
Published as a conference paper at ICLR 2025

TIGHT CLUSTERS MAKE SPECIALIZED EXPERTS

Stefan K. Nielsen∗
FPT Software AI Center
stefannvkp@fpt.com

Rachel S.Y. Teo∗
Department of Mathematics
National University of Singapore
rachel.tsy@u.nus.edu

Laziz U. Abdullaev
Department of Mathematics
National University of Singapore
laziz.abdullaev@u.nus.edu

Tan M. Nguyen
Department of Mathematics
National University of Singapore
tanmn@nus.edu.sg

ABSTRACT

Sparse Mixture-of-Experts (MoE) architectures have emerged as a promising ap-
proach to decoupling model capacity from computational cost. At the core of the
MoE model is the router, which learns the underlying clustering structure of the
input distribution in order to send input tokens to appropriate experts. However,
latent clusters may be unidentifiable in high dimension, which causes slow conver-
gence, susceptibility to data contamination, and overall degraded representations
as the router is unable to perform appropriate token-expert matching. We examine
the router through the lens of clustering optimization and derive optimal feature
weights that maximally identify the latent clusters. We use these weights to com-
pute the token-expert routing assignments in an adaptively transformed space that
promotes well-separated clusters, which helps identify the best-matched expert for
each token. In particular, for each expert cluster, we compute a set of weights that
scales features according to whether that expert clusters tightly along that feature.
We term this novel router the Adaptive Clustering (AC) router. Our AC router
enables the MoE model to obtain three connected benefits: 1) faster convergence,
2) better robustness to data corruption, and 3) overall performance improvement,
as experts are specialized in semantically distinct regions of the input space. We
empirically demonstrate the advantages of our AC router over baseline routing
methods when applied on a variety of MoE backbones for language modeling and
image recognition tasks in both clean and corrupted settings. The code is publicly
available at https://github.com/stefvk/ACMoE.

1 INTRODUCTION

Scaling up model capacity continues to deliver substantial performance gains across a wide range of
tasks, with particularly impressive results in visual representation learning and language modeling
(Alexey, 2020; Bao et al., 2021; Radford et al., 2019; Raffel et al., 2020; Nguyen et al., 2023). How-
ever, larger models incur growing computational costs, prompting increasing research into Sparse
Mixture-of-Experts models (MoE), which offers a promising avenue to balancing model scale with
efficiency by activating only sub-modules, termed experts, of the network during training and in-
ference (Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2020; Nguyen et al., 2025). This
approach has been shown to achieve better performance than dense models with nearly constant
computational overhead on tasks from speech recognition, image recognition, machine translation,
and language modeling (Riquelme et al., 2021; Kumatani et al., 2021; Lepikhin et al., 2020; Teo &
Nguyen, 2025a).

At the core of the MoE layer is the learned router which assigns inputs to the relevant experts. The
router must learn to segment the input space appropriately such that inputs and experts are well
matched, enabling the experts to be trained on semantically similar data. This expert specialization

∗ Co-first authors. Please correspond to: stefannvkp@fpt.com and tanmn@nus.edu.sg

1

https://github.com/stefvk/ACMoE

Published as a conference paper at ICLR 2025

Figure 1: ACMoE discovers semantically distinct regions. We show 14x14 image reconstructions where
patches are colored by assigned experts. Top row: Swin assigns large chunks of foreground and background
to one expert (red), while ACMoE accurately discovers the bird and relevant foreground. Bottom row: When
the background and foreground are hard to distinguish, Swin’s router fails to register the stingray (left) or shark
(right) and allocates one expert for virtually the entire image. ACMoE, however, discovers the semantically dis-
tinct regions, using one expert (green) to specialize on the foreground and different experts for the background.

allows MoE models to produce better representations than their dense counterparts while activating
only a fraction of the total parameters. Recently, various methods have been proposed to find optimal
expert-token matches, including linear programs (Lewis et al., 2021), cosine similarity-based rules
(Chi et al., 2022), soft assignments via convex combinations of inputs (Puigcerver et al., 2023), and
both top-k experts per token (Shazeer et al., 2017) and top-k tokens per expert (Zhou et al., 2022b).
We note that the above approaches fundamentally rely on dot-products between inputs and experts
to learn the corresponding assignment, which might be suboptimal in cases where the semantic
regions are not easily discoverable in the high-dimensional feature space. Typically, we expect that
the true underlying clusters present in the data will cluster on different, potentially disjoint, subsets
of features, and may not be discoverable when using the full feature set. This phenomenon can lead
to slow convergence as the experts are unable to specialize on semantically similar regions of the
data, poor robustness as data contamination can spuriously assign inputs to unsuitable experts, and
degraded overall downstream performance due to suboptimal input-expert matching.

Contribution. In this work, we propose the Adaptive Clustering (AC) router and corresponding
Adaptive Clustering Mixture-of-Experts (ACMoE), a novel MoE method in which the router com-
putes token-expert assignments in a transformed space that maximally identifies latent clusters in
the data and more easily discovers the best-matched expert for each token. More specifically, we
adaptively learn for each input which features best determine its cluster assignment and scale its
features accordingly such that features that promote tight expert clusters are upweighted, and fea-
tures that produce dispersed expert clusters are downweighted. This transformation accentuates the
relevant characteristics of each input according to the specialization of the experts, thereby allowing
the router to more easily discover the optimal input-expert allocation. Computing the routing assign-
ments following this scheme produces three benefits: 1) faster convergence as experts are able to
specialize more quickly by being allocated semantically similar inputs, 2) better robustness as latent
clusters are better separated, thereby minimizing the risk that data corruption erroneously assigns
tokens to unsuitable experts, and 3) better overall representations and downstream performance due
to improved expert specialization. In order to discover the key features per token and their corre-
sponding weights, we present a feature-weighted clustering optimization perspective on the MoE
framework and demonstrate how the clustering solution obtains the required feature weights. We
show how these weights can be integrated into the routing mechanism such that routing takes place in
a cluster-adaptive transformed space. We theoretically prove that our proposed routing mechanism
learns the latent clustering structure of the data faster than standard routing mechanisms and that
our mechanism is more robust to data contamination. Furthermore, our proposed method involves
no learnable parameters and can be computed highly efficiently. In summary, our contributions are
three-fold:

1. We develop the novel Adaptive Clustering router, a routing method in MoE architectures that
computes token-expert assignments in a transformed space that promotes separation of latent
clusters in the data and more easily identifies the best-matched expert for each token.

2

Published as a conference paper at ICLR 2025

Figure 2: Fast Convergence of ACMoE. Left: Convergence speed on WikiText-103 pretraining using the
Generalist Language Model (Du et al., 2022) backbone. Right: Convergence speed on Banking-77 finetuning
using the Switch Transformer (Fedus et al., 2022) backbone. Across both backbones and tasks, we observe
substantially faster convergence. We display final test perplexity (PPL) and accuracy (Acc.), showing better
overall performance as well.

2. We propose a feature-weighted clustering optimization perspective on token-expert assign-
ment and derive the optimal feature weights for adaptively transforming the input data for
routing.

3. We derive a theoretical framework demonstrating how MoE robustness and convergence de-
pend on the shape of latent clusters and the clustering geometry of the input space.

We empirically demonstrate that 1) the Adaptive Clustering router outperforms baseline routing
methods in MoE architectures in large-scale tasks such as WikiText-103 language modeling and
downstream finetuning, and ImageNet-1k object classification in both clean and contaminated set-
tings, 2) the Adaptive Clustering router exhibits faster convergence than baseline methods, and 3)
the Adaptive Clustering router attains these performance improvements for free – that is, with no
learnable parameters and negligible computational overhead.

Preliminaries. We consider Transformer (Vaswani, 2017) based MoE architectures and follow the
approach of previous work where the MoE layer is inserted after the self-attention layer within the
Transformer, replacing the traditional feed-forward network (Fedus et al., 2022; Du et al., 2022; Liu
et al., 2021). Let x be an input token with hidden representation h ∈ Rd and e1,e2, . . .eN ∈ Rd be
the N learnable expert embeddings for model hidden dimension d. The MoE layer selecting the top
k experts is described by the following equations:

K ∶= topkk(sk) = topkk(h
⊺ek) (1)

fSMoE
(h) = h + ∑

k∈K

g(h⊺ek)f
FFN
k (h), (2)

where fFFN
k is the kth expert feed-forward network, sk = h⊺ek is the similarity score between

token representation h and the kth expert ek and g(⋅) is a gating function often chosen as softmax,
g(sk) = exp(sk)/∑j∈K exp(sj). We refer to Eqn. 1 as the router, which learns the top k best
matched experts per token, and Eqn. 2 as the overall standard MoE layer.

Organization. We structure this paper as follows: In Section 2, we present a clustering optimization
problem and show that its solution adaptively scales the feature space according to which dimensions
promote tight clustering. In Section 3, we present how the solution to our clustering optimization
problem can be built into our proposed AC router and we provide the full technical formulation
of AC routing and Adaptive Clustering Mixture-of-Experts (ACMoE). We then present theoretical
propositions on faster convergence and robustness. We empirically validate the advantages of AC-
MoE in Section 4 and discuss related work in Section 5. We end with concluding remarks and future
work in Section 6. Proofs, technical details, and further experiments are provided in the Appendix.

2 A CLUSTERING OPTIMIZATION PERSPECTIVE

We begin by examining the MoE router through the lens of feature-weighted clustering (Witten
& Tibshirani, 2010; Friedman & Meulman, 2004; Brusco & Cradit, 2001; Gnanadesikan et al.,

3

Published as a conference paper at ICLR 2025

1995). We explicitly model the router’s task as learning a token assignment that groups together
similar tokens. We consider the role of learnable feature weights in solving a clustering optimization
problem to optimally reveal latent clusters and present an analytical solution for the optimal weights
for any given routing assignment. We finally discuss how this solution improves the MoE router
before providing the full formulation of our AC router and ACMoE in the next section.

2.1 CLUSTERING OPTIMIZATION

Let hi = [hi1, . . . , hid]
⊺ be the ith hidden representation and Dij denote the distance between hi

and hj . Given a distance metric ρijq between hiq and hjq over the qth dimension, the distance
between hi and hj can be defined as Dij(w) = ∑q∈[d]wqρijq for weights w = [w1, . . . ,wd] with
∑q∈[d]wq = 1 and wq ≥ 0 for all q ∈ [d]. The weights determine the global importance of the qth

feature to the overall distance among representations.

