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A Proofs of Main Theoretical Results

A.1 Proof of Theorem 1

Theorem 1 (Generalization bound of a uniformly stable algorithm). Suppose a randomized HO
algorithm A is B-uniformly stable on validation in expectation, then

[Ea str(pirye seot(peetyn | RIA(S', 87, DUl) — Rrel (A (S, 571, §7)| | < .

Proof.
Ea ger goer [R(A(S'", §valy, praly — ]%ual(A(Str7 gval), gvaly|
=[Ea gtr gvat znprat [((A(S™,57), 2) — L(A(S™, 57), 27*)] |
=|Ea gtr gvat s poat V(A(Str, 2,20l . pvaly pvaly _g(A (gt gual), Zfal)] |
<Egir gvat snprat[Ea [((A(S™, 2,25, 2p0), 27) — L(A(S™, 57), 27*)] | < B,

where the last inequality is due to the definition of stability. [

A.2 Proof of Theorem 2

Here we prove a more general version of Theorem 2 in the full paper by considering SGD with weight
decay in the outer level, i.e.,

Aip1 = (1 — i)\ — a1 Va b, O, S™), Z}Jal)a 1

where v is the learning rate, p is the weight decay, j is randomly selected from {1,--- ,m} and g is
a random function. Theorem 2 in the full paper can be simply derived by letting p+ = 0.

Theorem 2 (Uniform stability of algorithms with SGD in the outer level). Suppose 0 is a random
function in a function space G; and ¥S'" € Z", Nz € Z, Vg € Gy, U(\, g(\, S™), z) as a function
of A is L-Lipschitz continuous and ~y-Lipschitz smooth, let ¢ < ;sz), u< min(%7 (1—-1/m)y) and
%. Then, solving Eq. (4) in the full paper with T steps SGD, learning rate
ay < § and weight decay pu in the outer level is 3-uniformly stable on validation in expectation with
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which is increasing w.r.t. L, vy and decreasing w.r.t. .

Proof. Suppose S € Z™ and z € Z, let f(\,g) = £()\, g(\, S*), 2), where we omit the depen-
dency on S*" and z for simplicity, then (), g) is as a function of X is L-Lipschitz continuous and

~-Lipschitz smooth. Suppose % and S"%! differ in at most one point, let {\; };>0 and {\}};>¢ be

the trace of Eq. (Eb with Svel and §'val respectively. Then the output of the HO algorithm A with ¢
steps SGD in the outer level is

A(S',8Uh) = (A, (N, S™)), A(ST, 8709 = (M), (N, S'T)),
and
O(A(S', 87), 2) = (A, (N, S'7), 2) = f( N, 0),
UA(S™T, 87, 2) = £(N, 0(N;, S, 2) = f(A,6).
Let 6; = ||Ar — A}||. Suppose 0 < to < ¢, we have
E [|/(\0) = SO 0)]] =E [1£(0,0) = £ O)] - 15,00

+B[1f 00 0) = FO0)] - 15,y 50]
<LE [6; - 15, =0] + P(, > 0)s(0).

Without loss of generality, we assume SV% and S'val at most differ in at the first point. If SGD
doesn’t selects the first point for the first ¢y iterations, then d;, = 0. As a result,

to

1
Plo, =0)2 (1= ) > 1- 2,

Therefore, P(6;, > 0) < £ and we have
- A t
E [If () = £ 0| < LE 8- 15, =] + 2s(0). @

Now we bound E [6; - 15, —o]. Let 7/ = (1 — 1/m)y — p and let j be the index selected by SGD at
the ¢t + 1 iteration, then we have

E [0141 - 1oy=0] <E [der1 - 1j=1 - 1o, 0] + B [041 - Lis1 - 15, =0]

1
S (11— arpapl - Elde - 1, o] + 2044+1L)

m—1
+ == (11 = apsapl + ar417)E[; - 15, —o]
200041 L
=(1+ a+17)E[0; - 15, —0] + —
200441 L
< exp(ars17 VB - L, =o] + = ==
c 2¢cL
< —~AE[§; - 1s, — —_—
S (a7 B Lo, =] + oy
As a result,
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Combining with Eq. (), we have
A A 212 [ [T\ t
B (£, 0) - O 0)]] < int (( ) 1) + o, )

T 0<to<T my’ to

The right hand side is approximately minimized when

2cL? ey

to = ey F1 ey +1 T
0= s(0) ) eh
which gives
A ~ 1 + 1/c ! 1 cy' ' 2L2
B[f08) - f04.0)] <L er?) SR ) 7 - 25—

ey (1=1/m)y—p)
Letwk = 077“ = C((1—1/m)vzu¢+1’

) (4 (2 ) )

Since the r.h.s. of Eq. is increasing w.r.t. L and +’, where 7/ is further increasing w.r.t. v and
decreasing w.r.t. 1, we can conclude 3 is increasing w.r.t. L,y and decreasing w.r.t. . O

then (3 can be written as

A.3 Proof of Theorem 3

Definition 1. (Lipschitz continuous) Suppose (X, dx), (Y, dy) are two metric spaces and f : X —
Y. We define f is L Lipschitz continuous iff Va,b € X, dy (f(a), f(b)) < Ldx(a,b).

