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Supplement to ‘“Tight Clusters Make Specialized Experts”
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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

To begin with, we present the following lemma to show the existence of constants «y, for k € [ E]

that satisfy Eqn. 7:

Lemma 3. Forany )\ > 0, Eqn. 7 has exactly d real solutions with respect to «.
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Proof of Lemma 3. Without loss of generality, assume that sy > so, > -+ > sqx. Denote

ola):= > L g (12)

qé[d] qu + « )\

Then, the existence of solutions to Eqn. 7 is equivalent to the condition ¢(«;) = 0. Note that ()
is a strictly decreasing function in its connected continuity domains since

1

A g (san +)? (1
forall « € R\ {-s1g,...,—Sqx }. Further, we observe that
lim p(a)=-c0, lim ¢(a)=+o00 (14)
a5y, st
for all ¢ € [d], and
lim (o) = 4 <0. (15)
a—>+o00 A

Now consider the domain of continuity of ¢ (), namely (—oo, —s1x )U(—81k, —Sog )U- - -U(—8 gk, 00).
Due to the monotonicity and limits 14 & 15, there exists a unique solution in each of the intervals
except for (—oo, —s1;) where the function is always strictly negative, thus, yielding d roots in total.

O

Now we follow up with the main proof of this section.

Proof of Theorem 1. First, let Ty, := {i : r(i) = k} for convenience. Now let us restate the clustering
optimization problem (4) here once again:

1 ( A 1
Z N2 Z Z WqkPijq + = log ),
ke[E] ng i,7€Z, qe[d] g dwgy,
suchthat Y wg, =1, Vke[E], (16)
qe[d]

Hz}:i:lQ(c’ {witremy) =

where we have immediately used the fact that

1 1/d
D (u||wp)= Y glogi. (17
qe[d] Wak

Also, note that

1
Z (’qupijq + )\E log
qe[d]

1
) = Z (qupijq - )\E log(dqu))
]

dqu qe[d

A
= Z (qupijq —3 log qu) - Alogd. (18)
qeld]
We can ignore the term Alogd since it does not depend on the optimization variable. Method of
Lagrange multipliers turns this constrained optimization problem into the following unconstrained
counterpart:

. 1 A
min L(c, {wg }re(p] @) = Z N2 Z Z (ququ - Elogqu) + Z ak( Z Wqk — 1)7
] ke[E]

Wi, ke[E] 1Yk i.5€Zk qe[d qe[d]

where a = [oy ... « L]T is the vector of Lagrange multipliers. Note that the last optimization
problem can be separated into the following L independent optimization subproblems:

1 A
i ) 9 = Tz ( 17q 7 1 ) - 1 9
Hil,n Ek(c Wi a) B} E E | WqkPijq 0g Wqk + O (qg[d] Wyl )

k 1,J€Tk qe[d
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for k € [E]. Since the objective function is a positive combination of convex functions, the opti-
mization problem is also convex. By setting the derivatives of L with respect to both optimization
variables to 0, we obtain the following system of equations:

0L =s —é—+a =0
(9’qu T ek dqu o
0Ly,

Doy~ ety Wak = 1=0

for all k € [E'], where sy, is the data dispersion measure defined in the theorem statement. The first
equation yields

A 1

== 19

Wk d sqr + o’ (19
where vy, is found from ) ¢4 wqr = 1 which in fact gives
1 d

—_— == (20)
qe[d] Sqk t O A

for all k € [ E'] as desired. ]

A.2 PROOF OF PROPOSITION 1

Since Proposition 1 is a composition of Lemma | and Lemma 2, we proceed by providing their
proofs.

A.2.1 PROOF OF LEMMA 1

Proof of Lemma 1. Notice that we can expand inequality (1) as

> midus > > o2,
ie[d] i€[d]

where we let oy := pp, — . Since M, entries are mean-scaled, we can rewrite them as
/
mi= =2 @)
X jeld) ™M

for some initial dispersion estimates {m’ } je(4). Without loss of generality, assume that [d'] is the
set of dimension indices for which the dispersions are relatively much smaller than those in the
rest of the dimensions in the sense that m] > m] for any i € [d'] and j € [d] \ [d']. Then, there
exists a positive a << 1/2 such that Yie[ar]Mi > d =« and Yierg (] My < . By the assumption
that clusters are best-separated along the features for which they cluster tightly, this means that the
weight matrix M, maximizes the contribution of largest d’ terms in ¥, (4] m;ou? corresponding
to individual feature-wise distances in dimensions where the feature dispersions are the smallest
instead of giving uniform weights to all dimensions, which leads to inequality (1). O

