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A Proofs of Main Theoretical Results

A.1 Proof of Theorem 1

Theorem 1 (Generalization bound of a uniformly stable algorithm). Suppose a randomized HO
algorithm A is β-uniformly stable on validation in expectation, then

|EA,Str∼(Dtr)n,Sval∼(Dval)m

[
R(A(Str, Sval), Dval)− R̂val(A(Str, Sval), Sval)

]
| ≤ β.

Proof.

|EA,Str,Sval [R(A(Str, Sval), Dval)− R̂val(A(Str, Sval), Sval)]|
=|EA,Str,Sval,z∼Dval

[
ℓ(A(Str, Sval), z)− ℓ(A(Str, Sval), zval1 )

]
|

=|EA,Str,Sval,z∼Dval

[
ℓ(A(Str, z, zval2 , · · · , zvalm ), zval1 )− ℓ(A(Str, Sval), zval1 )

]
|

≤EStr,Sval,z∼Dval |EA

[
ℓ(A(Str, z, zval2 , · · · , zvalm ), zval1 )− ℓ(A(Str, Sval), zval1 )

]
| ≤ β,

where the last inequality is due to the definition of stability.

A.2 Proof of Theorem 2

Here we prove a more general version of Theorem 2 in the full paper by considering SGD with weight
decay in the outer level, i.e.,

λt+1 = (1− αt+1µ)λt − αt+1∇λtℓ(λt, θ̂(λt, S
tr), zvalj ), (1)

where αt is the learning rate, µ is the weight decay, j is randomly selected from {1, · · · ,m} and θ̂ is
a random function. Theorem 2 in the full paper can be simply derived by letting µ = 0.

Theorem 2 (Uniform stability of algorithms with SGD in the outer level). Suppose θ̂ is a random
function in a function space Gθ̂ and ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function
of λ is L-Lipschitz continuous and γ-Lipschitz smooth, let c ≤ s(ℓ)

2L2 , µ ≤ min( 1c , (1− 1/m)γ) and
κ = c((1−1/m)γ−µ)

c((1−1/m)γ−µ)+1 . Then, solving Eq. (4) in the full paper with T steps SGD, learning rate
αt ≤ c

t and weight decay µ in the outer level is β-uniformly stable on validation in expectation with

β =
2cL2

m

(
1

κ

((
Ts(ℓ)

2cL2

)κ

− 1

)
+ 1

)
,
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which is increasing w.r.t. L, γ and decreasing w.r.t. µ.

Proof. Suppose Str ∈ Zn and z ∈ Z, let f(λ, g) = ℓ(λ, g(λ, Str), z), where we omit the depen-
dency on Str and z for simplicity, then f(λ, g) is as a function of λ is L-Lipschitz continuous and
γ-Lipschitz smooth. Suppose Sval and S

′val differ in at most one point, let {λt}t≥0 and {λ′
t}t≥0 be

the trace of Eq. (1) with Sval and S
′val respectively. Then the output of the HO algorithm A with t

steps SGD in the outer level is

A(Str, Sval) = (λt, θ̂(λt, S
tr)), A(Str, S

′val) = (λ′
t, θ̂(λ

′
t, S

tr)),

and
ℓ(A(Str, Sval), z) = ℓ(λt, θ̂(λt, S

tr), z) = f(λt, θ̂),

ℓ(A(Str, S
′val), z) = ℓ(λ′

t, θ̂(λ
′
t, S

tr), z) = f(λ′
t, θ̂).

Let δt = ||λt − λ′
t||. Suppose 0 ≤ t0 ≤ t, we have

E
[
|f(λt, θ̂)− f(λ′

t, θ̂)|
]
=E

[
|f(λt, θ̂)− f(λ′

t, θ̂)| · 1δt0=0

]
+E

[
|f(λt, θ̂)− f(λ′

t, θ̂)| · 1δt0>0

]
≤LE

[
δt · 1δt0=0

]
+ P (δt0 > 0)s(ℓ).

Without loss of generality, we assume Sval and S
′val at most differ in at the first point. If SGD

doesn’t selects the first point for the first t0 iterations, then δt0 = 0. As a result,

P (δt0 = 0) ≥ (1− 1

m
)t0 ≥ 1− t0

m
.

Therefore, P (δt0 > 0) ≤ t0
m and we have

E
[
|f(λt, θ̂)− f(λ′

t, θ̂)|
]
≤ LE

[
δt · 1δt0=0

]
+

t0
m
s(ℓ). (2)

Now we bound E
[
δt · 1δt0=0

]
. Let γ′ = (1− 1/m)γ − µ and let j be the index selected by SGD at

the t+ 1 iteration, then we have
E
[
δt+1 · 1δt0=0

]
≤E

[
δt+1 · 1j=1 · 1δt0=0

]
+E

[
δt+1 · 1j>1 · 1δt0=0

]
≤ 1

m
(|1− αt+1µ| ·E[δt · 1δt0=0] + 2αt+1L)

+
m− 1

m
(|1− αt+1µ|+ αt+1γ)E[δt · 1δt0=0]

=(1 + αt+1γ
′)E[δt · 1δt0=0] +

2αt+1L

m

≤ exp(αt+1γ
′)E[δt · 1δt0=0] +

2αt+1L

m

≤ exp(
c

t+ 1
γ′)E[δt · 1δt0=0] +

2cL

(t+ 1)m
.

As a result,

E[δt · 1δt0=0] ≤
t∑

j=t0+1

2cL

jm

t∏
k=j+1

exp(
cγ′

k
) =

t∑
j=t0+1

2cL

jm
exp(cγ′

t∑
k=j+1

1

k
)

≤
t∑

j=t0+1

2cL

jm
exp(cγ′ ln

t

j
) =

t∑
j=t0+1

2cL

jm

(
t

j

)cγ′

=
2cLtcγ

′

m

t∑
j=t0+1

(
1

j

)1+cγ′

≤ 2cLtcγ
′

m

t−cγ′ − t−cγ′

0

−cγ′

=
2L

mγ′

((
t

t0

)cγ′

− 1

)
.
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Combining with Eq. (2), we have

E
[
|f(λT , θ̂)− f(λ′

T , θ̂)|
]
≤ inf

0≤t0≤T

2L2

mγ′

((
T

t0

)cγ′

− 1

)
+

t0
m
s(ℓ). (3)

The right hand side is approximately minimized when

t0 = (
2cL2

s(ℓ)
)

1
cγ′+1T

cγ′
cγ′+1 ≤ T,

which gives

E
[
|f(λT , θ̂)− f(λ′

T , θ̂)|
]
≤1 + 1/cγ′

m
(2cL2)

1
cγ′+1T

cγ′
cγ′+1 (s(ℓ))

cγ′
cγ′+1 − 2L2

mγ′ =: β.

Let κ = cγ′

cγ′+1 = c((1−1/m)γ−µ)
c((1−1/m)γ−µ)+1 , then β can be written as

β =
2cL2

m

(
1

κ

((
Ts(ℓ)

2cL2

)κ

− 1

)
+ 1

)
.

Since the r.h.s. of Eq. (3) is increasing w.r.t. L and γ′, where γ′ is further increasing w.r.t. γ and
decreasing w.r.t. µ, we can conclude β is increasing w.r.t. L, γ and decreasing w.r.t. µ.

