by a related but distinct engine , with one serving

::::
(one as the source task and the other as the target taskBoth datasets were published by

:
)
:::::
from Li et al. (2022).

Each dataset is
::::
The

:::::::
original

:::::::
dataset

:::
are

:
split into training set and test set. We use the source training set

and target training set to run our AL experiments , and we use
:::
test

:::::
sets,

::::
and

:::
we

:::::::
conduct

::::
AL

:::::::::::
experiments

::
on

::::
the

:::::::
training

:::::
sets,

:::::
while

:::::::
RMSE

:::
and

:::::
safe

:::
set

:::::::::::
performance

::::
are

:::::::::
evaluated

::
on

:
the target test setto evaluate

the RMSE and the safe set. The
:
.
::::::
These datasets are dynamic, and

:::
our

::::::
model

::::::
applies

:
a history structure is

applied, concatenating the
::
by

:::::::::::::
concatenating relevant past points into the inputs, which results

::::::::
resulting in

an input dimension
:
of

:
D = 13. We provide further details in ??.

This problem measures the
::::
The

:::::::::
recording

:::::::
include emissions and temperatureas well. We

:
,
::::
and

:::
we learn the

normalized emission (f), subject to normalized temperature −1.5 ≤ q ≤ 0.5.This constraint is equivalent
to two safetyconditions −1.5 ≤ q and −0.5 ≤ −q.

:
q,

:::::::::
threshold

:::
on

:::::
noisy

:::::
value

:::::::::::::::
−1.5 ≤ z ≤ 0.5.2

:::
The

::::::
upper

::::::
bound

::::
on

:::::::::::
temperature

:::
is

::::::
crucial

::::
for

::::::
safety,

::::::
while

:::
the

::::::
lower

::::::
bound

:::::::::
increases

::::::::::
robustness

:::::::
against

::::::::
outliers.

:::::::
Overall,

:::
the

::::
safe

::::::
region

::::::
covers

:::::::::::::
approximately

:::::
65%

::
of

:::
the

::::::
target

::::::::
dataset. For the source tasks, the constraint

is −2 ≤ qs ≤ 0.5. The temperature lower bound matters mainly to the outliers
::::
task,

::::
we

:::::::
sample

:::
the

:::::
data

2
:
In
:::::::

general,
:::
we

:::
use

:::
the

:::::::
notation

:::::::::::::
z = {z1, . . . , zJ

j }
::
to

::::::::
represent

:
J
:::::

safety
::::::::::

constraints.
::::::::

However,
::::
since

:::
all

:::::::
datasets

::
in

:::
our

:::::::::
experiments

::::::
involve

:::
only

::
a
:::::
single

::::
safety

:::::::::
constraint,

::
we

:::::::
simplify

:::
the

:::::::
notation

::
to

::
z.
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:::::
under

::
a

:::::::
different

::::::::::
constraint

::
of

:::::::::::::
−2 ≤ zs ≤ 0.5

::
to

:::::
make

::::
the

::::::
model

:::::
more

::::::::
resistant

::
to

::::::::
outliers.

:::::
More

::::::
details

::::
can

::
be

::::::
found

::
in

:::::::::::::
Appendix E.2.

:

7.2
:::::::::
Modeling

::::::::::::
Performance

::
&

:::::::
Safety

:::::::::
Coverage

::
In

:::
the

:::::::::
following,

:::
we

:::::
study

::::
the

::::::::
empirical

::::::::::::
performance

::
of

::::
our

:::::::::
algorithms

:::
to

::::
find

:::
out

::::::::
whether

:::
our

::::::::
methods

::::
can

:::::::::
accelerate

:::::
space

::::::::::
exploration

::::
and

::::::
model

:::::::::::
convergence

::::::
while

:::::::::::
maintaining

::::::
safety.

:

::::::::
Metrics:

:::
We

::::::::
evaluate

::::::
model

:::::::::::
convergence

:::
of

:::
the

:::::
main

::::::::
function

::
f
::::::

using
::::
root

::::::
mean

::::::
square

:::::
error

::::::::
(RMSE)

:::::::
between

:::
the

::::
GP

:::::::::
predictive

::::::
mean

:::
and

::::
test

::
y
::::::::
sampled

::::
from

:::::
true

::::
safe

:::::::
regions.

:::
To

::::::::
measure

:::
the

::::::::::::
performance

::
of

:::
our

::::::
safety

:::::::
function

:::
q,

:::
we

:::
use

::::
the

::::
area

::
of

::::
SN (Equation (6)),

:::
as

::::
this

::::::::
indicates

::::
the

:::::::::
explorable

::::::::
coverage

:::
of

:::
the

:::::
space.

:::::::::::
Specifically,

:::
we

::::::::
consider

::::
the

::::
area

::
of

::::::::::
SN ∩ Strue:::::

(true
::::::::
positive

::
or

::::
TP

:::::
area,

:::
the

::::::
larger

:::
the

:::::::
better)

::::
and

:::::::::::::::::
SN ∩ (Xpool \ Strue)

:::::
(false

::::::::
positive

::
or

::::
FP

:::::
area,

:::
the

:::::::
smaller

::::
the

:::::::
better).

::::::
Here,

::::::::::::
Strue ⊆ Xpool:::::::

denotes
::::
the

:::
set

::
of

::::
true

::::
safe

:::::::::
candidate

::::::
inputs,

::::::
which

:::
we

::::
can

::::::::::
precompute

:::
as

:::
we

:::
use

::
a

::::
fixed

:::::
data

:::::
pool.

:::::
Area

::
of

::::::::::::::
Xpool,SN ,Strue

:::
are

::
all

:::::::::
measured

:::
by

::::::::
counting

::::
the

:::::::
number

::
of

:::::::
points.

:

::::::::
Results:

:::
We

::::::
report

::::::
results

:::
in

::::::::
Figure 4.

:

:::::::
Results

::::
on

::::::::
GP1D,

::::::::
GP2D,

::::::::
Branin:

:::
We

::::::
begin

:::
by

::::::::
focusing

:::
on

:::
the

:::::::
GP1D, it is the upper bound 0.5

that plays the major role. Overall, such constraint means around 65% of the target dataset is safe . We
provide an appendix Figure 8 to illustrate the raw data distributions. In this problem, the effect of one
single query on the GP hyperparameters is not obvious. Therefore, to speed up the experiments, we train
the hyperparameters only every 50 queries (and at the beginning). We query for 200 iterations.

::::::
GP2D,

::::
and

::::::
Branin

::::::::
datasets,

::::::
which

::::
have

:::::
been

:::::::::
simulated

::
to

:::::::
contain

::::::::
multiple

:::::::::::
disconnected

::::
safe

:::::::
regions.

::::
On

:::::
these

::::::::
datasets,

::::
only

::::::::
methods

:::::::
capable

::
of

::::::::
jumping

:::::::
between

:::::::
regions

::::
can

:::::::
achieve

:::::::
optimal

::::::::::::
performance.

:::
In

:::::::
Figure 4

:
,
:::
we

:::::::
observe

::::
that

:::
our

::::::::
transfer

::::::::
learning

::::::::::
approaches

:::::::
achieve

:::::
lower

:::::::
RMSE

::::
and

:::::::::::
significantly

:::::::
greater

::::
safe

:::
set

::::::::
coverage

:::::
than

:::::::::
competing

:::::::::
methods,

:::::
while

:::::::::::
maintaining

::::::
small

:::::
false

::::::::
detection

:::::
rate

::
of

::::
safe

:::::
area.

:::::::
These

::::::
results

::::::::
suggest

::::
that

:::
our

::::::::
methods

::::
can

::::::::::
successfully

::::::::
identify

::::
and

:::::::
explore

:::::::::::
disconnected

::::
safe

::::::::
regions,

:::::
while

::::
our

::::::::::
competitor

::::::::
methods

::::::
cannot.

::::
We

::::
will

::::::::
conduct

:::
an

::::::::
in-depth

:::::::
analysis

:::
of

::::
this

::::::
aspect

::
in

::::
the

::::
next

::::::::
section.

::::
The

::::::
higher

:::::::
RMSE

::
of

::::
our

:::::::::
competing

::::::::
methods

::::
can

:::
be

::::::::
partially

::::::::::
attributed

::
to

::::
the

::::::::::
evaluation

:::::::::
approach:

:::::
test

::::::
points

:::
are

::::::::
sampled

:::::
from

:::
the

:::::
entire

::::
safe

:::::
area,

:::::::::
including

:::::::
regions

::::
that

::::::::::
competing

::::::::
methods

:::
fail

:::
to

:::::::
explore.

:::::::::::
Additional

::::
safe

:::::
query

::::::
ratios,

::::::::
provided

::
in

:::::::::
Appendix

:::::::
Table 5

:
,
:::::::
confirm

::::
that

::::
our

::::::::
methods

::::::::
maintain

:::::
high

:::::
levels

::
of
:::::::
safety.

Overall, we observe a clear outperformance of

:::::::
Results

::::
on

::::::::::::
Hartmann,

::::::::::
PEngine:

::
In

::::
the

:::::::::
Hartmann

::::
and

:::::::::
PEngine

::::::::::::
experiments,

:::
our

::::::::
transfer

::::::::
learning

::::::::::
approaches

:::::::::::
demonstrate

::::::::
superior

::::::::::::
performance,

:::::::::
achieving

:::::
lower

:::::::
RMSEs

::::
and

:::::::
broader

::::
safe

::::
area

::::::::
coverage

:::::
with

:::::
fewer

::::
data

::::::
points

:::::
than

::::::::::
competing

::::::::
methods

::::
(see

::::::::
Figure 4

:
).

:::::
Since

:::::
SAL

::::::::::
eventually

::::::
covers

:::
the

::::::
entire

::::
safe

::::
area

::
by

::::
the

::::
end

::
of

:::
the

::::::::::
iterations,

:::
we

:::::::::::
hypothesize

:::::
that

:::
the

::::::
target

::::
task

:::
do

::::
not

:::::::
contain

:::::::
clearly

:::::::::
separated

:::::::
disjoint

:::::::
regions.

:::::::::::
Nonetheless,

::::::::::::
conventional

::::
SAL

::::::::
requires

:::::
more

:::::::
queries

::
to

:::::::
achieve

:::
the

:::::
same

::::::::::::
performance,

:::
as

::::
they

::::
lack

:::
the

::::::::
efficiency

:::
of

:::
our

:::::::::
approach.

:

:::::::
Results

::::
on

:::::::::::
GEngine:

::::
Our

:::::
final

::::::::
dataset,

::::::::::
GEngine,

::::
has

::
a
:::::::

larger
::::::
input

::::::
space,

:::::::::
resulting

:::
in

::::::
more

:::::::::::::::
hyperparameters

:::
and

:::::::
making

::::
GP

::::::
fitting

:::::
more

::::::::::::::
computationally

:::::::::
expensive

::::
(see

::::
also

:::::
Table

:::
4).

::::::
Given

:::::
that

::::
each

:::::::::
individual

:::::
query

::::::::::
minimally

::::::
affects

::::
the

:::
GP

::::::::::::::::
hyperparameters,

::::
we

::::::
update

::::::
them

:::::
every

:::
50

:::::::
queries

::
to

::::::::
enhance

:::::::
runtime

:::::::::
efficiency

::::
and

::::::
report

::::::
results

:::
at

::::
the

:::::
same

::::::::
interval.

::::::::
Overall,

:
the HGP-based multitask approaches

:::::::
transfer

:::::::
learning

:::::::::::
approaches

::::::
clearly

:::::::::::
outperform

:::::::::::
competitors, as they explore the safe set with significantly

fewer target task queries while being better or at least as good as their competitors in terms of
::::::::
achieving

:::::
better

:::
or

:::::
equal

:
test error and proportion of false positives. As shown in ??, the HGP methods, particularly

EffTransHGP, identify around two-thirds of the safe set with 50 queries, and they have almost no false safe
classifications. In contrast, with the same number of queries, the baseline SAL discovers less than half of
the safe set. From the RMSEs, HGP

::::
false

::::
safe

::::::::
positive

:::::
rates.