A.2.2 PROOF OF LEMMA 2

Proof of Lemma 2. Since we use the Lo distance between the token h and p.. as a similarity metric,
we assign cluster gi+ to the token h’ iff |[h' — pg+| < |h' — pi|. Assume that the token h’ is a
noisy observation of an underlying true token h which actually originates from cluster gx+. Then,
the token A’ can be decomposed as h’ = h + € for a random noise € ~ N'(0,X.). Now define
the decision variable D(h') := |h’ — = ||? — |h' — pr|? which turns the clustering condition to
D(h') < 0 for the cluster gi+. Let us analyze the decision variable D as a random variable where
randomness may come from the underlying sampling strategy and noise. Note that

D(h') = |h+e- | ~ [+ e~ |

= [ = e |2 = [P = gk |* + 2(per - i) e
=D(h) +20u’e, (22)
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where dp == pp, — pg+. Due to the assumption that h is drawn from the distribution g+, it can be
rewritten as h = py+ + v with v ~ N(0, 3+ ). Then for the first term in Eqn. 22, we have

D(h) = |h = pye|* = |h = pie|?
=0p" (2h — ppr — pax)

=op(2v - op)
=20p"v — [op?. (23)
Substituting this back into Eqn. 22, we get
D(h') = 20p" (v +€) - |op|*. (24)

This shows that D(h') ~ N (=|6p|?, 40" (Zpx + £c)dp). Since D(A') follows a normal distri-
bution with the derived parameters, the probability that k' is assigned to cluster gy is given by

2
Pr(correct cluster) = Pr (D(h) <0) = ® ( [on| ) , (25)
2\/0pT (Zpr + B )op
where © denotes the CDF of normal distribution as usual. Since ® is an increasing function, the
probability that the noisy token h is assigned to the correct cluster is proportional to the distance
between the cluster centroids and inverse proportional to the covariance matrices of the cluster and
the additive noise. On the other hand, for the incorrect clustering probability, we have

2
Pr(incorrect cluster) = 1 — ® [on| (26)
2\/6puT (Zpr + e )op

as claimed. O

A.3 PROOF OF PROPOSITION 2

Proof of Proposition 2. Let the router be given by g and let the softmax function be given by
ge : R? - R?, parameterized by expert embeddings {€i}ic[]- The network loss depends on expert
embeddings only through the router function g. We shall explore the exclusive contribution of each
expert embedding in minimizing £2°™°F_ In order to do this, we look at the network loss as a scalar
function of i*" expert embedding vector while treating all other network parameters as fixed. Then,
we can write LACMOE 1 R9 . R such that LACMOE = LACMOE (5 (e)). For simplicity, we shall
omit the subscript 8. The gradient that comes from back-propagation is then given by

VQiEACMOE — (VgLACMoE)T v6i97 (27)

where Ve, g € R?*? denotes the Jacobian matrix of g since for gy, := (ge(e;))k, we can write

0 ACMOoE aﬁACMoE 8gk
7[: © geeey = P . 28
Deis (91 9gd) zk: D90 Deis (28)
Note that for g = softmax(h"Mey ), we have
0
aegk = mshsgk(6ki - gz) = mshsbki- (29)

Then, the element of the Hessian matrix of the network loss at index (s,t) € [d] x [d] can be written
as

82£ACMOE 9 aﬁACMoE agk
Oeis0e;y ) Oejy k 09k Oeis
) Z 62£ACM0E agj agk . 8£ACMOE 829k
w\G Ogklg; Oeir | Des gk OeisOeiy
62£ACMOE 8£ACMOE
= myhymeh SRR P S—
' tlzk: (; dgrdg; 7 ) : g ]
= mshsmthtBi7 (30)

HS(Z) (£ACMOE) _
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where B; is some constant that depends only on index ¢. Due to Eqn. 30, the Hessian takes the
following matrix form

H® = B;(Mh)(Mh)". (31)

Taking expectation from both sides, we obtain
En-(usy [H?] = BiEp.(us) [M(hh")M] = B;M(Z)M, (32)
where we assume h is centered. Now recall that M = diag(my,...,mg) where for each 4, m; ~