A.3 Proof of Theorem 3

Definition 1. (Lipschitz continuous) Suppose (X, dX), (Y, dY ) are two metric spaces and f : X →
Y . We define f is L Lipschitz continuous iff ∀a, b ∈ X, dY (f(a), f(b)) ≤ LdX(a, b).
Definition 2. (Lipschitz smooth) Suppose X,Y are subsets of two real normed vector spaces and
f : X → Y is differentiable. We define f is γ Lipschitz smooth iff f ′ is γ Lipschitz continuous.
Definition 3. (Lipschitz norm) Suppose (X, dX), (Y, dY ) are two metric spaces, f : X → Y , we
define ||f ||Lip ≜ inf{L ∈ [0,∞] : ∀a, b ∈ X, dY (f(a), f(b)) ≤ LdX(a, b)}, i.e., the minimum L
such that f is L Lipschitz continuous.
Definition 4. Given a function f(λ, θ), we use ||f(λ, θ)||λ∈Λ,Lip and ||f(λ, θ)||θ∈Θ,Lip to explicitly
denote the Lipschitz norm of f w.r.t. λ ∈ Λ and θ ∈ Θ respectively.
Definition 5. (Vector norm) Suppose a ∈ Rm, we use ||a|| to denote the l2 norm of a.

Definition 6. (Matrix norm) Suppose A ∈ Rm×n, we define ||A|| ≜ sup
0 ̸=a∈Rm

||Aa||
||a|| , i.e., the norm of

the linear operator induced by A.
Lemma 1. Suppose X,Y are two real normed vector spaces, Ω is an open set of X , f : Ω → Y
is continuously differentiable, S ⊂ Ω is convex and has non-empty interior, then ||f |S ||Lip =
sup
c∈S

||f ′(c)||.

Proof. Suppose a, b ∈ S, according to the mean value theorem, there is a c lies in the segment
determined by a and b, s.t., ||f(b)− f(a)|| ≤ ||f ′(c)(b− a)||. Furthermore, we have

||f ′(c)(b− a)|| ≤ ||f ′(c)|| · ||b− a|| ≤ sup
c∈S

||f ′(c)|| · ||b− a||.

Thereby, f |S is sup
c∈S

||f ′(c)|| Lipschitz continuous and ||f |S ||Lip ≤ sup
c∈S

||f ′(c)||.

Suppose c ∈ S◦, where S◦ is the interior of S and u ∈ X with ||u|| = 1, then

lim
ϵ→0

f(c+ ϵu)− f(c)

ϵ
= f ′(c)u.

Thereby,

||f |S ||Lip ≥ lim
ϵ→0

||f(c+ ϵu)− f(c)

ϵ
|| = ||f ′(c)u||.
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Since u is arbitrary, we have ||f ′(c)|| = sup
u∈X,||u||=1

||f ′(c)u|| ≤ ||f |S ||Lip.

Since S has non-empty interior, we have S ⊂ S◦ by the property of convex sets. Suppose c ∈ S, then
c ∈ S◦ and there is a sequence cn ∈ S◦, s.t., cn → c. Since cn ∈ S◦, we have ||f ′(cn)|| ≤ ||f |S ||Lip.
Let n → ∞, by the continuity of f ′, we have ||f ′(c)|| ≤ ||f |S ||Lip. Since c ∈ S is arbitrary, we have
sup
c∈S

||f ′(c)|| ≤ ||f |S ||Lip. Finally, we have sup
c∈S

||f ′(c)|| = ||f |S ||Lip.

Lemma 2. Suppose Λ and Θ are convex and compact with non-empty interiors, Z is compact,
Λ × Θ × Z is included in an open set Ω and f(λ, θ, z) ∈ Ck(Ω), then for all i ≤ k − 1 or-
der partial differential h(λ, θ, z) of f(λ, θ, z), we have sup

θ∈Θ,z∈Z
||h(λ, θ, z)||λ∈Λ,Lip < ∞ and

sup
λ∈Λ,z∈Z

||h(λ, θ, z)||θ∈Θ,Lip < ∞.

Proof. Suppose h(λ, θ, z) is a i ≤ k − 1 order partial differential of f(λ, θ, z), then h(λ, θ, z) ∈
C1(Ω) and ∇λh(λ, θ, z) ∈ C(Ω). Since Λ×Θ×Z is compact, ∇λh(λ, θ, z) is bounded in Λ×Θ×Z.
According to Lemma 1, we have

sup
θ∈Θ,z∈Z

||h(λ, θ, z)||λ∈Λ,Lip = sup
θ∈Θ,z∈Z

sup
λ∈Λ

||∇λh(λ, θ, z)|| < ∞.

Similarly, we can derive sup
λ∈Λ,z∈Z

||h(λ, θ, z)||θ∈Θ,Lip < ∞.

Lemma 3. Suppose (1) ∀1 ≤ k ≤ K, ∀λ ∈ Λ, Gλ,k(θ) is a mapping from Θ to Θ, i.e., Gλ,k :
Θ → Θ, (2) ∀1 ≤ k ≤ K, ∀θ ∈ Θ, Gλ,k(θ) as a function of λ is LG

1 < ∞ Lipschitz continuous,
(3) ∀1 ≤ k ≤ K, ∀λ ∈ Λ, Gλ,k(θ) as a function of θ is LG

2 < ∞ Lipschitz continuous. Let
θ̂(λ) = Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))), then θ̂(λ) is Lθ̂ Lipschitz continuous with

Lθ̂ =

{
LG
1

(LG
2 )K−1

LG
2 −1

LG
2 ̸= 1

KLG
1 LG

2 = 1
.

Proof. We use θK(λ) to denote Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))). Suppose λ, λ′ ∈ Λ and K ≥ 1, we
have

||θK(λ)− θK(λ′)|| = ||Gλ,K(θK−1(λ))−Gλ′,K(θK−1(λ
′)||

≤||Gλ,K(θK−1(λ))−Gλ′,K(θK−1(λ))||+ ||Gλ′,K(θK−1(λ))−Gλ′,K(θK−1(λ
′))||

≤LG
1 ||λ− λ′||+ LG

2 ||θK−1(λ)− θK−1(λ
′)||.

If LG
2 ̸= 1, we have ||θK(λ)− θK(λ′)|| ≤ (LG

2 )K−1

LG
2 −1

LG
1 ||λ− λ′||.

If LG
2 = 1, we have ||θK(λ)− θK(λ′)|| ≤ KLG

1 ||λ− λ′||.

Lemma 4. Suppose (1) ∀1 ≤ k ≤ K, ∀λ ∈ Λ, Gλ,k(θ) is a mapping from Θ to Θ, i.e., Gλ,k : Θ →
Θ, (2) ∀1 ≤ k ≤ K, ∀θ ∈ Θ, Gλ,k(θ) and ∂

∂λGλ,k(θ) as a function of λ is LG
1 and γG

1 Lipschitz
continuous respectively, (3) ∀1 ≤ k ≤ K, ∀λ ∈ Λ, Gλ,k(θ) and ∂

∂θGλ,k(θ) as a function of θ is LG
2

and γG
2 Lipschitz continuous respectively, (4) ∀1 ≤ k ≤ K, ∀θ ∈ Θ, ∂

∂θGλ,k(θ) as a function of λ
is γG

3 ≥ 0 Lipschitz continuous, (5) ∀1 ≤ k ≤ K, ∀λ ∈ Λ, ∂
∂λGλ,k(θ) as a function of θ is γG

4 ≥ 0

Lipschitz continuous. Let θ̂(λ) = Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))), then θ̂(λ) is γθ̂ Lipschitz smooth
with

γθ̂ =


O((LG

2 )
2K) LG

2 > 1
O(K3) LG

2 = 1, LG
1 > 0

O(K) LG
2 = 1, LG

1 = 0
O(1) LG

2 < 1

,

and γθ̂ is determined by LG
1 , L

G
2 , γ

G
1 , γG

2 , γG
3 , γG

4 ,K.
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Proof. Suppose 1 ≤ k ≤ K, we use θk(λ) to denote Gλ,k(Gλ,k−1(· · · (Gλ,1(θ0)))). According

to Lemma 3, θk(λ) is Lθ̂,k =

{
LG
1

(LG
2 )k−1

LG
2 −1

LG
2 ̸= 1

kLG
1 LG

2 = 1
Lipschitz continuous. Taking gradient to

θk(λ) w.r.t. λ, we have

∂

∂λ
θk(λ) =

∂

∂λ
Gλ,k(θk−1(λ)) =

[
∂

∂λ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

+

[
∂

∂θ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

[
∂

∂λ
θk−1(λ)

]
.

