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A Proof of Lemma 2

Lemma 2. For any feedback graph F , for any q > 0, and for any T ≥ max
{

0.0064 · α(F )3, 1
q3

}
, if each

round t ∈ [T ] is independently skipped with probability q, then

inf
Alg

sup
`
Rsa
T (q,Alg, `) Ω=

√
α(F )qT .

Proof. Let T be the (random) set of times {t ∈ [T ] | At = 1} and let τ1 < τ2 < · · · < τ|T |the (random)
elements of T in increasing order. Fix an online learning algorithm Alg and a sequence ` =

(
`t
)
t∈[T ] of

losses. For any random variable J (later, J and the corresponding “hard” instance will be those used in the
lower bound for online learning with feedback graphs: (Alon et al., 2017, Theorem 5)). Then

RT (q,Alg, `) = max
i∈[K]

E

[
T∑
t=1

(
`t(INt+1)− `t(i)

)
I{At = 1}

]
= max
i∈[K]

E

 ∑
s∈[|T |]

(
`τs

(Is)− `τs
(i)
)

≥ E

 ∑
s∈[|T |]

(
`τs

(Is)− `τs
(J)
)

=
∑
n∈[T ]

∑
T0⊂[T ]
|T0|=n

E

 ∑
s∈[|T |]

(
`τs

(Is)− `τs
(J)
)
| T = T0, |T0| = n

P (T = T0, |T0| = n)

Then, we recognize that the conditional expectation in the previous formula is the expected regret for
single-agent online learning with feedback graph. Therefore, from (Alon et al., 2017, Theorem 5) we get that,
letting C1 = (8/100)2 and , for all T ≥ C1α(F )3,

inf
Alg

sup
`
RT (q,Alg, `) ≥

∑
n∈[T ]

∑
T0⊂[T ]
|T0|=n

(
εn

(
1
2 − 2ε

√
n

α(F )

))
P (T = T0, |T0| = n)

=
∑
n∈[T ]

(
εn

(
1
2 − 2ε

√
n

α(F )

))
P (|T | = n)

=
∑
n∈[T ]

εn

(
1
2 − 2ε

√
n

α(F )

)
fBin(q,T )(n)

where fBin(q,T ) is the p.m.f. of a Binomial random variable with parameters p, T . We want ε = ε∗ (p, T ) that
maximizes that expression. Therefore, by defining g(ε) = aε+ bε2 as the following quadratic polynomial in ε

g(ε) =
∑
n∈[T ]

(
εn

(
1
2 − 2ε

√
n

α(F )

))
fBin(q,T )(n)

=
∑
n∈[T ]

(n
2 fBin(q,T )(n)

)
ε− 2

∑
m∈[T ]

(
m3/2

α(F )1/2 fBin(q,T )(m)
)
ε2

where a =
∑
n∈[T ]

(
n
2 fBin(q,T )(n)

)
and b = −2

∑
m∈[T ]

(
m3/2

α(F )1/2 fBin(q,T )(m)
)
. We find that the maximum of

g is achieved in − a
2b , which gives the optimal value

ε∗(p, T ) =
∑
n∈[T ]

(
n
2 fBin(q,T )(n)

)
4
∑
m∈[T ]

(
m3/2

α(F )1/2 fBin(q,T )(m)
)
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and the function g evaluated at the optimal value is equal to g∗ = −a2

4b , i.e.,

g∗ = g(ε∗(p, T )) = g

 ∑
n∈[T ]

(
n
2 fBin(q,T )(n)

)
4
∑
m∈[T ]

(
m3/2

α(F )1/2 fBin(q,T )(m)
)
 =

√
α(F )
8

(∑
n∈[T ] nfBin(q,T )(n)

)2

∑
m∈[T ]

(
m3/2fBin(q,T )(m)

)
Therefore, we can lower bound the regret with g∗ and obtain

inf
Alg

sup
`
RT (q,Alg, `) ≥

√
α(F )
8

(∑
n∈[T ] nfBin(q,T )(n)

)2

∑
m∈[T ]

(
m3/2fBin(q,T )(m)

) =
√
α(F )qT

8
(qT )2∑

m∈[T ]
(
m3/2fBin(q,T )(m)

)
=
√
α(F )qT

8
(qT )3/2∑

m∈[T ]
(
m3/2fBin(q,T )(m)

)
where in the first equality we substituted the expected value of a binomial distribution of parameter q.