:::::::::
Zooming

::::
into

:::
the

:::::::
RMSE

::::::
results

:::
in

::::::::
Figure 5,

::
we

::::
find

:::::
that

:::
the

:::::
HGP

:::::::::::
approaches learns the main function as well as the baseline SAL . In this problem,

training .
::::::::
Training

:
the LMC modelseems

:
,
::::::::
however,

:::::::
appears

:
to be more challenging. Only ;

:::::
only after the

second training iteration (iteration 100)does the RMSE of FullTransLMC stabilize, ,
:::
the

:::::::
RMSE

::::::::
stabilizes

:
and

24



Under review as submission to TMLR

Table 3:
::::::::
Identified

:::::::
Disjoint

:::::
Safe

::::::::
Regions:

:::
We

::::::
count

:::
the

:::::::
number

:::
of

:::
safe

:::::::
regions

::::::::
explored

:::
by

:::
the

::::::::
queries.

::::
The

::::
total

::::::::
numbers

::
of

:::::::
queries

:::
are

:::::
listed

:::
in

:::::::
Table 2.

::::::::
Transfer

::::::::
learning

::::::::
discovers

::::::::
multiple

:::::::
disjoint

::::
safe

:::::::
regions

:::::
while

::::::::
baselines

::::
stick

:::
to

::::::::::::
neighborhood

:::
of

:::
the

::::::
initial

::::::
region.

:

:::::::::
methods

::::::
GP1D

:::::::
GP2D

:::::::
Branin

::::::::::::
EffTransHGP

: ::::::::::
1.79± 0.07

::::::::::
2.77± 0.13

: :::::
2± 0

:::::::::::::
FullTransHGP

: ::::::::::
1.78± 0.07

::::::::::
3± 0.14213

: :::::
2± 0

:::::::::::::
FullTransLMC

: ::::::::::
1.78± 0.08

::::::::::
2.68± 0.14

: :::::
2± 0

::::::::::::
Rothfuss2022

: ::::::::::
1.22± 0.05

::::::::::
1.07± 0.03

: :::::
1± 0

::::
SAL

: ::::
1± 0

: ::::::::::
1.29± 0.09

: :::::
1± 0

the number of false safe classifications
::::::::
positives reduces. Initially, LMC appears

:::::
seems

:
to be overconfident

regarding safety conditions, which we think might be
:::
can

:::
be

:::::::::
attributed

:::
to

::::::::::
overfitting

::::::
caused

:::
by

:::
the

::::::
larger

:::::::
number

::
of

:::::::::::::::
hyperparameters

:
due to the higher input dimensions leading to a

::::::::::
dimension.

Figure 5: The RMSE zoom-in version of
GEngine in Figure 4.

::
In

::::
the

:::::
main

:::::::::::::
experiments,

:::::::
Nsource:::::

(the
:::::::
number

:::
of

:::::::
source

:::::
data

:::::::
points)

:::
is

:::::
fixed

::::
for

:::::
each

::::::::
dataset.

::::
In

:::
our

:::::::::::
Appendix F

:
,
:::
we

:::::::
provide

:::::::
ablation

:::::::
studies

:::
on

:::
the

:::::::
Branin

:::::::
dataset,

:::
in

:::::
which

:::
we

:::::
vary

:::
the

::::::::
number

::
of

::::::
source

::::
data

::::::
points

::::
and

:::::::
number

::
of

::::::
source

::::::
tasks.

:

::::::::::
Summary:

::::
Our

::::::::::
approaches

:::::::::
generally

:::::::::::
demonstrate

:::::::::
improved

:::::::::::
convergence

::
in
::::::

terms
::
of
::::::

model
::::::::::::

performance
:::
and

::::
the

::::::
extent

::
of

::::::::
explored

::::
safe

:::::::
regions,

:::::
while

:::::::::::
maintaining

::::::
safety

:::::
levels

:::::::::::
comparable

::
to

:::
the

::::::::
baseline

:::::
SAL.

::::
The

:::::::
benefits

::
of

::::
our

::::::::
methods

:::
are

:::::
most

::::::::::
pronounced

::::::
when

:::::::
multiple

::::::::::::
unconnected

::::
safe

:::::::
regions

:::::
exist,

::
as

::::
our

::::::::
methods

:::
are

:::
the

:::::
only

:::
one

:::::::
capable

:::
of

::::::
finding

::::::
them.

:::::::
Among

::::
the

:::::
three

:::::::
variants

:::
of

:::
our

:::::::::
approach,

:::
we

:::::::
observe

:::::
that

:::::
LMC

::::::::
struggles

:::::
when

:::
the

::::::
input

:::::
space

::
is

::::::::::::::::
high-dimensional

:::
and

:::::
data

::
is

::::::
scarce,

::::::::::
potentially

::::
due

:::
to

:::
the

:
larger number

of hyperparameters. Nevertheless, the queries of FullTransLMC are still more than 90% safe
::
In

:::::::::
contrast,

:::
the

::::::::::
HGP-based

::::::::
methods

:::::
show

:::::::::::
consistently

::::::
strong

::::::::::::
performance

:::::
across

:::
all

::::::::::::
experiments.

:

7.3
::::::::::::
Disconnected

::::::::
Regions

:::::
Next,

:::
we

::::::::
examine

::
in

:::::
more

::::::
detail

::::::::
whether

:::
the

:::::::::
increased

::::
safe

::::::::
coverage

::::::::
observed

:::
in

:::
the

::::::::
previous

:::::::
section

::::
can

::
be

::::::::::
attributed

::
to

::::
our

:::::::
transfer

::::::::
learning

::::::::::
approaches

:::::::::
effectively

::::::::
jumping

::::::::
between

::::::::::::
disconnected

:::::::
regions.

:

:::
We

:::::::
analyse

::::
the

::::::::
number

::
of

::::::::
disjoint

:::::::
regions

:::
for

::::
our

:::::::::
synthetic

:::::::::
problems

:::::
with

::::::
input

::::::::::
dimension

::::::
D = 1

:::
or

:::::
D = 2

:::::::
(GP1D, as shown in appendix Table 5.

::::::
GP2D,

:::::::::
Brainin).

::::
For

:::::
these

:::::::::
datasets,

::
it

::
is

:::::::::::
analytically

::::
and

::::::::::::::
computationally

::::::::
possible

::
to

:::::::
cluster

:::
the

::::::::::::
disconnected

::::
safe

:::::::
regions

:::
via

::::::::::
connected

::::::::::
component

::::::::
labeling

::::::
(CCL)

:::::::::
algorithms

:::::::::::::::
(He et al., 2017)

:
.
:::::::
Please

:::
see

:::::::::::::
Appendix E.1

:::
for

:::::::
further

:::::::::
discussion

::
of
::::

the
:::::
CCL

:::::::::
algorithm

::::
and

:::
its

:::::::::::
applicability.

:::::
This

::::::
allows

:::
us

:::
to

::::::
track,

::
in

:::::
each

::::::::::
experiment

:::::::::
iteration,

::::
the

:::::::
specific

::::
safe

::::::
region

::
to

::::::
which

:::::
each

::::::::::
observation

:::::::
belongs

::::
and

:::::
count

::::
the

:::::::
number

::
of
::::::::::::
disconnected

:::::::
regions

::::
(see

:::::::::
Appendix

:::::::::
Figure 11

:
).
::::

At
:::
the

::::
end

::
of

:::
the

:::
AL

::::::::::
algorithm,

:::
we

::::::
report

:::
the

::::::::
number

::
of

::::::::
explored

::::
safe

:::::::
regions

::
in

:::::::
Table 3

:
.
::::
We

:::
say

::
a
::::::
region

::
is

::::::::
explored

::
if

::
at

::::
least

::::
one

::::::
query

::
is

::
in

:::
the

:::::::
region.

:::::
This

::
is

::::
valid

::::::::
because

:::
the

::::
safe

:::
set

::::
can

:::::::
expand

::::
from

::::
the

::
at

:::::
least

::::
one

:::::
point.

:::
The

:::::::
results

:::::::
confirm

:::
the

:::::::
ability

::
of

:::
our

::::::::
transfer

:::::::
learning

:::::::::::
approaches

::
to

:::::::
explore

:::::::
disjoint

::::
safe

:::::::
regions,

::::::
while

:::
the

:::::::
baseline

::::::::
methods

:::::::
cannot

:::::
jump

:::
to

::::::::::::
disconnected

:::::::
regions.

:::::::::
Notably,

::::
the

:::::::
Branin

::::::::
function

::
is

:::::::
smooth

::::
and

::::
has

:::
two

:::::::::::
well-defined

::::
safe

::::::::
regions,

:::::
while

::::
the

:::
GP

:::::
data

:::::::
exhibit

:::::
high

::::::::::::
stochasticity,

:::::::
leading

::
to

::
a
::::::
range

::
of

:::::
small

:::
or

::::
large

::::
safe

:::::::
regions

:::::::::
scattered

::::::::::
throughout

::::
the

::::::
space.

::::::
While

:::::::
limited

::::::::::
exploration

::
is
:::::::::
expected

:::
for

:::
the

::::::::::
single-task

::::::::
approach

:::::
SAL,

::
it

::
is

:::::::::
surprising

::::
that

:::
the

:::::::::::::
meta-learning

:::::::::
approach

::::::::::::
Rothfuss2022

::::
also

::::
fails

::
to

:::::
reach

::::::::::::
disconnected

:::::::
regions.

:::::
This

:::::
could

:::
be

::::
due

::
to

:::::::
having

::::
only

::
a

:::::
single

:::::::
source

::::
task,

::::::
which

::
is
:::::::::::
uncommon

:::
for

::::::::::::
meta-learning

:::
as

::
it

::::::::
typically

:::::::
involves

::::::::
multiple

::::::
source

:::::
tasks

::
to

::::::::::::
differentiate

:::::::
between

::::::::
common

::::
and

:::::::::::
task-specific

:::::::
effects.

:

:::
For

:::
the

:::::::::
remaining

::::::::
datasets

::::::::::::
(Hartmann3,

::::::::
PEngine

:::
and

::::::::::
GEngine),

::
we

:::::::
cannot

:::::
count

:::
the

:::::::
number

::
of

::::::::::::
disconnected

::::::
regions

:::::
since

::::
the

:::::
CCL

:::::::::
algorithm

:::::::
cannot

:::
be

::::::::
applied.

:::::
This

::
is
::::

due
:::

to
:::
its

::::::::::
limitations

:::
in

:::::::
dealing

:::::
with

:::::
noisy

::::::::::::
measurements

::::::::::
(PEngine,

:::::::::
GEngine)

::::
and

::::::::::
dimensions

:::::::
greater

::::
than

::::::
D = 2

:::::::::::
(Hartmann,

::::::::::
GEngine).

:

:::
Our

::::::::
findings

::::::::::::
demonstrate

::::
that

::::
our

::::::::
transfer

::::::::
learning

::::::::::
approaches

::::::::::
effectively

::::::::
identify

::::
and

:::::::
explore

::::::::
multiple

::::::
disjoint

::::
safe

:::::::
regions

:::::
when

:::::
they

:::
are

::::::::
present,

:
a
::::::::::
capability

::::::
lacking

:::
in

::::::::::
competing

::::::::
methods.

:
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Table 4:
:::::::
Training

::::::
Time

::
of

::
f

::::
and

::
q

:::
(in

::::::::
seconds)

::
at

::::
the

:::
last

::::
AL

::::::::
training:

::::
We

:::::::
observe

::::
that

::::::::
runtime

::::::::
increases

::::::::::
sequentially

:::::
from

::::
SAL

:::
to

:::::::::::::
EffTransHGP,

::::
then

:::
to

:::::::::::::
FullTransHGP,

::::
and

::::::
finally

:::
to

::::::::::::::
FullTransLMC.