1/\/X;; holds. Assume that the covariance matrix X is symmetric positive definite. Then, it is
diagonalizable as 3 = UAUT with A = diag(\q,...,\q), a diagonal matrix with eigenvalues of
3.. With the transformation M, we get

MXYXM = MUAU'M =UMAMUT (33)

m%)g
=U
mg)\d

Since the eigenvalues capture the variances along the principal components of the covariance matrix,
m2, as a reciprocal of a measure of dimension-wise dispersion, is reasonably correlated with 1/X;,
as demonstrated by Lemma 4, implying A\; < \; == m; > m,; with high probability. Therefore,

we obtain that

U'. (34)

)‘maX(MEM) r2nln max(z)
Amin (M2 M) mfnax min(X)
which implies the claim. O
Lemma 4 (Correlation between dimension-wise varainces and covariance eigenvalues). Let {b; }icq
be the set of normalized basis vectors of R, Consider a symmetric positive definite covariance
matrix 3 and its unit eigenvectors {v; };c[q]- Assume that the eigenvector v; is a reasonably small

perturbation of the basis vector b; such that v, b; > 1 — € for all i € [d] and a small constant € > 0.
Then, for all i € [d], we have

kK(MXM) = <kK(X), (35)

|)\i_2ii| SE'maX|)\i—)\7‘|, (36)
J#t :
where {\; }ie[q] is the set of ordered eigenvalues of 3 corresponding to eigenvectors {v; }e[a]

Proof of Lemma 4. Note that each diagonal element of the SPD covariance matrix 3 can be written
as

Then, the difference on the left hand side of Eqn. 36 can be bounded as

|)\z_2u| = Z by ('UTb ‘ i(l—(’viei)Q)—ZAj('l);bi)z
jeld] J#i
=\ Z(va Z Aj (’uTb (38)
J#i J#i
= [D (N = A)) (0] by)?
j#i
< max|)\ =N D (v by)?
J#i
= max |\ - \j] (1 - (v:b:)?) (39)
Jj#i
<emax |\ - Ajl,
VEL
where we used the fact that
.
> ('va-bi)2 = (Z (U;bi)")j) (Z (vibi) 'uk) =b'b=1
jeld] j=1 k=1
to obtain Eqn. 38 and Eqn. 39 since the eigenvectors of X are orthonormal. [
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B IMPLEMENTATION PROCEDURE AND COMPUTATIONAL EFFICIENCY

Training and Inference. Given the AC routing scheme requires requires the expert assignment
per token from the previous layer, we can only implement AC routing from the second layer on. We
incorporate AC routing into both training and inference stages. This is because, firstly, AC routing
is designed to offer improvements to both clean and contaminated data, and so even in the presence
of completely clean train and test data, it is advantageous to incorporate the AC method into both
stages. Secondly, it is commonplace to encounter data contamination only at the test stage and
indeed highly possible to encounter it in train as well. Therefore, in the interest of robustness as
well, AC routing is incorporated into both stages.

Computational Efficiency. Computing the required {wy, } ] for number of experts E requires
no learnable parameters and is obtained simply by computing the mean absolute deviation for each
set of tokens assigned to the k' expert. This can be computed using just two computations of
the mean — once for the mean per cluster and once again for the mean of the absolute deviations
per cluster — done in parallel over all clusters using torch.index reduce() and is of the order
O(2nd) = O(n) for n tokens. Hence the upper-bound time complexity of the MoE layer is un-
affected. We provide in Table 7 additional efficiency analysis in terms of throughput, max GPU
memory allocated, and parameters which shows no significant efficiency loss compared to baseline
MOoE architectures.

C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

C.1 LANGUAGE MODELING

C.1.1 DATASETS

WikiText-103. The WikiText-103* dataset contains around 268K words and its training set con-
sists of about 28K articles with 103M tokens. This corresponds to text blocks of about 3600 words.
The validation set and test sets consist of 60 articles with 218K and 246K tokens respectively.

EnWik-8. The EnWik-8 dataset is a byte-level dataset of 100 million bytes derived from
Wikipedia that, in addition to English text, also includes markup, special characters, and text in
other languages. EnWik-8 contains 90M characters for training, SM for validation, and 5SM for
testing.