Cluster analysis aims to divide the input set of N objects into groups, where objects within the
same group are more similar to each other than to those in other groups. This is formalized using a
classifier r(i) = k, assigning the ith object to a group k. Then the optimal classifier r∗ minimizes a
criterion Q(r) that evaluates clustering quality:

r∗ = argmin
r

Q(r) = ∑
k∈[E]

1

N2
k

∑
r(i)=k

∑
r(j)=k

Dij(w). (3)

We expect that different groupings will cluster on different subsets of features. In particular, we wish
to model the scenario that groupings exist in different latent subspaces with varying dependence on
possibly disjoint subsets of features. We therefore replace the global feature weight w in Eqn.
3 with cluster-dependent feature weights, {wk}

E
k=1 for E groups, which allows us to capture the

differing feature dependencies of each cluster. Then, we can adapt the optimization problem with
these cluster-dependent feature weights as follows:

(r∗,{w∗k}
E
k=1) =arg min

r,{wk}
∑

k∈[E]

1

N2
k

∑
r(i)=k

∑
r(j)=k

DJ
ij(wk),

such that ∑
q∈[d]

wqk = 1, ∀k ∈ [E], (4)

where DJ
ij(wk) = ∑

d
l=1wqkρijq+λJ(wk) denotes the weighted distance between i and j combined

with some regularization J and regularization strength λ.

To avoid point-mass solutions in which we assign all weight to the single best-clustering feature, we
set the regularizer to the Kullback-Leibler divergence between the feature weights w and the uniform
distribution u = (1/d, . . . ,1/d) ∈ Rd, denoted by J(wk) = DKL(u ∣∣ wk). The regularization
parameter λ reflects our preference to maintain more or less features in the solution set.

2.2 MOE AS CLUSTERING OPTIMIZATION

Within the MoE framework with learnable routing, the router performs the role of the classifier
r ∶ Rd → [E], which is learned via gradient descent to optimize the final output loss1. Therefore, we
modify Eqn. 4 by fixing r and focusing just on optimizing the criterion with respect to cluster-wise
feature weights wk. Under this interpretation, the router learns via backpropagation to optimally
allocate representations to experts, with representations adaptively transformed to maximally reveal
the clustering structure of the input data. Eqn. 4 then becomes

{w∗k}
E
k=1 =arg min

{wk}
∑

k∈[E]

1

N2
k

∑
r(i)=k

∑
r(j)=k

DJ
ij(wk),

such that ∑
q∈[d]

wqk = 1, ∀k ∈ [E]. (5)

The following theorem presents the optimal weights per feature q and cluster k:

1A top-k router can straightforwardly be cast as the classifier in Eqn. 4 as r ∶ Rd → [E]k

4

Published as a conference paper at ICLR 2025

Theorem 1 (Optimal feature weights). Let sqk ∶= N−2k ∑r(i)=k∑r(j)=k ρijq be a measure of dis-
persion on the qth feature for the representations assigned to cluster k. Then, for a given router
function r ∶ Rd → [E], the corresponding optimal weights {wk}k∈[E] that minimize the feature-
weighted clustering optimization problem in Eqn. 5 are given by

wqk =
λ/d

sqk + αk
(6)

for (q, k) ∈ [d] × [E], where {αk}k∈[E] are constants that for any λ > 0 satisfy

∑
q∈[d]

1

sqk + αk
=
d

λ
. (7)

The existence of αk satisfying Eqn. 7 and the proof of Theorem 1 is provided in Appendix A.1.
The optimal weights for a cluster k given in Eqn. 6 take an intuitive form in that they are inversely
proportional to the measure of dispersion in cluster k along each dimension, wk ∝ [

1
s1k

, . . . , 1
sdk
].

Hence, the optimal cluster-wise feature weights scale features according to their contribution to
forming tight clusters. Specifically, the solution weights upweight a feature q if cluster k clusters
tightly (has small dispersion sqk) along the feature q and downweights a feature p if cluster k clusters
loosely (has large dispersion spk) along feature p.

This method enables the MoE router to perform better token-expert matching. The cluster-wise
feature weights wk capture the features on which the kth expert is specialized, as large weights
indicate those features are highly important to the identification of that expert cluster and small
weights indicate those features are unimportant to identification of that expert cluster. Then, we
can use wk to scale the tokens to accentuate their features according to the specialization of the
experts, thereby allowing the router to best identify the most suitable expert for each token. Note
that this solution is local in that we learn the optimal weights adaptively per cluster, obtaining wk

for all k ∈ [E], and so we compute a unique scaling of the feature space adaptively per cluster as
well. Integrating these cluster-dependent weights which scale the feature space according to the
identification of each expert into the MoE router obtains our AC routing method and corresponding
ACMoE. We detail the AC router and ACMoE fully in the next section.

3 A TIGHT CLUSTER IS A SPECIALIZED EXPERT

In this section, we demonstrate how we implement the solution weights from the clustering op-
timization problem in Eqn. 6 into the MoE routing mechanism, thereby obtaining the Adaptive
Clustering router. We then provide the full technical formulation of our proposed routing method
and corresponding ACMoE model. We also present theoretical results on how computing the routing
assignments according to our framework promotes faster convergence and robustness.

3.1 FULL TECHNICAL FORMULATION

We integrate the weights from Eqn. 6 into the Adaptive Clustering router transformation in Defini-
tion 1 which, for a cluster k, scales the dimensions of the feature space according to the kth expert’s
specialization on those features. Formally this is:
Definition 1 (Adaptive Clustering Router Transformation Mk). Let Cℓk = {h

ℓ
1, . . .h

ℓ
Nk
} be the

representations assigned to expert k at layer ℓ. Let sℓqk ∈ R be a measure of a spread in the qth

dimension for cluster k, such as mean absolute deviation sℓqk =
1
Nk
∑i∈Cℓ

k
∣hℓ

iq − h̄ℓ
q ∣. Then, the

cluster-dependent router transformation for expert k at layer ℓ is given by a diagonal matrix M ℓ
k ∶=

diag(1/sℓ1k, . . . ,1/s
ℓ
dk).

We use the transformation Mk in Definition 1 to adaptively scale the feature space in which we
perform token-expert matching. This obtains our Adaptive Clustering router and corresponding
ACMoE layer, described in the following definition.
Definition 2 (Adaptive Clustering Router and MoE Layer). Let hℓ ∈ Rd be the hidden representation
of an input, eℓ1, . . . ,e

ℓ
N ∈ Rd be expert embeddings at layer ℓ. Let hℓ−1 ∈ Cℓ−1k∗ have been assigned

5

Published as a conference paper at ICLR 2025

to expert k∗ in the previous layer. Let M ℓ−1
k∗ ∈ Rd×d be the Adaptive Clustering transformation

(Definition 1) for input h at layer ℓ − 1. Let g(⋅) be the softmax function. Then the following
equations describe the Adaptive Clustering router (Eqn. 8) and overall ACMoE layer (Eqn. 9):

K ∶= topkk(sk) = topkk(h
ℓ⊺M ℓ−1

k∗ eℓk) (8)

fACMoE
(hℓ
) = hℓ

+ ∑
k∈K

g(hℓ⊺M ℓ−1
k∗ eℓk)f

FFN,ℓ
k (hℓ

). (9)

Remark 1. We see from Eqns. 8 and 9 that the standard MoE layer is recovered by setting the AC
router transformation to the identity matrix, Mk = Id for all k ∈ [E]. Within our framework then,
standard routing schemes implicitly assume all experts k ∈ [E] depend equally on all dimensions.
Remark 2. The Adaptive Clustering router computes a dot-product between h and experts ek with
the dimensions scaled by the weights in Mk∗ and so is proportional to a Mahalanobis distance.
Under this interpretation, we soft project the tokens and expert embeddings onto the axes of the
feature space that best identify the expert cluster k∗.

Implementation details. Given ACMoE requires the expert assignment from the previous layer
to compute the routing assignment (Eqn. 8), ACMoE is only implementable after the first layer.
Furthermore, we scale the measures of dispersion in M ℓ

k = diag(1/s
ℓ
1k, . . . ,1/s

ℓ
dk) to have mean 1.

This is to remove the effect of different clusters or features having different absolute magnitudes.
Our method is concerned with identifying the key sets of features that contribute more or less to
identification of the expert clusters, and so we wish to compute our scaling in a relative sense.

3.2 ADAPTIVE CLUSTERING PROMOTES ROBUSTNESS AND FAST CONVERGENCE

We now present theoretical propositions on the improved robustness and convergence speed of our
method. The robustness of our method follows from better separation of expert-clusters. This pro-
duces a more stable assignment in which the probability of erroneously sending a token to unsuitable
nearby experts decays exponentially with increased inter-cluster distance. Faster convergence fol-
lows from our AC routing method improving the conditioning on the Hessian of the loss with respect
to the expert embeddings, enabling faster and more stable convergence of the router.

Promoting robustness. We begin with Lemma 1 stating that our AC transformation (Definition 1)
increases the separation between clusters in the transformed space, followed by Lemma 2, which
provides an explicit expression for the probability of incorrect expert assignment. To give the prob-
ability bound an exact form, we assume the cluster structure can be modeled as a Gaussian mixture
model (GMM). We note that GMMs are a highly expressive and general framework, so this assump-
tion does not place significant restrictions on our robustness analysis. We further assume that though
clusters may overlap, they are well-separated along the features for which they cluster tightly2.
Lemma 1 (Adaptive Clustering Router Transformation Increases Cluster Separation). Let the data
be generated from a Gaussian mixture model with components, gc = N (µc,Σc) for c ∈ [E]. Without
loss of generality, consider two expert clusters c ∈ {a, b} where a token representation h ∼ ga
belongs to cluster a. Let Ma = diag(1/s1a, . . . ,1/sda) be the router transformation constructed
from the feature-wise dispersions, sqa, of cluster ga for each feature q ∈ [d] as given by Definition 1.
Then the distance between cluster means in the Ma-transformed space, defined as ∥µk −µa∥

2
Ma
∶=

(µk−µa)
⊺Ma(µk−µa), is larger than in the original Euclidean space: ∥µk−µa∥

2
Ma
≥ ∥µk−µa∥

2.