Definition 2. (Lipschitz smooth) Suppose X,Y are subsets of two real normed vector spaces and
f+ X =Y is differentiable. We define f is v Lipschitz smooth iff [ is v Lipschitz continuous.
Definition 3. (Lipschitz norm) Suppose (X,dx), (Y, dy) are two metric spaces, f : X =Y, we
define ||f||Lip £ inf{L € [0,00] : Va,b € X,dy(f(a), f(b)) < Ldx(a,b)}, i.e., the minimum L
such that f is L Lipschitz continuous.

Definition 4. Given a function f(\,0), we use || f (X, 0)||xea,Lip and || f (X, 8)||oco,Lip to explicitly
denote the Lipschitz norm of f w.rt. A € A and 0 € O respectively.

Definition 5. (Vector norm) Suppose a € R™, we use ||a|| to denote the l2 norm of a.

Definition 6. (Matrix norm) Suppose A € R™*", we define ||A|| = sup HIIILZIIIH’ i.e., the norm of
0#acR™
the linear operator induced by A.

Lemma 1. Suppose X,Y are two real normed vector spaces, ) is an open set of X, f : 1 = Y
is continuously differentiable, S C Q is convex and has non-empty interior, then ||f|s||Lip =

sup ||f*(c)].
ceS
Proof. Suppose a,b € S, according to the mean value theorem, there is a c lies in the segment

determined by a and b, s.t., || f(b) — f(a)|| < ||f'(¢)(b — a)||. Furthermore, we have
1F" ()b =a)ll < |[f ()] - 11— al| < SIGIIS)Hf'(C)H 16— al|.

Thereby, f|s is sup || f'(c)|| Lipschitz continuous and || f|s||zip < sup||f'(¢)]]-
ceS ces

Suppose ¢ € S°, where S° is the interior of S and v € X with ||u|| = 1, then

lim fleteu) — flo) = f'(c)u.

e—0 €
Thereby,

w” = [If'(c)ull.

—
>
Hf|S||sz = lg%”



Since u is arbitrary, we have || f/(c)|| =  sup  ||f/(c)ul| < ||fls||Lip-

ueX,||ul|=1
Since S has non-empty interior, we have S C S° by the property of convex sets. Suppose ¢ € S, then
c € S° and there is a sequence ¢,, € S°, s.t., ¢, — c. Since ¢, € S°, we have || f/(c,)|| < || f]s]|Lip-
Let n — oo, by the continuity of f/, we have || f'(c)|| < ||f|s||Lip- Since ¢ € S is arbitrary, we have
Slelgllf’(ff)l\ < [|fls|zip- Finally, we have Slelgl\f’(C)ll = I£lsllzip- H
c c

Lemma 2. Suppose A and © are convex and compact with non-empty interiors, Z is compact,

A x © x Z is included in an open set Q and f(\,0,z) € C¥(Q), then for all i < k — 1 or-

der partial differential h(X,0,z) of f(\,6,2), we have sup ||h(\, 60, 2)||xea,Lip < 00 and
0€©,2cZ

sup Hh(Aaa:Z)HQEG,Lip < 0.
ANeN,zeZ

Proof. Suppose h(A,0,z)is ai < k — 1 order partial differential of f(\, 6, z), then h(A,0,z) €
C1(Q)and V h(), 0,2) € C(£2). Since Ax O x Z is compact, V\h(\, 6, ) is bounded in Ax O x Z.
According to Lemmal[I] we have

sup [|h(A, 0, 2)[[xea,Lip = sup sup||Vih(A,0,2)|] < oco.
ISSHAIA 0€0,z€Z NEA

Similarly, we can derive  sup  ||h(X, 0, 2)||oco,Lip < 0. O
ANEN,zE€Z

Lemma 3. Suppose (1) V1 < k < K, YA € A, G (0) is a mapping from © to O, i.e, Gy :

0 — 6, (2)Vl <k < K, V0 €0, Gyr(0) as a function of \ is LY < oo Lipschitz continuous,

(V1 < k < K, VX € A Gir(0) as a function of 0 is LQG < oo Lipschitz continuous. Let

O(\) = Gax (Grr—1(--- (Gx1(00)))), then O(N) is LY Lipschitz continuous with

G\K _
0] e LS #1
KL§ L§ =1

Proof. Weuse O () todenote Gy x (Gx k—1(--- (Gx,1(00)))). Suppose A\, \ € Aand K > 1, we
have
10k (N) = 0 (N)]| = ||Gr k(0K -1(N)) = G,k (O —1 (V)]
<[Gak (Ox-1(N) = Gxr k(O 1 (W) + |Gx k(0 -1 (V) — Gxr ik (0K -1 (N))]]
LA = N[+ L |10k —1(X) — 01 (N)]]-
G _ ’ IDHE-1ray v
If LS # 1, we have | |0k (A) — Ok (V)]] < foT LE|A = NI