Stanford Sentiment Treebank-2. The Stanford Sentiment Treebank-2 (SST2) (Socher et al.,
2013) is a 2 class corpus with fully labeled parse trees for analysis of the compositional effects
of sentiment in language. The dataset consists of 11,855 single sentences extracted from movie re-
views. It was parsed with the Stanford parser and includes 215,154 unique phrases from the parse
trees, each annotated by 3 human judges.

Stanford Sentiment Treebank-5. Stanford Sentiment Treebank-5 (SST5) (Socher et al., 2013)
is a 5 class dataset used for sentiment analysis. It consists of 11,855 single sentences extracted
from movie reviews. It includes 215,154 unique phrases from parse trees, each annotated by 3
human judges. Phrases are classified as negative, somewhat negative, neutral, somewhat positive, or
positive.

Banking-77. Banking-77 (B77) (Casanueva et al., 2020) is a highly fine-grained 77 class classifi-
cation dataset comprising 13083 customer service queries labelled with 77 intents.

C.1.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. We use as backbones the Switch Transformer (Fedus et al., 2022) and Generalist Lan-
guage Model (Du et al., 2022). Table 8 contains the specification over self-attention (SA) layers,
feed-forward network (FFN) layers, Mixture-of-Experts (MoE) layers, attention span (Att. Span),

3 www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
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embedding size and parameter count for both backbones at small and medium configurations for
each pretraining task. All backbones use 16 experts with top-2 expert routing.

Table 8: Language Modeling Backbone Specifications

Model SA Layers FFN Layers MoE Layers Att. Span  Embed Size  Params

WikiText-103 Pretrain

Switch-small 3 - 3 256 128 70M
Switch-medium 6 - 6 1024 352 216M
GLaM-small 6 3 3 2048 144 79M
GLaM-medium 12 6 6 2048 352 220M

EnWik-8 Pretrain

Switch 8 - 8 2048 352 36M

Optimizer. All experiments use Adam with a base learning rate of 0.0007. Small configurations
use 3000 iterations of learning rate warmup while medium configurations use 4000 iterations.

Pretrain Specification. For WikiText-103 pretraining, small Switch backbones are trained for 40
epochs with a batch size of 96 and medium Switch backbones are trained for 80 epochs with a batch
size of 48. Small GLaM backbones are trained for 60 epochs with a batch size of 48 and medium
GLaM backbones are trained for 120 epochs with a batch size of 48. We use 0.01 auxiliary load
balancing loss.

For EnWik-8 pretraining, both Switch and GLaM backbones are trained for 80 epochs with batch
size 48. We use 0.01 auxiliary load balancing loss.

Finetune Specification. For SST2 and SST5 finetuning, we finetune for 5 epochs using Adam and
a base learning rate of 0.001 without warmup and a batch size of 16. For B77 we finetune for 50
epochs using Adam and a base elarning rate of 0.00001 without warmup and a batch size of 16.

Compute Resources. All models are trained, evaluated, and finetuned on four NVIDIA A100
SXM4 40GB GPUs.

C.2 IMAGE CLASSIFICATION

C.2.1 DATASETS AND ATTACKS

ImageNet-1K. We use the full ImageNet dataset that contains 1.28M training images and 50K
validation images. The model learns to predict the class of the input image among 1000 categories.
We report the top-1 and top-5 accuracy on all experiments.

ImageNet-A/O/R. ImageNet-A (Hendrycks et al., 2021b) contains real-world adversarially fil-
tered images that fool current ImageNet classifiers. A 200-class subset of the original ImageNet-
1K’s 1000 classes is selected so that errors among these 200 classes would be considered egregious,
which cover most broad categories spanned by ImageNet-1K.

ImageNet-O (Hendrycks et al., 2021b) contains adversarially filtered examples for ImageNet out-of-
distribution detectors. The dataset contains samples from ImageNet-22K but not from ImageNet1K,
where samples that are wrongly classified as an ImageNet-1K class with high confidence by a
ResNet-50 are selected.

Imagenet-R (Hendrycks et al., 2021a) contains various artistic renditions of object classes from the
original ImageNet dataset, which is discouraged by the original ImageNet. ImageNet-R contains
30,000 image renditions for 200 ImageNet classes, where a subset of the ImageNet-1K classes is
chosen.
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Adversarial Attacks. We use produce corrupted ImageNet samples using white box attacks fast
gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD)
(Madry et al., 2017), and black box simultaneous perturbation stochastic approximation (SPSA)
(Uesato et al., 2018). FGSM and PGD use a perturbation budget of 1/255 while SPSA uses a per-
turbation budget 1. All attacks perturb under /., norm. PGD and uses 20 steps with step size of 0.15
and SPSA uses 20 iterations.