Taking the Lipschitz constant w.r.t. λ, we have

||
[
∂

∂λ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

||λ,Lip ≤ γG
1 + γG

4 Lθ̂,k−1,

||
[
∂

∂θ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

||λ,Lip ≤ γG
3 + γG

2 Lθ̂,k−1,

|| ∂
∂λ

θk(λ)||λ,Lip ≤||
[
∂

∂λ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

||λ,Lip

+ ||
[
∂

∂θ
Gλ,k(θ)

] ∣∣∣
θ=θk−1(λ)

||λ,Lip sup
λ∈Λ

|| ∂
∂λ

θk−1(λ)||

+ sup
λ∈Λ,θ∈Θ

|| ∂
∂θ

Gλ,k(θ)|| ||
∂

∂λ
θk−1(λ)||λ,Lip

≤γG
1 + γG

4 Lθ̂,k−1 + (γG
3 + γG

2 Lθ̂,k−1)Lθ̂,k−1 + LG
2 ||

∂

∂λ
θk−1(λ)||λ,Lip

=γG
2 (Lθ̂,k−1)2 + (γG

3 + γG
4 )Lθ̂,k−1 + γG

1 + LG
2 ||

∂

∂λ
θk−1(λ)||λ,Lip.

As for θ0, we have

|| ∂
∂λ

θ0(λ)||λ,Lip = 0.

Let γθ̂ be the Kth term of the sequence defined by

ak = γG
2 (Lθ̂,k−1)2 + (γG

3 + γG
4 )Lθ̂,k−1 + γG

1 + LG
2 ak−1, a0 = 0,

which is determined by LG
1 , L

G
2 , γ

G
1 , γG

2 , γG
3 , γG

4 , then || ∂
∂λθK(λ)||λ,Lip ≤ γθ̂ and θ̂(λ) = θK(λ)

is γθ̂ Lipschitz smooth. Finally, we analyze the order of γθ̂. If LG
2 > 1, then Lθ̂,K = O((LG

2 )
K)

and γθ̂ = O((LG
2 )

2K). If LG
2 = 1, then Lθ̂,K = KLG

1 + Lθ0 and γθ̂ =

{
O(K) LG

1 = 0
O(K3) LG

1 > 0
. If

LG
2 < 1, then Lθ̂,K = O(1) and γθ̂ = O(1).

Assumption 1. Λ and Θ are compact and convex with non-empty interiors, and Z is compact.
Assumption 2. ℓ(λ, θ, z) ∈ C2(Ω), where Ω is an open set including Λ×Θ× Z (i.e., ℓ is second
order continuously differentiable on Ω).
Assumption 3. φi(λ, θ, z) ∈ C3(Ω), where Ω is an open set including Λ×Θ× Z (i.e., φi is third
order continuously differentiable on Ω).
Assumption 4. φi(λ, θ, z) is γφ-Lipschitz smooth as a function of θ for all 1 ≤ i ≤ n, z ∈ Z and
λ ∈ Λ (Assumption 3 implies such a constant γφ exists).

Here we prove a more general version of Theorem 3 in the full paper by considering SGD or GD with
weight decay ν in the inner level. Theorem 3 in the full paper can be simply derived by letting ν = 0.
Theorem 3. Suppose Assumption 1,2,3,4 hold and the inner level problem is solved with K steps SGD
or GD with learning rate η and weight decay ν, then ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z)

as a function of λ is L = O((1+η(γφ−ν))K) Lipschitz continuous and γ = O((1+η(γφ−ν))2K)
Lipschitz smooth.
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Proof. The kth updating step of SGD can be written as

Gλ,k(θ) = (1− ην)θ − η∇θφjk(λ, θ, z
tr
jk
) = ∇θ

(
(1− ην)

2
||θ||2 − ηφjk(λ, θ, z

tr
jk
)

)
,

where jk is randomly selected from {1, 2, · · · , n}. The output of K steps SGD is
θ̂(λ, Str) = Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))) and Gθ̂ is formed by iterates over (j1, j2, · · · , jK) ∈
{1, 2, · · · , n}K .

According to Lemma 2 and Assumption 3, we have

LG
1 ≜ sup

k,jk,Str,θ
||Gλ,k(θ)||λ∈Λ,Lip = sup

i,z,θ
||∇θ

(
(1− ην)

2
||θ||2 − ηφi(λ, θ, z)

)
||λ∈Λ,Lip < ∞.

Similarly, we have

γG
1 ≜ sup

k,jk,Str,θ
|| ∂
∂λ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
2 ≜ sup

k,jk,Str,λ
|| ∂
∂θ

Gλ,k(θ)||θ∈Θ,Lip < ∞,

γG
3 ≜ sup

k,jk,Str,θ
|| ∂
∂θ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
4 ≜ sup

k,jk,Str,λ
|| ∂
∂λ

Gλ,k(θ)||θ∈Θ,Lip < ∞.

According to Assumption 4, we have

sup
k,jk,Str,λ

||Gλ,k(θ)||θ∈Θ,Lip ≤ 1− ην + ηγφ = 1 + η(γφ − ν) ≜ LG
2 < ∞.

According to Lemma 3 and Lemma 4, θ̂(λ, Str) is Lθ̂ = LG
1

(LG
2 )K−1

LG
2 −1

Lipschitz continuous and

γθ̂ = O((LG
2 )

2K) Lipschitz smooth as a function of λ. By definition, Lθ̂ and γθ̂ are independent of
the training dataset Str and the random indices (j1, j2, · · · , jK) and thereby the randomness of θ̂.

According to Lemma 2 and Assumption 2, we have

Lℓ
1 = sup

θ∈Θ,z∈Z
||ℓ(λ, θ, z)||λ∈Λ,Lip < ∞, Lℓ

2 = sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip < ∞.

Similarly, we have

γℓ
1 ≜ sup

θ,z
||
[
∂

∂λ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

2 ≜ sup
λ,z

||
[
∂

∂θ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞,

γℓ
3 ≜ sup

θ,z
||
[
∂

∂θ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

4 ≜ sup
λ,z

||
[
∂

∂λ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞.

Suppose z ∈ Z, firstly we consider the Lipschitz continuity of ℓ(λ, θ̂(λ, Str), z):

||ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤ sup
θ∈Θ,z∈Z

||ℓ(λ, θ, z)||λ∈Λ,Lip + sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip · ||θ̂(λ, Str)||λ∈Λ,Lip

≤Lℓ
1 + Lℓ

2L
θ̂ ≜ L. (4)

Then we consider the Lipschitz continuity of ∂
∂λℓ(λ, θ̂(λ, S

tr), z), which can be expanded as

∂

∂λ
ℓ(λ, θ̂(λ, Str), z) =

[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

+

[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

[
∂

∂λ
θ̂(λ, Str)

]
.