The proof is provided in Appendix A.2. In Lemma 2, we derive the probability of mis-assignment
as a function of inter-cluster distance, showing how separation mitigates the effect of perturbations.
Lemma 2 (Incorrect Assignment Probability). Let h ∼ Nk∗(µk∗ ,Σk∗) be a representation belong-
ing to cluster k∗. Let h′ = h + ϵ be contaminated by some 0-mean noise ϵ ∼ (0,Σϵ). Let k be the
nearest, incorrect cluster to k∗. Let the inter-cluster mean distance between k∗ and k be given by
∥δµ∥ ∶= ∥µk∗ −µk∥. Let the routing assignment be given by r ∶ Rd → [E] and denote the cumulative
density of a standard normal distribution by Φ. Then the probability of incorrect assignment is:

Pr(r(h′) ≠ k∗) = 1 −Φ
⎛

⎝

∥δµ∥2

2
√
δµ⊺(Σk∗ +Σϵ)δµ

⎞

⎠
. (10)

2Intuitively, this assumption captures the natural property that the semantic regions of the input space are
distinct along the dimensions that best identify them.

6

Published as a conference paper at ICLR 2025

Remark 3. It is worth noting that since 1 − Φ(x) ∼ (
√
2πx)−1e−x

2
/2 for large x and

√
δµ⊺(Σk∗ +Σϵ)δµ = O(∥µ∥), we find that the probability of incorrect cluster assignment as

given by Eqn. 10, Pr(r(h′) ≠ k∗) = e−O(∥δµ∥
2
) is an exponentially decreasing function in ∥δµ∥.

The proof is provided in Appendix A.2. Combining Lemmas 1 and 2, we directly obtain that the
probability of erroneous assignment using the AC router is exponentially smaller than under a stan-
dard routing scheme. This is formalized in Proposition 1, given by:
Proposition 1 (Robustness of ACMoE). Consider an expert assignment setting for the representa-
tion h ∼ Nk∗(µk∗ ,Σk∗) as in Lemma 2 with two routers given by r ∶ Rd → [E] and rAC ∶ Rd → [E]
for standard (Eqn. 2) and AC routers (Definition 2), respectively. Then the probabilities of incorrect
assignments of routers r and rAC satisfy Pr (rAC(h′) ≠ k∗) ≤ Pr (r(h′) ≠ k∗).

Promoting faster convergence. For an expert embedding ek ∈ Rd and associated cluster Ck, our AC
router in Definition 2 adaptively spheres Ck by stretching the feature space with weights inversely
proportional to the coordinate-wise dispersion in Ck. This reduces the conditioning number of the
Hessian of the loss with respect to the expert ek, improving the loss landscape and enabling faster
and more stable convergence of the router. This notion is formalized in Proposition 2:
Proposition 2 (Faster convergence of ACMoE). Let LMoE ∶Θ→ R+ and LACMoE ∶Θ→ R+ be the
network loss functions defined on the whole parameter set Θ when employing the standard (Eqn. 2)
and AC routers (Definition 2), respectively. Let κ(A) = λmax/λmin denote the conditioning number
of a matrix A with largest and smallest eigenvalues λmax and λmin respectively. Let the Hessian of
an ith expert be given by ∇2

ei
. Then for each i ∈ [E] the following holds with high probability

κ (∇2
ei
L
ACMoE) ≤ κ (∇2

ei
L
MoE) (11)

Remark 4. Faster convergence of ACMoE can also be argued from the perspective of learning
Gaussian mixture models with Expectation Maximization (Dempster et al., 1977). The classic result
of Ma et al. (2000) shows the convergence rate to the true parameters depends on the overlap
between component Gaussians. Our AC method adaptively transforms the input space with by Mk

(Definition 1), which decreases component overlap by increasing inter-cluster distances.

The proof is provided in Appendix A.3. We find this result empirically supported as shown by the
rapid convergence in Fig. 2.

4 EXPERIMENTAL RESULTS

In this section, we empirically justify the advantage of ACMoE over baseline MoE models. We
evaluate our method on large-scale tasks including Wikitext-103 (Merity et al., 2016) language
modeling and ImageNet (Deng et al., 2009) object classification. We implement our AC router into
Switch Transformer (Fedus et al., 2022), Generalist Language Model (GLaM) (Du et al., 2022), and
Swin Transformer (Liu et al., 2021) backbones and compare our router against the standard Sparse
Mixture-of-Experts (SMoE) router (Shazeer et al., 2017) and the XMoE router (Chi et al., 2022). We
show that i) ACMoE obtains substantive improvements over baseline models across both language
and vision tasks; ii) ACMoE offers robust improvements on contaminated and out-of-distribution
samples; and iii) ACMoE attains these gains without introducing any learnable parameters and with
negligible additional computational overhead. Results are averaged over 5 runs with different seeds.

4.1 LANGUAGE MODELING

Experimental Setup. We adopt the experimental setup of Pham et al. (2024). We compare AC-
MoE with Switch Transformer and GLaM baselines with 16 total experts in small (70M parameters)
and medium (220M parameters) configurations with top-2 expert routing. We present pretraining
test perplexity (PPL) results for Wikitext-103 and test bytes-per-character (BPC) for character-level
EnWik-8 . We report top-1 accuracy for finetuning classification tasks on the 2-class Stanford Sen-
timent Treebank-2 (SST2) (Socher et al., 2013), 5-class Stanford Sentiment Treebank-5 (SST5)
(Socher et al., 2013), and 77-class Banking-77 (B77) (Casanueva et al., 2020). Full experimental
details are provided in Appendix C.

7

Published as a conference paper at ICLR 2025

Table 1: Test Perplexity (PPL) and bytes-per-character (BPC) pretraining and top-1 test accuracy on
Stanford Sentiment Treebank 2, 5 (SST2, SST5), and Banking-77 (B77) finetuning classification.

Model Test BPC / PPL (↓) SST2 (↑) SST5 (↑) B77 (↑)
EnWik-8 Pretrain

Switch Transformer (Fedus et al., 2022) 1.153 63.27 32.21 53.48
Switch-ACMoE (Ours) 1.137 64.45 33.79 54.26

WikiText-103 Pretrain

Switch Transformer (Fedus et al., 2022) 35.48 76.27 39.13 83.82
Switch-ACMoE (Ours) 34.42 77.32 40.04 86.01

GLaM (Du et al., 2022) 38.27 69.97 33.69 80.89
GLaM-ACMoE (Ours) 36.26 71.90 34.24 82.33

Table 2: Perplexity (PPL) on WikiText-103 contaminated by Text Attack.
Model Clean Test PPL (↓) Contaminated Test PPL (↓)
Switch Transformer (Fedus et al., 2022) 35.48 48.12
Switch-ACMoE (Ours) 34.42 47.61

GLaM (Du et al., 2022) 38.27 50.84
GLaM-ACMoE (Ours) 36.26 47.91

Pretraining and Finetuning. Table 3 shows ACMoE attains top test PPL on WikiText-103 language
modeling in Switch and GLaM backbones at small and medium configurations under baseline SMoE
and XMoE routers. The improvement in the GLaM-medium architecture is a particularly substantive
4.8% over the next best baseline. Table 1 shows ACMoE pretrained models on both WikiText-103
and EnWik-8 surpass the performance of baselines in finetuning tasks, with strong, consistent im-
provements of approximately 3%, showing ACMoE’s strong performance carries over to finetuning.

Table 3: WikiText-103 test PPL of ACMoE and
baseline GLaM and Switch.

Router Test PPL (↓)
Switch Transformer (Fedus et al., 2022)

SMoE-small (Shazeer et al., 2017) 87.94
XMoE-small (Chi et al., 2022) 87.21
ACMoE-small (Ours) 85.07

SMoE-medium (Shazeer et al., 2017) 35.48
XMoE-medium (Chi et al., 2022) 35.88
StableMoE-medium (Dai et al., 2022) 35.33
ACMoE-medium (Ours) 34.42

GLaM (Du et al., 2022)

SMoE-small (Shazeer et al., 2017) 58.27
XMoE-small (Chi et al., 2022) 54.80
ACMoE-small (Ours) 54.55

SMoE-medium (Shazeer et al., 2017) 38.27
XMoE-medium (Chi et al., 2022) 38.10
StableMoE-medium (Dai et al., 2022) 38.04
ACMoE-medium (Ours) 36.26

Robust Language Modeling. Table 2 show test
PPL on WikiText-103 contaminated by Text At-
tack, where words are randomly swapped with
a generic token ’AAA’. We follow the setup of
Han et al. (2024); Teo & Nguyen (2025b); Ab-
dullaev & Nguyen (2025) and assess models by
training them on clean data before attacking the
test data using an attack rate of 2.5%. ACMoE
outperforms baseline Switch and GlaM with par-
ticularly robust performance in the GLaM back-
bone, surpassing GLaM by 5.8%.

4.2 IMAGE CLASSIFICATION

Experimental Setup. We adopt the experimen-
tal setup of Liu et al. (2021) for pretraining and
evaluation on ImageNet. We evaluate ACMoE
against the Swin Transformer baseline with 16
total experts in both top-1 and top-2 expert rout-
ing settings. The Swin backbone has 280M pa-
rameters. We additionally conduct experiments
on ImageNet under white box adversarial attacks
fast gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD)
(Madry et al., 2017), and black box attack simultaneous perturbation stochastic approximation
(SPSA) (Uesato et al., 2018). We also present results on out-of-distribution (OOD)(Hendrycks et al.,
2021a;b). In all robust image classification tasks, image classification using ImageNet-A/O/R we
adopt the conventional setup of pretraining on ImageNet and evaluating the trained models on the
contaminated/OOD datasets (Han et al., 2024; Zhou et al., 2022a; Puigcerver et al., 2022; Nguyen
et al., 2024; Nielsen et al., 2025). Full experimental details are provided in Appendix C.

8

Published as a conference paper at ICLR 2025

Table 4: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA.

Model Clean Data PGD FGSM SPSA
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Swin-Top 1 (Liu et al., 2021) 75.22 92.51 39.69 74.59 52.84 83.86 59.92 82.63
Swin-ACMoE-Top 1 (Ours) 75.39 92.56 40.66 73.46 53.43 82.80 59.97 82.47

Swin-Top 2 (Liu et al., 2021) 76.10 92.99 40.85 75.51 54.70 85.22 60.57 82.75
Swin-ACMoE-Top 2 (Ours) 76.31 93.14 43.74 78.55 55.78 85.80 63.47 86.05

Table 5: Test Accuracy on Image Classification in Imagenet-A/O/R

Model Im-A Im-R Im-O
Top-1 Acc. (↑) Top-1 Acc. (↑) AUPR (↑)

Swin Transformer-Top 1 (Liu et al., 2021) 6.83 30.60 17.89
Swin-ACMoE-Top 1 (Ours) 7.13 30.85 18.45

Swin Transformer-Top 2 (Liu et al., 2021) 9.38 32.07 18.51
Swin-ACMoE-Top 2 (Ours) 9.42 32.35 19.55

Image Classification under Adversarial Attack. Table 4 shows performance on ImageNet clas-
sification against FGSM, PGD, and SPSA. Compared with Swin baseline, ACMoE-Top 2 attains
noteworthy 7% and 5% improvements against PGD and SPSA in top-1 accuracy respectively.