We now want to prove the existence of a constant c > 0 such that, for every q > 0 and every T ≥ 1
q3

(qT )3/2∑
m∈[T ]

(
m3/2fBin(q,T )(m)

) ≥ c , or equivalently
∑
m∈[T ]

(
m3/2fBin(q,T )(m)

)
(qT )3/2 ≤ c

We split the sum overm ∈ [T ] into two blocks, the first for 1 ≤ m ≤ c2bqT c and the second for c2bqT c < m ≤ T

for a constant c2 =
⌈

qT
bqTc

(
1
q

(√
1

2T ln
(
T 3/2

c1

)
− 1

T

)
+ 1
)⌉

and with c1 > 0:

∑
m∈[T ]

(
m3/2fBin(q,T )(m)

)
(qT )3/2 =

∑c2bqTc
m=1

(
m3/2fBin(q,T )(m)

)
(qT )3/2 +

∑
m>c2bqTc

(
m3/2fBin(q,T )(m)

)
(qT )3/2 . (9)

The idea is to choose the split point c2bqT c so that we can upper bound the tail mass using Hoeffding’s
inequality. Hoeffding’s inequality yields the simple bound FBin(q,T )(m) ≤ exp

(
−2T

(
q − m

T

)2), and together
with symmetry properties of the binomial distribution 1− FBin(q,T )(m) = FBin(1−q,T )(T −m) we obtain a
bound on the upper tail. This contribution compensates exactly the term q3/2 left at the denominator for
T ≥ 1/q, leaving just the constant c1:∑

m>c2bqTc
(
m3/2fBin(q,T )(m)

)
(qT )3/2 ≤ e

−2T
(

(1−q)−T−(c2bqTc+1)
T

)2

T 3/2

(qT )3/2

= e
−2T

(
q
(
c2
bqTc

qT −1
)

+ 1
T

)2

q3/2

= c1
(qT )3/2

≤ c1 .

For the first term in Equation (9), we upper bound the lower tail simply by one:

c2bqTc∑
m=1

(
m3/2fBin(q,T )(m)

)
≤ c2bqT c · FBin(q,T )(m) ≤ c2bqT c

We conclude by proving that the first term in Equation (9) is bounded by a constant. If we take m ≤ c2bqT c
we obtain for T ≥ 2/q and c1 ≥ 1∑c2bqTc

m=1
(
m3/2fBin(q,T )(m)

)
(qT )3/2 ≤ (c2bqT c)3/2

(qT )3/2
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≤ (c2)3/2

≤

(
1 + qT

bqT c

(
1
q

(√
1

2T ln
(
T 3/2

c1

)
− 1
T

)
+ 1
))3/2

≤
(

2 + 3
√

3
8

1
q
√
T

(√
log(T )

))3/2

≤
(

2 + 3
√

3
8

)3/2( 1
q
√
T

√
ln
(
T 3/2

c1

))3/2

≤ 4.32
(

1
q
√
T

√
ln
(
T 3/2

c1

))3/2

≤ 4.32 (lnT )3/4 1
(q2T )3/4

≤ 4.32(lnT )3/4

T 1/4

≤ 4.32 · 1.08 ≤ 5

where in the third-last inequality we used q ≥ 1
T 1/3 . Putting everything together and letting c1 = 1 yields

inf
Alg

sup
`
RT (q,Alg, `) ≥ 3

4
√
α(F )qT

B Graph-theoretic results

In this section, we present a general version of a graph-theoretic lemma (Lemma 6) that is crucial for our
positive results in Section 4. Before stating it, we recall a few known results.