Taking the Lipschitz norm w.r.t. λ, we have

||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
1 + γℓ

4L
θ̂,
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||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
3 + γℓ

2L
θ̂,

which yields

|| ∂
∂λ

ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip

+ ||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,LipL
θ̂ + Lℓ

2||
∂

∂λ
θ̂(λ, Str)||λ∈Λ,Lip

≤γℓ
1 + γℓ

4L
θ̂ + (γℓ

3 + γℓ
2L

θ̂)Lθ̂ + Lℓ
2γ

θ̂ ≜ γ. (5)

With Eq. (4) and Eq. (5), we can conclude ℓ(λ, θ̂(λ, Str), z) as a function of λ is L = O((1+η(γφ−
ν))K) Lipschitz continuous and γ = O((1 + η(γφ − ν))2K) Lipschitz smooth. By definition, L and
γ are independent of the training dataset Str, z, the random indices (j1, j2, · · · , jK) and thereby the
randomness of θ̂. Thereby, we have ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function
of λ is L = O((1 + η(γφ − ν))K) Lipschitz continuous and γ = O((1 + η(γφ − ν))2K) Lipschitz
smooth. Similarly, the result also holds for GD.

A.4 Proof of Theorem 4

Theorem 4 (Expectation bound of CV). Suppose Str ∼ (Dtr)n, Sval ∼ (Dval)m and Str and Sval

are independent, and let Acv(Str, Sval) denote the results of CV as shown in Algorithm 2, then

|E
[
R(Acv(Str, Sval), Dval)− R̂val(Acv(Str, Sval), Sval)

]
| ≤ s(ℓ)

√
log T

2m
.

Proof. Let λt ∈ Λ be the tth hyperparameter, which is a random vector taking value on Λ, θ̂t be
the random function corresponding to the tth optimization in the inner level, then θ̂t(λt, S

tr) is the
output hypothesis given hyperparameter λt and training dataset Str. Let t∗ be the index of the best
hyperparameter, i.e.,

t∗ = argmin
1≤t≤T

R̂val(λt, θ̂
t(λt, S

tr), Sval),

then the output of CV is Acv(Str, Sval) = (λt∗ , θ̂
t∗(λt∗ , S

tr)).

Let Xt = R(λt, θ̂
t(λt, S

tr), Dval)− R̂val(λt, θ̂
t(λt, S

tr), Sval), then we have

R(Acv(Str, Sval), Dval)− R̂val(Acv(Str, Sval), Sval)

=R(λt∗ , θ̂
t∗(λt∗ , S

tr), Dval)− R̂val(λt∗ , θ̂
t∗(λt∗ , S

tr), Sval) = Xt∗ .

By Hoeffding’s lemma, we have for any s > 0

EesXt =Eλt,θ̂t,StrESval exp

(
s

m

m∑
k=1

R(λt, θ̂
t(λt, S

tr), Dval)− ℓ(λt, θ̂
t(λt, S

tr), zvalk )

)

=Eλt,θ̂t,Str

m∏
k=1

Ezval
k

exp
( s

m

(
R(λt, θ̂

t(λt, S
tr), Dval)− ℓ(λt, θ̂

t(λt, S
tr), zvalk )

))
≤

m∏
k=1

exp(
s2

m2

s(ℓ)2

8
) = exp(

s2

m

s(ℓ)2

8
).
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Then we have

EXt∗ ≤E max
1≤t≤T

Xt =
1

s
E log exp(s max

1≤t≤T
Xt) ≤

1

s
logE exp(s max

1≤t≤T
Xt)

=
1

s
logE max

1≤t≤T
exp(sXt) ≤

1

s
log

∑
1≤t≤T

E exp(sXt)

≤1

s
log

(
T exp(

s2

m

s(ℓ)2

8
)

)
=

log T

s
+

s · s(ℓ)2

8m
.

Taking s =
√

8m log T
s(ℓ)2 , we have EXt∗ ≤ s(ℓ)

√
log T
2m . Similarly, we have −EXt∗ ≤ s(ℓ)

√
log T
2m .

Finally, |EXt∗ | ≤ s(ℓ)
√

log T
2m .

B Construct a Worst Case for Theorem 3

We construct a worst case where the Lipschitz constant L in Theorem 3 increases at least exponentially
w.r.t. K. It is a feature learning example with a small neural network. The model has one parameter
and one hyperparameter and uses squared activation function [1]. We use the squared loss. The
data distribution is any distribution in the support Z = {(x, y) : 1

2 ≤ x ≤ 1, 1 ≤ y ≤ 2}. The
parameter space and hyperparameter space are Θ = [0, 1] and Λ = [0, 1

4 ] respectively. Formally, the
loss function is ℓ(λ, θ, z) = (y − λ(θx)2)2. The inner loop is solved by SGD with a learning rate η.
We formalize the result in Proposition 1.
Proposition 1. Suppose ℓ(λ, θ, z) = (y − λ(θx)2)2, Λ = [0, 1

4 ], Θ = [0, 1], Z = {(x, y) : 1
2 ≤ x ≤

1, 1 ≤ y ≤ 2} and the inner level problem is solved with K steps SGD with learning rate η, then
∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function of λ is at least L = Ω((1 + 3

16η)
K)

Lipschitz continuous.

Proof. We use z = (x, y) ∈ Z to denote the data point used in one step of SGD, where we omit
the index of the data point for simplicity. Firstly, the gradient of the loss function is ∇θℓ(λ, θ, z) =
2(y − λ(θx)2)(−λx22θ) = −4(yλx2θ − λ2θ3x4) and one step SGD satisfies

θ − η∇θℓ(λ, θ, z) = θ + 4η(yλx2θ − λ2θ3x4) = (1 + 4ηyλx2)θ − 4ηλ2θ3x4

≥(1 + 4ηyλx2)θ − 4ηλ2θx4 = (1 + 4ηyλx2 − 4ηλ2x4)θ ≥ (1 + 3ηλx2)θ ≥ (1 +
3

4
ηλ)θ.

Let {θ̂k(λ)}k≥0 be the trajectory of SGD, then we have θ̂k(λ) ≥ (1 + 3
4ηλ)

kθ0.

Taking gradient of θ̂k(λ) w.r.t. λ, we have

∇λθ̂k+1(λ) =4ηyx2θ̂k(λ) + (1 + 4ηyλx2)∇λθ̂k(λ)− 4ηx4(2λθ̂k(λ)
3 + λ23θ̂k(λ)

2∇λθ̂k(λ))

=4ηyx2θ̂k(λ) + (1 + 4ηyλx2)∇λθ̂k(λ)− 8ηx4λθ̂k(λ)
3 − 12ηx4λ2θ̂k(λ)

2∇λθ̂k(λ)

=4ηx2θ̂k(λ)(y − 2x2λθ̂k(λ)
2) + (1 + 4ηyλx2 − 12ηx4λ2θ̂k(λ)

2)∇λθ̂k(λ)

As for the first term, we have 4ηx2θ̂k(λ)(y − 2x2λθ̂k(λ)
2) ≥ 2ηx2θ̂k(λ) ≥ 0. As for the coefficient

of the second term, we have 1 + 4ηyλx2 − 12ηx4λ2θ̂k(λ)
2 ≥ 1 + ηλx2 ≥ 1 + ηλ/4 ≥ 0. Besides,

∇λθ̂1(λ) = 4ηyx2θ0 − 8ηλx4θ30 ≥ 2x2θ0η ≥ 1
2θ0η. Thereby, ∇λθ̂k(λ) ≥ 0 and furthermore

∇λθ̂k+1(λ) ≥ (1 + ηλ/4)∇λθ̂k(λ) ≥ (1 + ηλ/4)k∇λθ̂1(λ) ≥
1

2
(1 + ηλ/4)kθ0η.