::::::::::::
Rothfuss2022

::::::::
performs

::::
only

:::
an

::::::
initial

::::::::
training

:::::::
upfront

::::::
which

::
is
::::
not

::::::::
included

:::
in

:::
our

::::::::
runtime

:::::::::
estimate,

::::::::
resulting

:::
in

::::
zero

:::::
traing

:::::
time.

::::::::
datasets

:::::::::::
EffTransHGP

: :::::::::::::
FullTransHGP

: :::::::::::::
FullTransLMC

: ::::::::::::
Rothfuss2022

: ::::
SAL

:::::::
GP1D

:::::::::::
8.947± 0.198

: :::::::::::
9.171± 0.133

: :::::::::::
26.56± 0.628

: ::::::::
0.0± 0.0

::::::::::::
6.881± 0.083

:::::::
GP2D

:::::::::::
10.73± 0.190

: :::::::::::
39.31± 0.639

: :::::::::::
202.8± 12.43

: ::::::::
0.0± 0.0

:::::::::::
8.044± 0.142

:

:::::::
Branin

:::::::::::
3.754± 0.121

: :::::::::::
8.129± 0.267

: :::::::::::
21.16± 1.207

: ::::::::
0.0± 0.0

:::::::::::
4.691± 0.078

:

::::::::::::
Hartmann3

:::::::::::
3.662± 0.089

: :::::::::::
9.092± 0.467

: :::::::::::
34.43± 1.664

: ::::::::
0.0± 0.0

:::::::::::
4.073± 0.083

:

:::::::::
PEngine

:::::::::::
9.596± 0.418

: :::::::::::::
124.99± 5.608

: :::::::::::
615.7± 27.99

: ::::::::
0.0± 0.0

:::::::::::
4.686± 0.243

:

:::::::::
GEngine

:::::::::::::
18.525± 2.508

:::::::::::::
503.11± 63.94

: :::::::::::::
4357.8± 661.4

: ::::::::
0.0± 0.0

:::::::::::::
10.485± 0.578

7.4
::::::::
Runtime

::::::::
Analysis

:::::::
Finally,

::
we

::::::
report

::::::::
training

:::::
times

:::
in

:::::::
Table 4,

:::::::::
measured

:::
as

:::
the

:::::
time

:::
(in

::::::::
seconds)

:::::::
required

:::
to

::::::::
optimize

:::
the

::::
GP

::::::::::::::
hyperparamters

::
at

::::
the

::::
final

:::::::::
iteration.

:

:::
We

:::::::
observe

::::
that

:::::::
runtime

::::::::
increases

:::::::::::
sequentially

::::
from

:::::
SAL

::
<

::::::::::::
EffTransHGP

::
<

:::::::::::::
FullTransHGP

::
<
::::::::::::::
FullTransLMC,

:::::
which

::::::
aligns

:::::
with

::::
our

:::::::::::
theoretical

::::::::
findings

:::
in

:::::::
Section

:::
6.

::::::::
While

::::::
both,

:::::
SAL

::::
and

::::::::::::::
EffTransHGP,

:::::
scale

::::::::
cubically

:::::
with

:::
the

::::::::
number

::
of
:::::::

target
::::::
points

:::
N ,

:::::::::::::
EffTransHGP

::::::
takes

::::::
longer

::::
due

:::
to

:::
the

:::::::::
increased

::::::::
number

::
of

:::::::::::::::
hyperparameters

:::
to

:::::::::
optimize.

::::::::::::::
FullTransHGP

::::
and

::::::::::::::
FullTransLMC,

:::
in

::::::::
contrast,

:::::
scale

:::::::::
cubically

::::
with

::::
the

::::::::
combined

::::::::
number

::
of

::::::
source

::::
and

::::::
target

:::::
data

:::::::::::
Nsource + N ,

:::::
with

:::::::::::::
FullTransLMC

:::::::::
requiring

:::::::::
additional

::::::::
runtime

:::
due

:::
to

::
an

:::::
even

::::::
larger

:::::::
number

::
of

::::::::::::::::
hyperparameters.

:

:::
The

:::::::::
flexibility

:::
of

::::
our

:::::::
transfer

:::::::::::
approaches

::
is

::::::::
inversely

::::::::::::
proportional

:::
to

:::
the

::::::::
training

:::::
time.

::::::::::
However,

::
in

::::
our

:::::::::::
experiments,

:::
we

:::
do

:::
not

:::::::
observe

::
a
:::::::::
significant

::::::::::
advantage

::
of

:::
the

::::::::::::::
FullTransLMC

::::::::
approach

:::::
over

:::::
HGP,

:::::
likely

::::
due

::
to

:::
the

:::::::::
increased

::::::::::::::
hyperparameter

::::::
count

::
in

::::::::::::::
FullTransLMC,

::::::
which

::::
can

::::
lead

:::
to

:::::::::
overfitting

::::::
issues.

:::
In

:::::::::
summary,

::::
HGP

:::::::
proves

::
to

:::
be

:::
the

:::::::::
strongest

:::::::::
approach,

:::::::
offering

:::::
high

::::::::
efficiency

::::::::
without

::::::::::::
compromising

:::
on

::::::::::::
performance.

:

8 Conclusion

We propose a transfer safe
::::
safe

:::::::
transfer

:
sequential learning

to facilitate real
:::::::::
real-world

:
experiments. We demonstrate

its pronounced acceleration of learningwhich can be seen by
a faster drop of RMSE and a larger

:
,
:::::::::
evidenced

:::
by

::::::
faster

::::::
RMSE

:::::::::
reduction

::::
and

:
a
:::::::
greater

:
safe set coverage. At the same

time
:::::::::::
Additionally, our modularized multi-output modeling 1)

retains the potential of performing
:::
for global GP safe learn-

ing and 2) alleviates the cubic complexity in the experiments,
leading to a considerable reduce of time complexity

::::
from

:::
the

:::::
source

::::::
data,

:::::::::::
significantly

::::::::
reducing

:::
the

::::::::
runtime.

Limitations: Our modularized method is in theory compat-
ible with any multi-output kernel, in contrast to the ensemble
technique in Tighineanu et al. (2022) which is only valid for
::::::
limited

:::
to a specific kernel

::::::::
structure. However, one limitation

of source precomputation is that it requires to fix correct source
relevant hyperparameters solely with source data(e.g. HGP
is a good candidate .

::::
For

:::::::::
example,

:::::
HGP

::
is

::::::::::
well-suited

:
due to

its separable source-target structure while LMC, which learns
joint patterns of tasks, will not be fixed correctly with only
source data ). Another limitation is that the benefit of transfer
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learning relies on multi-task correlation. This means transfer
learning will not be helpful when the correlation is absent, or
when the source data are not present in our target safe area.
Modeling with more complicated base kernel (we use Matérn-5/2 kernel) may enable more sophisticated
multi-task correlations, but this

::::
may

::::
not

::::::::
correctly

::::::::
optimize

:::::
with

::::::
source

::::
data

:::::
only.

:

:::::
While

:::
we

:::::
only

::::::::
explored

:::::
linear

:::::
task

::::::::::
correlations

:::
in

::::
this

:::::
work,

:::::
more

::::::::::::
sophisticated

::::::::::::
multi-output

:::::::
kernels,

:::::
such

::
as

:::::
those

:::
in

::::::::::::::::::
Álvarez et al. (2019)

:
,
:::
or

:::
the

::::
use

::
of

:::::
more

::::::::
complex

:::::
base

:::::::
kernels,

::::::
could

:::::::
support

::::::
richer

:::::::::
multitask

:::::::::::
correlations.

:::::::::
However,

:::::::::::
investigating

:::::
these

:::::::::::
approaches is beyond the scope of this paper (seee.g.

:
,
::::
e.g., Bitzer

et al. (2022) for kernel selections).
:::::::
selection

::::::::::
strategies).

:

:::::
When

:::
no

::::::::::
correlation

::::::
exists

::::::::
between

:::
the

::::::
source

::::
and

::::
the

::::::
target

:::::
data,

::::
two

:::::::::
outcomes

::::
are

:::::::
possible

::::::::::
depending

::
on

::::
the

:::::
kernel

:::::::
design:

:::
(i)

::
if

:::
the

::::::::::::
multi-output

::::::
kernel

::::::::
includes

:::
the

::::::::
standard

::::::::::
single-task

::::::
kernel

::
as

::
a
::::::
special

:::::
case,

:::::::::::
performance

::::
may

::::::
revert

::
to

:::::
that

::
of

::::::::
baseline

::::::::
methods;

::::
(ii)

::
if

:::
the

:::::::::
standard

::::::
kernel

::
is

:::
not

::::::::
included

:::
as

:
a
:::::::
special

::::
case,

::::
the

:::::
signal

:::::
may

:::
not

:::
be

:::::::::
effectively

:::::::::
modeled,

::::::::
resulting

::
in

:::::::::::
suboptimal

::::::::::::
performance.

Future work: In this paper, we focus on problems of hun-
dreds or up to thousands of data points (source and target
data). If we wish to scale further up

::::::
Scaling

:::::::
further

:
to tens

of thousands or millions of data points , approximated models
::::
may

:::::::
require

::::::::::::::
approximations,

:
such as sparse GP models (Tit-

sias, 2009; Hensman et al., 2015)may be required. These sparse
GP models infer with a few inducing points , representing the
original observation set. However, a suitable method of the
inducing points selection remains opened

:
,
:::::
which

::::
use

::
a

::::::
limited

::
set

:::
of

::::::::
inducing

::::::
points

::
to

:::::::::
represent

:::
the

::::::::
original

:::::
data.

:::::::::
However,

:::
the

:::::::
optimal

::::::::
selection

::::::::
strategy

::
for

::::::::
inducing

::::::
points

:::
for

:::::::::
sequential

:::::::
learning

:::::::::::
approaches

::
is

::::
still

:::
an

:::::
open

::::::::
research

::::::::
question (Moss

et al., 2023; Pescador-Barrios et al., 2024). For example
:::
For

:::::::
instance, the safety model needs inducing points approximating a good

:::::::
requires

:::::::::
inducing

::::::
points

:::::
that

:::::::::
effectively

::::::::
represent

::::
the

:
safe set, while the acquisition function needs to consider how the inducing points

change
::::::::
inducing

::::::
points

::
of

:::
the

::::::::::
acquisition

::::::
model

::::
need

:::
to

::
be

::::::::
updated

:
after each query (or each batch of queries)

.
::
to

:::::::::::::
appropriately

::::::
reflect

:::::::
changes

::
in

:::::::::::
uncertainty.

:
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A Appendix Overview

?? provides detailed analysis and illustrations
:::::::::::
Appendix B

:::
lists

::::::::::
commonly

::::
used

:::::::
kernels

::::
and

:::
the

::::
r-δ

:::::::
relation

::::::
needed

:::
for

::::
our

::::::::::
theoretical

::::::::
analysis.

::::::::::::
Appendix C

:::::::
provides

:::
the

::::::
proof of our main theorem. In ??

:::::::::::
Appendix D

, we demonstrate the math of our source pre-computation technique . ??
::
as

::::
well

::
as

:::::::
general

::::::::
transfer

::::
task

::::
GPs

::::
with

:::::
more

:::::
than

::::
one

::::::
source

:::::
tasks.

::::::::::::
Appendix E contains the experiment details and ??

:::::::::::
Appendix F the

ablation studies, additional plots and tables.

B GPs with classical
stationary kernels cannot jump through an
unsafe valley

::::::::::
Common

:::::::::
Kernels

:::::
and

::::
r-δ

::::::::::
Relation

B.1 Bound of explorable region of safe learning methods

In our main script, we provide a bound of the safety probability. The theorem is restated here.