C.2.2 MODEL, OPTIMIZER, & TRAIN SPECIFICATION

Models. Our results are based off of the Swin Transformer (Liu et al., 2021) architecture. This
backbone uses 4 base layers of depth 2, 2, 18, and 2. The first two base layers each contain 2 self-
attention layers and 2 feed-forward layers. The third base layer contains 18 self-attention layers
with alternating feed-forward and MoE layers. The final base layer contains 2 self-attention layers
with one feed-forward and one MoE layer. The embedding dimension is 96 and the heads per base
layer are 3, 6, 12, and 24. We use 16 total experts and present results for both top-1 and top-2 expert
routing. The total parameter count is 280M.

Optimizer. We use AdamW with a base learning rate of 1.25e-4, minimum learning rate of 1.25e-
7, 0.1 weight decay and cosine scheduling.

Train Specification. We train for 60 epochs with a batch size of 128 and 0.1 auxiliary balancing
loss.

Compute Resources. All models are trained and evaluated on four NVIDIA A100 SXM4 40GB
GPUs.

C.3 ADVERSARIAL ATTACK AT HIGHER PERTURBATION BUDGET

—e— ACMOE (Ours) —e— ACMOE (Ours)
Swin Transformer

Swin Transformer

Test Accuracy

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Perturbation Budget Perturbation Budget

Figure 3: ACMoE and Swin Transformer under PGD attack at increasing perturbation budgets. ACMoE widens
its performance gain over Swin at increasingly severe attacks in both top-1 test accuracy (left) and top-5 test
accuracy (right), starting at approximately 7% improvement at 1/255 and ending at just over 10% at 5/255.

Figure 3 shows that for PGD perturbation budgets 1/255 through to 5/255, ACMoE widens its al-
ready substantive robust performance gain over Swin, with top-1 and top-5 test accuracy improve-
ments increasing from 7% to approximately 10%.

C.4 CLUSTER VISUALIZATION

We pass random ImageNet batches through Swin and ACMoE and plot the representations along
with their assigned experts, using t-sne to represent the high dimensional data in 2 dimensions.
The result is shown in Fig. 4, where we see Swin learns overlapping and indistinguishable expert
clusters. ACMOoE, on the other hand, performs better in learning the clusters, producing much clearer
and better-distinguished clusters.
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Figure 4: Cluster Visualization on ImageNet. Each token is represented as a point and colored by its assigned
expert. Left: Swin identifies one cluster clearly (yellow/gold) but otherwise fails to distinguish remaining
clusters Right: ACMOoE learns better-defined expert clusters.

Table 9: Ablation on Measure of Spread in  Table 10: Ablation on Layer Placement in

Switch Transformer (Fedus et al., 2022) Switch Transformer (Fedus et al., 2022)
Measure of Spread  Test PPL ({) Layer Placement  Test PPL ({)
Variance 34.87 Back Half 34.95
MAD 34.42 Alternating 34.80

Skip 1 34.42
Full 34.88

C.5 ABLATION STUDIES

C.5.1 MEASURES OF DISPERSION

We present in Tables 9 and 11 results for Switch-ACMoE and Swin-ACMoE when changing the
measure of dispersion used in the AC routing transformation (Definition 1) from mean absolute
deviation (MAD) to variance. We see mean absolute deviation outperforms variance as a measure
of spread. This is an intuitive finding given that squared distances, as used in variance computa-
tions, are highly sensitive to outliers. Using mean absolute deviation as an alternative measure of
spread reduces this issue and produces a more robust estimate of dispersion. We note that MAD
is not the only robust measure of spread. We conjecture that taking interquartile range as an addi-
tionally robust measure of spread may produce good results in both clean and contaminated data.
We, however, leave this interesting direction to future research as interquartile range poses im-
plementation challenges as it requires designing concurrent linear scans over the expert clusters.
MAD, by contrast, requires just two computations of the mean which is easily parallelizable using
torch.index_reduce ().