Then, we consider ℓ(λ, θ̂K(λ), z) = (y − λ(θ̂K(λ)x)2)2. Its gradient w.r.t. λ is

∇λℓ(λ, θ̂K(λ), z) = 2(y − λ(θ̂K(λ)x)2)(−(θ̂K(λ)x)2 − 2λx2θ̂K(λ)∇λθ̂K(λ)).

Thereby,

|∇λℓ(λ, θ̂K(λ), z)| =2|y − λ(θ̂K(λ)x)2| · |(θ̂K(λ)x)2 + 2λx2θ̂K(λ)∇λθ̂K(λ)|
=2|y − λ(θ̂K(λ)x)2| · |θ̂K(λ) + 2λ∇λθ̂K(λ)| · θ̂K(λ) · x2.
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Since |y − λ(θ̂K(λ)x)2| ≥ (1 − 1
4 ) = 3

4 , |θ̂K(λ) + 2λ∇λθ̂K(λ)| ≥ λ(1 + ηλ/4)K−1θ0η and
θ̂K(λ) ≥ (1 + 3

4ηλ)
Kθ0, we have

|∇λℓ(λ, θ̂K(λ), z)| ≥2 · 3
4
· λ(1 + ηλ/4)K−1θ0η · (1 + 3

4
ηλ)Kθ0 ·

1

4

=
3

8
λ(1 + ηλ/4)K−1θ20η(1 + 3ηλ/4)K .

Finally,

||ℓ(λ, θ̂(λ), z)||Lip ≥ sup
λ∈Λ

3

8
λ(1 + ηλ/4)K−1θ20η(1 + 3ηλ/4)K

≥ 3

32
(1 + η/16)K−1θ20η(1 + 3η/16)K := L,

and ||ℓ(λ, θ̂(λ), z)||Lip ≥ L = Ω((1 + 3
16η)

K).

C Improve Theorem 3 under Stronger Assumptions

When the inner loss φi is convex or strongly convex, we can get tighter bounds for L and γ in
Theorem 3. In Proposition 2, we show that L = O(K) and γ = O(K3) when the inner loss φi

is convex. In this case, the dependence on K of the generalization gap (i.e., β in Theorem 2) is
O(K2). In Proposition 3, we show that L = O(1) and γ = O(1) w.r.t. K when the inner loss φi is
strongly convex. In this case, the dependence on K of the generalization gap is O(1). We get these
tighter results by deriving tighter Lipschitz constants for updating functions of SGD w.r.t. θ, using
the (strongly) convex properties of φi. Other parts of the proof is the same as Theorem 3.

Notice that Theorem 3 implies that the learning rate η in the inner level should be of the order of 1/K
for a moderate L and γ. Therefore, η will be very small when K is very large, and the algorithm will
converge slow in practice. However, Proposition 2 and Proposition 3 imply that if we use a (strongly)
convex inner loss, η will not affect the order of L and γ, and thereby we can use a larger η in practice
in this case.

Proposition 2. Suppose Assumption 1,2,3,4 hold, φi(λ, θ, z) as a function of θ is convex for all
1 ≤ i ≤ n, z ∈ Z and λ ∈ Λ, and the inner level problem is solved with K steps SGD or GD with
learning rate η ≤ 2

γφ
, then ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function of λ is

L = O(K) Lipschitz continuous and γ = O(K3) Lipschitz smooth.

Proof. The kth updating step of SGD can be written as

Gλ,k(θ) = θ − η∇θφjk(λ, θ, z
tr
jk
) = ∇θ

(
1

2
||θ||2 − ηφjk(λ, θ, z

tr
jk
)

)
,

where jk is randomly selected from {1, 2, · · · , n}. The output of K steps SGD is
θ̂(λ, Str) = Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))) and Gθ̂ is formed by iterates over (j1, j2, · · · , jK) ∈
{1, 2, · · · , n}K .

According to Lemma 2 and Assumption 3, we have

LG
1 ≜ sup

k,jk,Str,θ
||Gλ,k(θ)||λ∈Λ,Lip = sup

i,z,θ
||∇θ

(
1

2
||θ||2 − ηφi(λ, θ, z)

)
||λ∈Λ,Lip < ∞.

Similarly, we have

γG
1 ≜ sup

k,jk,Str,θ
|| ∂
∂λ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
2 ≜ sup

k,jk,Str,λ
|| ∂
∂θ

Gλ,k(θ)||θ∈Θ,Lip < ∞,

γG
3 ≜ sup

k,jk,Str,θ
|| ∂
∂θ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
4 ≜ sup

k,jk,Str,λ
|| ∂
∂λ

Gλ,k(θ)||θ∈Θ,Lip < ∞.
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Then we consider ||Gλ,k(θ)||θ∈Θ,Lip. According to the co-coercivity of ∇θφjk(λ, θ, z
tr
jk
), we have

||Gλ,k(θ)−Gλ,k(θ
′)||2 =||θ − θ′||2 + η2||∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2

− 2η
〈
θ − θ′,∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)
〉

≤||θ − θ′||2 + η2||∇θφjk(λ, θ, z
tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2

− 2
η

γφ
||∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2 ≤ ||θ − θ′||2.

Thereby, ||Gλ,k(θ)||θ∈Θ,Lip ≤ 1 and sup
k,jk,Str,λ

||Gλ,k(θ)||θ∈Θ,Lip ≤ 1 ≜ LG
2 . According to

Lemma 3 and Lemma 4, θ̂(λ, Str) is Lθ̂ = KLG
1 Lipschitz continuous and γθ̂ = O(K3) Lips-

chitz smooth as a function of λ. By definition, Lθ̂ and γθ̂ are independent of the training dataset Str

and the random indices (j1, j2, · · · , jK) and thereby the randomness of θ̂.

According to Lemma 2 and Assumption 2, we have

Lℓ
1 = sup

θ∈Θ,z∈Z
||ℓ(λ, θ, z)||λ∈Λ,Lip < ∞, Lℓ

2 = sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip < ∞.

Similarly, we have

γℓ
1 ≜ sup

θ,z
||
[
∂

∂λ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

2 ≜ sup
λ,z

||
[
∂

∂θ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞,

γℓ
3 ≜ sup

θ,z
||
[
∂

∂θ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

4 ≜ sup
λ,z

||
[
∂

∂λ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞.

Suppose z ∈ Z, firstly we consider the Lipschitz continuity of ℓ(λ, θ̂(λ, Str), z):

||ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤ sup
θ∈Θ,z∈Z

||ℓ(λ, θ, z)||λ∈Λ,Lip + sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip · ||θ̂(λ, Str)||λ∈Λ,Lip

≤Lℓ
1 + Lℓ

2L
θ̂ ≜ L. (6)

Then we consider the Lipschitz continuity of ∂
∂λℓ(λ, θ̂(λ, S

tr), z), which can be expanded as

∂

∂λ
ℓ(λ, θ̂(λ, Str), z) =

[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

+

[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

[
∂

∂λ
θ̂(λ, Str)

]
.