We are given ∀x∗ ∈ X :::
Our

:::::
main

::::::::
theorem

:::
use

:::::::::::::
Definition 5.1

:
,
:::::
which

::
is
::::::::

restated
:::::
here, x1:N ⊆ X , a kernel kqj

satisfying ?? and kqj (·, ·) ≤ 1. Denote kj
scale := max kqj (·, ·). qj ∼ GP(0, kqj ) is a GP, zj

1:N := (zj
1, ..., zj

N )
is a set of observed noisy values and ∥(zj

1, ..., zj
N )∥ ≤

√
N . Then ∀δ ∈ (0,

√
kj

scaleσqj /
√

N),∃r > 0
s.t. when minxi∈x1:N ∥x∗ − xi∥ ≥ r, the probability thresholded on a constant Tj is bounded by

p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
≤ Φ

(
Nδ/σ2

qj −Tj√
kj

scale
−(

√
Nδ/σqj )2

)
.

In this section, we illustrate a concrete example of our theorem, where conventional methods cannot explore
the entire safe set in the space. Then we provide the proof of this theorem.

B.1 Single-output
GP does not reach disconnected safe region

We plug some exact numbers into the probability bound. Consider an one dimensional situation as Figure 2
and ??. We omit j because J = 1 here. Assume

1. N = 10,

2. σ2
q = 0.01,

3. T = 0 (notice zj
1:N is normalized to 0-mean and unit-variance).

In this example, the generated data have ∥z1:N∥ ≤
√

N (see Figure 2 for the rough functional values). Noticed
also that σq/

√
N is around 0.0316. We fix kscale := max kq(·, ·) = 1 (the surrogate model in Figure 2). Then

our theoretical bound of the safety probability is Φ
(

Nδ/σ2−T√
1−(

√
Nδ/σ)2

)
= Φ

(
1000δ√

1−1000δ2

)
.

In our main script, x∗ is unsafe if p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
< 1− Φ(−β1/2) = Φ(β1/2). We set the safety

tolerance to β1/2 = 2. The decision boundary of our theorem 1000δ√
1−1000δ2 = 2 means δ ≈ 0.002.

From ?? we see that ∥x− x′∥ ≥ 4.485⇒ δ ≤ 0.002 for unit lengthscale Matérn-5/2 kernel. With a
lengthscale parameter l, this becomes ∥x−x′∥

l ≥ 4.485⇔ ∥x− x′∥ ≥ 4.485 ∗ l. Therefore δ ≤ 0.002 if
∥x− x′∥ ≥ 4.485 ∗ l.

The GP model trained on this example has lengthscale ≈ 0.1256 (the surrogate model in Figure 2 and in left
of ??), so points that are at least 4.485 ∗ 0.1256 = 0.563316 away from the observations are always identified
unsafe. Thus the safe region on the right is never inferred as safe and is not explored with conventional
single-output GP model ( ??, left), because the distance between the two disjoint safe regions is around 0.7.
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We also show empirically that a multi-output GP model transfer safety confidence from a source task and
identify safe region Ssub2( ??, right).

0.2in The safety function q(x) = sin
(
10x3 − 5x− 10

)
+ 1

3 x2 − 1
2 . Safety threshold is set to T = 0. The

observations are with noise drawn from N (0, 0.01). Left: a GP with Matérn-5/2 kernel (lengthscale ≈ 0.1256)
is shown. The red lines indicate the largest observed x and the closest safe point of another region. The gap
between the red lines is close to 0.7, which is beyond explorable region of conventional safe learning methods.
Right: the multi-output model uses an LMC kernel with 2 latent Matérn-5/2 kernels (Álvarez et al., 2012).
Additional noisy data from function qs(x) = sin

(
10x3 − 5x− 10

)
+ sin(x2)− 1

2 are provided (yellow). Ssub1
and Ssub2 are the safe set inferred by the LMC. -0.2in

B.1 r-δ relation for commonly used kernels

Our main theorem consider kernels satisfying Assumption 3.2 which is restated here: Given a kernel function
k : X × X → R, assume ∀δ > 0, ∃r > 0 s.t. ∥x− x′∥ ≥ r ⇒ k(x, x′) ≤ δ under L2 norm.

:
to

::::::::
measure

::::
the

:::::::::
covariance

:::::
with

::::::
respect

:::
to

:::
the

::::::::
distance

::
of

:::::
data:

:

Definition 5.1.
:::
We

:::
call

::
a
::::::
kernel

:
k
::
a
::::::
kernel

::::
with

::::::::::
correlation

:::::::::
weakened

::
by

::::::::
distance

::
if k : X ×X → R , assume

:::::
fulfills

::::
the

::::::::
following

:::::::::
property:

:
∀δ > 0, ∃r > 0 s.t. ∥x− x′∥ ≥ r ⇒ k(x, x′) ≤ δ under L2 norm. We provide

expression

Notice that this assumption
:::::::
property

:
is weaker than k being

strictly decreasing (see e.g. Lederer et al. (2019)), and .
:::

In
::::::::
addition,

:
it does not explicitly force stationarity. ,

::::::
while

:::
not

::
all

::::::::::
stationary

:::::::
kernels

:::::
have

::::
this

:::::::::
property,

::::
e.g.

:::::::
cosine

::::::
kernel

:::::::::::::::::::::::
k(x, x′) = cos (∥x− x′∥2)

::::
does

::::
not

:::::
follow

::::
this

::::::::::
definition.

Here we want to find the exact r for commonly used kernels,
given a δ. The following kernels (denoted by k(·, ·)) are described
in their standard forms. In the experiments, we often add a
lengthscale l and variance kscale ::::

l > 0
::::
and

::::::::
variance

:::::::::
kscale > 0,

i.e. kparameterized(x, x′) = kscalek(x/l, x′/l) where kscale and l
are trainable parameters. The lengthscale l can also be a vector,
where each component is a scaling factor of the corresponding
dimension of the data.

RBF kernel
k(x, x′) = exp

(
−∥x− x′∥2/2

)
:

k(x, x′) ≤ δ ⇔ ∥x− x′∥ ≥
√

log 1
δ2 .

E.g. δ ≤ 0.3⇐ ∥x− x′∥ ≥ 1.552
δ ≤ 0.1⇐ ∥x− x′∥ ≥ 2.146

δ ≤ 0.002⇐ ∥x− x′∥ ≥ 3.526

Matérn-1/2 kernel
k(x, x′) = exp (−∥x− x′∥): k(x, x′) ≤ δ ⇔ ∥x− x′∥ ≥ log 1

δ .

E.g. δ ≤ 0.3⇐ ∥x− x′∥ ≥ 1.204
δ ≤ 0.1⇐ ∥x− x′∥ ≥ 2.303

δ ≤ 0.002⇐ ∥x− x′∥ ≥ 6.217
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Matérn-3/2 kernel
k(x, x′) =

(
1 +
√

3∥x− x′∥
)

exp
(
−
√

3∥x− x′∥
)
:

E.g. δ ≤ 0.3⇐ ∥x− x′∥ ≥ 1.409
δ ≤ 0.1⇐ ∥x− x′∥ ≥ 2.246

δ ≤ 0.002⇐ ∥x− x′∥ ≥ 4.886

Matérn-5/2 kernel
k(x, x′) =

(
1 +
√

5∥x− x′∥+ 5
3∥x− x′∥2) exp

(
−
√

5∥x− x′∥
)
:

E.g. δ ≤ 0.3⇐ ∥x− x′∥ ≥ 1.457
δ ≤ 0.1⇐ ∥x− x′∥ ≥ 2.214

δ ≤ 0.002⇐ ∥x− x′∥ ≥ 4.485

B.1 Proof of our main theorem

C
::::
GP

::::::
Local

::::::::::::::
Exploration

:
-
:::::::

Proof

::
In

:::
our

:::::
main

::::::
script,

:::
we

:::::::
provide

::
a
::::::
bound

::
of

::::
the

:::::
safety

:::::::::::
probability.

::
In

::::
this

:::::::
section,

:::
we

:::::::
provide

::::
the

:::::
proof

::
of

::::
this

::::::::
theorem.

:

We first introduce some necessary theoretical properties in ??
::::::::::::
Appendix C.1, and then use the properties to proveTheorem
3.3 in ??

::::::::::::
Theorem 5.2

:::
and

:::::::::::::
Corollary 5.3

::
in

:::::::::::::
Appendix C.2.

C.0.1 Additional lemmas

C.1
::::::::::
Additional

::::::::
Lemmas

Definition C.1. Let k : X × X → R be a kernel, A ⊆ X
be any dataset of finite number of elements, and let σ be any
positive real number, denote Ωk,A,σ2 := k(A, A) + σ2I.

Definition C.2. Given a kernel k : X × X → R, dataset
A ⊆ X , and some positive real number σ, then for x ∈ X , the
k-, A-, and σ2-dependent function h(x) = k(A, x)T Ω−1

k,A,σ2 is
called a weight function (Silverman, 1984).

Proposition C.3. C ∈ RM×M is a positive definite matrix
and b ∈ RM is a vector. λmax is the maximum eigenvalue of
C. We have ∥Cb∥2 ≤ λmax∥b∥2.

Proof of Proposition C.3.
Because C is positive definite (symmetric), we can find or-

thonormal eigenvectors {e1, ..., eM} of C that form a basis of
RM . Let λi be the eigenvalue corresponding to ei, we have
λi > 0.
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As {e1, ..., eM} is a basis, there exist b1, ..., bM ∈ R s.t. b =∑M
i=1 biei. Since {ei} is orthonormal, ∥b∥2

2 =
∑

i b2
i . Then

∥Cb∥2 = ∥
M∑

i=1
biλiei∥2 =

√√√√ M∑
i=1

b2
i λ2

i

≤

√√√√ M∑
i=1

b2
i λ2

max = λmax

√√√√ M∑
i=1

b2
i = λmax∥b∥2

.

Proposition C.4. ∀A ⊆ X , any kernel k, and any positive
real number σ, an eigenvalue λ of Ωk,A,σ2 (Definition C.1) must
satisfy λ ≥ σ2.

Proof of Proposition C.4.
Let K := k(A, A). We know that

1. K is positive semidefinite, so it has only non-negative eigenval-
ues, denote the minimal one by λK , and

2. σ2 is the only eigenvalue of σ2I.

Then Weyl’s inequality immediately gives us the result: λ ≥
λK + σ2 ≥ σ2.

Corollary C.5. We are given ∀x∗ ∈ X , A ⊆ X , any ker-
nel k satisfying Assumption 3.2

::::
with

::::::::::
correlation

:::::::::
weakened

::
by

:::::::
distance

:
(Definition 5.1),

:
and any positive real number σ. Let

M := number of elements of A, and let B ∈ RM be a vector.
Then ∀δ > 0,∃r > 0 s.t. when minx′∈A∥x∗ − x′∥ ≥ r, we have

1. |h(x∗)B| ≤
√

Mδ∥B∥/σ2 (see also Definition C.2),

2. k(x∗, x∗) − k(A, x∗)T Ω−1
k,A,σ2k(A, x∗) ≥ k(x∗, x∗) −Mδ2/σ2

(see also Definition C.1).

Proof of Corollary C.5.
Let K := k(A, A).

Proposition C.4 implies that the eigenvalues of
(
K + σ2I

)−1

are bounded by 1
σ2 .

In addition,
:::::::::::::
Definition 5.1

::::
gives

:::
us

:
minx′∈A∥x∗ − x′∥ ≥ r ⇒

all components of row vector k(x∗, A) are in region [0, δ].

