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A FAQs: Frequently Asked Questions

A.1 How does the stationarity condition for a time-series differ from that in RL?

Conventionally, stationarity is the time-series literature refers to the condition where the distribution
(or few moments) of a finite sub-sequence of random-variables in a time-series remains the same as
we shift it along the time index axis [Cox and Miller, 2017]. In contrast, the stationarity condition
in the RL setting implies that the environment is fixed [Sutton and Barto, 2018]. This makes the
performance J(π) of any policy π to be a constant value throughout. In this work, we use ‘stationarity’
as used in the RL literature.

A.2 Can the POMDP during each episode (Figure 2) itself be non-stationary?

Any source of non-stationarity can be incorporated in the (unobserved) state to induce another
stationary POMDP (from which we can obtain a single sequence of interaction). The key step towards
tractability is Assumption 1 that enforces additional structure on the performance of any policy across
the sequence of (non-)stationary POMDPs.

A.3 What if it is known ahead of time that the non-stationarity is passive only?

In such cases where the underlying changes are independent of the past actions,
Eβ1

[Ji+1(π)|Ji(π)] = Eβ2
[Ji+1(π)|Ji(π)], for any policies β1 and β2. Therefore, there is no need

for double-counterfactual reasoning to correct for the changes observed in the past. Particularly, in
Theorem 1 the second use of importance sampling can be avoided as Eβi,βi+1

[
ρiĴi+1(π)

∣∣∣Mi(π)
]

=

Eβi,βi+1

[
Ĵi+1(π)

∣∣∣Mi(π)
]

under passive non-stationarity. Rest of the procedure for OPEN can be
modified accordingly.

A.4 How should different non-stationarities be treated in the on-policy setting?

Perhaps interestingly, OPEN makes no effective distinction between active and passive non-
stationarity in the on-policy setting. Notice that in the on-policy setting, importance ratios ρ = 1
everywhere, therefore the use of double counterfactual reasoning has no impact. Intuitively, in the
on-policy setting, there is no need to dis-entagle the active and passive sources of non-stationarity, as
the prediction needs to be made about the same policy that was used during data collection.

A.5 Can you tell us more about when would Assumption 1 be (in)valid?

Yes, we provide a detailed discussion on Assumption 1 in Appendix C.

A.6 What are the limitations and potential negative impacts of the work?

Our work presents the first few steps towards off-policy evaluation in the presence of non-stationarity.
Towards this goal, we used Assumption 1 to enforce a higher-order stationarity condition. We have
provided extended discussion regarding the same in Appendix C and a practitioner should carefully
analyze their problem setup to conclude if the assumption holds (at least approximately).

Further, often off-policy evaluation is used in safety-critical settings, where it is important to provide
confidence intervals [Thomas et al., 2015, 2019, Jiang and Huang, 2020]. Because of our use of
instrument variables, our estimator may have high-variance. This can be explained by observing the
closed form equation in (22) obtained using the IV procedure. Here, Z is the instrument variable
and if it is weakly correlated with X (i.e,. Z>X has a small magnitude) then (Z>X)−1 can be large
thereby increasing variance. However, our proposed method OPEN only provides point-estimates
and thus using it as-is in safety critical settings would be irresponsible.

If the application does exhibit non-stationarity, a practitioner may have to make a tough choice
between prior methods that provide confidence intervals under the stationarity assumption, or the
proposed method that may be applicable to their non-stationary setting but does not provide any
confidence intervals.
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B Extended Related Work

In this section we discuss several different research directions that are relevant to the topic of this
paper. We refer the readers to the work by Padakandla [2020], Khetarpal et al. [2020] for a more
exhaustive survey.

B.1 Off-policy evaluation in stationary domains

In the off-policy RL setup, there is a large body of literature that tackles the off-policy estimation
problem. One line of work leverages dynamic programming [Puterman, 1990, Sutton and Barto,
2018] to develop off-policy estimators [Boyan, 1999, Sutton et al., 2008, 2009, Mahmood et al.,
2014, 2015]. Several recent approaches also build upon a dual perspective for dynamic programming
[Puterman, 1990, Wang et al., 2007, Nachum and Dai, 2020] for performing off-policy evaluation
[Liu et al., 2018, Xie et al., 2019, Jiang and Huang, 2020, Uehara et al., 2020, Dai et al., 2020, Feng
et al., 2021]. These works require fully-observable states. Other direction of work takes Monte-Carlo
perspective to perform trajectory based importance sampling and are applicable to stationary setting
with partial observability [Precup, 2000, Thomas et al., 2015, Jiang and Li, 2015, Thomas and
Brunskill, 2016]. The proposed work builds upon this direction.

Several works have also discussed various techniques for variance reduction [Jiang and Li, 2015,
Thomas and Brunskill, 2016, Munos et al., 2016, Harutyunyan et al., 2016, Liu et al., 2018, Espeholt
et al., 2018, Nachum et al., 2019, Yang et al., 2020, Yuan et al., 2021]. However, these methods are
restricted to stationary domains.

B.2 Non-stationarity in stationary domains

In the face of uncertainty, prior works often opt for exploratory or safe behavior by acting optimisti-
cally or pessimistically, respectively. This is often achieved by using the collected data to dynamically
modify the observed rewards for any state-action pair by either providing bonuses [Agarwal et al.,
2020, Taiga et al., 2021] or penalties [Buckman et al., 2020, Cetin and Celiktutan, 2021]. One could
view this as an instance of active non-stationarity. Similarly, in temporal-difference (TD) methods
the target for the value function keeps changing and such changes are also dependent on the data
collected in the past [Sutton and Barto, 2018]. However, we note that such non-stationarities are
only artifacts of the learning algorithm as the underlying domain remains stationary throughout. In
contrast, the focus of our work is on settings where the underlying domain is non-stationary.

B.3 Single Episode Continuing setting

As discussed in Section 4, non-stationarity can be alternatively modeled using a single long episode
in a stationary POMDP. From this point of view, one may wonder if the average-reward/continuing
setting [Sutton and Barto, 2018] could be useful? While there have been off-policy evaluation
methods designed to tackle the continuing setting [Liu et al., 2018, Nachum et al., 2019, Yang et al.,
2020], they require two important conditions that are no applicable for our setting: (a) They assume
access to the true underlying state such that there is no partial-observability, and (b) They assume that
the transition tuples are sampled from the stationary state-visitation distribution of a policy. In the
non-stationary setting that we consider, we may not have data from any stationary state visitation
distribution, and we may not have access to the true underlying states either.