Taking the Lipschitz norm w.r.t. λ, we have

||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
1 + γℓ

4L
θ̂,

||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
3 + γℓ

2L
θ̂,

which yields

|| ∂
∂λ

ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip

+ ||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,LipL
θ̂ + Lℓ

2||
∂

∂λ
θ̂(λ, Str)||λ∈Λ,Lip

≤γℓ
1 + γℓ

4L
θ̂ + (γℓ

3 + γℓ
2L

θ̂)Lθ̂ + Lℓ
2γ

θ̂ ≜ γ. (7)
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With Eq. (6) and Eq. (7), we can conclude ℓ(λ, θ̂(λ, Str), z) as a function of λ is L = O(K) Lipschitz
continuous and γ = O(K3) Lipschitz smooth. By definition, L and γ are independent of the training
dataset Str, z, the random indices (j1, j2, · · · , jK) and thereby the randomness of θ̂. Thereby, we
have ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function of λ is L = O(K) Lipschitz
continuous and γ = O(K3) Lipschitz smooth. Similarly, the result also holds for GD.

Proposition 3. Suppose Assumption 1,2,3,4 hold, φi(λ, θ, z) as a function of θ is τ -strongly convex
for all 1 ≤ i ≤ n, z ∈ Z and λ ∈ Λ, and the inner level problem is solved with K steps SGD or GD
with learning rate η ≤ 1

γφ
, then ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function of λ

is L = O(1) Lipschitz continuous and γ = O(1) Lipschitz smooth w.r.t. K.

Proof. The kth updating step of SGD can be written as

Gλ,k(θ) = θ − η∇θφjk(λ, θ, z
tr
jk
) = ∇θ

(
1

2
||θ||2 − ηφjk(λ, θ, z

tr
jk
)

)
,

where jk is randomly selected from {1, 2, · · · , n}. The output of K steps SGD is
θ̂(λ, Str) = Gλ,K(Gλ,K−1(· · · (Gλ,1(θ0)))) and Gθ̂ is formed by iterates over (j1, j2, · · · , jK) ∈
{1, 2, · · · , n}K .

According to Lemma 2 and Assumption 3, we have

LG
1 ≜ sup

k,jk,Str,θ
||Gλ,k(θ)||λ∈Λ,Lip = sup

i,z,θ
||∇θ

(
1

2
||θ||2 − ηφi(λ, θ, z)

)
||λ∈Λ,Lip < ∞.

Similarly, we have

γG
1 ≜ sup

k,jk,Str,θ
|| ∂
∂λ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
2 ≜ sup

k,jk,Str,λ
|| ∂
∂θ

Gλ,k(θ)||θ∈Θ,Lip < ∞,

γG
3 ≜ sup

k,jk,Str,θ
|| ∂
∂θ

Gλ,k(θ)||λ∈Λ,Lip < ∞, γG
4 ≜ sup

k,jk,Str,λ
|| ∂
∂λ

Gλ,k(θ)||θ∈Θ,Lip < ∞.

Then we consider ||Gλ,k(θ)||θ∈Θ,Lip. Since φjk(λ, θ, z
tr
jk
) as a function of θ is τ -strongly convex,

we have φjk(λ, θ, z
tr
jk
)− τ

2 ||θ||
2 as a function of θ is convex and γφ− τ Lipschitz smooth. According

to the co-coercivity of ∇θ(φjk(λ, θ, z
tr
jk
)− τ

2 ||θ||
2), we have〈

θ − θ′,∇θφjk(λ, θ, z
tr
jk
)− τθ −∇θφjk(λ, θ

′, ztrjk) + τθ′
〉

≥ 1

γφ − τ
||∇θφjk(λ, θ, z

tr
jk
)− τθ −∇θφjk(λ, θ

′, ztrjk) + τθ′||2,

which is equivalent to〈
θ − θ′,∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)
〉

≥ 1

γφ + τ
||∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2 +

γφτ

γφ + τ
||θ − θ′||2.

As a result,

||Gλ,k(θ)−Gλ,k(θ
′)||2

=||θ − θ′||2 + η2||∇θφjk(λ, θ, z
tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2

− 2η
〈
θ − θ′,∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)
〉

≤||θ − θ′||2 + η2||∇θφjk(λ, θ, z
tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2

− 2η(
1

γφ + τ
||∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2 +

γφτ

γφ + τ
||θ − θ′||2)

=(1− 2η
γφτ

γφ + τ
)||θ − θ′||2 + (η2 − 2η

γφ + τ
)||∇θφjk(λ, θ, z

tr
jk
)−∇θφjk(λ, θ

′, ztrjk)||
2.
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Since η ≤ 1
γφ

≤ 2
γφ+τ , we have ||Gλ,k(θ)||θ∈Θ,Lip ≤

√
1− 2η

γφτ
γφ+τ and

sup
k,jk,Str,λ

||Gλ,k(θ)||θ∈Θ,Lip ≤
√

1− 2η
γφτ

γφ + τ
≜ LG

2 < 1.

According to Lemma 3 and Lemma 4, θ̂(λ, Str) as a function of λ is Lθ̂ = O(1) Lipschitz continuous
and γθ̂ = O(1) Lipschitz smooth w.r.t. K. By definition, Lθ̂ and γθ̂ are independent of the training
dataset Str and the random indices (j1, j2, · · · , jK) and thereby the randomness of θ̂.

According to Lemma 2 and Assumption 2, we have

Lℓ
1 = sup

θ∈Θ,z∈Z
||ℓ(λ, θ, z)||λ∈Λ,Lip < ∞, Lℓ

2 = sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip < ∞.

Similarly, we have

γℓ
1 ≜ sup

θ,z
||
[
∂

∂λ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

2 ≜ sup
λ,z

||
[
∂

∂θ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞,

γℓ
3 ≜ sup

θ,z
||
[
∂

∂θ
ℓ(λ, θ, z)

]
||λ∈Λ,Lip < ∞, γℓ

4 ≜ sup
λ,z

||
[
∂

∂λ
ℓ(λ, θ, z)

]
||θ∈Θ,Lip < ∞.

Suppose z ∈ Z, firstly we consider the Lipschitz continuity of ℓ(λ, θ̂(λ, Str), z):

||ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤ sup
θ∈Θ,z∈Z

||ℓ(λ, θ, z)||λ∈Λ,Lip + sup
λ∈Λ,z∈Z

||ℓ(λ, θ, z)||θ∈Θ,Lip · ||θ̂(λ, Str)||λ∈Λ,Lip

≤Lℓ
1 + Lℓ

2L
θ̂ ≜ L. (8)

Then we consider the Lipschitz continuity of ∂
∂λℓ(λ, θ̂(λ, S

tr), z), which can be expanded as

∂

∂λ
ℓ(λ, θ̂(λ, Str), z) =

[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

+

[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

[
∂

∂λ
θ̂(λ, Str)

]
.

Taking the Lipschitz norm w.r.t. λ, we have

||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
1 + γℓ

4L
θ̂,

||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip ≤ γℓ
3 + γℓ

2L
θ̂,

which yields

|| ∂
∂λ

ℓ(λ, θ̂(λ, Str), z)||λ∈Λ,Lip

≤||
[
∂

∂λ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,Lip

+ ||
[
∂

∂θ
ℓ(λ, θ, z)

] ∣∣∣
θ=θ̂(λ,Str)

||λ∈Λ,LipL
θ̂ + Lℓ

2||
∂

∂λ
θ̂(λ, Str)||λ∈Λ,Lip

≤γℓ
1 + γℓ

4L
θ̂ + (γℓ

3 + γℓ
2L

θ̂)Lθ̂ + Lℓ
2γ

θ̂ ≜ γ. (9)

With Eq. (8) and Eq. (9), we can conclude ℓ(λ, θ̂(λ, Str), z) as a function of λ is L = O(1) Lipschitz
continuous and γ = O(1) Lipschitz smooth w.r.t. K. By definition, L and γ are independent of
the training dataset Str, z, the random indices (j1, j2, · · · , jK) and thereby the randomness of θ̂.
Thereby, we have ∀Str ∈ Zn, ∀z ∈ Z, ∀g ∈ Gθ̂, ℓ(λ, g(λ, Str), z) as a function of λ is L = O(1)
Lipschitz continuous and γ = O(1) Lipschitz smooth. Similarly, the result also holds for GD.
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D UD with GD in the Outer Level

Since GD is deterministic, we can derive a high probability bound for UD with GD in the outer level.
Firstly, we define the notion of uniform stability on validation for a deterministic HO algorithm.