1. Apply Cauchy-Schwarz inequality (line 1) and Proposition C.3
(line 2), we obtain

|k(A, x∗)T
(
k(A, A) + σ2I

)−1
B| ≤ ∥k(A, x∗)T ∥∥

(
K + σ2I

)−1
B∥

≤ ∥k(A, x∗)∥ 1
σ2 ∥B∥

≤ ∥(δ, ..., δ)∥ 1
σ2 ∥B∥

≤
√

Mδ∥B∥
σ2 .
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2.
(
K + σ2I

)−1 is positive definite Hermititian matrix, so

k(A, x∗)T
(
K + σ2I

)−1
k(A, x∗) ≤ 1

σ2 ∥k(A, x∗)∥2

≤ 1
σ2 Mδ2.

Then, we immediately see that

k(x∗, x∗)− k(A, x∗)T
(
K + σ2I

)−1
k(A, x∗) ≥ k(x∗, x∗)− 1

σ2 ∥k(A, x∗)∥2

≥ k(x∗, x∗)− 1
σ2 Mδ2.

Remark C.6. A CDF
::
Φ

::
is

:::
the

:::::::::::
cumulative

:::::::
density

::::::::
function

:::::::
(CDF)

:
of a standard Gaussian distribution

is often denoted by p(x ≤ T ) = Φ(T ), x ∼ N (0, 1). Notice that
:::::::
N (0, 1).

::::::::::::::::
p(x ≤ T ) = Φ(T ).

::
p(x ≤ −T ) =

Φ(−T ) = 1− Φ(T ) = p(x ≥ T ).

C.1.1 Main proof

We are given ∀x∗ ∈ X , x1:N ⊆ X , a kernel kqj satisfying ?? and kqj (·, ·) ≤ 1. Denote kj
scale := max kqj (·, ·).

qj ∼ GP(0, kqj ) is a GP, zj
1:N := (zj

1, ..., zj
N ) is a set of observed noisy values and ∥(zj

1, ..., zj
N )∥ ≤

√
N .

Then ∀δ ∈ (0,
√

kj
scaleσqj /

√
N),∃r > 0 s.t. when minxi∈x1:N ∥x∗ − xi∥ ≥ r, the probability thresholded on

a constant Tj is bounded by p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
≤ Φ

(
Nδ/σ2

qj −Tj√
kj

scale
−(

√
Nδ/σqj )2

)
.

C.2
:::::
Main

::::::
Proof

:::
The

::::::::
theorem

::
is
::::::::
restated

::::::
again.

:

Theorem 5.2 (Local exploration of single-output GPs). We are
given ∀x∗ ∈ X , x1:N ⊆ X , a kernel kqj satisfying ?? (distant
points result in weak correlation) and kqj (·, ·) ≤ 1. Denote
kj

scale := max kqj (·, ·). qj ∼ GP(0, kqj ) is a GP,
:::
For

::::
any

:::::
safety

:::::::::
constraint

:::::::
indexed

::
by

:::::::::::
j = 1, ..., J ,

::
let

:
zj

1:N := (zj
1, ..., zj

N ) is a set
of observed noisy values and

::
be

:::
the

::::::::
observed

:::::
noisy

::::::
safety

:::::
values

:::
and

:::
let

:
∥(zj

1, ..., zj
N )∥ ≤

√
N .

::::
The

::::::
safety

:::::
value

::::::::::::::
zj = qj(x) + ϵqj

:::::::
satisfies

:::
the

:::
GP

::::::::::::
assumptions

:::::::::::::::
(Assumption 3.1,

::::::::::::::
Assumption 3.2

:
):
:::::::::::::::::::::::::::::::::::::::::::

qj ∼ GP(0, kqj ), kqj (·, ·) ≤ 1, ϵqj ∼ N
(

0, σ2
qj

)
.
::::
The

::::::
kernel

:::
kqj

::
is

::
a
:::::::

kernel
::::
with

:::::::::::
correlation

:::::::::
weakened

:::
by

::::::::
distance

:
(Def-

inition 5.1).
:: ::::::

Denote
::::::::::::::::::::
kj

scale := max kqj (·, ·).
:::

Then ∀δ ∈

(0,
√

kj
scaleσqj /

√
N),∃r > 0 s.t. when

:::::::
∀x∗ ∈ X:::::

that
:::::
fulfill

minxi∈x1:N ∥x∗ − xi∥ ≥ r, the probability thresholded on a con-

stant Tj is bounded by p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
≤ Φ

(
Nδ/σ2

qj −Tj√
kj

scale
−(

√
Nδ/σqj )2

)
.

::
Φ

::
is

:::
the

:::::
CDF

:::
of

::::::::
standard

:::::::::
Gaussian.

:
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Proof.
From Equation (2) in the main script, we know that

p
(

qj(x∗)|x1:N , zj
1:N

)
= N

(
x∗|µqj ,N (x∗), σ2

qj ,N (x∗)
)

µqj ,N (x∗) = kqj (x1:N , x∗)T
(

kqj (x1:N , x1:N ) + σ2
qj IN

)−1
zj

1:N

σ2
qj ,N (x∗) = kqj (x∗, x∗)− kqj (x1:N , x∗)T

(
kqj (x1:N , x1:N ) + σ2

qj IN

)−1
kqj (x1:N , x∗).

We also know that (Remark C.6)

p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
= 1− Φ

(
Tj − µqj ,N (x∗)

σqj ,N (x∗)

)
= Φ

(
µqj ,N (x∗)− Tj

σqj ,N (x∗)

)
.

From Corollary C.5, we get µqj ,N (x∗)−Tj

σqj ,N (x∗) ≤
√

Nδ∥zj
1:N ∥/σ2

qj −Tj√
kqj (x∗,x∗)−Nδ2/σ2

qj

. This is valid because we assume

δ <
√

kj
scaleσqj /

√
N . Then with ∥zj

1:N∥ ≤
√

N and the fact
that Φ is an increasing function, we immediately see the result

p
(

(qj(x∗) ≥ Tj)|x1:N , zj
1:N

)
≤ Φ

 Nδ/σ2
qj − Tj√

kj
scale − (

√
Nδ/σqj )2

 .

:::::
Then,

:::
we

::::::
would

::::
like

::
to

:::::
prove

::::
the

:::::::::::::
Corollary 5.3

:::::
which

::
is

:::::::
restated

:::::
here.

:

Corollary 5.3 (Existence of δ).
:::
We

::::
are

::::::
given

:::::
the

::::::::::::
assumptions

:::
in

:::::::::::::
Theorem 5.2

:
.
::::::

For
::::::

each

::::::::::
j = 1, ..., J ,

::
if
::::::
either

:::
(1)

:::::::::::::::
Tj ≥ 0, β1/2 > 0

:::
or

:::
(2)

:::::::::::::::::::::
Tj < 0, β1/2 >

|Tj |√
kj

scale

,
:::::

then
:::::::::::::::::::::::
∃δ ∈ (0,

√
kj

scaleσqj /
√

N)
:::
s.t.

::::::::::::::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
≤ Φ(β1/2).

Proof.
::::
This

::::
can

::::
be

::::::
proved

:::
by

:::::::::::
substituting

:::
the

::::::::::
constants.

:

:::::::::
Condition

:::
(1)

:::::::::::::::
Tj ≥ 0, β1/2 > 0:

:

Nδ/σ2
qj − Tj√

kj
scale − (

√
Nδ/σqj )2

::::::::::::::::::::

≤
Nδ/σ2

qj√
kj

scale − (
√

Nδ/σqj )2
,

:::::::::::::::::::::::

::::::::::::::::::::::::::::
limδ→0+

Nδ/σ2
qj√

kj
scale

−(
√

Nδ/σqj )2
= 0

::::::::::
guarantees

:::::::::::::::::::::::
∃δ ∈ (0,

√
kj

scaleσqj /
√

N)
::::

s.t.
::::::::::::::::::::::::::

Nδ/σ2
qj√

kj
scale

−(
√

Nδ/σqj )2
≤ β1/2,

:::
for

::::::::
β1/2 > 0.

:::::
Then

::::::::
because

::
Φ

::
is

:::::::
strictly

::::::::::
increasing,

:::
the

:::::
same

::
δ
:::::
gives

::::::::::::::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
≤ Φ(β1/2).

:

:::::::::
Condition

:::
(2)

::::::::::::::::::::::
Tj < 0, β1/2 >

|Tj |√
kj

scale

:
:::::

We
::::
see

:::::
here

:::::
that

:::::::::::::::::::::::::::::::::::::::::
limδ→0+

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2
= −Tj√

kj
scale

< β1/2.

:::::::::
Therefore,

:::::
there

:::::
must

:::::
exist

:::::::::::::::::::::
δ ∈ (0,

√
kj

scaleσqj /
√

N)
::::
s.t.

::::::::::::::::::::::::::::::::
Φ
(

Nδ/σ2
qj −Tj√

kj
scale

−(
√

Nδ/σqj )2

)
≤ Φ(β1/2).

:
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D Multi-output GPs with
source pre-computation

:::::::
Source

::::::::::::::::::::
Pre-Computation

D.1
:::::::::
Two-steps

::::::::
Cholesky

:::::::::::::::
Decomposition

Given a multi-output GP g ∼ GP (0, kg), g ∈ {f , q1, ..., qJ},
where kg is an arbitrary kernel, the main computational chal-
lenge is to compute the inverse or Cholesky decomposition
of

Ωg =
(

Kgs
+ σ2

gs
INsource Kgs,g

KT
gs,g Kg + σ2

gIN

)
.

Such computation has time complexity
O
(
(Nsource + N)3)

:::::::::::::::::
O
(
(Nsource + N)3). We wish to avoid

this computation repeatedly. As in our main script, kg is
parameterized and we write the parameters as θg = (θgs

, θg),
where kg ((·, s), (·, s)) is independent of θg. kg ((·, s), (·, t)) and
kg ((·, t), (·, t)) does not need to be independent of θgs

Here we propose to fix Kgs
(i.e. θgs :::::

must
:::
be

::::::
fixed)

and σ2
gs

and precompute the Cholesky decomposition of
the source components, Lgs = L(Kgs + σ2

gs
INsource), then

::::::::::::::::::::::::
Lgs = L(Kgs + σ2

gs
INsource),

::::
then

:

L (Ωg) =
(

Lgs
0(

L−1
gs

Kgs,g

)T
L
(
K̃t

)) ,

K̃t = Kg + σ2
gIN −

(
L−1

gs
Kgs,g

)T
L−1

gs
Kgs,g.

(9)

This is obtained from the definition of Cholesky decomposition,
i.e. Ωg = L (Ωg) L (Ωg)T , and from the fact that a Cholesky
decomposition exists and is unique for any positive definite
matrix.

The complexity of computing L (Ωg) thus becomes
O(N2

sourceN) +O(NsourceN2) +O(N3) instead of
O
(
(Nsource + N)3)

::::::::::::::::::::::::::::::::::
O(N2

sourceN) +O(NsourceN2) +O(N3)
::::::
instead

:::
of

::::::::::::::::::
O
(
(Nsource + N)3). In particular, computing

L−1
gs

Kg,st is O(N2
sourceN)

:::::::::::
O(N2

sourceN), acquiring matrix
product K̂t is O(NsourceN2)

::::::::::::
O(NsourceN2)

::
and Cholesky

decomposition L(K̂t) is O(N3).

The learning procedure is summarized in ??
::::::::::::
Algorithm 3 in

the main script. We prepare a safe learning experiment
with Dsource

Nsource ::::::
Dsource

Nsource:
and initial DN ; we fix θfs

, θqj
s
, σfs

, σqj
s

::::::::::::::::::::::::
θfs , θqj

s
, σfs , σqj

s
, j = 1, ..., J to appropriate values, and we pre-

compute Lfs , Lqj
s
. During the experiment, the fitting and in-

ference of GPs (for data acquisition) are achieved by incorpo-
rating Equation (9) in ??

:::::::::::
Equation (3) of the main script (Sec-

tion 6).