Out-of-distribution Image Classification. Table 5 shows ACMoE improves over the baseline Swin
Transformer in image classification on hard OOD and real-world adversarially filtered images. Eval-
uation on ImageNet-A/O/R shows consistent improvements over the baseline in top-1 and top-2
expert choice, with particularly strong improvements in ImageNet-O under top-2 routing with a
performance gain in area under precision recall (AUPR) of almost 6%.

4.3 EMPIRICAL ANALYSIS

Load Balancing. We analyze in Table 6 the effect of ACMoE on expert load balancing. Load bal-
ance is calculated as the percentage of tokens assigned to each expert. The load balance score is
then taken as the standard deviation over these percentages. A standard deviation of 0, where all ex-
perts are activated in exactly equal proportions, is therefore a perfect load balance. We compute this
statistic per MoE layer and present the overall load balance averaged over all layers. ACMoE attains
better overall load balancing compared to Switch and Swin transformers. Against all backbones,
ACMoE achieves a smaller spread in the load balances over layers, shown by smaller standard devi-
ation. Visually we see how better expert specialization can aid load balance in Fig. 1, where better
identification of the semantic regions of the input space leads to more experts being activated.

Efficiency Analysis. Computing the cluster-wise feature weights {wk}k∈[E] requires no learnable
parameters and is obtained by computing the mean absolute deviation for each set of tokens assigned
to the kth expert. This can be computed using just two computations of the mean – one for the mean
per cluster and one for the mean of the absolute deviations per cluster – done in parallel over all
clusters. This is of order O(2nd) = O(n) for n tokens, hence the upper-bound time complexity
of the MoE layer is unaffected. Table 7 provides empirical efficiency analysis in terms of compute
speed, memory allocation, and parameters, which shows changes in speed and memory are within a
margin of approximately 1% or less, implying there is no significant efficiency loss.

5 RELATED WORK

Routing Methods. Recent studies have proposed token-expert assignment algorithms based on
reinforcement learning (Bengio et al., 2015), deterministic hashing (Roller et al., 2021), optimal
transport (Liu et al., 2022), linear programs (Lewis et al., 2021), cosine similarity (Chi et al., 2022),
soft token mixing (Puigcerver et al., 2023), greedy top-k experts per token (Shazeer et al., 2017)
and greedy top-k tokens per expert (Zhou et al., 2022b). Existing work has predominantly consid-
ered dot-products between inputs and experts as a suitable metric for similarity (Lewis et al., 2021;
Puigcerver et al., 2023; Shazeer et al., 2017; Zhou et al., 2022b; Chi et al., 2022). This work contin-
ues with dot-product based learnable routing but computes the routing assignments in an adaptively
transformed space to maximally identify the latent expert clusters.

9

Published as a conference paper at ICLR 2025

Table 6: Load Balance Analysis of ACMoE and Baseline MoE Models
Model Layer-Averaged Load Balance (↓)
Switch Transformer (Fedus et al., 2022) 5.577 ± 4.131
Switch-ACMoE (Ours) 5.317 ± 2.622

GLaM (Du et al., 2022) 2.901 ± 1.434
GLaM-ACMoE (Ours) 2.938 ± 1.221

Swin Transformer (Liu et al., 2021) 2.134 ± 1.110
Swin-ACMoE (Ours) 2.127 ± 0.968

Table 7: Efficiency Comparison between ACMoE and baseline MoE Models
Model Compute Speed (ms/it) Max Memory (K) #Params (M)

GLaM (Du et al., 2022) 422.62 25.69 220
GLaM-ACMoE (Ours) 425.15 25.72 220

Switch Transformer (Fedus et al., 2022) 391.93 34.64 216
Switch-ACMoE (Ours) 393.29 34.68 216

Swin Transformer (Liu et al., 2021) 403.36 22.00 280
Swin-ACMoE (Ours) 408.56 22.19 280

MoE and Cluster Analysis. The MoE framework traces its roots back to Gaussian mixture models
where the input space is assumed divisible into separate regions with an expert specializing in each
region (Jacobs et al., 1991). Recent studies show that the router can recover the clustering structure
of the input space and each expert specializes in a specific cluster (Dikkala et al., 2023; Chen et al.,
2022). Our work leverages the clustering perspective on MoE to consider adaptive transformations
of the input space to more easily distinguish latent clusters. We learn these transformations via
feature-weighted cluster analysis, which has been studied in the clustering literature (Brusco &
Cradit, 2001; Witten & Tibshirani, 2010; Gnanadesikan et al., 1995; Van Buuren & Heiser, 1989;
Friedman & Meulman, 2004). Friedman & Meulman (2004) consider cluster-dependent feature
weights to augment iterative clustering algorithms. Our approach similarly uses cluster-dependent
feature weights but uses a different optimization problem to derive optimal weights.

Robust MoE. The robustness of MoE architectures is a newly emerging research area. Puigcerver
et al. (2022) provide the first study in this direction from the perspective of model capacity and the
Lipschitz constant, finding conditions under which MoE models are provably more robust than their
dense counterparts. Zhang et al. (2023) examine the effect of adversarial training and propose an al-
ternating optimization adversarial defence. Teo & Nguyen (2024) integrates heavy-ball momentum
in SMoE to improve the model’s stability and robustness. Our work differs from these approaches
by examining the robustness of MoE models purely through the lens of the latent clustering structure
of the input space. To the best of our knowledge, this is a novel lens on robustness in MoE models.

6 CONCLUSION AND FUTURE WORK

In this paper, we present the Adaptive Clustering (AC) router and ACMoE layer, a novel MoE rout-
ing method that computes token-expert assignments in a transformed space that maximally identifies
latent clusters in the data and more easily discovers the best-matched expert for each token. We adap-
tively learn for each input which features are relevant to determining its latent cluster assignment
and scale its features accordingly such that features that promote tight clustering are upweighted
and features that produce dispersed clusters are downweighted. This transformation accentuates the
relevant characteristics of each input according to the specialization of the experts, thereby allowing
the router to more easily discover the optimal input-expert allocation. Our AC routing method en-
ables faster convergence by improving the Hessian conditioning of the router and better robustness
by increasing the separation of latent clusters in the transformed space. This approach makes no
assumptions on the downstream task, requires no learnable parameters, and can be applied within
any MoE architecture to boost performance on clean and contaminated data. A limitation of our
method is that the AC router requires estimates of each token’s cluster assignment. We obtain these
by using the expert assignments in previous layers, which means we require the embedding size to
remain the same between adjacent MoE layers. For ongoing work, we are investigating improved
methods for estimating the latent cluster memberships without reliance on previous layers and with
provable consistency guarantees.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

This research / project is supported by the National Research Foundation Singapore under the AI
Singapore Programme (AISG Award No: AISG2-TC-2023-012-SGIL). This research / project is
supported by the Ministry of Education, Singapore, under the Academic Research Fund Tier 1
(FY2023) (A-8002040-00-00, A-8002039-00-00). This research / project is also supported by the
NUS Presidential Young Professorship Award (A-0009807-01-00).

Thanks to our anonymous reviewers, who provided valuable feedback which improved the paper
substantially. Thanks also to Loi Xuan Ly for lending his eye for design.

Reproducibility Statement. Source code for our experiments are provided in the supplementary
material. We provide the full details of our experimental setup – including datasets, model specifi-
cation, train regime, and evaluation protocol – for all experiments in Appendix C. All datasets are
publicly available.

Ethics Statement. Our work considers fundamental architectures, and in particular their robustness
and convergence properties. Given this, we foresee no issues regarding fairness, privacy, or security,
or any other harmful societal or ethical implications in general.

REFERENCES

Laziz Abdullaev and Tan Minh Nguyen. Transformer meets twicing: Harnessing unattended residual
information. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=16kG5aNleS.

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929, 2020.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Michael J Brusco and J Dennis Cradit. A variable-selection heuristic for k-means clustering. Psy-
chometrika, 66:249–270, 2001.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
mixture-of-experts layer in deep learning. Advances in neural information processing systems,
35:23049–23062, 2022.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Sta-
bleMoE: Stable routing strategy for mixture of experts. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7085–7095, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.489. URL
https://aclanthology.org/2022.acl-long.489.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

11

https://openreview.net/forum?id=16kG5aNleS
https://aclanthology.org/2022.acl-long.489

Published as a conference paper at ICLR 2025

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the
benefits of learning to route in mixture-of-experts models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9376–9396, 2023.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Jerome H Friedman and Jacqueline J Meulman. Clustering objects on subsets of attributes (with
discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology, 66(4):
815–849, 2004.

Ram Gnanadesikan, Jon R Kettenring, and Shiao Li Tsao. Weighting and selection of variables for
cluster analysis. Journal of classification, 12:113–136, 1995.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic mix-
ture of experts: An auto-tuning approach for efficient transformer models. arXiv preprint
arXiv:2405.14297, 2024.

Xing Han, Tongzheng Ren, Tan Nguyen, Khai Nguyen, Joydeep Ghosh, and Nhat Ho. Design-
ing robust transformers using robust kernel density estimation. Advances in Neural Information
Processing Systems, 36, 2024.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 15262–15271, 2021b.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Kenichi Kumatani, Robert Gmyr, Felipe Cruz Salinas, Linquan Liu, Wei Zuo, Devang Patel, Eric
Sun, and Yu Shi. Building a great multi-lingual teacher with sparsely-gated mixture of experts for
speech recognition. arXiv preprint arXiv:2112.05820, 2021.

D Lepikhin, H Lee, Y Xu, D Chen, O Firat, Y Huang, M Krikun, N Shazeer, and Z Gshard.
Scaling giant models with conditional computation and automatic sharding. arXiv preprint
arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Tianlin Liu, Joan Puigcerver, and Mathieu Blondel. Sparsity-constrained optimal transport. arXiv
preprint arXiv:2209.15466, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Jinwen Ma, Lei Xu, and Michael I Jordan. Asymptotic convergence rate of the em algorithm for
gaussian mixtures. Neural Computation, 12(12):2881–2907, 2000.

12

Published as a conference paper at ICLR 2025

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. stat, 1050(9), 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Tam Minh Nguyen, César A Uribe, Tan Minh Nguyen, and Richard Baraniuk. Pidformer: Trans-
former meets control theory. In Forty-first International Conference on Machine Learning, 2024.