Definition 7. A deterministic HO algorithm A is β-uniformly stable on validation if for all validation
datasets Sval, S

′val ∈ Zm such that Sval, S
′val differ in at most one sample, we have

∀Str ∈ Zmtr

,∀z ∈ Z, ℓ(A(Str, Sval), z)− ℓ(A(Str, S
′val), z) ≤ β.

If a deterministic HO algorithm is β-uniformly stable on validation, then we have the following high
probability bound.

Theorem 5. (Generalization bound of a uniformly stable deterministic algorithm). Suppose a
deterministic HO algorithm A is β-uniformly stable on validation, Str ∼ (Dtr)n, Sval ∼ (Dval)m

and Str and Sval are independent, then for all δ ∈ (0, 1), with probability at least 1− δ,

ℓ(A(Str, Sval), Dval) ≤ ℓ(A(Str, Sval), Sval) + β +

√
(2βm+ s(ℓ))2 ln δ−1

2m
.

Proof. Let Φ(Str, Sval) = ℓ(A(Str, Sval), Dval)− ℓ(A(Str, Sval), Sval). Suppose Sval, S
′val ∈

Zm differ in at most one point, then

|Φ(Str, Sval)− Φ(Str, S
′val)|

≤|ℓ(A(Str, Sval), Dval)− ℓ(A(Str, S
′val), Dval)|+ |ℓ(A(Str, Sval), Sval)− ℓ(A(Str, S

′val), S
′val)|.

For the first term,

|ℓ(A(Str, Sval), Dval)− ℓ(A(Str, S
′val), Dval)|

=|Ez∼Dval

[
ℓ(A(Str, Sval), z)− ℓ(A(Str, S

′val), z)
]
| ≤ β.

For the second term,

|ℓ(A(Str, Sval), Sval)− ℓ(A(Str, S
′val), S

′val)|

≤ 1

m

m∑
i=1

|ℓ(A(Str, Sval), zvali )− ℓ(A(Str, S
′val), z

′val
i )|

≤s(ℓ)

m
+

m− 1

m
β.

As a result,

|Φ(Str, Sval)− Φ(Str, S
′val)| ≤ s(ℓ)

m
+ 2β.

According to McDiarmid’s inequality, we have for all ϵ ∈ R+,

PSval∼(Dval)m(Φ(Str, Sval)−ESval∼(Dval)m
[
Φ(Str, Sval)

]
≥ ϵ) ≤ exp(−2

mϵ2

(s(ℓ) + 2mβ)2
).

Besides, we have

ESval∼(Dval)m
[
Φ(Str, Sval)

]
= ESval∼(Dval)m

[
ℓ(A(Str, Sval), Dval)− ℓ(A(Str, Sval), Sval)

]
=ESval∼(Dval)m,z∼Dval

[
ℓ(A(Str, Sval), z)− ℓ(A(Str, Sval), zval1 )

]
=ESval∼(Dval)m,z∼Dval

[
ℓ(A(Str, z, zval2 , · · · , zvalm ), zval1 )− ℓ(A(Str, Sval), zval1 )

]
≤ β.

Thereby, we have for all ϵ ∈ R+,

PSval∼(Dval)m(Φ(Str, Sval)− β ≥ ϵ) ≤ exp(−2
mϵ2

(s(ℓ) + 2mβ)2
).

13



Notice the above inequality holds for all Str ∈ Zn, we further have ϵ ∈ R+,

PStr∼(Dtr)n,Sval∼(Dval)m(Φ(Str, Sval)− β ≥ ϵ) ≤ exp(−2
mϵ2

(s(ℓ) + 2mβ)2
).

Equivalently, we have ∀δ ∈ (0, 1),

PStr∼(Dtr)n,Sval∼(Dval)m

(
Φ(Str, Sval) ≤ β +

√
(2βm+ s(ℓ))2 ln δ−1

2m

)
≥ 1− δ.

Then we analyze the stability for UD with GD in the outer level. At each iteration in the outer level,
it updates the hyperparameter by:

λt+1 = (1− αt+1µ)λt − αt+1∇λR̂
val(λt, θ̂(λt, S

tr), Sval),

where αt is the learning rate and µ is the weight decay.

Theorem 6. (Uniform stability of algorithms with GD in the outer level). Suppose θ̂ is a deterministic
function and ∀Str ∈ Zn, ∀z ∈ Z, ℓ(λ, θ̂(λ, Str), z) as a function of λ is L-Lipschitz continuous and
γ-Lipschitz smooth. Then, solving Eq. (4) in the full paper with T steps GD, learning rate αt ≤ α
and weight decay µ ≤ min(γ, 1

α ) in the outer level is β-uniformly stable on validation with

β =
2L2

m(γ − µ)
((1 + α(γ − µ))T − 1).

Proof. Suppose Str ∈ Zn, we use F (λ, Sval, α, µ) = (1 − αµ)λ − α∇λR̂
val(λ, θ̂(λ, Str), Sval)

to denote the updating rule of GD, where we omit the dependency on Str for simplicity. Suppose
Sval, S

′val ∈ Zm differ in at most one point, let {λt}t≥0 and {λ′
t}t≥0 be the trace of gradient descent

with Sval and S
′val respectively. Let δt = ||λt − λ′

t||, then

δt+1 =||F (λt, S
val, αt+1, µ)− F (λ′

t, S
′val, αt+1, µ)||

≤||F (λt, S
val, αt+1, µ)− F (λ′

t, S
val, αt+1, µ)||+ ||F (λ′

t, S
val, αt+1, µ)− F (λ′

t, S
′val, αt+1, µ)||

≤(|1− αt+1µ|+ αt+1γ)δt +
2αt+1L

m
= (1 + αt+1(γ − µ))δt +

2αt+1L

m

≤(1 + α(γ − µ))δt +
2αL

m
.

Thereby, we have δt ≤ 2L
m(γ−µ) ((1 + α(γ − µ))t − 1) for all t ≥ 0. Finally, we have

∀z ∈ Z, |ℓ(λT , θ̂(λT , S
tr), z)− ℓ(λ′

T , θ̂(λ
′
T , S

tr), z)| ≤ 2L2

m(γ − µ)
((1 + α(γ − µ))T − 1).

Remark: We derive such a bound by using the recursive updates of the outer level GD with the
smoothness of the loss function and the inner level optimization. This technique can be directly applied
to traditional GD (i.e., GD with one level optimization) to get a stability bound of exponentially
increasing w.r.t T and O(1/m).

E Curse of dimensionality in CV

Lemma 5. Suppose f(λ), λ ∈ Λ = [0, 1]d is L Lipschitz continuous, {λi}Ti=1 are i.i.d. uniform
random vectors on [0, 1]d, then E inf

1≤i≤T
f(λi) ≤ inf

λ∈Λ
f(λ) + L

√
d

T
1
d

.
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Proof. Let λ∗ = argmin
λ∈Λ

f(λ). Firstly, we have f(λi) ≤ f(λ∗) + L||λi − λ∗|| for all 1 ≤ i ≤ T .