D.2
:::::::
Transfer

:::::
Task

::::
GPs

::::::::
beyond

::::
One

:::::::
Source

::::::
Tasks

:::
We

::::::
extend

:::::::::::
Section 3.2

:::::::
beyond

::::
one

:::::
single

:::::::
source

:::::
task.

::::
Let

:::
us

:::
say

:::
we

:::::
have

::
a
:::::
total

::
of

:::
P

::::::
source

::::::
tasks,

::::
and

:::
the

::::::
source

::::
task

::::::
index

::
is

:::::::::::
s = 1, ..., P .

:::
In

::::
our

:::::
main

::::::
paper (Section 3)

:
,
:::::::
Dsource

Nsource::
is
::::

the
::::::
source

:::::
data

:::::
with

::::
only
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:::
one

:::::
task.

:::::
Here,

::::::::::::::::::::::::::::::::
Dsource

Nsource
:= ∪P

s=1Ds
Ms
⊆ X × R× R,

:::::::::::::::::::::::::::::
Ds

Ms
= {xs,1:Ms

, ys,1:Ms
, zs,1:Ms

}
:
is
::::
the

:::::::
dataset

::
of

::::::
source

::::
task

:::::::
indexed

:::
by

::
s,

::::
Ms ::

is
:::
the

:::::::
number

:::
of

::::
data

:::
of

::::
task

::
s,

::::
and

::::::::::::::::
Nsource =

∑P
s Ms::

is
::::
still

:::
the

::::::::
number

::
of

:::::
data

::
of

::
all

::
P

::::::
source

::::::
tasks

::::::
jointly.

:::
We

::::
now

:::::
want

::
to

::::::
write

:::::
down

:::
the

::::::::::
predictive

:::::::::::
distributions

::::
for

::::
each

:::::::::::::::::
g ∈ {f , q1, ..., qJ}.

:::::::
Similar

:::
to

::::::::::
Section 3.2

:
,
::::::::::::::::::::::::::::::::::::::::
x̂s,1:Ms

= {(xs,n, s)}Ms
n=1 ⊆ X × {task indices}

::::::::
denotes

:::
the

::::::
input

:::::
data

::::
with

:::::
task

::::::
index.

:::::
The

::::
data

::::
can

:::
be

:::::::
plugged

::
in

:::
as

::::
how

::
it

:::
was

:::
in

::::::::::
Section 3.2,

::::
and

::::
the

:::::::::
predictive

::::::::::::
distributions

::::
have

:::::
only

:::::
minor

::::::::
changes.

::::
We

:::::
write

:
f
:::
as

:::
an

:::::::
example

::::::
below

::
in

:::::::::::::
Equation (10)

:
,
:::::
while

::::::::
q1, ..., qJ

::::
are

::::::::::
analogous.

::::::::::::::::::
x̂∗ = (x∗, t), x∗ ∈ X::

is
:::::
again

::
a
::::
test

:::::
point

::::
and

:
t
::
is
::::
the

:::::
index

:::
of

::::::
target

:::::
task.

::::
We

:::::
color

::::
the

:::::::::::
modification

:::::::::
compared

:::
to

::::::
single

::::::
source

::::
task

:
(Equa-

tion (3))
:
.

p
(
f(x∗, t)|DN ,Dsource

Nsource

)
:::::::::::::::::::::

= N
(
µf ,N (x∗), σ2

f ,N (x∗)
)

,
::::::::::::::::::::::::

µf ,N (x∗)
::::::::

= vT
f Ω−1

f


y1,1:M1

...
yP,1:MP

y1:N

 ,

:::::::::::::::::::

σ2
f ,N (x∗)

:::::::

= kf (x̂∗, x̂∗)− vT
f Ω−1

f vf ,
::::::::::::::::::::::

vf
::

=


kf (x̂1,1:M1 , x̂∗)

...
kf (x̂P,1:MP

, x̂∗)
kf (x̂1:N , x̂∗)

 ,

::::::::::::::::::::

Ωf
::

= (KNsource+N ) +


σ2

f1
IM1 0

0 . . . 0
0 σ2

fP
IMP

0
0 σ2

f IN

 ,

:::::::::::::::::::::::::::::::::::::::::::::

(10)

:::::
where

:::::::::::::::::::::::::::::::
[KNsource+N ]i,j = kf ([x̂∪]i, [x̂∪]j),

:::::
and

::::
x̂∪:::

is
::

a
::::::

joint
:::::::::::

expression
:::

of
:::::::

source
:::::

and
::::::

target
::::::

data
:::::::::::::::::::::::::::
(x̂s=1,1:M1 , ..., x̂s=P,1:MP

, x̂1:N )
::::::
placed

:::::::
exactly

:::
in

::::
this

:::::
order.

:::::
The

:::
GP

::::::
model

::
f
::
is
:::::::::
governed

:::
by

:::
the

:::::::::
multitask

:::::
kernel

:::
kf:::::

and
:::::
noise

:::::::::::
parameters

:::::::
σ2

fs
, σ2

f ,
::::::
where

::::
σ2

fs::
is
::

a
::::::

noise
::::::::
variance

::
of
:::::::

source
::::
task

::::::::::::
s = 1, ..., P .

:::::
The

::::::::::::::
pre-computation

::::
will

:::
fix

::::
the

::::
part

::
of

:::
all

::::::
source

:::::
tasks

:::::
(still

:::
the

::::
top

:::
left

:::::::
Nsource:::

by
:::::::
Nsource :::::

block
::
of

:::::
Ωf ).

::::::::::
Multitask

:::::::::
Kernels:

:::
Few

:::::::::
examples

::
of

::::::
actual

:::
GP

:::::::
models,

::::
i.e.

::::::
actual

:::::::
kernels,

:::
are

:::::::::
described

::
as

:::
the

:::::::::
following.

:::
The

::::::
LMC,

::::::
linear

::::::
model

::
of

:::::::::::::::::
corregionalization,

:::
can

:::
be

:::::
taken

:::::::
simply

:::
by

::::::
adding

:::::
more

::::::::::
dimension:

:

kg((·, ·), (·, ·)) =
P +1∑
l=1

WlW
T
l +


κ1 0

0 . . . 0
0 κP 0

0 κ


⊗ kl(·, ·),

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

::
g
:::

is
::
a

:::::::::
multitask

::::::::
function

::::
but

:::::
does

::::
not

::::::
matter

:::
to

::::
the

::::::::::
expression

:::::
here,

:::::
each

:::::::::::::::
kl : X × X → R

::
is

::
a

::::::::
standard

:::::
kernel

:::::
such

::
as

::
a
::::
Mat

:
é
::::::
rn-5/2

:::::
kernel

:::::::::
encoding

:::
the

::::
l-th

:::::
latent

::::::::
pattern,

::
⊗

::
is

::
a

:::::::::
Kronecker

::::::::
product,

::::
and

:::::::::::::
Wl ∈ R(P +1)×1

::::
and

::::::::::::::
κ1, ..., κP , κ > 0

::::
are

::::
task

:::::
scale

::::::::::
parameters

:::::::::::::::::::
(Álvarez et al., 2012)

:
.
:
l
::
is
::
a

::::::::::
numbering

:::::
index

::::
used

::::
only

:::::
here.

:
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:::
The

:::::
HGP

::::
can

::
be

:::::::::
extended

::
in

::::
two

:::::
ways,

:::::::
models

::
in

::::::::::::::::::::
Poloczek et al. (2017)

::
or

::
in

:::::::::::::::::::::
Tighineanu et al. (2022)

:
.
:::::
Here

::
we

:::::
take

:::
the

::::::
model

:::::
from

::::::::::::::::::::::
Tighineanu et al. (2022):

:

kg((·, ·), (·, ·)) =
P∑

i=0

(
0i×i 0i×(P +1−i)

0(P +1−i)×i 1(P +1−i)×(P +1−i)

)
⊗ ki(·, ·),

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

::::::
0m×n

::::
and

::::::
1m×n

:::
are

::::::::
matrices

:::
of

::::::
shape

::
m

:::
by

::
n
:::::
with

:::
all

::::::::
elements

::::::
being

::::
zero

::::
and

:::::
one,

:::::::::::
respectively,

:::::::::::::
m, n = 0, ..., P .

::::::
ki(·, ·)::

is
::
a
::::::::
standard

::::::
kernel

:::::
such

::
as

::
a

::::
Mat

:
é
::::::
rn-5/2

::::::
kernel,

:
i
::
is
::
a
::::::::::
numbering

::::::
index.

:

E Experiment details
::
&

::::::::::::
Numerical

::::::::
Details

E.1 Labeling safe regions
::::
Safe

::::::::
Regions

The goal is to label disjoint safe regions, so that we may
track the exploration of each land. In our experiments, the
test safety values are always available because we are dealing
with executed pool of data. It is thus possible to access safety
conditions of each test point as a binary label. We

::
We

::::::
access

:::::
safety

::::::
values

:::
as

::::::
binary

::::::
labels

::
of

:::::::::::
equidistant

:::::
grids

:::
(as

::
if
:::::
these

:::
are

:::::::
pixels).

::::
This

::
is
:::::::
always

:::::::
possible

:::
for

:::::::::
synthetic

:::::::::
problems.

:::
We

::::
then

:
perform connected component labeling (CCL, see He et al.

(2017)) to the safety classesover grids (grids are available, see
the following sections). .

:::::
This

:::::::::
algorithm

::::
will

::::::
cluster

::::
safe

:::::
pixels

:::
into

::::::::::
connected

::::::
lands.

::
When D = 1, this labeling is trivial.

When D = 2, we consider 4-neighbors of each pixel (He et al.,
2017). With simulated datasets, the ground truth is available,
and thus

:::
For

:::::::::
noise-free

:::::::
ground

:::::
truth

::::::
safety

::::::
values,

::::
the CCL is deterministic. The CCL can

::::
This

:::::::::
algorithm

:::
can

::::::::
however be computationally intractable on high dimension (number of grids grows exponentially), and

this method can be inacurrate over real data where
:::::::
because

:::
the

:
observations are noisy and

:::
the grid values

need interpolation from the measurements.

After clustering the safe regions over grids, we identify which
safe region each test point x∗ belongs to by searching the grid
nearest to x∗.

:::
The

:::::::::
accuracy

:::
can

:::
be

::::::::::
guaranteed

:::
by

::::::::::
considering

::::
grids

:::::::
denser

::::
than

::::
the

:::::
pool.

::::::
This

::
is

:::::::::::::::
computationally

:::::::
possible

::::
only

:::
for

::::::::
D = 1, 2.

::
See main Table 3 and the queried regions

count of Figure 11 for the results.

E.2 Numerical details
::::::
Settup

:::
&

::::::::
Datasets

When we run algorithm 1 and 2 (in the main paper
:::
For

:::
our

:::::
main

::::::::::::
experiments

::::::::::::
(Algorithm 1

:
,
:::::::::::
Algorithm 2

:
,
:::::::::::
Algorithm 3), we set Ninit ::::

Ninit:(number of initial observed target data), Nsource ::::::
Nsource:(number of observed

source data)and Npool ,
::::::
Nquery:::::::::

(number
::
of

::::
AL

:::::::
queries/

::::::::
learning

::::::::::
iterations)

::::
and

::::::
Npool (size of discretized

input space Xpool:::::
Xpool) as follows:

1. GP1D: Nsource = 100, Ninit = 10, run Algorithm 1 or ??
for 50 iterations, and Npool = 5000

::::::::::::
Nsource = 100,

:::::::::::
Ninit = 10,

:::::::::::
Nquery = 50,

::::::::::::
Npool = 5000,

:::::::::::
constraints

:::::
q ≥ 0

:::
up

::
to

:::::
noise;

2. GP2D: Nsource = 250, Ninit = 20, run Algorithm 1 or ??
for 100 iterations, and Npool = 5000

::::::::::::
Nsource = 250,

:::::::::::
Ninit = 20,

::::::::::::
Nquery = 100,

::::::::::::
Npool = 5000,

:::::::::::
constraints

:::::
q ≥ 0

:::
up

::
to

:::::
noise;

3. Branin & Hartmann3: Nsource = 100, Ninit = 20,
run Algorithm 1 or ?? for 100 iterations, and
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Npool = 5000
:::::::::::::
Nsource = 100,

::::::::::::::
Ninit = 20,

:::::::::::::::::
Nquery = 100,

::::::::::::
Npool = 5000,

:::::::::
q = f ≥ 0

:::
up

::
to

:::::
noise;

4. PEngine: Nsource = 500, Ninit = 20, run Algorithm 1 or ??
for 100 iterations, and Npool = 3000

:::::::::::::
Nsource = 500,

::::::::::
Ninit = 20,

::::::::::::
Nquery = 100,

::::
and

::::::::::::
Npool = 3000,

::::::::::
constraints

::::::
q ≤ 1

:::
up

::
to

::::::
noise;

5. GEngine: Nsource = 500, Ninit = 20, run Algorithm 1 or ??
for 200 iterations, and Npool = 10000

:::::::::::::
Nsource = 500,

::::::::::
Ninit = 20,

::::::::::::
Nquery = 200,

:::::::::::::
Npool = 10000,

::::::::::::::
−1.5 ≤ q ≤ 0.5

:::
up

::
to

:::::
noise.