Tan Minh Nguyen, Tam Minh Nguyen, Nhat Ho, Andrea L. Bertozzi, Richard Baraniuk, and Stanley
Osher. A primal-dual framework for transformers and neural networks. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=U_T8-5hClV.

Viet Dung Nguyen, Minh Nguyen Hoang, Luc Nguyen, Rachel Teo, Tan Minh Nguyen, and
Linh Duy Tran. CAMEx: Curvature-aware merging of experts. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=nT2u0M0nf8.

Stefan Nielsen, Laziz Abdullaev, Rachel SY Teo, and Tan Nguyen. Elliptical attention. Advances in
Neural Information Processing Systems, 37:109748–109789, 2025.

Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, et al. Competesmoe–effective training of
sparse mixture of experts via competition. arXiv preprint arXiv:2402.02526, 2024.

Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, and Srinadh Bhojanapalli.
On the adversarial robustness of mixture of experts. Advances in Neural Information Processing
Systems, 35:9660–9671, 2022.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures
of experts. arXiv preprint arXiv:2308.00951, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

N Shazeer, A Mirhoseini, K Maziarz, A Davis, Q Le, G Hinton, and J Dean. The sparsely-gated
mixture-of-experts layer. Outrageously large neural networks, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Rachel Teo and Tan Minh Nguyen. MomentumSMoe: Integrating momentum into sparse mixture
of experts. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=y929esCZNJ.

Rachel Teo and Tan Minh Nguyen. MoLEx: Mixture of layer experts for fine-tuning with sparse
upcycling. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=rWui9vLhOc.

13

https://openreview.net/forum?id=U_T8-5hClV
https://openreview.net/forum?id=U_T8-5hClV
https://openreview.net/forum?id=nT2u0M0nf8
https://openreview.net/forum?id=nT2u0M0nf8
https://openreview.net/forum?id=y929esCZNJ
https://openreview.net/forum?id=rWui9vLhOc

Published as a conference paper at ICLR 2025

Rachel SY Teo and Tan Nguyen. Unveiling the hidden structure of self-attention via kernel principal
component analysis. Advances in Neural Information Processing Systems, 37:101393–101427,
2025b.

Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord. Adversarial risk and the
dangers of evaluating against weak attacks. In International conference on machine learning, pp.
5025–5034. PMLR, 2018.

Stef Van Buuren and Willem J Heiser. Clustering n objects into k groups under optimal scaling of
variables. Psychometrika, 54:699–706, 1989.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Daniela M Witten and Robert Tibshirani. A framework for feature selection in clustering. Journal
of the American Statistical Association, 105(490):713–726, 2010.

Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu Chang,
Zhangyang Wang, and Sijia Liu. Robust mixture-of-expert training for convolutional neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 90–
101, 2023.

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
Jose M Alvarez. Understanding the robustness in vision transformers. In International Conference
on Machine Learning, pp. 27378–27394. PMLR, 2022a.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022b.

14

Published as a conference paper at ICLR 2025

Supplement to “Tight Clusters Make Specialized Experts”
Table of Contents

A Technical Proofs 15

A.1 Proof of Theorem 1 . 15

A.2 Proof of Proposition 1 . 17

A.2.1 Proof of Lemma 1 . 17

A.2.2 Proof of Lemma 2 . 17

A.3 Proof of Proposition 2 . 18

B Implementation Procedure and Computational Efficiency 20

C Experimental Details and Additional Experiments 20

C.1 Language Modeling . 20

C.1.1 Datasets . 20

C.1.2 Model, Optimizer, & Train Specification . 20

C.2 Image Classification . 21

C.2.1 Datasets and Attacks . 21

C.2.2 Model, Optimizer, & Train Specification . 22

C.3 Adversarial Attack At Higher Perturbation Budget . 22

C.4 Cluster Visualization . 22

C.5 Ablation Studies . 23

C.5.1 Measures of Dispersion . 23

C.5.2 Layer Placement . 23

C.5.3 Random Ablation . 24

C.6 Cluster Weight Mixing . 25

C.7 Adaptive Clustering Integration into Soft Mixture of Experts 25

C.8 Image Classification in Swin Transformer Base Configuration 26

C.9 Router Stability . 26

C.10 Dynamic Routing . 26

D Broader Impact 27

A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

To begin with, we present the following lemma to show the existence of constants αk for k ∈ [E]
that satisfy Eqn. 7:
Lemma 3. For any λ > 0, Eqn. 7 has exactly d real solutions with respect to αk.

15

Published as a conference paper at ICLR 2025

Proof of Lemma 3. Without loss of generality, assume that s1k ≥ s2k ≥ ⋅ ⋅ ⋅ ≥ sdk. Denote

φ(α) ∶= ∑
q∈[d]

1

sqk + α
−
d

λ
. (12)

Then, the existence of solutions to Eqn. 7 is equivalent to the condition φ(αl) = 0. Note that φ(α)
is a strictly decreasing function in its connected continuity domains since

φ′(α) = − ∑
q∈[d]

1

(sqk + α)2
< 0 (13)

for all α ∈ R ∖ {−s1k, . . . ,−sdk}. Further, we observe that

lim
α→−s−

qk

φ(α) = −∞, lim
α→−s+

qk

φ(α) = +∞ (14)

for all q ∈ [d], and

lim
α→±∞

φ(α) = −
d

λ
< 0. (15)

Now consider the domain of continuity of φ(α), namely (−∞,−s1k)∪(−s1k,−s2k)∪⋅ ⋅ ⋅∪(−sdk,∞).
Due to the monotonicity and limits 14 & 15, there exists a unique solution in each of the intervals
except for (−∞,−s1k) where the function is always strictly negative, thus, yielding d roots in total.

Now we follow up with the main proof of this section.

Proof of Theorem 1. First, let Ik ∶= {i ∶ r(i) = k} for convenience. Now let us restate the clustering
optimization problem (4) here once again:

min
wk

Q(c,{wk}k∈[E]) = ∑
k∈[E]

1

N2
k

∑
i,j∈Ik

∑
q∈[d]

(wqkρijq +
λ

d
log

1

dwqk
) ,

such that ∑
q∈[d]

wqk = 1, ∀k ∈ [E], (16)

where we have immediately used the fact that

DKL(u ∣∣wk) = ∑
q∈[d]

1

d
log

1/d

wqk
. (17)

Also, note that

∑
q∈[d]

(wqkρijq + λ
1

d
log

1

dwqk
) = ∑

q∈[d]

(wqkρijq − λ
1

d
log(dwqk))

= ∑
q∈[d]

(wqkρijq −
λ

d
logwqk) − λ log d. (18)

We can ignore the term λ log d since it does not depend on the optimization variable. Method of
Lagrange multipliers turns this constrained optimization problem into the following unconstrained
counterpart:

min
wk,α

L(c,{wk}k∈[E],α) = ∑
k∈[E]

1

N2
k

∑
i,j∈Ik

∑
q∈[d]

(wqkρijq −
λ

d
logwqk) + ∑

k∈[E]

αk

⎛

⎝
∑
q∈[d]

wqk − 1
⎞

⎠
,

where α = [α1 . . . αL]
⊺ is the vector of Lagrange multipliers. Note that the last optimization

problem can be separated into the following L independent optimization subproblems:

min
wk,α

Lk(c,wk,α) =
1

N2
k

∑
i,j∈Ik

∑
q∈[d]

(wqkρijq −
λ

d
logwqk) + αk

⎛

⎝
∑
q∈[d]

wqk − 1
⎞

⎠
,

16

Published as a conference paper at ICLR 2025

for k ∈ [E]. Since the objective function is a positive combination of convex functions, the opti-
mization problem is also convex. By setting the derivatives of Lk with respect to both optimization
variables to 0, we obtain the following system of equations:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂Lk

∂wqk
= sqk −

λ

d

1

wqk
+ αk = 0,

∂Lk

∂αk
=∑q∈[d]

wqk − 1 = 0

for all k ∈ [E], where sqk is the data dispersion measure defined in the theorem statement. The first
equation yields

wqk =
λ

d

1

sqk + αk
, (19)

where αk is found from ∑q∈[d]wqk = 1 which in fact gives

∑
q∈[d]

1

sqk + αk
=
d

λ
(20)

for all k ∈ [E] as desired.

A.2 PROOF OF PROPOSITION 1

Since Proposition 1 is a composition of Lemma 1 and Lemma 2, we proceed by providing their
proofs.

A.2.1 PROOF OF LEMMA 1

Proof of Lemma 1. Notice that we can expand inequality (1) as

∑
i∈[d]

miδµ
2
i ≥ ∑

i∈[d]

δµ2
i ,

where we let δµ ∶= µb −µa. Since Ma entries are mean-scaled, we can rewrite them as

mi =
dm′i

∑j∈[d]m
′
j

(21)

for some initial dispersion estimates {m′j}j∈[d]. Without loss of generality, assume that [d′] is the
set of dimension indices for which the dispersions are relatively much smaller than those in the
rest of the dimensions in the sense that m′i ≫ m′j for any i ∈ [d′] and j ∈ [d] ∖ [d′]. Then, there
exists a positive α ≪ 1/2 such that ∑i∈[d′]mi > d − α and ∑i∈[d]∖[d′]mi < α. By the assumption
that clusters are best-separated along the features for which they cluster tightly, this means that the
weight matrix Ma maximizes the contribution of largest d′ terms in ∑i∈[d]miδµ

2
i corresponding

to individual feature-wise distances in dimensions where the feature dispersions are the smallest
instead of giving uniform weights to all dimensions, which leads to inequality (1).