B.4 Non-stationarity in MDPs/Bandits

Several prior methods have considered tackling non-stationarity for reinforcement learning problems.
For instance, a Hidden-Mode MDP is a setting that assumes that the environment changes are confined
to a few hidden modes, where each mode represents a unique MDP. This provides a tractable way to
model a limited number of MDPs [Choi et al., 2000, Basso and Engel, 2009], or perform updates
using mode-change detection [Da Silva et al., 2006, Padakandla et al., 2019, Alegre et al., 2021].
Similarly there are methods [Xie et al., 2020a] based on hidden-parameter MDPs [Doshi-Velez and
Konidaris, 2016] that consider a more general setup where the hidden variable can be continuous.
Alternatively, many methods [Thomas et al., 2017, Jagerman et al., 2019, Chandak et al., 2020b, Zhou
et al., 2020, Poiani et al., 2021, Liotet et al., 2021] have considered time-dependent MDPs [Rachelson
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et al., 2009]. Aspects related to safety and confidence intervals have also been explored [Ammar
et al., 2015, Chandak et al., 2020a, 2021]. However, the focus of these methods are on settings with
passive non-stationarity, where the past actions do not influence the underlying non-stationarity. Our
works extends this direction of research to provide off-policy evaluation amidst active and hybrid
non-stationarity as well.

Non-stationary multi-armed bandits (NMAB) capture the setting where the horizon length is one, but
the reward distribution changes over time [Moulines, 2008, Besbes et al., 2014, Russac et al., 2019,
Vernade et al., 2020]. Many variants of NMAB, like cascading non-stationary bandits [Wang et al.,
2019a, Li and de Rijke, 2019] and rotting bandits [Levine et al., 2017, Seznec et al., 2018] have also
been considered. In contrast, this work focuses on methods that generalize to the sequential decision
making setup where the horizon length can be more than 1.

B.5 Multi-agent Games

Non-stationarity also occurs in multiplayer games [Singh et al., 2000, Bowling, 2005, Conitzer and
Sandholm, 2007] where the opponent can change their strategy as a response to the agent’s previous
decisions. These types of changes are related to active non-stationarity that we consider in this work.
In such games, opponent modeling has been shown to be useful and regret bounds for multi-player
games [Zhang and Lesser, 2010, Mealing and Shapiro, 2013, Foster et al., 2016, Foerster et al.,
2018]. Further, often these games still assume that the underlying system/environment (excluding
other players) is stationary and focus on searching for (Nash) equilibria. Similarly, non-stationarities
are also induced in the multi-agent systems where an agent tries to influence other agents [Jaques
et al., 2019, Wang et al., 2019b, Xie et al., 2020b, Wang et al., 2021]. However, under general
non-stationarity, the underlying system may also change and thus there may not even exist any fixed
equilibria. Perhaps a more relevant setting would be that of evolutionary/dynamics games, where the
pay-off matrix and specification of the game can change over time [Gemp and Mahadevan, 2017,
Hennes et al., 2019]. Such methods, however, do not leverage any underlying structure in how the
game is changing nor do they account for settings where the changes might be a consequence of past
interactions of the agent. While relevant, these other research areas are distinct from our setting of
interest.

B.6 Dynamical Systems and Time-Series Analysis

The proposed method for modeling the evolution of a policy’s performance over time using stochastic
estimates of past performances may be reminiscent of state-space methods (e.g., Kalman filtering)
for dynamical systems [Hamilton, 1994]. However, in comparison to these methods, we do not need
to model noise variables, which could have been challenging in our case as noise is heteroskedastic
because of past (off-policy) performance estimates being computed using data from different behavior
policies. Further the form of OPEN estimator allows leveraging (accelerated) gradient descent
based optimizers to obtain the solution instead of relying on computationally expensive closed-form
solutions that are typically needed by state-space models. Due to this, in practice our method can also
be used with non-linear functions f (e.g., recurrent neural network based auto-regressive models).

Different applications of time-series analysis have also discussed the use of lags as instruments
[Achen, 2000, Reed, 2015, Bellemare et al., 2017, Wilkins, 2018, Wang and Bellemare, 2019]. Our
use case differs from these prior works in that we look at the full sequential decision making setup for
reinforcement learning, and also consider a novel importance-weighted instrument-variable regression
model.

C Discussion on the Structural Assumption

Assumption 1 states that ∀m ∈M such that the performance J(π) associated with m is j,

∀i, Pr(Ji+1(π) = ji+1|Mi = m;π) = Pr(Ji+1(π) = ji+1|Ji(π) = j;π).

As discussed earlier, consider a ‘meta-transition’ function that characterizes Pr(Ji+1(π)|Ji(π), π′)
similar to how the standard transition function in an MDP characterizes Pr(St+1|St, At). This
assumption is imposing the following two conditions: (a) A higher-order stationarity condition on
the meta-transitions under which non-stationarity can result in changes over time, but the way the
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changes happen is fixed, and (b) Knowing the past performance(s) of a policy π provides sufficient
information for the meta-transition function to model how the performance will change upon executing
any (possibly different) policy π′. We provide some examples in Figure 6 to demonstrate few settings
to discuss the applicability of this assumption.

Figure 6: In this figure we plot different kinds of performance trends and discuss the applicability of
Assumption 1 for each. The red curve corresponds to the forecast obtained using an auto-regressive
model. (Left) In many cases where the performance of a policy is smoothly changing over time (for
e.g., drifts in interests of an user that a recommender system needs to account for), looking at the
past performances can often provide indication of how the performance would evolve in the future.
(Middle) Changes in performances does not necessarily have to be smooth. What Assumption 1
enforces is that the changes have some structure which can be generalized to make predictions about
how the performance would change in the future. Here, the performance jumps between different
values (for e.g., if there is discontinuous change in the underlying system), but till their is some
structure in the changes, it can be leveraged to make predictions about the future performances as
well. (Right) While Assumption 1 can be applicable in many setting, there can be settings where this
assumption does not hold. For example, if a motor of an industrial system is degrading over time but
this degradation has no effect on the observable performance, until the point when the motor breaks
down and the performance drops completely. In such cases, just looking at past performances may
not be sufficient to infer how performance will change in the future.

C.1 Latent Variables

Instead of enforcing structure on the performances, a possible alternative could have been to enforce
structure on how the underlying latent variable (e.g., friction of a motor, interests of a user) are
changing over time. While this might be more intuitive for some, just considering structure on this
latent variable need not be sufficient. Dealing with latent/hidden variables can particularly challenging
in the off-policy setting, as it may often not be possible (unless additional assumptions are enforced)
to infer the latent variable using just the observations from past interactions, even in the stationary
setting [Tennenholtz et al., 2020, Namkoong et al., 2020, Shi et al., 2021, Bennett et al., 2021].