In the following, we describe in details how to prepare each
dataset.

E.2.1
:::::::::
Synthetic

::::::::
Datasets

:::
of

:::::::::
Tractable

:::::
Safe

::::::::
Regions

We first sample source and target test functions and then sample
initial observations from the functions. With GP1D, GP2D
and Branin problems , we reject the sampled functions unless
all of the following conditions are satisfied: (i) the target task
has at least two disjoint safe regions, (ii) each of these regions
has a common safe area shared with the source, and (iii) for
at least two disjoint target safe regions, each aforementioned
shared area is larger than 5% of the overall space (in total, at
least 10% of the space is safe for both the source and the target
tasks).

In our general test problems, i.e. Hartmann3 , we generate functions as they are. In other words, we do not
restrict the datasets to any safe region characteristics.

GP data
:::::
Data: We generate datasets of two outputs. The

first output is treated as our source task and the second output
as the target task.

To generate the multi-output GP datasets, we use GPs with
zero mean prior and multi-output kernel

∑2
l=1 WlW

T
l ⊗ kl(·, ·),

where ⊗ is the Kronecker product, each Wl is a 2 by 2 matrix
and kl is a unit variance Matérn-5/2 kernel (Álvarez et al.,
2012). All components of Wl are generated in the following way:
we randomly sample from a uniform distribution over interval
[−1, 1), and then the matrix is normalized such that each row
of Wl has norm 1. Each kl has an unit variance and a vector
of lengthscale parameters, consisting of D components. For
GP1D and GP2D problems, each component of the lengthscale
is sampled from a uniform distribution over interval [0.1, 1). We
adapt algorithm 1 of Kanagawa et al. (2018) for GP sampling,
detailed as follows:

1. sample input dataset X ∈ Rn×D within interval [−2, 2], and
n = 100D.

2. for l = 1, 2, compute Gram matrix Kl = kl(X, X).

3. compute Cholesky decomposition Ll = L(WlW
T
l ⊗ Kl) =

L(WlW
T
l )⊗ L(Kl) (i.e. WlW

T
l ⊗Kl = LlL

T
l , Ll ∈ R2∗n×2∗n).
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4. for l = 1, 2, draw ul ∼ N (0, I2∗n) (ul ∈ R(2∗n)×1).

5. obtain noise-free output dataset F =
∑2

l=1 Llul

6. reshape F =
(

f(X, s)
f(X, t)

)
∈ R2∗n×1 into F =(

f(X, s) f(X, t)
)
∈ Rn×2.

7. normalize F again s.t. each column has mean 0 and unit
variance.

8. generate initial observations (more than needed in the exper-
iments, always sampled from the largest safe region shared
between the source and the target).

During the AL experiments, the generated data X and F are
treated as grids. We construct an oracle on continuous space
[−2, 2]D by interpolation. During the experiments, the training
data and test data are blurred with a Gaussian noise of standard
deviation 0.01

::::::::::
N
(
0, 0.012).

Once we sample the GP hyperparameters, we sample one main
function f and an additional safety function from the GP.
During the experiments, the constraint is set to q ≥ 0

:::::::
zs, z ≥ 0

::::
(zs, z

::::
are

::::::
noisy

:::::
qs, q). For each dimension, we generate 10

datasets and repeat the AL experiments 5 times for each dataset.
We illustrate examples of X and F in Figure 6 and Figure 7.

Branin data
:::::
Data: The Branin function is a function defined

over (x1, x2) ∈ X = [−5, 10]× [0, 15] as

fa,b,c,r,s,t ((x1, x2)) = a(x2 − bx2
1 + cx1 − r) + s(1− t)cos(x1) + s,

where a, b, c, r, s, t are constants. It is common to set
(a, b, c, r, s, t) = (1, 5.1

4π2 , 5
π , 6, 10, 1

8π ), which is our setting for
target task.

We take the numerical setting of Tighineanu et al. (2022);
Rothfuss et al. (2022) to generate five different source datasets
(and later repeat 5 experiments for each dataset):

a ∼Uniform(0.5, 1.5),
b ∼Uniform(0.1, 0.15),
c ∼Uniform(1.0, 2.0),
r ∼Uniform(5.0, 7.0),
s ∼Uniform(8.0, 12.0),
t ∼Uniform(0.03, 0.05).

After obtaining the constants for our experiments, we sample
noise free data points and use the samples to normalize our
output

fa,b,c,r,s,t ((x1, x2))normalize = fa,b,c,r,s,t ((x1, x2))−mean(fa,b,c,r,s,t)
std(fa,b,c,r,s,t)

.

Then we set safety constraint f ≥ 0
:::::
y ≥ 0

::
(y

::
is

:::::
noisy

:::
f) and sam-

ple initial safe data. The sampling noise is Gaussian
::::::::::
N
(
0, 0.012)

during the experiments.
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E.2.2
:::::::::::
Hartmann3,

:::::::::
PEngine,

::::::::
Gengine

Hartmann3 data
:::::
Data:The

::::::
Unlike

::::
GP

::::
and

::::::
Branin

::::::
data,

:::
we

:::
do

:::
not

:::::::
enforce

:::::::
disjoint

::::
safe

::::::::
regions,

::::
and

::
do

::::
not

:::::
track

:::::
safe

:::::::
regions

::::::
during

::::
the

:::::::::
learning.

:::::
The

::::
task

::::::::::
generation

:::
is

:::
not

::::::::::
restricted

::
to

::::
any

:::::
safe

::::::
region

:::::::::::::
characteristics.

:

:::
The

:
Hartmann3 function is a function defined over x ∈ X = [0, 1]3 as

fa1,a2,a3,a4 ((x1, x2, x3)) = −
4∑
i

aiexp

− 3∑
j=1

Ai,j(xj − Pi,j)2

 ,

A =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 ,

P = 10−4


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 ,

where a1, a2, a3, a4 are constants. It is common to set (a1, a2, a3, a4) = (1, 1.2, 3, 3.2), which is our setting for
target task.

We take the numerical setting of Tighineanu et al. (2022) to
generate five different source datasets (and later repeat 5 ex-
periments for each dataset):

a1 ∼Uniform(1.0, 1.02),
a2 ∼Uniform(1.18, 1.2),
a3 ∼Uniform(2.8, 3.0),
a4 ∼Uniform(3.2, 3.4).

After obtaining the constants for our experiments, we sample
noise free data points and use the samples to normalize our
output

fa1,a2,a3,a4 ((x1, x2, x3))normalize = fa1,a2,a3,a4 ((x1, x2, x3))−mean(fa1,a2,a3,a4)
std(fa1,a2,a3,a4) .

Then we set safety constraint f ≥ 0
:::::
y ≥ 0

::
(y

::
is
::::::
noisy

::
f)

:
and

sample initial safe data. The sampling noise is Gaussian during
the experiments

::::::::::
N
(
0, 0.012).

PEngine data
::::::
Data: We have 2 datasets, measured from

the same prototype of engine under different conditions. Both
datasets measure the temperature, roughness, emission HC, and
emission NOx. The inputs are engine speed, relative cylinder
air charge, position of camshaft phaser and air-fuel-ratio. The
contextual input variables "position of camshaft phaser" and
"air-fuel-ratio" are desired to be fixed. These two contextual
inputs are recorded with noise, so we interpolate the values with
a multi-output GP simulator. We construct a LMC trained with
the 2 datasets, each task as one output. During the training,
we split each of the datasets (both safe and unsafe) into 60%
training data and 40% test data. After the model parameters
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are selected, the trained models along with full dataset are
utilized as our GP simulators (one simulator for each output channel, e.g. temperature simulator, roughness
simulator, etc). The first output of each GP simulator is the source task and the second output the target
task. The simulators provide GP predictive mean as the observations. During the AL experiments, the
input space is a rectangle spanned from the datasets, and Xpool ::::

Xpool:is a discretization of this space from
the simulators with Npool = 3000

::::::::::::
Npool = 3000. We set Nsource = 500

::::::::::::
Nsource = 500, N = 20 (initially) and

we query for 100 iterations (N = 20 + 100). When we fit the models for simulators, the test RMSEs (60%
training and 40% test data) of roughness is around 0.45 and of temperature around 0.25.

In a sequential learning experiment, the surrogate models are
trainable GP models. These surrogate models interact with the
simulators, i.e. take Xpool :::::

Xpool from the simulators, infer the
safety and query from Xpool ::::

Xpool, and then obtain observations
from the simulators. In our main 1–??

:::::::::::::::
Algorithms 1 to 3, the

surrogate models are the GP models while the GP simulators
are systems that respond to queries x∗.

GEngine data
::::::
Data: This problem has two datasets, one

taken as the source task and one as the target task. Both
datasets were published by Li et al. (2022). Each dataset is
split into training set and test set. The original datasets have the
following inputs: (1) the first dataset has speed, load, lambda,
ignition angle, and fuel cutoff (dimension D = 5) which we take
as the source task (2) speed, load, lambda, and ignition angle
(D = 4, no fuel cutoff) which we take as the target task. The
5th input of the source data, fuel cutoff, is irrelevant and we
exclude it (not used in the original paper). Please see Figure 8
for the data histogram. The datasets are dynamic and are
available with a nonlinear exogenous (NX) history structure,
concatenating the relevant past points into the inputs (handled
by Li et al. (2022) in their published code). The final input dimension of this problem is D = 13. As outputs,
the source dataset measures the temperature, emission particle numbers, CO, CO2, HC, NOx, O2 and
temperature. The target dataset measures particle numbers, HC, NOx and temperature. We take HC as our
main learning output and temperature as the constraints.

Both the source and target datasets have hundreds of thousands
of data, but Li et al. (2022) discover that the performance
saturates with few thousand randomly selected points or with
few hundred actively selected points. We thus decide to run
our experiments with Npool = 10000

:::::::::::::
Npool = 10000, a random

subset of the training set. This pool subset is sampled before we
compute the acquisition scores in each iteration. Furthermore,
we start our AL experiments with Ninit = 20

::::::::
Ninit = 20

:
and

we query for 200 iterations. The initial target data are sampled
from the following input domain (written in the original space,
no NX history structure here) [−1,−0.7]×(−∞,−0.5]×[0, 0.5]×
[0, 0.2]. This domain is chosen by taking the density peak of
the inputs, see row 3 of Figure 8 for the data histogram. Note
that values of datasets were normalized.