A.2.2 PROOF OF LEMMA 2

Proof of Lemma 2. Since we use the L2 distance between the token h and µc as a similarity metric,
we assign cluster gk∗ to the token h′ iff ∥h′ − µk∗∥ ≤ ∥h

′ − µk∥. Assume that the token h′ is a
noisy observation of an underlying true token h which actually originates from cluster gk∗ . Then,
the token h′ can be decomposed as h′ = h + ϵ for a random noise ϵ ∼ N (0,Σϵ). Now define
the decision variable D(h′) ∶= ∥h′ − µk∗∥

2 − ∥h′ − µk∥
2 which turns the clustering condition to

D(h′) ≤ 0 for the cluster gk∗ . Let us analyze the decision variable D as a random variable where
randomness may come from the underlying sampling strategy and noise. Note that

D(h′) = ∥h + ϵ −µk∗∥
2
− ∥h + ϵ −µk∥

2

= ∥h −µk∗∥
2
− ∥h −µk∥

2
+ 2(µk −µk∗)

⊺ϵ

= D(h) + 2δµ⊺ϵ, (22)

17

Published as a conference paper at ICLR 2025

where δµ ∶= µk − µk∗ . Due to the assumption that h is drawn from the distribution gk∗ , it can be
rewritten as h = µk∗ + ν with ν ∼ N (0,Σk∗). Then for the first term in Eqn. 22, we have

D(h) = ∥h −µk∗∥
2
− ∥h −µk∥

2

= δµ⊺(2h −µk∗ −µk)

= δµ⊺(2ν − δµ)

= 2δµ⊺ν − ∥δµ∥2. (23)

Substituting this back into Eqn. 22, we get

D(h′) = 2δµ⊺(ν + ϵ) − ∥δµ∥2. (24)

This shows that D(h′) ∼ N (−∥δµ∥2,4δµ⊺(Σk∗ +Σϵ)δµ). Since D(h′) follows a normal distri-
bution with the derived parameters, the probability that h′ is assigned to cluster gk∗ is given by

Pr(correct cluster) = Pr (D(h) ≤ 0) = Φ
⎛

⎝

∥δµ∥2

2
√
δµ⊺(Σk∗ +Σϵ)δµ

⎞

⎠
, (25)

where Φ denotes the CDF of normal distribution as usual. Since Φ is an increasing function, the
probability that the noisy token h is assigned to the correct cluster is proportional to the distance
between the cluster centroids and inverse proportional to the covariance matrices of the cluster and
the additive noise. On the other hand, for the incorrect clustering probability, we have

Pr(incorrect cluster) = 1 −Φ
⎛

⎝

∥δµ∥2

2
√
δµ⊺(Σk∗ +Σϵ)δµ

⎞

⎠
(26)

as claimed.

A.3 PROOF OF PROPOSITION 2

Proof of Proposition 2. Let the router be given by g and let the softmax function be given by
gθ ∶ Rd → Rd, parameterized by expert embeddings {ei}i∈[E]. The network loss depends on expert
embeddings only through the router function g. We shall explore the exclusive contribution of each
expert embedding in minimizing LACMoE. In order to do this, we look at the network loss as a scalar
function of ith expert embedding vector while treating all other network parameters as fixed. Then,
we can write LACMoE ∶ Rd → R such that LACMoE = LACMoE(gθ(ei)). For simplicity, we shall
omit the subscript θ. The gradient that comes from back-propagation is then given by

∇eiL
ACMoE

= (∇gL
ACMoE)

⊺
∇eig, (27)

where ∇eig ∈ Rd×d denotes the Jacobian matrix of g since for gk ∶= (gθ(ei))k, we can write

∂

∂eis
L
ACMoE

(g1, . . . , gd) =∑
k

∂LACMoE

∂gk

∂gk
∂eis

. (28)

Note that for gk = softmax(h⊺Mek), we have

∂gk
∂eis

=mshsgk(δki − gi) =mshsbki. (29)

Then, the element of the Hessian matrix of the network loss at index (s, t) ∈ [d]× [d] can be written
as

H
(i)
st (L

ACMoE
) =

∂2LACMoE

∂eis∂eit
=

∂

∂eit
∑
k

∂LACMoE

∂gk

∂gk
∂eis

=∑
k

⎛

⎝
∑
j

∂2LACMoE

∂gk∂gj

∂gj

∂eit

⎞

⎠

∂gk
∂eis

+
∂LACMoE

∂gk

∂2gk
∂eis∂eit

=mshsmtht

⎡
⎢
⎢
⎢
⎢
⎣

∑
k

⎛

⎝
∑
j

∂2LACMoE

∂gk∂gj
bji
⎞

⎠
bki +

∂LACMoE

∂gk
b′ki

⎤
⎥
⎥
⎥
⎥
⎦

=mshsmthtBi, (30)

18

Published as a conference paper at ICLR 2025

where Bi is some constant that depends only on index i. Due to Eqn. 30, the Hessian takes the
following matrix form

H(i)
= Bi(Mh)(Mh)⊺. (31)

Taking expectation from both sides, we obtain

Eh∼(µ,Σ) [H
(i)] = BiEh∼(µ,Σ) [M(hh

⊺
)M] = BiM(Σ)M , (32)

where we assume h is centered. Now recall that M = diag(m1, . . . ,md) where for each i, mi ∼

1/
√
Σii holds. Assume that the covariance matrix Σ is symmetric positive definite. Then, it is

diagonalizable as Σ = UΛU⊺ with Λ = diag(λ1, . . . , λd), a diagonal matrix with eigenvalues of
Σ. With the transformation M , we get

MΣM =MUΛU⊺M = UMΛMU⊺ (33)

= U

⎡
⎢
⎢
⎢
⎢
⎣

m2
1λ1

⋱

m2
dλd

⎤
⎥
⎥
⎥
⎥
⎦

U⊺. (34)

Since the eigenvalues capture the variances along the principal components of the covariance matrix,
m2

i , as a reciprocal of a measure of dimension-wise dispersion, is reasonably correlated with 1/λi,
as demonstrated by Lemma 4, implying λj ≤ λi Ô⇒ mj ≥ mi with high probability. Therefore,
we obtain that

κ(MΣM) =
λmax(MΣM)

λmin(MΣM)
≈
m2

minλmax(Σ)

m2
maxλmin(Σ)

≤ κ(Σ), (35)

which implies the claim.
Lemma 4 (Correlation between dimension-wise varainces and covariance eigenvalues). Let {bi}i∈d
be the set of normalized basis vectors of Rd. Consider a symmetric positive definite covariance
matrix Σ and its unit eigenvectors {vi}i∈[d]. Assume that the eigenvector vi is a reasonably small
perturbation of the basis vector bi such that v⊺i bi ≥ 1 − ϵ for all i ∈ [d] and a small constant ϵ > 0.
Then, for all i ∈ [d], we have

∣λi −Σii∣ ≤ ϵ ⋅max
j≠i
∣λi − λj ∣ , (36)

where {λi}i∈[d] is the set of ordered eigenvalues of Σ corresponding to eigenvectors {vi}i∈[d].

Proof of Lemma 4. Note that each diagonal element of the SPD covariance matrix Σ can be written
as

Σii = b
⊺
iΣbi = b

⊺
i

⎛

⎝
∑
j∈[d]

λjvjv
⊺
j

⎞

⎠
bi = ∑

j∈[d]

λj(v
⊺
j bi)

2. (37)

Then, the difference on the left hand side of Eqn. 36 can be bounded as

∣λi −Σii∣ =

RRRRRRRRRRRR

λi − ∑
j∈[d]

λj(v
⊺
j bi)

2

RRRRRRRRRRRR

=

RRRRRRRRRRR

λi (1 − (viei)
2) −∑

j≠i

λj(v
⊺
j bi)

2
RRRRRRRRRRR

=

RRRRRRRRRRR

λi∑
j≠i

(v⊺j bi)
2
−∑

j≠i

λj(v
⊺
j bi)

2
RRRRRRRRRRR

(38)

=

RRRRRRRRRRR

∑
j≠i

(λi − λj)(v
⊺
j bi)

2
RRRRRRRRRRR

≤max
j≠i
∣λi − λj ∣∑

j≠i

(v⊺j bi)
2

=max
j≠i
∣λi − λj ∣ (1 − (vibi)

2) (39)

≤ ϵmax
j≠i
∣λi − λj ∣ ,

where we used the fact that

∑
j∈[d]

(v⊺j bi)
2
=
⎛

⎝

n

∑
j=1

(v⊺j bi)vj

⎞

⎠

⊺

(
n

∑
k=1

(v⊺kbi)vk) = b
⊺b = 1

to obtain Eqn. 38 and Eqn. 39 since the eigenvectors of Σ are orthonormal.

19

Published as a conference paper at ICLR 2025

B IMPLEMENTATION PROCEDURE AND COMPUTATIONAL EFFICIENCY

Training and Inference. Given the AC routing scheme requires requires the expert assignment
per token from the previous layer, we can only implement AC routing from the second layer on. We
incorporate AC routing into both training and inference stages. This is because, firstly, AC routing
is designed to offer improvements to both clean and contaminated data, and so even in the presence
of completely clean train and test data, it is advantageous to incorporate the AC method into both
stages. Secondly, it is commonplace to encounter data contamination only at the test stage and
indeed highly possible to encounter it in train as well. Therefore, in the interest of robustness as
well, AC routing is incorporated into both stages.

Computational Efficiency. Computing the required {wk}k∈[E] for number of experts E requires
no learnable parameters and is obtained simply by computing the mean absolute deviation for each
set of tokens assigned to the kth expert. This can be computed using just two computations of
the mean – once for the mean per cluster and once again for the mean of the absolute deviations
per cluster – done in parallel over all clusters using torch.index reduce() and is of the order
O(2nd) = O(n) for n tokens. Hence the upper-bound time complexity of the MoE layer is un-
affected. We provide in Table 7 additional efficiency analysis in terms of throughput, max GPU
memory allocated, and parameters which shows no significant efficiency loss compared to baseline
MoE architectures.

C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

C.1 LANGUAGE MODELING

C.1.1 DATASETS

WikiText-103. The WikiText-1033 dataset contains around 268K words and its training set con-
sists of about 28K articles with 103M tokens. This corresponds to text blocks of about 3600 words.
The validation set and test sets consist of 60 articles with 218K and 246K tokens respectively.

EnWik-8. The EnWik-8 dataset is a byte-level dataset of 100 million bytes derived from
Wikipedia that, in addition to English text, also includes markup, special characters, and text in
other languages. EnWik-8 contains 90M characters for training, 5M for validation, and 5M for
testing.

Stanford Sentiment Treebank-2. The Stanford Sentiment Treebank-2 (SST2) (Socher et al.,
2013) is a 2 class corpus with fully labeled parse trees for analysis of the compositional effects
of sentiment in language. The dataset consists of 11,855 single sentences extracted from movie re-
views. It was parsed with the Stanford parser and includes 215,154 unique phrases from the parse
trees, each annotated by 3 human judges.

Stanford Sentiment Treebank-5. Stanford Sentiment Treebank-5 (SST5) (Socher et al., 2013)
is a 5 class dataset used for sentiment analysis. It consists of 11,855 single sentences extracted
from movie reviews. It includes 215,154 unique phrases from parse trees, each annotated by 3
human judges. Phrases are classified as negative, somewhat negative, neutral, somewhat positive, or
positive.

Banking-77. Banking-77 (B77) (Casanueva et al., 2020) is a highly fine-grained 77 class classifi-
cation dataset comprising 13083 customer service queries labelled with 77 intents.