The first result is a direct consequence of (Alon et al., 2017, Lemma 10) specialized to undirected graphs.
Lemma 3. Let G = (V, E) be an undirected graph containing all self-loops and αd(G) its d-th independence
number. For all i ∈ V, let N Gd (i) be the d-th neighborhood of i, p(i) ≥ 0, and P (i) =

∑
j∈NG

d
(i) p(j) > 0. Then

∑
i∈V

p(i)
P (i) ≤ αd(G)

Proof. Initialize V1 = V, fix j1 ∈ argminj∈V1 P (j), and denote V2 = V \ N (j1). For k ≥ 2 fix jk ∈
argminj∈Vk

P (j) and shrink Vk+1 = Vk \ N (jk) until Vk+1 = ∅. Since G is undirected jk /∈
⋃k−1
s=1 N (js),

therefore the number m of times that an action can be picked this way is upper bounded by α. Denoting
N ′(jk) = Vk ∩N (jk) this implies∑

i∈V

p(i)
P (i) =

m∑
k=1

∑
i∈N ′(jk)

p(i)
P (i) ≤

m∑
k=1

∑
i∈N ′(jk)

p(i)
P (jk) ≤

m∑
k=1

∑
i∈N (jk) p(i)
P (jk) = m ≤ α

concluding the proof.

The following result, known as the inequality of arithmetic and geometric means, or simply AM-GM inequality,
is used in the proofs of Lemmas 1, 5, and 6.
Lemma 4 (AM-GM inequality). For any x1, . . . , xr ∈ [0,∞),

x1 + · · ·+ xr
r

≥ (x1 · · · · · xr)1/r
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Proof. By Jensen’s inequality,

ln
(

1
r

r∑
i=1

xi

)
≥

r∑
i=1

1
r

ln (xi) =
r∑
i=1

ln
(
x

1/r
i

)
= ln

(
r∏
i=1

x
1/r
i

)

The second result is proven in (Cesa-Bianchi et al., 2019, Lemma 3), but here we give a slightly different
proof based on the AM-GM inequality.
Lemma 5. Let G = (V, E) be an undirected graph containing all self-loops and αd(G) its d-th independence
number. For all v ∈ V, let N Gd (v) be the d-th neighborhood of v, c(v) ≥ 0, and C(v) = 1−

∏
w∈NG

d
(v)
(
1−c(w)

)
>

0. Then ∑
v∈V

c(v)
C(v) ≤

1
1− e−1

(
αd(G) +

∑
v∈V

c(v)
)

Proof. Set for brevity P (v) =
∑
w∈NG

d
(v) c(w). Then we can write∑

v∈V

c(v)
C(v) =

∑
v∈V :P (v)≥1

c(v)
C(v)︸ ︷︷ ︸

(I)

+
∑

v∈V :P (v)<1

c(v)
C(v)︸ ︷︷ ︸

(II)

and proceed by upper bounding the two terms (I) and (II) separately. Let r(v) be the cardinality of N Gd (v).
We have, for any given v ∈ V,

min

C(v) :
∑

w∈N (v)

c(w) ≥ 1

 = min

C(v) :
∑

w∈N (v)

c(w) = 1


= 1−max

 ∏
w∈NG

d
(v)

(
1− c(w)

)
:
∑

w∈N (v)

(
1− c(w)

)
= r(v)− 1


≥ 1−

(
1− 1

r(v)

)r(v)
≥ 1− e−1

where the first equality follows from the definition of C(v) and the monotonicity of x 7→ 1 − x, the first
inequality is implied by the AM-GM inequality (Lemma 4), and the last one comes from r(v) ≥ 1 (for
v ∈ N Gd (v)). Hence

(I) ≤
∑

v∈V :P (v)≥1

c(v)
1− e−1 ≤

∑
v∈V

c(v)
1− e−1

As for (II), using the inequality 1− x ≤ e−x, x ∈ R, with x = c(w), we can write

C(v) ≥ 1− exp

− ∑
w∈NG

d
(v)

c(w)

 = 1− exp (−P (v))

Now, since in (II) we are only summing over v such that P (v) < 1, we can use the inequality 1 − e−x ≥
(1− e−1)x, holding when x ∈ [0, 1], with x = P (v), thereby concluding that

C(v) ≥ (1− e−1)P (v)

Thus

(II) ≤
∑

v∈V :P (v)<1

c(v)
(1− e−1)P (v) ≤

1
1− e−1

∑
v∈V

c(v)
P (v) ≤

α

1− e−1

where in the last step we used Lemma 3.
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We can now state a more general version of our key graph-theoretic result, which can be proved similarly to
Lemma 1.
Lemma 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs containing all self-loops and
α
(
G1 � G2