Further, the end goal is to estimate the performance of a policy in the future. Therefore, even if
we could infer the possible latent variables for the future episodes, it would still require additional
regularity conditions on the (unknown) function that maps from the latent variable to the performance
associated with it for any given policy. Without that it would not be possible to generalize what
would the performance be for the inferred latent variables of the future. And as we discuss in Figure
7, these two assumptions on (a) the structure of how the latent variable could change, and (b) the
regularity condition on how the latent variable impacts the performance, can often be reduced to a
single condition directly on the structure of how the performances are changing.

D Proofs for Theoretical Results

D.1 Double Counterfactual Reasoning

Theorem 1. Under Assumptions 1 and 2, ∀m ∈M such that the performance J(π) associated with
m is j, Eπ [Ji+1(π)|Ji(π) = j] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣Mi = m
]
.

Proof. In the following, to make the dependence of trajectories explicit, we will additionally define
ρ(h) and g(h) to be the importance ratios and the return associated with a trajectory h. Using this
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Figure 7: (Left) Considering structured changes in latent variable z (blue arrow) of the POMDP
might often be more intuitive. However, as J(π) estimation is required ultimately, unless performance
of a policy also has some structure (green arrows) given z, generalizing across (potentially unseen) z’s
may not be possible. Structured changes for blue and green arrows consequently results in structured
changes in J(π) (dashed-blue arrows). For example, if the performance J(π) of a policy changes
(Lipschitz) smoothly with z, then (Lipschitz) smooth changes between z values automatically also
imply (Lipschitz) smooth changes between J(π) values. (Right) When executing a policy π, say z
changes as zi = i, and Ji(π) changes periodically as sin(zi). Here, even though both z and J change
smoothly, changes in zi+1 can be modeled using one past term (i.e, zi) as given just the current
performance value Ji(π) it is not possible to predict whether the next performance Ji+1(π) would
increase or decrease in the future. However, such a problem can be easily resolved by looking at
multiple past performances to infer the trend (for e.g., just using past 2 terms here suffices to exactly
predict the future outcomes(red curve)).

notation, it can be observed that,

Eπ [Ji+1(π)|Mi] =
∑
hi+1

Pr(hi+1|Mi;π)g(hi+1)

(a)
=
∑
hi+1

∑
mi+1

∑
hi

Pr(hi+1,mi+1, hi|Mi;π)g(hi+1)

(b)
=
∑
hi

Pr(hi|Mi;π)
∑
mi+1

Pr(mi+1|hi,Mi;π)

∑
hi+1

Pr(hi+1|mi+1, hi,Mi;π)g(hi+1)

(c)
=
∑
hi

Pr(hi|Mi;π)
∑
mi+1

Pr(mi+1|hi,Mi)
∑
hi+1

Pr(hi+1|mi+1;π)g(hi+1)

(d)
=
∑
hi

ρ(hi) Pr(hi|Mi;βk)
∑
mi+1

Pr(mi+1|hi,Mi)∑
hi+1

ρ(hi+1) Pr(hi+1|mi+1;βi+1)g(hi+1)

(e)
=
∑
hi

∑
mi+1

∑
hi+1

Pr(hi|Mi;βi) Pr(mi+1|hi,Mi) Pr(hi+1|mi+1;βi+1)
[
ρ(hi)ρ(hi+1)g(hi+1)

]

= Eβiβi+1
[ρiρi+1Gi+1|Mi]

= Eβiβi+1

[
ρiĴi+1(π)|Mi

]
, (7)

where (a) follows from the law of total probability, (b) follows from the chain rule of probability, (c)
follows using conditional independence, where mi+1 is independent of π given hi and Mi because of
the meta-transition function T , and hi+1 i independent of hi and Mi given mi+1 and π, (d) follows
from the use of importance sampling to switch the sampling distribution under Assumption 2, and (e)
follows from re-arrangement of terms. Finally, ρi and ρi+1 are the random variables corresponding
the importance ratios in episodes i and i+ 1. Random variable Gi+1 corresponds to the return under
β in episode i+ 1.
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Now notice that

Eπ [Ji+1(π)|Mi] =
∑
y∈R

Pr(Ji+1(π) = y|Mi;π)y

(f)
=
∑
y∈R

Pr(Ji+1(π) = y|Ji(π);π)y

= Eπ [Ji+1(π)|Ji(π)] , (8)

where (f) follows from Assumption 1. Finally, combining (7) and (8),

Eπ [Ji+1(π)|Ji(π)] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣∣Mi

]
.

Similarly, under a more generalized Assumption 1, where ∀m ∈M,

∀i > p, Pr(Ji+1(π) = ji+1|Mi = m;π′) = Pr(Ji+1(π) = ji+1|(Ji−k(π) = ji−k)pk=0;π′).

then similar steps as earlier can be used to conclude that

Eπ [Ji+1(π)|(Ji−k(π))pk=0] = Eβiβi+1

[
ρiĴi+1(π)|Mi

]
. (9)

Note that no additional importance correction is needed in (9) compared to (8). The term ρi only
shows up to correct for the transition between Mi and Mi+1 due to the meta-transition function
T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h). This independence on the choice of p also holds if
T is non-Markovian in the previous Mi values. Although, additional importance correction would be
required if T is dependent on multiple past Hi terms.

D.2 Asymptotic bias of θ̂naive

Recall that θ̂naive is given by,

θ̂naive ∈ argmin
θ∈Θ

n−1∑
i=1

(
f
(
Ĵi(π); θ

)
− ρiĴi+1(π)

)2

.

Because Ĵi(π) is an unbiased estimate of Jπ, let Ĵi(π) = Ji(π) + ηi, where ηi is a mean zero
noise. Let N := [η1, η2, ..., ηn−1]> and J := [J1(π), J2(π), ..., Jn−1(π)]>. When f is a linear
function of its inputs, expected value Eπ[Ji+1(π)|Ji(π)] = Jiθπ . Also, as ρiĴi+1(π) is an unbiased
estimator for Ji(π)θπ given Ji(π), let ρiĴi+1(π) = Ji(π)θπ + ζi, where ζi is mean zero noise. Let
N2 := [ζ1, ζ2, ..., ζn−1]> then θnaive can be expressed as,

θ̂naive =
(

(J + N)
>

(J + N)
)−1

(J + N)
>

(Jθπ + N2)

=
(
J>J + 2J>N + N>N

)−1(J>Jθπ + N>Jθπ + J>N2 + N>N2

)
=

(
1

n

(
J>J + 2J>N + N>N

))−1(
1

n

(
J>Jθπ + N>Jθπ + J>N2 + N>N2

))
. (10)

In the limit, using continuous mapping theorem when the inverse in (10) exists,

lim
n→∞

θ̂naive =

(
lim
n→∞

1

n

(
J>J + 2J>N + N>N

))−1(
lim
n→∞

1

n

(
J>Jθπ + N>Jθπ + J>N2 + N>N2

))
.