C.1.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. We use as backbones the Switch Transformer (Fedus et al., 2022) and Generalist Lan-
guage Model (Du et al., 2022). Table 8 contains the specification over self-attention (SA) layers,
feed-forward network (FFN) layers, Mixture-of-Experts (MoE) layers, attention span (Att. Span),

3www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/

20

Published as a conference paper at ICLR 2025

embedding size and parameter count for both backbones at small and medium configurations for
each pretraining task. All backbones use 16 experts with top-2 expert routing.

Table 8: Language Modeling Backbone Specifications

Model SA Layers FFN Layers MoE Layers Att. Span Embed Size Params

WikiText-103 Pretrain

Switch-small 3 - 3 256 128 70M
Switch-medium 6 - 6 1024 352 216M

GLaM-small 6 3 3 2048 144 79M
GLaM-medium 12 6 6 2048 352 220M

EnWik-8 Pretrain

Switch 8 - 8 2048 352 36M

Optimizer. All experiments use Adam with a base learning rate of 0.0007. Small configurations
use 3000 iterations of learning rate warmup while medium configurations use 4000 iterations.

Pretrain Specification. For WikiText-103 pretraining, small Switch backbones are trained for 40
epochs with a batch size of 96 and medium Switch backbones are trained for 80 epochs with a batch
size of 48. Small GLaM backbones are trained for 60 epochs with a batch size of 48 and medium
GLaM backbones are trained for 120 epochs with a batch size of 48. We use 0.01 auxiliary load
balancing loss.

For EnWik-8 pretraining, both Switch and GLaM backbones are trained for 80 epochs with batch
size 48. We use 0.01 auxiliary load balancing loss.

Finetune Specification. For SST2 and SST5 finetuning, we finetune for 5 epochs using Adam and
a base learning rate of 0.001 without warmup and a batch size of 16. For B77 we finetune for 50
epochs using Adam and a base elarning rate of 0.00001 without warmup and a batch size of 16.

Compute Resources. All models are trained, evaluated, and finetuned on four NVIDIA A100
SXM4 40GB GPUs.

C.2 IMAGE CLASSIFICATION

C.2.1 DATASETS AND ATTACKS

ImageNet-1K. We use the full ImageNet dataset that contains 1.28M training images and 50K
validation images. The model learns to predict the class of the input image among 1000 categories.
We report the top-1 and top-5 accuracy on all experiments.

ImageNet-A/O/R. ImageNet-A (Hendrycks et al., 2021b) contains real-world adversarially fil-
tered images that fool current ImageNet classifiers. A 200-class subset of the original ImageNet-
1K’s 1000 classes is selected so that errors among these 200 classes would be considered egregious,
which cover most broad categories spanned by ImageNet-1K.

ImageNet-O (Hendrycks et al., 2021b) contains adversarially filtered examples for ImageNet out-of-
distribution detectors. The dataset contains samples from ImageNet-22K but not from ImageNet1K,
where samples that are wrongly classified as an ImageNet-1K class with high confidence by a
ResNet-50 are selected.

Imagenet-R (Hendrycks et al., 2021a) contains various artistic renditions of object classes from the
original ImageNet dataset, which is discouraged by the original ImageNet. ImageNet-R contains
30,000 image renditions for 200 ImageNet classes, where a subset of the ImageNet-1K classes is
chosen.

21

Published as a conference paper at ICLR 2025

Adversarial Attacks. We use produce corrupted ImageNet samples using white box attacks fast
gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD)
(Madry et al., 2017), and black box simultaneous perturbation stochastic approximation (SPSA)
(Uesato et al., 2018). FGSM and PGD use a perturbation budget of 1/255 while SPSA uses a per-
turbation budget 1. All attacks perturb under l∞ norm. PGD and uses 20 steps with step size of 0.15
and SPSA uses 20 iterations.

C.2.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. Our results are based off of the Swin Transformer (Liu et al., 2021) architecture. This
backbone uses 4 base layers of depth 2, 2, 18, and 2. The first two base layers each contain 2 self-
attention layers and 2 feed-forward layers. The third base layer contains 18 self-attention layers
with alternating feed-forward and MoE layers. The final base layer contains 2 self-attention layers
with one feed-forward and one MoE layer. The embedding dimension is 96 and the heads per base
layer are 3, 6, 12, and 24. We use 16 total experts and present results for both top-1 and top-2 expert
routing. The total parameter count is 280M.

Optimizer. We use AdamW with a base learning rate of 1.25e-4, minimum learning rate of 1.25e-
7, 0.1 weight decay and cosine scheduling.

Train Specification. We train for 60 epochs with a batch size of 128 and 0.1 auxiliary balancing
loss.

Compute Resources. All models are trained and evaluated on four NVIDIA A100 SXM4 40GB
GPUs.

C.3 ADVERSARIAL ATTACK AT HIGHER PERTURBATION BUDGET

Figure 3: ACMoE and Swin Transformer under PGD attack at increasing perturbation budgets. ACMoE widens
its performance gain over Swin at increasingly severe attacks in both top-1 test accuracy (left) and top-5 test
accuracy (right), starting at approximately 7% improvement at 1/255 and ending at just over 10% at 5/255.

Figure 3 shows that for PGD perturbation budgets 1/255 through to 5/255, ACMoE widens its al-
ready substantive robust performance gain over Swin, with top-1 and top-5 test accuracy improve-
ments increasing from 7% to approximately 10%.

C.4 CLUSTER VISUALIZATION

We pass random ImageNet batches through Swin and ACMoE and plot the representations along
with their assigned experts, using t-sne to represent the high dimensional data in 2 dimensions.
The result is shown in Fig. 4, where we see Swin learns overlapping and indistinguishable expert
clusters. ACMoE, on the other hand, performs better in learning the clusters, producing much clearer
and better-distinguished clusters.

22

Published as a conference paper at ICLR 2025

Figure 4: Cluster Visualization on ImageNet. Each token is represented as a point and colored by its assigned
expert. Left: Swin identifies one cluster clearly (yellow/gold) but otherwise fails to distinguish remaining
clusters Right: ACMoE learns better-defined expert clusters.

Table 9: Ablation on Measure of Spread in
Switch Transformer (Fedus et al., 2022)

Measure of Spread Test PPL (↓)
Variance 34.87
MAD 34.42

Table 10: Ablation on Layer Placement in
Switch Transformer (Fedus et al., 2022)

Layer Placement Test PPL (↓)
Back Half 34.95
Alternating 34.80
Skip 1 34.42
Full 34.88

C.5 ABLATION STUDIES

C.5.1 MEASURES OF DISPERSION

We present in Tables 9 and 11 results for Switch-ACMoE and Swin-ACMoE when changing the
measure of dispersion used in the AC routing transformation (Definition 1) from mean absolute
deviation (MAD) to variance. We see mean absolute deviation outperforms variance as a measure
of spread. This is an intuitive finding given that squared distances, as used in variance computa-
tions, are highly sensitive to outliers. Using mean absolute deviation as an alternative measure of
spread reduces this issue and produces a more robust estimate of dispersion. We note that MAD
is not the only robust measure of spread. We conjecture that taking interquartile range as an addi-
tionally robust measure of spread may produce good results in both clean and contaminated data.
We, however, leave this interesting direction to future research as interquartile range poses im-
plementation challenges as it requires designing concurrent linear scans over the expert clusters.
MAD, by contrast, requires just two computations of the mean which is easily parallelizable using
torch.index reduce().

C.5.2 LAYER PLACEMENT

We consider the effect of layer placement in the Switch-medium configuration and in the Swin
Transformer (see Sections C.1.2 and C.2.2 for the full model specifications). In particular, Switch is
a 6 layer model and Swin is a 24 layer model. With regard to Swin, we focus on the deepest block
of depth 18 to implement our ACMoE layers. This is due to the change in embedding size between
base layers, meaning we are restricted to this base layer of depth 18. Note further that Swin only
uses MoE layers in an alternating pattern with feed-forward networks between each MoE layer. For
example, for Switch, a full ACMoE specification would mean placing ACMoE on layers 2,3,4,5,6.
For Swin, a full specification means placing ACMoE on layers 4,6,8,10,12,14,16,18. To examine
the effect of layer placement we consider the following models:

23

Published as a conference paper at ICLR 2025

Table 11: Ablation on Measure of Spread in
Swin Transformer

Measure of Spread Test Acc.
Top 1 Top 5

Swin-Top1 (Liu et al., 2021)

Variance 75.06 92.49
MAD 75.39 92.56

Swin-Top2 (Liu et al., 2021)

Variance 76.11 93.08
MAD 76.31 93.14

Table 12: Ablation on Layer Placement in Swin
Transformer

Layer Placement Test Acc.
Top 1 Top 5

Swin-Top1 (Liu et al., 2021)

Back Half 75.16 92.46
Skip 2 75.34 92.42
Skip 1 75.35 92.45
Full 75.39 92.56

Swin-Top2 (Liu et al., 2021)

Back Half 76.16 93.02
Skip 2 76.10 92.93
Skip 1 76.29 92.98
Full 76.31 93.14

• Alternating: For Switch this means we place ACMoE on layers 2,4,6. For Swin this means
we place ACMoE on layers 4,8,12,16.

• Back Half : For Switch this means we place ACMoE on just the last 3 layers of the network.
For Swin this means we place ACMoE on just the last 5 layers of the network.

• Skip 2: For Swin this means we palce ACMoE on layers 8,10,12,14,16,18.
• Skip 1: For Switch this means we place ACMoE on layers 3,4,5,6. For Swin this means we

place ACMoE on layers 6,8,10,12,14,16,18.
• Full: We place ACMoE on every possible layer.

We present in Table 10 results for Switch and Swin ACMoE models when changing the positions of
the ACMoE layers throughout the network. The results agree with our expectation that, generally
speaking, more ACMoE layers improve performance, but a in some circumstances a threshold is
met at the point where ACMoE layers are used too early in the network such that the model has not
been able to learn reasonably good approximations of the cluster membership of the tokens yet.

We find that in the Switch backbone, performance improves the more ACMoE layers we add, which
agrees with our expectation that more ACMoE layers improve performance. However, we find that
top performance is attained when allowing two standard MoE layers to go before the first ACMoE,
as opposed to the minimum of 1 standard MoE layer. We conjecture this is because we need to give
the model a few layers before the first ACMoE in order to learn decent representations such that we
have good enough estimated cluster assignments for use in the ACMoE layer. Encouragingly, we
find just one additional standard MoE layer is sufficient for the benefits of ACMoE to be obtained.