)
the independence number of their strong product G1 � G2. For all (i, j) ∈ V1 × V2, let also

N G1
1 (i), N G2

1 (v), and N G1�G2
1 (i, v) be the first neighborhoods of i (in G1), v (in G2), and (i, v) (in G1 �G2). If

w =
(
w(j, u)

)
(j,u)∈V1×V2

is an arbitrary matrix with non-negative entries such that 1−
∑
j∈NG1

1 (i) w(j, u) ≥ 0
for all (i, u) ∈ V1 × V2 and 1−

∏
u∈NG2

1 (v)
(
1−

∑
j∈NG1

1 (i) w(j, u)
)
> 0 for all (i, v) ∈ V1 × V2, then

∑
i∈V1

∑
v∈V2

w(i, v)
1−

∏
u∈NG2

1 (v)
(
1−

∑
j∈NG1

1 (i) w(j, u)
) ≤ e

e− 1

(
α
(
G1 � G2

)
+
∑
i∈V1

∑
v∈V2

w(i, v)
)

B.1 Further discussion on G

In general, α(N)α(F ) ≤ α
(
N � F

)
holds for any arbitrary pairs of graphs N,F . Indeed, the Cartesian

product I × J of an independent set I of N and an independent set J of F is an independent set of N � F .
There exist graphs N,F with α(N)α(F )� α

(
N � F

)
, but these appear to be quite rare and pathological

cases. For the sake of completeness, we add an example of such a construction below. This shows that not all
pairs of graphs belong to G .
Example 1. Take as the first graph G1 = (V1, E1), the cycle C5 over 5 vertices. Then, for any k ≥ 2, build
Gk = (Vk, Ek) inductively by replacing each vertex v ∈ Vk−1 by a copy of C5 and each edge e ∈ Ek−1 by a
copy of K5,5 (the complete bipartite graph with partitions of size 5 and 5) between the two copies of C5 that
replaced its endpoints. It can be shown that α(Gk) = 2k but α

(
Gk �Gk

)
≥ 5k � 4k = α(Gk)2.

To see why, note first that α(C5) = 2 but α
(
C5 � C5

)
≥ 5, by choosing the independent set containing the 5

vertices (1, 1), (2, 3), (3, 5), (4, 2), (5, 4). For k ≥ 2, α(Gk) = 2k but we can take the analogous in Gk �Gk
of the above independent set in C5 � C5. This gives 5 sets S1, S2, S3, S4, S5 of 25k−1 vertices each, with no
edges between Si, Sj when i 6= j. The subgraph of Gk �Gk induced by each Si is simply the previous iteration
Gk−1 of this construction, and proceeding by induction we can find an independent subset of each Si with
5k−1 vertices, giving a total of 5k independent vertices.

C The upper bound of Cesa-Bianchi et al. (2020) for experts

(Cesa-Bianchi et al., 2020, Theorem 10) gives theoretical guarantees for the average regret over active agents.
In this section, we briefly discuss how to convert their statement to a corresponding result for the total regret
over active agents that is the focus of our present work.

Before stating the theorem, we recall that the convex conjugate f∗ : Rd → R of a convex function f : X→ R is
defined, for any x ∈ Rd, by f∗(x) = supw∈X

(
x·w−f(w)

)
. Moreover, given σ > 0, we say that f is σ-strongly

convex on X with respect to a norm ‖·‖ if, for all u,w ∈ X, we have f(u) ≥ f(w)+∇f(w)·(u−w)+σ
2 ‖u−w‖

2.
The following well-known result can be found in (Shalev-Shwartz et al., 2012, Lemma 2.19 and subsequent
paragraph).
Lemma 7. Let f : X→ R be a strongly convex function on X. Then the convex conjugate f∗ is everywhere
differentiable on Rd.