(11)

Observe that both N and N2 are mean zero and uncorrelated with each other and also with J.
Therefore, the terms corresponding to J>N, J>N2, and N>N2 in (11) will be zero almost surely due
to Rajchaman’s strong law of large numbers for uncorrelated random variables [Rajchman, 1932,
Chandra, 1991]. However, the term corresponding to N>N will not be zero in the limit, and instead
roughly result in (average of the) variances of ηi. Consequently, this results in,

θ̂naive
a.s.−→

(
J>J + N>N

)−1 J>Jθπ.
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D.3 Importance-Weighted IV-Regression

Theorem 2. Under Assumptions 1 and 2, ∀i, Cov
(
Ĵi−1(π), Ĵi(π)− Ji(π)

)
= 0.

Proof.

∀i, Cov
(
Ĵi(π), Ĵi+1(π)− Ji+1(π)

)
= Eβ

[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
︸ ︷︷ ︸

(I)

− Eβ
[
Ĵi(π)

]
Eβ
[
Ĵi+1(π)− Ji+1(π)

]
︸ ︷︷ ︸

(II)

. (12)

Focusing on term (II),

Eβ
[
Ĵi(π)

]
Eβ
[
Ĵi+1(π)− Ji+1(π)

]
= Eβ

[
Ĵi(π)

] (
Eβ
[
Ĵi+1(π)

]
− Ji+1(π)

)
(a)
= Eβ

[
Ĵi(π)

]
(Ji+1(π)− Ji+1(π))

= 0,

where (a) follows from the fact that under Assumption 2, Ĵi+1(π) is an unbiased estimator for
Ji+1(π) [Thomas, 2015]. Focusing on term (I) and using the law of total expectation,

Eβ
[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
= Eβ

[
Ĵi(π)Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)
]

︸ ︷︷ ︸
(III)

]
.

Expanding term (III) further using the law of total expectation,

Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)
]

(b)
= Eβ

[
Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1, Ĵi(π)
]∣∣∣Ĵi(π)

]
(c)
= Eβ

[
Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]∣∣∣Ĵi(π)
]

(d)
= 0,

where in (b) the outer expectation is over the next environment Mi+1 given that the current perfor-
mance estimate is Ĵi(π) and that βi was used for interaction in episode i. The inner expectation is over
Ĵi+1(π), where the trajectory used for estimating Ĵi+1(π) is collected using β in the environment
Mi+1. Step (c) follows from the fact that conditioned on the environment Mi+1, interactions in Mi+1

are independent of quantities observed in the episodes before i+ 1. Finally, step (d) follows from
observing that

Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]
= Eβ

[
Ĵi+1(π)

∣∣∣Mi+1

]
− Ji+1(π)

(e)
= Ji+1(π)− Ji+1(π)

= 0,

where (e) follows from the fact that under Assumption 2, Ĵi+1(π) is an unbiased estimator of the
performance of π for the given environment Mi+1. Therefore both (a) and (b) in (12) are zero, and
we conclude the result.

Theorem 3. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̂n is
a strongly consistent estimator of θπ , i.e., θ̂n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

Proof. For the linear setting, θ̂n can be expressed as,

φ̂n ∈ argmin
φ∈Φ

n−1∑
i=2

(
Ĵi−1(π)φ− Ĵi(π)

)2

. (13)

θ̂n ∈ argmin
θ∈Θ

n−1∑
i=2

(
J̄i(π)θ − ρiĴi+1(π)

)2

, where J̄i := Ĵi−1φ̂n. (14)
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Before moving further, we introduce some additional notations. Particularly, we will use matrix based
notations such that it provides more insights into how the steps would work out for other choices of
instrument variables as well.

X1 :=
[
Ĵ1(π), ..., Ĵn−2(π)

]>
, Λ1 := diag([ρ1, ..., ρn−2]),

X2 :=
[
Ĵ2(π), ..., Ĵn−1(π)

]>
, Λ2 := diag ([ρ2, ..., ρn−1]) ,

X3 :=
[
Ĵ3(π), ..., Ĵn(π)

]>
X̄2 :=

[
J̄2(π), ..., J̄n−1(π)

]>
,

where the diag corresponds to a diagonal matrix with off-diagonals set to zero.

In the following, we split the proof in two parts: (a) we will first show that

θ̂n =
(
X>1 X2

)−1 (
X>1 Λ2X3

)
,

and then (b) using this simplified form for θ̂n we will show that θ̂n
a.s.−→ θπ .

Part (a) Solving (13) in matrix form,

φ̂n =
(
X>1 X1

)−1
X>1 X2. (15)

Similarly, solving (14) in matrix form,

θ̂n =
(
X̄>2 X̄2

)−1
X̄>2 Λ2X3. (16)

Now substituting the value of X̄2 in (16),

θ̂n =


X1φ̂n︸ ︷︷ ︸

X̄2


>X1φ̂n︸ ︷︷ ︸

X̄2



−1X1φ̂n︸ ︷︷ ︸

X̄2


>

Λ2X3. (17)

Using (15) to substitute the value of φ̂n in (17),

θ̂n =


X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n


>X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n



−1

X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n


>

Λ2X3. (18)

Using matrix operations to expand the transposes in (18),

θ̂n =
((

X>2 X1

(
X>1 X1

)
−1X>1

)(
X1

(
X>1 X1

)
−1X>1 X2

))−1

(
X>2 X1

(
X>1 X1

)−1
X>1

)
Λ2X3. (19)

Similarly, using matrix operations to expand inverses in (19) (colored underlines are used to match
the terms before expansion in (19) and after expansion in (20)),

θ̂n =
(
X>1 X2

)
−1
(
X>1 X1

)(
X>1 X1

)
−1
(
X>1 X1

)(
X>2 X1

)
−1(

X>2 X1

) (
X>1 X1

)−1 (
X>1 Λ2X3

)
, (20)

Notice that several terms in (20) cancel each other out, therefore,

θ̂n =
(
X>1 X2

)−1 (
X>1 Λ2X3

)
. (21)

As a side remark, we note that if we replace X1 in the above steps with an appropriate instrument
variable Z1, then similar steps will follow and will result in

θ̂n =
(
Z>1 X2

)−1 (
Z>1 Λ2X3

)
. (22)
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Part (b) Now when f(Ji(π); θπ) := Eπ [Ji+1(π)|Ji(π)] is a linear function,