C.5.2 LAYER PLACEMENT

We consider the effect of layer placement in the Switch-medium configuration and in the Swin
Transformer (see Sections C.1.2 and C.2.2 for the full model specifications). In particular, Switch is
a 6 layer model and Swin is a 24 layer model. With regard to Swin, we focus on the deepest block
of depth 18 to implement our ACMOoE layers. This is due to the change in embedding size between
base layers, meaning we are restricted to this base layer of depth 18. Note further that Swin only
uses MoE layers in an alternating pattern with feed-forward networks between each MoE layer. For
example, for Switch, a full ACMOoE specification would mean placing ACMoE on layers 2,3,4,5,6.
For Swin, a full specification means placing ACMoE on layers 4,6,8,10,12,14,16,18. To examine
the effect of layer placement we consider the following models:
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Table 11: Ablation on Measure of Spread in  Table 12: Ablation on Layer Placement in Swin

Swin Transformer Transformer
Test Acc. Test Acc.
Measure of Spread Topl Top5 Layer Placement Topl Top5
Swin-Topl (Liu et al., 2021) Swin-Topl (Liu et al., 2021)
Variance 75.06 92.49 Back Half 75.16  92.46
MAD 75.39  92.56 Skip 2 75.34 9242
- Skip 1 75.35 9245
Swin-Top2 (Liu et al., 2021) Full 7539  92.56
Variance 76.11  93.08 Swin-Top2 (Liu et al., 2021)
MAD 76.31 93.14
Back Half 76.16  93.02
Skip 2 76.10 92.93
Skip 1 76.29 9298
Full 76.31 93.14

o Alternating: For Switch this means we place ACMoE on layers 2,4,6. For Swin this means
we place ACMoE on layers 4,8,12,16.

* Back Half: For Switch this means we place ACMOE on just the last 3 layers of the network.
For Swin this means we place ACMOE on just the last 5 layers of the network.

Skip 2: For Swin this means we palce ACMOoE on layers 8,10,12,14,16,18.

Skip I: For Switch this means we place ACMOoE on layers 3,4,5,6. For Swin this means we
place ACMOoE on layers 6,8,10,12,14,16,18.

* Full: We place ACMOoE on every possible layer.

We present in Table 10 results for Switch and Swin ACMoE models when changing the positions of
the ACMOoE layers throughout the network. The results agree with our expectation that, generally
speaking, more ACMOoE layers improve performance, but a in some circumstances a threshold is
met at the point where ACMOE layers are used too early in the network such that the model has not
been able to learn reasonably good approximations of the cluster membership of the tokens yet.

We find that in the Switch backbone, performance improves the more ACMOoE layers we add, which
agrees with our expectation that more ACMOoE layers improve performance. However, we find that
top performance is attained when allowing two standard MoE layers to go before the first ACMOoE,
as opposed to the minimum of 1 standard MoE layer. We conjecture this is because we need to give
the model a few layers before the first ACMOE in order to learn decent representations such that we
have good enough estimated cluster assignments for use in the ACMOoE layer. Encouragingly, we
find just one additional standard MoE layer is sufficient for the benefits of ACMOoE to be obtained.

We find in Table 12 that with Swin, best performance is obtained using ACMOoE on every possible
layer, again agreeing with our expectation that more ACMOoE layers improve performance. With
Swin, however, we do not face any drop in performance from placing ACMoE too early in the
network, and indeed we see Full attaining top performance. We conjecture that Swin does not
encounter this issue since Swin uses four layers of feed forward networks before the first MoE layer,
and so by the first MoE layer the representations are of reasonably good quality to produce good
estimates of the cluster membership.

C.5.3 RANDOM ABLATION

We show the efficacy of the adaptive clustering transformation M (Definition 1) in our AC router
at capturing meaningful feature-wise information by ablating it against an alternate d x d diagonal
matrix made up of normal random variables with mean 1 and standard deviation 0.5 (where we clip
any negative values to prevent negative weights). We present in Tables 13 and 14 results for lan-
guage modeling (using Switch) and image classification (using Swin), which show fairly substantial
drops in performance in both backbones. This offers evidence to the claim that our AC routing
transformation is meaningfully weighting features to improve routing, and that performance gains
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of our proposed method do not flow from a kind of implicit regularization of introducing noise into
the router.