The following result—see, e.g., (Orabona et al., 2015, bound (6) in Corollary 1 with F set to zero)—shows an
upper bound on the regret of Algorithm 2 for single-agent online convex optimization with expert feedback.
Theorem 3. Let g : X→ R be a differentiable function σ-strongly convex with respect to ‖·‖. Then the regret
of Algorithm 2 run with gt =

√
t
η g, for η > 0, satisfies

T∑
t=1

`t
(
xt
)
− inf

x∈X

T∑
t=1

`t(x) ≤ D

η

√
T + η

2σ

T∑
t=1

1√
t
‖∇`t‖2∗
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Algorithm 2:
input: σt-strongly convex regularizers gt : X→ R for t = 1, 2, . . .
initialization: θ1 = 0 ∈ Rd
for t = 1, 2, . . . do

choose wt = ∇g∗t (θt)
observe ∇`t(wt) ∈ Rd
update θt+1 = θt −∇`t(wt)

where D = sup g and ‖·‖∗ is the dual norm of ‖·‖. If sup ‖∇`t‖∗ ≤ L, then choosing η =
√

2σD/L gives
RT ≤ L

√
2DT/σ.

We can now present the equivalent of (Cesa-Bianchi et al., 2020, Theorem 10) for cooperative online covenx
optimization with expert feedback (i.e., F is a clique) where n = 1 but the feedback is broadcast to first
neighbor immediately after an action is played (rather than the following round).
Theorem 4. Consider a network N = (A,EN ) of agents. If all agents v run Algorithm 2 with an oblivious
network interface and gt =

√
t
η g, where ‖gt‖∗ is upper bounded by a constant L > 0, η > 0 is a learning rate,

and the regularizer g : X→ R is differentiable, σ-strongly convex with respect to some norm ‖·‖, and upper
bounded by a constant M2, then the network regret satisfies

RT ≤
(
M2

η
+ ηL2

2σ

)√
2Q(α(N) +Q)T

For η =
√

2σM/L, we have
RT ≤

(√
2σLM

)√
Q(α(N) +Q)T

Proof sketch. For any x ∈ X, agent v, and time t, let xt(v) be the prediction made by v at time t, rt(v,x) =
`t
(
xt(v)

)
− `t(x), Qv = Pr

(
v ∈

⋃
w∈At

NN
1 (w)

)
= 1−

∏
w∈NN

1 (v)
(
1− q(w)

)
, and A′ :=

{
w ∈ A : q(w) > 0

}
.

Proceeding as in (Cesa-Bianchi et al., 2020, Theorem 2) yields, for each v ∈ A′ and x ∈ X,

E

[
T∑
t=1

rt(v,x)
]
≤
(
M2

η
+ ηL2

2

)√
T

Qv
(10)

Now, by the independence of the activations of the agents at time t and
(
rt(v,x)

)
v∈A′,x∈X, we get

RT = sup
x∈X

∑
v∈V ′

q(v)
T∑
t=1

E
[
rt(v,x)

]
(11)

Putting Equations (10) and (11) together and applying Jensen’s inequality yields

RT ≤

(∑
v∈V ′

q(v)
√

1
Qv

)(
M2

η
+ ηL2

2

)√
T ≤

√
Q
∑
v∈V ′

qv
Qv

(
M2

η
+ ηL2

2

)√
T

The proof is concluded by invoking Lemma 5.

D Learning curves

We also plot the average regret RT /Q against the number T of rounds. Our algorithm is the blue curve
and the baseline is the red curve. Recall that these curves are averages over 20 repetitions of the same
experiment (the shaded areas correspond to one standard deviation) where the stochasticity is due to the
internal randomization of the algorithms. Experiments are designed to show the difference in performance
when we allow agents to communicate and when we do not. The strong product captures in a mathematical
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form this difference in the regret bound for our algorithm, while the experiments here show it empirically.
In particular, the bound for the case of no communication is bigger, and performances are worse in our
simulations, as expected from theory.

Experiments were run on a local cluster of CPUs (Intel Xeon E5-2623 v3, 3.00GHz), parallelizing the code
over four cores. The run took approximately two hours.
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Figure 3: Average regret RT /Q against T = 1000 of rounds. Activation probability q = 1.
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Figure 4: Average regret RT /Q against T = 1000 of rounds. Activation probability q = 0.5.
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Figure 5: Average regret RT /Q against T = 1000 of rounds. Activation probability q = 0.05.
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