Ji+1(π) = Ji(π)θπ + Ui+1(Hi),

where Ui+1 is a bounded mean zero noise (which depends on the interaction Hi by π). Using
Theorem 1, let

Yi+1 := Eπ [Ji+1(π)|Ji(π)]

and its unbiased estimate be

Ŷi+1 := ρiĴi+1(π) = ρiρi+1Gi+1. (23)

For the regression, since Ĵi(π) is an unbiased estimate of the input Ji(π) and Ŷi+1 is an unbiased
estimate of the target Eπ [Ji+1(π)|Ji(π)], these can be equivalently expressed as,

Ĵi(π) = Ji(π) + Vi(Hi),

Ŷi+1 = Ji+1(π) +Wi+1(Hi, Hi+1), (24)

where Vi(Hi) is some bounded mean-zero noise (dependent on the unbiased estimate made using
Hi) and Wi+1(Hi, Hi+1) is also a bounded mean-zero noise (dependent on the unbiased estimate
made using Hi and Hi+1). Before moving further, we define some additional notation,

Y3 := [Y3, ..., Yn]> U3 := [U3(H2), ..., Un(Hn−1)]>,

Ŷ3 := [Ŷ3, ..., Ŷn]> V2 := [V2(H2), ..., Vn−1(Hn−1)]>.

J2 := [J2(π), ..., Jn−1(π)]
>

W3 := [W3(H2, H3), ...,Wn(Hn−1, Hn)]>.

Using (23) note that Ŷ3 = Λ2X3, therefore (21) can be expressed as,

θ̂n =
(
X>1 X2

)−1
(
X>1 Ŷ3

)
. (25)

Unrolling value of Ŷ3 in (25) using relations from (23) and (24),

θ̂n =
(
X>1 X2

)−1 (
X>1 (Y3 + W3)

)
=
(
X>1 X2

)−1 (
X>1 (J2θπ + U3 + W3)

)
=
(
X>1 X2

)−1 (
X>1 ((X2 −V2) θπ + U3 + W3)

)
. (26)

Expanding (26),

θ̂n = θπ −
(
X>1 X2

)−1
X>1 V2θπ +

(
X>1 X2

)−1 (
X>1 (U3 + W3)

)
. (27)

Evaluating the value of (27) in the limit,

lim
n→∞

θ̂n = θπ − lim
n→∞

(X>1 X2

)−1
X>1 V2θπ︸ ︷︷ ︸

(a)

+
(
X>1 X2

)−1 (
X>1 (U3 + W3)

)︸ ︷︷ ︸
(b)

 . (28)

It can be now seen from (28) that if in the limit the terms inside the paranthesis are zero, then we
would obtain our desired result. Focusing on the term (a) and using the continuous mapping theorem,

lim
n→∞

(
X>1 X2

)−1
X>1 V2θπ = lim

n→∞

(
1

n
X>1 X2

)−1(
1

n
X>1 V2θπ

)

=

(
lim
n→∞

1

n
X>1 X2

)−1

 lim
n→∞

1

n
X>1 V2︸ ︷︷ ︸

(c)

 θπ, (29)

where Assumption 3 ensures that X1 and X2 are correlated and thus their dot product is not zero.
Notice that term (c) (29) can be expressed as 1

n

∑n−1
i=2 Xi−1Vi. Further, recall from Theorem 2 that

Vi is a mean zero random variable uncorrelated with Xi−1 for all i. Further, Vi and Xi−1 are also
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bounded for all i as both rewards and importance ratios are bounded (Assumption 2), and T is finite.
Now, for αi := Xi−1Vi observe that E[αi] = E[Xi−1E[Vi|Xi−1]] = E[Xi−10] = 0 and thus αi is a
bounded and mean zero random variable ∀i. Therefore, as (c) is an average of α variables, it follows
from the Rajchaman’s strong law of large numbers for uncorrelated random variables [Rajchman,
1932, Chandra, 1991] that term under (c) is zero almost surely. Thus,(

X>1 X2

)−1
X>1 V2θπ

a.s.−→ 0.

Similarly, for term (b) in (28) observe that both U3 and W3 are zero mean random variables
uncorrelated with X1. Therefore, term (b) in (28) is also zero in the limit almost surely. It can now
be concluded from (28) that

θ̂n
a.s.−→ θπ.

Theorem 4. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̃n is
a strongly consistent estimator of θπ , i.e., θ̃n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

Proof. For the linear setting, θ̃n can be expressed as,

φ̂n ∈ argmin
φ∈Φ

n−1∑
i=2

ρi

(
Ĵi−1(π)φ−Gi(π)

)2

. (30)

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2

ρiρi+1

(
J̄i(π)θ −Gi+1(π)

)2
, where J̄i := Ĵi−1φ̂n. (31)

Notice that as dividing the objective by a positive constant does not change the optima, we drop the
denominator terms in

ρ̄i :=
ρiρi+1∑n−1
j=2 ρjρj+1

for the purpose of the analysis. Before moving further, we introduce some additional notations
besides the ones introduced in the proof of Theorem 3,

G3 := [G3, ..., Gn]
>

Λ̄2 := diag([ρ2ρ3, ρ3ρ4..., ρn−1ρn]),

Solving (30) in matrix form,

φ̂n =
(
X>1 Λ2X1

)−1
X>1 Λ2G2.

=
(
X>1 Λ2X1

)−1
X>1 X2.

Similarly, solving (31) in matrix form,

θ̃n =
(
X̄>2 Λ̄2X̄2

)−1
X̄>2 Λ̄2G3.

(a)
=
(
X̄>2 Λ̄2X̄2

)−1
X̄>2 Λ2X3, (32)

where (a) follows from the fact that ρiρi+1Gi+1 = ρiĴi+1(π). Now substituting the value of X̄2 in
(32) similar to (17) and (18) in the proof of Theorem 3,

θ̃n =
((

X>2 X1

(
X>1 Λ2X1

)
−1X>1

)
Λ̄2

(
X1

(
X>1 Λ2X1

)
−1X>1 X2

))
−1(

X>2 X1

(
X>1 X1

)−1
X>1

)
Λ2X3. (33)

Similarly, using matrix operations to expand inverses in (33) (colored underlines are used to match
the terms before expansion in (33) and after expansion in (34)) and multiplying and dividing by n,