We find in Table 12 that with Swin, best performance is obtained using ACMoE on every possible
layer, again agreeing with our expectation that more ACMoE layers improve performance. With
Swin, however, we do not face any drop in performance from placing ACMoE too early in the
network, and indeed we see Full attaining top performance. We conjecture that Swin does not
encounter this issue since Swin uses four layers of feed forward networks before the first MoE layer,
and so by the first MoE layer the representations are of reasonably good quality to produce good
estimates of the cluster membership.

C.5.3 RANDOM ABLATION

We show the efficacy of the adaptive clustering transformation M (Definition 1) in our AC router
at capturing meaningful feature-wise information by ablating it against an alternate d × d diagonal
matrix made up of normal random variables with mean 1 and standard deviation 0.5 (where we clip
any negative values to prevent negative weights). We present in Tables 13 and 14 results for lan-
guage modeling (using Switch) and image classification (using Swin), which show fairly substantial
drops in performance in both backbones. This offers evidence to the claim that our AC routing
transformation is meaningfully weighting features to improve routing, and that performance gains

24

Published as a conference paper at ICLR 2025

of our proposed method do not flow from a kind of implicit regularization of introducing noise into
the router.

Table 13: Random Ablation in Switch (Fedus
et al., 2022)

Model Test PPL (↓)
Switch-Random (Fedus et al., 2022) 38.17
Switch-ACMoE 34.42

Table 14: Random Ablation in Swin (Liu et al.,
2021)

Model Top 1 Acc. Top 5 Acc.

Swin-Random 74.22 91.87
Swin-ACMoE 76.31 93.14

C.6 CLUSTER WEIGHT MIXING

The AC routing scheme estimates the cluster membership of each token based on its highest affinity
cluster assigned in the previous layer. We could also further leverage the top-k structure of the MoE
models by mixing the cluster-wise feature weights with weights corresponding to the affinities in the
top-k routing. For example, if h has affinity scores α and 1−α to clusters k and k′ respectively, then
we could also obtain the required AC routing transformation for h as Mk∗ = αMk + (1 − α)Mk′ .
This approach therefore factors in the confidence with which we believe h belongs to cluster k or
k′, and can be used for integrating ACMoE into higher expert granularity backbones (i.e higher
top-k settings). Tables 15 and 16 show results for computing Mk∗ by mixing the top-affinity cluster
weights (Mix 2) in Switch and GLaM with top-2 routing, versus our presented results which compute
Mk∗ just based off of the highest affinity cluster (Mix 1). We see that GLaM-ACMoE benefits
substantially from cluster weight mixing whereas Switch-ACMoE prefers just using its top affinity
cluster weights. For consistency across models, we present in our main body the Mix 1 results, as
GLaM-ACMoE already performs extremely strongly using Mix 1 and so we prefer to opt for the
added performance gain in the Switch backbone.

Table 15: Results on Cluster Weight Mixing in
Switch (Fedus et al., 2022)

Clusters Mixed Test PPL (↓)
Mix 2 34.66
Mix 1 34.42

Table 16: Results on Cluster Weight Mixing in
GLaM (Du et al., 2022)

Clusters Mixed Test PPL (↓)
Mix 2 35.29
Mix 1 36.26

C.7 ADAPTIVE CLUSTERING INTEGRATION INTO SOFT MIXTURE OF EXPERTS

We present here results for integrating ACMoE into SoftMoE (Puigcerver et al., 2023). To use
ACMoE in the SoftMoe setting, which can be be understood as a top-E routing setting where all
experts are active for every token, we compute Mk∗ using cluster weight mixing (Section C.6)
over the top-8 highest affinity clusters. We present the performance of Soft-ACMoE on clean data,
adversarially attacked data, and ImageNet-A/O/R in the following Tables 17 and 18.

Table 17: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA using SoftMoE
(Puigcerver et al., 2023) backbone

Model Clean Data PGD FGSM SPSA
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

SoftMoE (Puigcerver et al., 2023) 72.86 90.92 45.29 78.91 56.95 85.60 66.59 88.70
Soft-ACMoE (Ours) 73.21 91.23 48.25 80.49 59.01 86.69 70.63 93.22

We see in Tables 17 and 18 the efficacy of ACMoE in the SoftMoE backbone, offering evidence of
the adaptability of our framework into further MoE setups. In particular, the SoftMoE framework
models a setting in which expert clusters are highly overlapping, as each token is soft assigned to all
experts. Therefore, the performance gains shown in clean and contaminated data of Soft-ACMoE
demonstrates that our AC router is well-suited to modeling such a clustering structure.

25

Published as a conference paper at ICLR 2025

Table 18: Test Accuracy on Image Classification in Imagenet-A/O/R using SoftMoE (Puigcerver
et al., 2023) backbone

Model Im-A Im-R Im-O
Top-1 Acc. (↑) Top-1 Acc. (↑) AUPR (↑)

SoftMoE (Puigcerver et al., 2023) 6.69 31.63 17.97
Soft-ACMoE (Ours) 6.93 32.18 18.35

C.8 IMAGE CLASSIFICATION IN SWIN TRANSFORMER BASE CONFIGURATION

We further evaluate the performance ACMoE when scaling up model size in Table 19. We integrate
ACMoE into the Base configuration of Swin (0.5B parameters) and evaluate on clean ImageNet-1K
as well as under adversarial atacks.

Table 19: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA using Swin Base (Liu
et al., 2021) backbone

Model Clean Data PGD FGSM SPSA
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Swin-Base (Liu et al., 2021) 79.06 94.37 44.61 79.20 59.91 87.72 68.94 89.00
Swin-ACMoE-Base (Ours) 79.25 94.42 46.28 80.24 61.78 87.55 70.18 89.33

C.9 ROUTER STABILITY

We present in Fig. 5 the routing stability of ACMoE, SMoE, XMoE, and StableMoE in the Switch
backbone evaluated on WikiText-103. Routing instability computes over adjacent layers the propor-
tion of tokens that are assigned to different experts across the two layers. Specifically, for n tokens
[h1, . . . ,hn], we compute at layer ℓ the matrix Sℓ ∈ Rn×n such that Sℓ

ij = 1 if the ith and jth tokens
are assigned to the same expert in layer ℓ and is 0 otherwise. The router instability at layer ℓ can
then be calculated as rℓ = mean(∣Sℓ−1 − Sℓ∣). This metric therefore captures the degree to which
tokens that are assigned to the same experts remain together through the model. A high rℓ indicates
the router doesn’t maintain consistent expert assignments, as tokens that it considers semantically
similar at one layer it considers different at the next.

Figure 5: Router Instability of ACMoE, SMoE, XMoE, and StableMoE. ACMoE maintains consis-
tent routing, while baseline routers more frequently change the expert assignments of tokens.

In Fig. 5, we see that baseline routers reach high levels of instability, where in the case of SMoE
and StableMoE, at the last layer over 60% of tokens are assigned to a different expert. ACMoE, by
contrast, maintains a more consistent, stable assignment through the model, with no more than 20%
of tokens changing expert assignment across any layer.

C.10 DYNAMIC ROUTING

We further test the compatibility of our Adaptive Clustering routing scheme in dynamic top-p rout-
ing. In this setting, rather than routing each token to its top-k highest affinity experts in each MoE

26

Published as a conference paper at ICLR 2025

layer, we route each token to all experts that have affinity over a certain threshold p. This setting
permits activating more or less experts for different tokens at different layers throughout the model,
therefore dynamically assigning experts to tokens. We integrate our AC routing directly into this set-
ting using the same setup as in Section 3, where the AC routing transformation is computed based
on the estimated cluster membership of each token using the top affinity assignment of the previous
layer. We present the results for Switch transformer on WikiText-103 language modeling in the
following Table 20.

Table 20: Results on Top-p Dynamic Routing in Switch Backbone (Fedus et al., 2022)

Model Test PPL (↓)

Fixed top-k routing (Shazeer et al., 2017)

Switch-medium (Fedus et al., 2022) 35.48
ACMoE-medium (Ours) 34.42

Dynamic top-p routing (Guo et al., 2024)

Switch-Fixed p 35.20
Switch-ACMoE-Fixed p (Ours) 34.14
Switch-Learnable p 34.29
Switch-ACMoE-Learnable p (Ours) 33.49

For fixed p, we set p = 0.05. For learnable p, we initialize the parameter to 0.05. We select this ini-
tialization as it reproduces approximately similar performance in the Switch backbone under default
top-2 routing, thereby aiding direct comparison between fixed top-k and dynamic top-p routing. We
see in the dynamic routing setting, ACMoE maintains the same consistent improvement over the
Switch baseline of roughly 1 full PPL. These results suggest ACMoE is well-suited to the dynamic
routing setting.

D BROADER IMPACT

Our research offers benefits to Mixture-of-Expert (MoE) architectures in both clean and contami-
nated settings. In particular, our work offers socially beneficial outcomes with regard to defense
against adversarial attack, which we hope can be used to protect important AI systems from mali-
cious actors. Furthermore, as large language models, many of which are built on MoE backbones,
continue to profligate and be used in important societal settings, we hope our improved robustness
to data contamination can aid this promising technology to continue to grow and improve in realistic
settings of noisy training and evaluation data. Our research also shows substantially faster conver-
gence than comparative baselines. We believe this faster convergence can deliver significant social
benefit in terms of reducing the energy requirements of large model training, thereby helping to ease
the growing environmental burden of AI training runs. We recognize there will always be risk of
misuse with AI systems, however we hope that our work can be used to enhance and protect socially
beneficial AI while also decreasing the environmental impact of this technology. We furthermore
hope that our research can spur others on to continue building on robust and efficient AI for social
good.

27

	Introduction
	A Clustering Optimization Perspective
	Clustering Optimization
	MoE as Clustering Optimization

	A Tight Cluster is a Specialized Expert
	Full Technical Formulation
	Adaptive Clustering Promotes Robustness and Fast Convergence

	Experimental Results
	Language Modeling
	Image Classification
	Empirical Analysis

	Related Work
	Conclusion and Future Work
	Technical Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Proposition 2

	Implementation Procedure and Computational Efficiency
	Experimental Details and Additional Experiments
	Language Modeling
	Datasets
	Model, Optimizer, & Train Specification

	Image Classification
	Datasets and Attacks
	Model, Optimizer, & Train Specification

	Adversarial Attack At Higher Perturbation Budget
	Cluster Visualization
	Ablation Studies
	Measures of Dispersion
	Layer Placement
	Random Ablation

	Cluster Weight Mixing
	Adaptive Clustering Integration into Soft Mixture of Experts
	Image Classification in Swin Transformer Base Configuration
	Router Stability
	Dynamic Routing

	Broader Impact