Table 13: Random Ablation in Switch (Fedus  Table 14: Random Ablation in Swin (Liu et al.,

etal., 2022) 2021)
Model Test PPL () Model Top 1 Acc. Top 5 Acc.
Switch-Random (Fedus et al., 2022) 38.17 Swin-Random 74.22 91.87
Switch-ACMoE 34.42 Swin-ACMoE 76.31 93.14

C.6 CLUSTER WEIGHT MIXING

The AC routing scheme estimates the cluster membership of each token based on its highest affinity
cluster assigned in the previous layer. We could also further leverage the top-k structure of the MoE
models by mixing the cluster-wise feature weights with weights corresponding to the affinities in the
top-k routing. For example, if h has affinity scores v and 1 -« to clusters k and &’ respectively, then
we could also obtain the required AC routing transformation for h as My« = aMj, + (1 — ) M.
This approach therefore factors in the confidence with which we believe h belongs to cluster & or
k', and can be used for integrating ACMOoE into higher expert granularity backbones (i.e higher
top-k settings). Tables 15 and 16 show results for computing M+ by mixing the top-affinity cluster
weights (Mix 2) in Switch and GLaM with top-2 routing, versus our presented results which compute
M+ just based off of the highest affinity cluster (Mix 1). We see that GLaM-ACMOoE benefits
substantially from cluster weight mixing whereas Switch-ACMOoE prefers just using its top affinity
cluster weights. For consistency across models, we present in our main body the Mix 1 results, as
GLaM-ACMOoE already performs extremely strongly using Mix 1 and so we prefer to opt for the
added performance gain in the Switch backbone.

Table 15: Results on Cluster Weight Mixing in ~ Table 16: Results on Cluster Weight Mixing in

Switch (Fedus et al., 2022) GLaM (Du et al., 2022)
Clusters Mixed Test PPL (|) Clusters Mixed Test PPL ({)
Mix 2 34.66 Mix 2 35.29
Mix 1 34.42 Mix 1 36.26

C.7 ADAPTIVE CLUSTERING INTEGRATION INTO SOFT MIXTURE OF EXPERTS

We present here results for integrating ACMOoE into SoftMoE (Puigcerver et al., 2023). To use
ACMOE in the SoftMoe setting, which can be be understood as a top-E routing setting where all
experts are active for every token, we compute M+ using cluster weight mixing (Section C.6)
over the top-8 highest affinity clusters. We present the performance of Soft-ACMOoE on clean data,
adversarially attacked data, and ImageNet-A/O/R in the following Tables 17 and 18.

Table 17: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA using SoftMoE
(Puigcerver et al., 2023) backbone

Clean Data
Model Topl Top5 ‘

PGD | FGSM | SPSA
Topl Top5 Topl TopS Topl Top5

SoftMoE (Puigcerver et al., 2023)  72.86  90.92 | 4529 7891 5695 8560 66.59 88.70
Soft-ACMOoE (Ours) 7321 91.23 | 4825 8049 59.01 86.69 70.63 93.22

We see in Tables 17 and 18 the efficacy of ACMOoE in the SoftMoE backbone, offering evidence of
the adaptability of our framework into further MoE setups. In particular, the SoftMoE framework
models a setting in which expert clusters are highly overlapping, as each token is soft assigned to all
experts. Therefore, the performance gains shown in clean and contaminated data of Soft-ACMoE
demonstrates that our AC router is well-suited to modeling such a clustering structure.
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Table 18: Test Accuracy on Image Classification in Imagenet-A/O/R using SoftMoE (Puigcerver
et al., 2023) backbone

Model Im-A Im-R Im-O
Top-1 Acc. (1)  Top-1 Acc. (1) AUPR (1)

SoftMoE (Puigcerver et al., 2023) 6.69 31.63 17.97

Soft-ACMOoE (Ours) 6.93 32.18 18.35

C.8 IMAGE CLASSIFICATION IN SWIN TRANSFORMER BASE CONFIGURATION

We further evaluate the performance ACMoE when scaling up model size in Table 19. We integrate
ACMOoE into the Base configuration of Swin (0.5B parameters) and evaluate on clean ImageNet-1K
as well as under adversarial atacks.