θ̃n =
(
X>1 X2

)
−1

(
1

n
X>1 Λ2X1

)(
1

n
X>1 Λ̄2X1

)
−1

(
1

n
X>1 Λ2X1

)
(
X>2 X1

)
−1

(
X>2 X1

)( 1

n
X>1 Λ2X1

)−1 (
X>1 Λ2X3

)
. (34)
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Now focusing on the term underlined in green, in the limit,

lim
n→∞

1

n
X>1 Λ̄2X1 = lim

n→∞

1

n

n−1∑
i=2

ρiρi+1Ĵi−1(π)Ĵi−1(π)>

(a)
= lim

n→∞

1

n

n−1∑
i=2

Eβi,βi+1 [ρiρi+1]Ĵi−1(π)Ĵi−1(π)> +
1

n

n−1∑
i=2

εiĴi−1(π)Ĵi−1(π)>

(b)
= lim

n→∞

1

n

n−1∑
i=2

Ĵi−1(π)Ĵi−1(π)>

= lim
n→∞

1

n
X>1 X1, (35)

where in (a) we defined random variable ρiρi+1 as its expected value Eβi,βi+1
[ρiρi+1] plus a mean

zero noise εi. Step (b) follows from first observing that ρi and ρi+1 are uncorrelated. Therefore
Eβi,βi+1

[ρiρi+1] = Eβi
[ρi]Eβi+1

[ρi+1] = 1 as the expected value of importance ratios is 1 [Thomas,

2015]. Similarly, εi is uncorrelated with Ĵi−1(π), i.e., the expected value Eβi,βi+1

[
εi|Ĵi−1(π)

]
=

Eβi,βi+1 [εi] = 0 for any given Ji−1(π). (Intuitively, this step can be seen analogous to the derivation
of PDIS, where the expected value of future IS ratios is always one, irrespective of the past events
that it has been conditioned on). Now notice that the random variable ζi := εiĴi−1(π)Ĵi−1(π)>

is bounded and has mean zero for all i. Therefore, while ζi and ζj may be dependent, they are
uncorrelated for all i 6= j. Using strong law of large number for uncorrelated random variables
[Rajchman, 1932, Chandra, 1991] the second term in (a) is zero almost surely.

Similarly, it can be observed that 1
nX>1 Λ2X1 converges to 1

nX>1 X1. Therefore using (35) in (34),
and using the continuous mapping theorem,

θ̃n
a.s.−→

(
X>1 X2

)
−1

(
1

n
X>1 X1

)(
1

n
X>1 X1

)
−1

(
1

n
X>1 X1

)(
X>2 X1

)
−1

(
X>2 X1

)( 1

n
X>1 X1

)−1 (
X>1 Λ2X3

)
. (36)

Notice that Assumption 3 ensures that X1 and X2 are correlated and thus their dot product is not
zero. Further, several terms in (36) cancel each other out, therefore,

θ̃n
a.s.−→

(
X>1 X2

)−1 (
X>1 Λ2X3

)
.

Now proof can be completed similarly to the part (b) of the proof of Theorem 3.

E Empirical Details

The code for all the algorithms and experiments can be found here
https://github.com/yashchandak/activeNS

E.1 Algorithm

In Section 5 we established the key insight for how to forecast the next performance based on a single
previous performance, when the true performance trend of a policy can be modeled auto-regressively
using a single past term. However, as noted in Remark 3 and Figure 7 using more terms can provide
more flexibility in the the type of trends that can be modeled. Therefore, we leverage statistics based
on multiple past terms to form the instrument variable Zi.

One immediate choice for Zi is Ĵi(π). However, we found that the high variance of IS estimate makes
Ĵi(π) a weak instrument variable [Pearl et al., 2000], that is not strongly correlated with Ji+1(π).
Better choices of Zi may be the ones that are strongly correlated with Ji+1(π) but uncorrelated
with the noise in the Ĵi+1(π) estimate. We found that an alternate choice of Zi composed of the
unweighted return Gi and a WIS-like estimate for Ji(π) (where the normalization is done only using
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the importance ratios from episodes before i) to be more useful. Specifically, we let Zi := [Gi, J̃i(π)],
where

J̃i(π) :=
ρiGi

n
i

∑i
k=1 ρk

.

It can be observed similar to Theorem 2 that this Zi is uncorrelated with the noise in Ĵi+1(π) as well.
Further, the weighted version J̃i(π) suffers less from variance and we found it to be more strongly
correlated with Ji+1(π). Further, often the performance of the behavior policy is positively/negatively
correlated with the performance of the evaluation policy and thus Gi tends to be correlated with
Ji+1(π) as well. One could also explore other potential IVs; we leave this for future work.

Now using past p values of Zi to form the complete instrument variable, where p is a hyper-parameter,
we use the following importance weighted instrument-variable regression,

ϕ̃n ∈ argmin
ϕ∈Ω

n∑
i=p+1

ρ̄i

(
g
(

(Zj(π))
i−1
j=i−p ;ϕ

)
−Gi(π)

)2

,

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2p

ρ†i

(
f
((
J̄j(π)

)i
j=i−p+1

; θ
)
−Gi+1(π)

)2

,

where,

J̄i(π) =g
(

(Zj(π))
i−1
j=i−p ; ϕ̃n

)
, ∀p < i ≤ n,

ρ̄i :=
ρi

(
∑n
j=2 ρj)

ρ†i :=
ρiρi+1

(
∑n−1
j=2 ρjρj+1)

.

Once θ̃n is obtained, we use it to auto-regressively forecast the future performances. Particularly, we
use (J̄k)n+L

k=n+1 as the predicted performances for the next L episodes, where

∀i > n, J̄i := f
((
J̄i−k(π)

)p
k=1

; θ̃n

)
.

While our theoretical results were established for the setting where there is only a single regressor (p =
1), a more generalized theoretical result for p > 1 may be possible using the concepts of endogenous
and exogenous regressors. Particularly, let [..., Xi, Xi+1, Xi+2, Xi+3, ...], be observations from an
AR(2) time-series sequence where Xi+3 depends on Xi+1 and Xi+2. Here, using Xi+1 as the only
instrument variable for Xi+2 is not possible as Xi+3 is correlated with Xi+1. However, Z = Xi

or even Z = [Xi, Xi+1] may form a valid instrument for Xi+2 as neither the noise in Xi+3 nor
the noise in Xi+2 is correlated with at least one component of Z, i.e., Xi. For precise instrument
relevance conditions and additional discussion, we refer the reader to the works by Abbott [2007],
Cameron [2019], Parker [2020]. We leave this theoretical extension for the future work.

E.2 Implementation and Hyper-parameters

For the Pro-WLS baseline, we use the weighted least-squares procedure using the Fourier basis
features [Chandak et al., 2020b]. The hyper-parameter for this baseline is the number of Fourier
terms d that should be used to estimate the performance trend. We found that setting d to be too
high results in extremely high-variance and setting it to a lower value fails to capture the trend in
performance. Therefore, based on ablation studies in Figure 10 we set d = 5 for all the experiments.