In this problem, the effect of one single query on the GP hy-
perparameters is not obvious. Therefore, to speed up the
experiments, we train the hyperparameters only every 50
queries (and at the beginning). The constraint is temper-
ature −1.5 ≤ q ≤ 0.5

:::::::::::::
−1.5 ≤ z ≤ 0.5, and source temperature
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−2 ≤ qs ≤ 0.5
::::::::::::
−2 ≤ zs ≤ 0.5. The temperature lower bound

matters only to the outliers, it is the upper bound 0.5 that
plays the major role. The overall safe set is around 65% of the
input space (target test set).

F Ablation Studies and Further Experiments

In this section, we provide ablation studies on the size of source
dataset.

One source task
:::::::
Source

::::::
Task, varied Nsource ::::::

Varied
:::::::
Nsource: We perform experiments on the Branin function.
The results are presented in Figure 9. The first conclusion is
that all of the multioutput

:::::::::
multitask methods outperform base-

line safe AL (safe AL result shown in ??
::::::::
Figure 4). Note again

that the RMSEs are evaluated on the entire space while the
baseline safe AL explore only one safe region. In addition, we
observe that more source data result in better performances, i.e.
lower RMSE and larger safe set coverage (TF area), while there
exist a saturation level at around Nsource = 100

::::::::::::
Nsource = 100.

Multiple source tasks
:::::::
Source

:::::::
Tasks: Next, we wish to

manipulate the number of source tasks. Before presenting the
results, we first introduce the model on multiple source tasks.
In this paragraph, we say Dsource is the number of source tasks.
As described in ??, each g ∈ {f , q1, ..., qJ} is a multi-output
GP correlating source and target tasks. The LMC, linear
model of corregionalization, can be taken without any change:
kg =

∑
l

(
WlW

T
l + diag{κ}

)
⊗ kl(·, ·), where kl(·, ·) is a

standard single task kernel as in Assumption 3.2, and Wl and
κ are vector of (Dsource + 1) elements (Álvarez et al., 2012)
. The HGP can be extended intwo ways, models
in Poloczek et al. (2017) or in Tighineanu et al. (2022)
. Here we take the model from Tighineanu et al. (2022)
: kg =

∑Dsource

i=0 Maski ⊗ ki(·, ·), Maski ∈ RDsource+1×Dsource+1 is a matrix where the first i rows and
columns are zero and the other entries are all one (all elements of Mask0 are ones). One can see that if
Dsource = 1, then we get the HGP described in ?? by reindexing k0 and k1 here.

:::
The

::::::::
transfer

::::
task

::::
GP

:::::::::::
formulation

:::
and

::::
the

:::::
exact

:::::::
models

:::
are

:::::::::
described

::
in

:::::::::::::
Appendix D.2

:
.
::::
We

::::
take

:::::
LMC

::::
and

::::
HGP

:::::
with

::::
Mat

:
é
::::::
rn-5/2

::::::
kernels

:::
as

:::
the

:::::
base

:::::::
kernels.

:
In this study, we generate source data with constraints,

but disjoint safe regions requirement when we sample the source tasks and data (in ??
:::::::
Figure 4, the data are

generated s.t. source and target task has large enough shared safe area). We consider 1, 3 or 4 source tasks,
and we generate 20 or 30 data points per task

:
(Figure 10). In general, we see that 3 source tasks significantly

outperform 1 source task while the performance saturates as adding 10 more points per source task seems to
benefit more than adding one more source task. Note here that all source data are generated independently,
i.e. the observations of each task are not restricted to the same input locations.

Further plots
:::::
Plots

:
and experiments

:::::::::::::
Experiments: In ??, we track the safe region of each query in

AL experiments. We measure the model fitting time per iteration as well. The main Table 3 and Table 4
present only the summary results. In Figure 11, we additionally provide the region clustering and fitting
time w.r.t. AL iterations. Furthermore, Table 5 counts among the AL selected queries which, after a safety
measurements are accessed,

:::::::
actually satisfy the safety constraints. This table is a sanity check that the

methods are selecting points safely.
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Table 5: Ratio of safe queries
::::
Safe

:::::::
Queries

methods GP1D+ z GP2D+ z Branin Hartmann3 GEngine
num_steps

::::::
Nquery 50 100 100 100 200

EffTransHGP 0.986± 0.001 0.974± 0.002 0.999± 0.0006 0.972± 0.003 0.936± 0.003
FullTransHGP 0.979± 0.004 0.952± 0.005 0.9996± 0.0004 0.972± 0.003 0.947± 0.01
FullTransLMC 0.984± 0.002 0.969± 0.002 0.993± 0.0009 0.968± 0.003 0.91± 0.008

Rothfuss2022 0.975± 0.003 0.905± 0.006 1.0± 0.0 0.84± 0.011 0.765± 0.035
SAL 0.995± 0.001 0.958± 0.005 1.0± 0.0 0.966± 0.002 0.954± 0.005

Ratio of all queries selected by the methods which are safe in the ground truth (initial data not included,
see ??

:::::::::
Section 7 for the experiments). This is a sanity check in additional to FP safe set area, demonstrates

that all the methods are safe during the experiments. Note that our benchmark problems all have around
35% to 65% of the space unsafe. Note that β = 4 implies that, with a well-fitted safety GP, we tolerate a
2.275% probability of unsafe evaluations. PEngine results are not shown because the queries are all safe (the
modeling FP safe set area is almost zero in this problem, see ??

::::::::
Figure 4 and Figure 12).

With the PEngine datasets, we perform additional experiments
of learning f = q =temperature, and the results are shown
in Figure 12.
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Figure 4: Safe AL experiments on three
:::::::::
Empirical

:::::::::::
performance

::::::
across

:::
all

:::
six

:
benchmark datasets. GP data:

f and safety function q ≥ 0 over X = [−2, 2]D
::::::
RMSE

::
to

::::::
assess

:::::::
model

:::::::::::
convergence, D = 1 (Nsource = 50,

Ninit = 10, 50 data points are queried) or D = 2 (Nsource = 250, Ninit = 20, 100 data points are queried).
Branin data: constraint q = f ≥ 0 , Nsource = 100, Ninit = 20, 100 data points are queried. The results
are mean and one standard error

:::
TP

::::
rate

:::
to

::::::::
measure

:::
the

:::::::::
coverage of 100 (GP data) or 25 (Branin data)

experiments. The test points for RMSEs are sampled from all of the true safe area
:::::
space

::::::::
explored, including

the regions individual methods (e.g. SAL) may fail
::::
and

:::
FP

:::::
rate

:
to explore

:::::::
evaluate

::::
the

::::::
safety

::
of

:::::
each

::::::::
approach. Note that FullTransLMC has more than ten model parameters, while in GP1D dataset we start
with N = 10. The

::::
Both

:
TP /

:::
and

:
FP safe areas are portion of

:::::::
compute

:
the input space

::::
rates

:::
to

:::
the

:
area

::
of

:::::
Xpool. Ground true

:::
The

:::::::
ground

:::::
truth

:
safe area portion of

::
for

:
each dataset is marked

::::::::
indicated

:::
by

::
a black

:::
line

:
in the second column. Please also see appendix Figure 11 for fitting time

:::
Our

:::::::::
approach

::::::::
generally

::::::
shows

::::::::
improved

:::::::::::
convergence

:::
in

:::::
terms

:::
of

::::::
model

:::::::::::
performance

:
and region cluster

:::
the

::::::
extent

:
of each query

:::::::
explored

:::
safe

::::::::
regions,

:::::
while

:::::::::::
maintaining

::::::
safety

:::::
levels

:::::::::::
comparable

::
to

::::
the

::::::::
baseline

::::
SAL.

:::
On

:::::::::
GEngine,

:::
we

:::::::::::
additionally

::::::
provide

::
a
::::::::::
zoomed-in

::::::
RMSE

::::::
figure (Figure 5)

:
.
:
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Figure 6: Example simulated GP data of D = 1, f is the function we want to learn (top), under an additional
safety constraint q ≥ 0 (bottom). The curves are true source (yellow) and target (black) functions. The dots
are safe source data and a pool of initial target ticket (this pool of target data are more than those actually
used in the experiments).

Figure 7: Example simulated GP data of D = 2, f is the function we want to learn (left), with an additional
safety function q (middle), and the green is true safe regions q ≥ 0 (right). The top is source task and the
bottom is target task. The dots are safe source data and a pool of initial target ticket (this pool of target
data are more than those actually used in the experiments).
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Figure 8: The historgram of GEngine data. The first 5 columns are inputs without NX history structure, the
second last column is the output we model with f, fs, and the last column is the temperature constraint.
The rows are the following in order: (1) source task training set, (2) source task test set (not used in the
experiments), (3) target task training set, and (4) target task test set. Blues are the histograms of raw data,
and oranges are subsets if we add constraints on the temperature channel.
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Figure 9: Safe AL experiments: Branin data with different number of source data. Each multi-task
::::::::
multitask

method is plotted in one column. The results are mean and one standard error of 25 experiments per setting.
Xpool :::::

Xpool is discretized from X with Npool = 5000
::::::::::::
Npool = 5000. The TP/FP areas are computed as number

of TP/FP points divided by Npool :::::
Npool:(i.e. TP/FP as portion of Xpool:::::

Xpool). The third row shows the
number of disjoint safe regions explored by the queries. The fifth row, the unsafe queries ratio, are presented
as percentage of number of iterations (e.g. at the 2nd-iteration out of a total of 100 iterations, one of the two
queries is unsafe, then the ratio is 1 divided by 100). The last row demonstrates the model fitting time. At
the first iteration (iter 0-th), this includes the time for fitting both the source components and the target
components (EffTransHGP). With Rothfuss et al. 2022, source fitting is the meta learning phase.
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Figure 10: Safe AL experiments
::::
with

:::::
more

:::::
than

:::
one

::::::
source

::::::
tasks: Branin data with multiple source tasks.

Each multi-task
::::::::
multitask method is plotted in one column. We consider 1, 3 or 4 source tasks and sample

20 or 30 data points per task. The remaining setting is the same as described in Figure 9. RMSE plots are
plotted in log scale.
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Figure 11: Safe AL experiments on three benchmark datasets: GP data with X = [−2, 2]D, D = 1 or 2,
constrained to q ≥ 0, and the benchmark Branin function with constraint f ≥ 0. The results are mean and
one standard error of 100 (GP data) or 25 (Branin data) experiments. Xpool ::::

Xpool:is discretized from X
with Npool = 5000

:::::::::::
Npool = 5000. We set Nsource = 100

::::::::::::
Nsource = 100 and N is from 10 (0th iteration) to 60

(50th iteration) for GP1D, Nsource = 250, N
:::::::::::::::
Nsource = 250, N

:
is 20 to 120 for GP2D, and Nsource = 100, N

::::::::::::::
Nsource = 100, N

:
is 20 to 120 for Branin. The first, second and fourth rows are presented in ??

::::::::
Figure 4

of the main paper. The TP/FP areas are computed as number of TP/FP points divided by Npool :::::
Npool

(i.e. TP/FP as portion of Xpool:::::
Xpool). The third row shows the number of disjoint safe regions explored by

the queries (main Table 3 is taken from the last iteration here). The fifth row, the unsafe queries ratio, are
presented as percentage of number of iterations (e.g. at the 2nd-iteration out of a total of 50 iterations, one
of the two queries is unsafe, then the ratio is 1 divided by 50). The last row demonstrates the model fitting
time. At the first iteration (iter 0-th), this includes the time for fitting both the source components and the
target components (EffTransHGP). With Rothfuss et al. 2022, source fitting is the meta learning phase.
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Figure 12: Safe AL experiments on PEngine temperature, AL on f (temperature) constrained by q = f ≤ 1.0.
Baseline is safe AL without source data. Transfer is LMC without modularization. Efficient_transfer is HGP
with fixed and pre-computed source knowledge. Nsource = 500

:::::::::::
Nsource = 500, N is from 20 to 120. The results

are mean and one standard error of 5 repetitions. The fitting time is in seconds.
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