Table 19: Test Accuracy on ImageNet corrupted PGD, FGSM, and SPSA using Swin Base (Liu
et al., 2021) backbone

Clean Data
Model Topl Top5 ‘

PGD | FGSM | SPSA
Topl TopS Topl TopS5S Topl Top$S

Swin-Base (Liu et al., 2021)  79.06  94.37 | 44.61 7920 5991 87.72 6894 89.00
Swin-ACMoE-Base (Ours)  79.25 9442 | 46.28 80.24 61.78 87.55 70.18 89.33

C.9 ROUTER STABILITY

We present in Fig. 5 the routing stability of ACMoE, SMoE, XMoE, and StableMoE in the Switch
backbone evaluated on WikiText-103. Routing instability computes over adjacent layers the propor-
tion of tokens that are assigned to different experts across the two layers. Specifically, for n tokens
[h1,...,h,], we compute at layer £ the matrix S* € R™" such that S¢; = 1 if the i*" and j*" tokens
are assigned to the same expert in layer ¢ and is O otherwise. The router instability at layer ¢ can
then be calculated as 7* = mean(]S*~! — §¥|). This metric therefore captures the degree to which
tokens that are assigned to the same experts remain together through the model. A high  indicates
the router doesn’t maintain consistent expert assignments, as tokens that it considers semantically
similar at one layer it considers different at the next.

—e— SMoE
StableMoE

—+— XMoE

1 —=— ACMOE

Router Instability

4.0
Layer

Figure 5: Router Instability of ACMoE, SMoE, XMoE, and StableMoE. ACMoE maintains consis-
tent routing, while baseline routers more frequently change the expert assignments of tokens.

In Fig. 5, we see that baseline routers reach high levels of instability, where in the case of SMoE
and StableMOoE, at the last layer over 60% of tokens are assigned to a different expert. ACMOoE, by
contrast, maintains a more consistent, stable assignment through the model, with no more than 20%
of tokens changing expert assignment across any layer.

C.10 DyNAMIC ROUTING

We further test the compatibility of our Adaptive Clustering routing scheme in dynamic top-p rout-
ing. In this setting, rather than routing each token to its top-k highest affinity experts in each MoE
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layer, we route each token to all experts that have affinity over a certain threshold p. This setting
permits activating more or less experts for different tokens at different layers throughout the model,
therefore dynamically assigning experts to tokens. We integrate our AC routing directly into this set-
ting using the same setup as in Section 3, where the AC routing transformation is computed based
on the estimated cluster membership of each token using the top affinity assignment of the previous
layer. We present the results for Switch transformer on WikiText-103 language modeling in the
following Table 20.

Table 20: Results on Top-p Dynamic Routing in Switch Backbone (Fedus et al., 2022)

Model Test PPL ({)

Fixed top-k routing (Shazeer et al., 2017)

Switch-medium (Fedus et al., 2022) 35.48
ACMoE-medium (Ours) 34.42

Dynamic top-p routing (Guo et al., 2024)

Switch-Fixed p 35.20
Switch-ACMOoE-Fixed p (Ours) 34.14
Switch-Learnable p 34.29

Switch-ACMoE-Learnable p (Ours) 33.49

For fixed p, we set p = 0.05. For learnable p, we initialize the parameter to 0.05. We select this ini-
tialization as it reproduces approximately similar performance in the Switch backbone under default
top-2 routing, thereby aiding direct comparison between fixed top-k and dynamic top-p routing. We
see in the dynamic routing setting, ACMoE maintains the same consistent improvement over the
Switch baseline of roughly 1 full PPL. These results suggest ACMOoE is well-suited to the dynamic
routing setting.

D BROADER IMPACT

Our research offers benefits to Mixture-of-Expert (MoE) architectures in both clean and contami-
nated settings. In particular, our work offers socially beneficial outcomes with regard to defense
against adversarial attack, which we hope can be used to protect important Al systems from mali-
cious actors. Furthermore, as large language models, many of which are built on MoE backbones,
continue to profligate and be used in important societal settings, we hope our improved robustness
to data contamination can aid this promising technology to continue to grow and improve in realistic
settings of noisy training and evaluation data. Our research also shows substantially faster conver-
gence than comparative baselines. We believe this faster convergence can deliver significant social
benefit in terms of reducing the energy requirements of large model training, thereby helping to ease
the growing environmental burden of Al training runs. We recognize there will always be risk of
misuse with Al systems, however we hope that our work can be used to enhance and protect socially
beneficial Al while also decreasing the environmental impact of this technology. We furthermore
hope that our research can spur others on to continue building on robust and efficient Al for social
good.
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