WIS estimator uses all the data form the past. In comparison, for sliding windows WIS (SWIS),
we set the sliding window length to be 400 (20% of the number of episodes in the data) for all the
experiments. That is, SWIS use past 400 episodes to estimate the future performance.

For OPEN, the hyper-parameter corresponds to the number of terms to condition on during auto-
regression. Similar to SWIS, we set p = 400 (20% of the number of episodes in the data) for all
the experiments. That is the AR estimator uses past 400 episodes to predict the performance in the
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next episode. For the two stage regression, we observed that choice of learning rate, and avoiding
over-fitting (using early-stopping) to be important as well.

For each environment, we collect data consisting of 2000 episodes of interaction using the behavior
policy, and predict the expected future returns if executing the evaluation policy for the next 200
episodes. The behavior policy and the evaluation policy for each domain are described in Section E.3.

Since the future outcomes are stochastic, to evaluate the true expected future performance in (3),
we create digital-clones of the environment after data has been collected using the behavior policy.
Using these clones, we compute the average of 30 possible futures when executing the evaluation
policy. This estimate of the expected future returns are then used as the ground truth for comparison
with the predictions made by the algorithms.

For Figure 5, |bias| was computed using the absolute value of the difference between (a) the predicted
future performance averaged across 30 trials and (b) the ground truth future performance. That is, for
an estimator Ĵ of J , the bias is |J − E[Ĵ ]|. Because of this, 30 trials only gives us a point estimate
for bias. (Notice that using the absolute value of the difference between (a) the predicted future
performance for each trial and (b) the true future performance’, averaged across 30 trials, will provide
an estimate of E[|J − Ĵ |], which would not capture the bias but will be more like the variance (using
L1/absolute distance instead of L2)).

E.3 Environments

We provide empirical results on four non-stationary environments: a toy robot environment, non-
stationary mountain car, diabetes treatment, and MEDEVAC domain for routing air ambulances.
Details for each of these environments are provided in this section. For all of the above environments,
we regulate the ‘speed’ of non-stationarity to characterize an algorithms’ ability to adapt. Higher
speed corresponds to a faster rate of non-stationarity; A speed of zero indicates that the environment
is stationary.

RoboToy: This domain corresponds to the toy robot scenario depicted in Figure 1. Here, a robot
can accomplish a task using either by ‘running’ or ‘walking’. Robot finishes a task faster when
‘running’ than ‘walking’ and thus the reward received at the end of ’running’ is higher. However,
‘running’ causes more wear and tear on the robot, thereby degrading the performance of both ‘running’
or ‘walking’ in the future. Since the past interactions influence the non-stationarity, this is an instance
of active non-stationarity.

To perform more ablations on our algorithms, we also simulated a RoboToy-Passive domain, where
there is no active non-stationarity as above. Instead, the reward obtained at the end of executing the
options ‘walking’ or ‘running’ fluctuate across episodes. Therefore, the changes to the underlying
system are independent of the actions taken by the agent in the past.

For both the active and passive version of this domain, we collect data using a behavior policy
that chooses ‘walking’ more frequently, and the evaluation policy is designed such that it chooses
‘running’ more frequently.

Non-stationary Mountain Car: In real-world mechanical systems, motors undergo wear and tear
over time based on how vigorously they have been used in the past. To simulate similar performance
degradation, we adapt the classic (stationary) mountain car domain [Moore, 1990]. We modify the
domain such that at every episode the effective acceleration force is decayed proportional to the
average velocity of the car in the previous episode. This results in active non-stationarity as the
change in the system is based on the actions taken by the agent in the past. Similar to the works by
[Thomas, 2015, Jiang and Li, 2015], we make use of macro-actions to repeat an action 10 times,
which helps in reducing the effective horizon length of each episode. The maximum number of step
per episode using these macros is 30.

For our experiments, using an actor-critic algorithm [Sutton and Barto, 2018] we find a near-optimal
policy π on the stationary version of the mountain car domain, which we use as the evaluation policy.
Let πrand be a random policy with uniform distribution over the actions. Then we define the behavior
policy β(o, a) := 0.5π(o, a) + 0.5πrand(o, a) for all states and actions.
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Type-1 Diabetes Management: Automated healthcare systems that aim to personalise for indi-
vidual patients should account for the physiological changes of the patient over time. To simulate
such a scenario we use an open-source implementation [Xie, 2019] of the U.S. Food and Drug Ad-
ministration (FDA) approved Type-1 Diabetes Mellitus simulator (T1DMS) [Man et al., 2014] for the
treatment of Type-1 diabetes, where we induced non-stationarity by oscillating the body parameters
(e.g., rate of glucose absorption, insulin sensitivity, etc.) between two known configurations available
in the simulator. This induces passive non-stationarity, that is, changes are not dependent on past
actions.

Each step of an episode corresponds to a minute (1440 timesteps–one for each minute in a day) in an
in-silico patient’s body and state transitions are governed by a continuous time non-linear ordinary
differential equation (ODE) [Man et al., 2014]. This makes the problem particularly challenging
as it is unclear how the performance trends of policies vary in this domain when the physiological
parameters of the patient are changed. Notice that as the parameters that are being oscillated are
inputs to a non-linear ODE system, the exact trend of performance for any policy is unknown. This
more closely reflects a real-world setting where Assumption 1 might not hold, as every policy’s
performance trend in real-world problems cannot be expected to follow any specific trend exactly–one
can only hope to obtain a coarse approximation of the trend.

For our experiments, using an actor-critic algorithm [Sutton and Barto, 2018] we find a near-optimal
policy π on the stationary version of this domain, which we use as the evaluation policy. The
policy learns the CR and CF parameters of a basal-bolus controller. Let πrand be a random policy
with uniform distribution over actions. Then we define the behavior policy β(o, a) := 0.5π(o, a) +
0.5πrand(o, a) for all states and actions.

MEDEVAC: This domain stands for medical evacuation using air ambulances. This domain was
developed by Robbins et al. [2020] for optimally routing air ambulances to provide medical assistance
in regions of conflict. This domain divides the region of conflict into 34 mutually exclusive zones,
and has 4 air ambulances to serve all zones when an event occurs. Based on real-data, this domain
simulates the arrival of different events, from different zones, where each event can have 3 different
priority levels. Serving higher priority events yields higher rewards. If an ambulance is assigned to
an event, it will finish the assignment in a time dependent on the distance between the base of the
ambulance and the zone of the corresponding event. While engaged in an assignment, that ambulance
is no longer available to serve other events. A good controller decides whether to deploy, and which
MEDEVAC to deploy, to serve any event (at the risk of not being able to serve a new high-priority
event if all ambulances become occupied).