Thereby,
inf

1≤i≤T
f(λi) ≤ f(λ∗) + L inf

1≤i≤T
||λi − λ∗||.

Taking expectation, we have
E inf

1≤i≤T
f(λi) ≤ f(λ∗) + LE inf

1≤i≤T
||λi − λ∗||.

As for E inf
1≤i≤T

||λi − λ∗||, we have

E inf
1≤i≤T

||λi − λ∗|| =
∫ ∞

0

P ( inf
1≤i≤T

||λi − λ∗|| > t)dt

=

∫ ∞

0

P (||λ1 − λ∗|| > t)Tdt =

∫ ∞

0

(1− |B(λ∗, t) ∩ Λ|)Tdt

≤
∫ ∞

0

(1− |B(0, t) ∩ Λ|)Tdt = E inf
1≤i≤T

||λi||

≤E inf
1≤i≤T

√
d sup
1≤j≤d

λi,j =
√
d

∫ 1

0

P ( inf
1≤i≤T

sup
1≤j≤d

λi,j > t)dt

=
√
d

∫ 1

0

P ( sup
1≤j≤d

λ1,j > t)Tdt =
√
d

∫ 1

0

(1− P (λ1,1 ≤ t)d)Tdt

=
√
d

∫ 1

0

(1− td)Tdt ≤
√
d

∫ 1

0

e−Ttddt =

√
d

T
1
d

∫ T
1
d

0

e−tddt

≤
√
d

T
1
d

∫ ∞

0

e−tddt =

√
d

T
1
d

∫ ∞

0

e−tdt
1
d =

√
d

T
1
d

∫ ∞

0

t
1
d e−tdt =

√
d

T
1
d

Γ(1 +
1

d
) ≤

√
d

T
1
d

.

As a result,

E inf
1≤i≤T

f(λi) ≤ f(λ∗) + L

√
d

T
1
d

.

The following result implies that CV suffers from curse of dimensionality. CV requires exponentially
large T w.r.t. the dimensionality of the λ to achieve a reasonably low empirical risk.
Theorem 7. (Curse of dimensionality in CV). Suppose (1) the inner level optimization is solved
deterministically, i.e., θ̂ in Eq. (4) in the full paper is a deterministic function, (2) {λt}Tt=1 are i.i.d.
uniform random vectors taking value in Λ = [0, 1]d, (3) ∀Str ∈ Zn, ∀z ∈ Z, ℓ(λ, θ̂(λ, Str), z) as
a function of λ is L Lipschitz continuous. Let Str ∼ (Dtr)n and Sval ∼ (Dval)m be independent,
then we have

E
[
R̂val(Acv(Str, Sval), Sval)

]
≤ E

[
inf
λ∈Λ

R̂val(λ, θ̂(λ, Str), Sval)

]
+

L
√
d

T
1
d

.

Proof. Let t∗ be the index of the best hyperparameter, i.e.,

t∗ = argmin
1≤t≤T

R̂val(λt, θ̂(λt, S
tr), Sval),

then the output of CV is Acv(Str, Sval) = (λt∗ , θ̂(λt∗ , S
tr)).

According to Lemma 5, we have

E{λt}T
t=1

[
R̂val(λt∗ , θ̂(λt∗ , S

tr), Sval)
]
= E{λt}T

t=1

[
inf

1≤t≤T
R̂val(λt, θ̂(λt, S

tr), Sval)

]
≤ inf

λ∈Λ
R̂val(λ, θ̂(λ, Str), Sval) +

L
√
d

T
1
d

.

15



Thereby,

E
[
R̂val(Acv(Str, Sval), Sval)

]
= E{λt}T

t=1,S
tr,Sval

[
R̂val(λt∗ , θ̂(λt∗ , S

tr), Sval)
]

≤EStr,Sval

[
inf
λ∈Λ

R̂val(λ, θ̂(λ, Str), Sval)

]
+

L
√
d

T
1
d

.

F Discussion of the Boundedness Assumption of the Loss Function

The bounded assumption is mild and common (e.g., also used in Theorem 3.12 of [2] and Section 2 in
[3]). Indeed, given a machine learning model of a finite number of parameters (e.g. neural networks
of finite depth and width used in our experiments), a bounded parameter space (Assumption 1), and
a bounded input space (Assumption 1), the feature space is also bounded. Note that previous work
makes a similar assumption (at the bottom of Page 9 in [2]) as Assumption 1.

G Additional Experiments

G.1 Generalization Gap

In Figure 1, we plot the generalization gap (estimated by difference between test and validation loss)
of UD on the FL and DR experiments. When the K ≥ 644, the generalization gap increases as K
increases. These results validate our Theorem 2 and Theorem 3.

In Figure 2, we plot the generalization gap of CV on the FL and DR experiments. There is not a clear
relationship between the generalization gap and K. These results validate our Theorem 4.

(a) Validation loss (FL) (b) Testing loss (FL) (c) Generalization gap (FL)

(d) Validation loss (DR) (e) Testing loss (DR) (f) Generalization gap (DR)

Figure 1: The generalization gap of UD in feature learning (FL) and data reweighting (DR).

G.2 Empirical Verification of the Expectation Bound of CV

We empirically validate the O(
√
1/m) expectation bound of CV in Theorem 4. In the data reweight-

ing experiment, we chose ten different m from [10, 1000] such that
√

1/m is distributed linearly and

4The test loss is dominated by training loss when K is too small due to underfitting on the training dataset.
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(a) Validation loss (FL) (b) Testing loss (FL) (c) Generalization gap (FL)

(d) Validation loss (DR) (e) Testing loss (DR) (f) Generalization gap (DR)

Figure 2: The generalization gap of CV in feature learning (FL) and data reweighting (DR).

we plot the curve of the generalization gap v.s.
√

1/m. We fix T = 1000 and K = 64. We run on 5
different seeds and use the averaged result. As shown in Figure 3, the curve is approximately linear,
which accords with our Theorem 4.

Figure 3: Generalization gap v.s.
√

1/m of CV in data reweighting (DR).

G.3 UD with a Smaller Learning Rate in the Inner Level

We also try a smaller learning rate η = 0.1 in the inner level on the data reweighting task. As shown
in Figure 4, it requires K = 1024 inner iterations to overfit. This can be explained by our Theorem 3,
which implies that a smaller η requires a larger K to make the generalization gap unchanged.

G.4 Experiments with a Smaller Number of Hyperparameters

We also experiment with 4 hyperparameters. We create a two dimensional toy dataset in the feature
learning task: y = x2

1 + x2
2 + 0.3ϵ, where x1, x2 ∼ Uniform(0, 1) and ϵ ∼ N (0, 1). The number of

training data is 10 and the number of validation data is 2. The hyperparameter λ is a 2× 2 matrix
following the input x and the parameter θ is a 2× 1 matrix to predict the y. The learning rate of the
outer level problem is 0.01 and that of the inner level problem is 0.1 and the batch size is 1 in both
problems. K is 16 and T is 1000. In this case, the validation losses of UD and CV are comparable
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(a) Validation loss (DR) (b) Testing loss (DR) (c) Generalization gap (DR)

Figure 4: Results of UD in data reweighting (DR) with a smaller learning rate η = 0.1. We run on 3
different seeds. The performance of UD is sensitive to the values of K and T .

and both algorithms fit well on the validation data. However, UD overfits much severely, leading to a
worse testing loss than CV. The results agree with our theory.

Figure 5: Compare between CV and UD with 4 hyperparameters.
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