The original implementation of the domain assumes that the arrival rates of the events and the time
taken by an ambulance to complete an event follow a Poisson process with a fixed rate. However, in
reality, the arrival rates of different events can change based on external incidents during conflict.
Similarly, the completion rate can also change based on how frequently an ambulance is deployed.
To simulate such non-stationarity, we oscillate the arrival rate of the incoming high-priority events,
which induces passive non-stationarity. Further, to induce wear and tear, we slowly decay the rate
at which an ambulance can finish an assignment. This decay is proportional to how frequently the
ambulance was used in the past. This induces active non-stationarity. The presence of both active and
passive changes makes this domain subject to hybrid non-stationarity.

Similar to other domains, we used an actor-critic algorithm [Sutton and Barto, 2018] we find a
near-optimal policy π on the stationary version of this domain, which we use as the evaluation policy.
Let πrand be a random policy with uniform distribution over the actions. Then we define the behavior
policy β(o, a) := 0.5π(o, a) + 0.5πrand(o, a) for all states and actions.

E.4 Additional Results

While the primary focus of this chapter was to develop methods to handle active/hybrid non-
stationarity, we observed that the proposed method OPEN also provides benefits over the earlier
algorithm Pro-WLS even when it is known that there is only passive non-stationarity in the environ-
ment.
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The blue curve corresponds to the performances Ji(π) for
the past episodes. As there is no active non-stationarity, the
choice of actions executed does not impact the underlying
non-stationarity. Therefore, Ji(π) follows the same trend
in future as it did in the past. The blue and gray curves are
unknown to the algorithm.

OPEN first uses historical data to obtain counterfactual
estimates of Ji(π) for the past episodes. One can see the
high-variance in these estimates (notice the change in the
y-scale) due to the use of importance sampling.

Before naively auto-regressing, OPEN first aims to denoise
the past performance estimates using the first stage of in-
strument variable regression. Since p = 300, the first 300
terms were not denoised. It can be observed that OPEN
successfully denoises the importance sampling estimates.

Using the denoised estimates of past performances, with
the second use of counterfactual reasoning, OPEN per-
forms the second stage of regression to forecast the future
performance when π will be deployed. In the passive set-
ting, use of double-counterfactual is superfluous but OPEN
is still able to correctly predict the future performance.

Figure 8: An illustrative step by step breakdown of the stages in the proposed algorithm OPEN for
the RoboToy-Passive domain.

E.4.1 Single Run

Similar to Figure 4, in Figure 8 we present a step by step breakdown of the intermediate stages of
a single run of OPEN on the RoboToy-Passive domain. Here the trend in how the performance of
the evaluation policy was changing in the past remains the same in the future. When only passive
non-stationarity is present, the double counter-factual correction performed by OPEN is superfluous.
However, it can be observed that OPEN can still correctly identify the trend and provide useful
predictions of π’s future performance.
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Figure 9: Comparison of different algorithms for predicting the future performance of evaluation pol-
icy π on domains that exhibit passive non-stationarity. On the x-axis is the speed, which corresponds
to the rate of non-stationarity; higher speed indicates a faster rate of change and a speed of zero
indicates a stationary domain. (TOP) On the y-axis is the absolute bias in the performance estimate.
(Bottom) On the y-axis is the mean squared error (MSE) in the performance estimate. Lower is
better for all of these plots. For each domain, for each speed, for each algorithm, 30 trials were
executed. Discussion of these plots can be found in Section E.4.

E.4.2 Summary Plots

In Figure 9 we provide bias and MSE analysis of different algorithms on the domains that exhibit
passive non-stationarity. Except for the stationary setting, where WIS has the best performance
overall, we observe that for all other settings in the plot, OPEN performs better than both Pro-WLS
and WIS consistently.

One thing that particularly stands out in these plots is the poor performance of Pro-WLS, despite being
designed for the passive setting. We observed that because of the choice of parametric regression
using the Fourier basis, Pro-WLS tends to suffer from high bias when the number of Fourier terms
is not sufficient to model the underlying trend. Also, if the number of Fourier terms is increased
naively, then they overfit the data and extrapolate poorly, thereby resulting in high-variance. In
contrast, our method is based on an auto-regressive based time-series forecast that is more robust to
the model choice (we kept the number of lag terms for auto-regression as p = 300 for OPEN for all
our experiments).

To obtain all the results for Figure 5 and Figure 9, in total 30 different seeds were used for each
speed of each domain for each algorithm to get the standard error. The authors had shared access to a
computing cluster, consisting of 50 compute nodes with 28 cores each, which was used to run all the
experiments.

E.5 Ablation Study

In this section we study the sensitivity to hyper-parameters for the proposed method OPEN and the
baseline method Pro-WLS [Chandak et al., 2020b]. The hyper-parameter for OPEN corresponds
to the number of past terms to condition on for auto-regression, as discussed in Remark 3. The
hyper-parameter for Pro-WLS corresponds to the order of Fourier bases required for parametric
regression. In Figure 10 we present the results for how the performance of the methods vary for
different choices of hyper-parameters.
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Figure 10: (Top) Absolute bias in prediction of Pro-WLS for different choices of its hyper-parameter.
(Bottom) Absolute bias in prediction of OPEN for different choices of its hyper-parameter. For all
the plots, lower value is better. Overall, we observe that OPEN being an auto-regressive method
can extrapolate/forecast better and is thus more robust to hyper-parameters than Pro-WLS that uses
Fourier bases for regression and is not as good for extrapolation.

34


	Introduction
	Related Work
	Non-Stationary Decision Processes
	Understanding Structural Assumptions
	Model-Free Policy Evaluation
	Empirical Analysis
	Conclusion
	Acknowledgements
	FAQs: Frequently Asked Questions
	How does the stationarity condition for a time-series differ from that in RL? 
	Can the POMDP during each episode (Figure 2) itself be non-stationary?
	What if it is known ahead of time that the non-stationarity is passive only?
	How should different non-stationarities be treated in the on-policy setting?
	Can you tell us more about when would  and , Theorem0  ??1 1 be (in)valid?
	What are the limitations and potential negative impacts of the work?

	Extended Related Work
	Off-policy evaluation in stationary domains
	Non-stationarity in stationary domains
	Single Episode Continuing setting
	Non-stationarity in MDPs/Bandits
	Multi-agent Games 
	Dynamical Systems and Time-Series Analysis

	Discussion on the Structural Assumption
	Latent Variables

	Proofs for Theoretical Results
	Double Counterfactual Reasoning
	Asymptotic bias of naive
	Importance-Weighted IV-Regression

	Empirical Details
	Algorithm
	Implementation and Hyper-parameters
	Environments
	Additional Results
	Single Run
	Summary Plots

	Ablation Study