If LS =1, we have ||0x (\) — O (\V)|| < KLE||A — N||. O

Lemma 4. Suppose (1)V1 < k < K,V € A, G 1(0) is a mapping from © to O, i.e., Gy, : © —
O, (2)V1<k<K,V0e0O, Gy and (%\G/\,k(e) as a function of X is LY and ~¢ Lipschitz
continuous respectively, (3)V1 < k < K,V € A, G 1(0) and %G,\JC(H) as a function of 0 is L§
and ~§ Lipschitz continuous respectively, (4)V1 < k < K, V0 € ©, %Gx,k(ﬁ) as a function of A
is v > 0 Lipschitz continuous, (5) V1 < k < K, YA € A, %Gx,k(ﬁ) as a function of 0 is v > 0
Lipschitz continuous. Let 0(\) = Gy x (Ga.x—1(--- (Gx1(00)))), then (N is ~9 Lipschitz smooth
with

O( 5
i ) O(K?) LY =1,LF >0
77 o) LY =1,1§ =0
0(1) LY <1

and ’yé is determined by LS, LS , v, ~§ "y??, 7§ K.



Proof. Suppose 1 < k < K, we use Hk( ) to denote Gy x(Gax—1(--- (Gr1(6o)))). According
P G(L ) —1 G
to Lemma O0r(\) is LOF = { Ly~ LS #1

L§ -1
0 (M) w.r.t. A\, we have

Lipschitz continuous. Taking gradient to
G G _
kLS Ls =

9] 0 0 9] 0
—0k(A) = =Gk (O—1(A G r(0 — G k(0 —0k_1(N)| .
SO = S Gasa ) = | 60|,k gese] | L ea)]
Taking the Lipschitz constant w.r.t. A, we have
. bt
in <
1G] |,y s <oF 4282757,
1 55Ga®)] |, e 2 #5224,
8 0 |
< .
g8 Olsin <l | 55Gox®)] |,
0 0
i —0k_1(A
1 pGs®) [, s sup 1280

0 0
+ s lggGarO) 550 (s

<G 4 AGLOF N 4 (4§ 44§ LA LIk LG||*91€ 1M zip
=5 (L7124 (4§ + 7§ LOF 1 A€ +LS"I| S0k 1 (Nl Lip-

As for 0y, we have

0
580 (MlLin = 0.

Let vé be the K'th term of the sequence defined by
ag =75 (L7712 4+ (05 + A0V LM A+ L aror, a0 =0,

which is determined by L, LS v, ~§ 7§, 1§, then ||a,\9K( MixLip < ~% and 0(\) = 0k (N)
is 40 Lipschitz smooth. Finally, we analyze the order of NI L$ > 1, then LYK = O((L§)K)

O(K) LS =0
G\2K a 0.K G 0 ) 1

and 7% = O((L)*). If L§ = 1, then L KLS + L% and »° { Ok [hso T
L§ < 1,then LK = O(1) and 7% = O(1). O

Assumption 1. A and © are compact and convex with non-empty interiors, and Z is compact.
Assumption 2. /(),0,2) € C%(2), where Q is an open set including A x © x Z (i.e., { is second
order continuously differentiable on Q).

Assumption 3. ¢;(\,0,2) € C3(Q), where S is an open set including A x © x Z (i.e., p; is third
order continuously differentiable on Q).

Assumption 4. ¢;()\, 0, 2) is y,-Lipschitz smooth as a function of 0 for all 1 <i < n, z € Z and
X € A (Assumption 3| implies such a constant vy, exists).

Here we prove a more general version of Theorem 3 in the full paper by considering SGD or GD with
weight decay v in the inner level. Theorem 3 in the full paper can be simply derived by letting v = 0.

Theorem 3. Suppose Assumption[I|2|54|hold and the inner level problem is solved with K steps SGD
or GD with learning rate 1) and weight decay v, then VS'" € Z", Yz € Z,Yg € Gy, L(X, g(\, S7), 2)
as a function of X is L = O((1+n(v, —v))¥) Lipschitz continuous and v = O((1+n(y, —v))*)
Lipschitz smooth.



Proof. The kth updating step of SGD can be written as
r 1-— nv r
Gax(0) = (1= )0 = 15005, (0.0,347) = Vi (52012 = s, 0628

where j, is randomly selected from {1,2,---,n}. The output of K steps SGD is
O\, S'") = Ga k(Gax—1(- -~ (Gx1(6p)))) and Gy is formed by iterates over (j1, jo2, - ,jK) €
{17 23 T 7n}K'

According to Lemma 2]and Assumption[3} we have

1—nv
92 s [1Gasl0)lhensin = sup [V (L5

k,jr,St",0 i,2,0

o1 moi(A,e,z)) nea.Lip < 0.

Similarly, we have

0
e sup ||*GA k(0)||xeaLip < 00, 75 £ sup ||%G/\,k(9)||ae®,Lip < 00,
k,jr,StT,0 k,jr, St

0
v§ & sup ||69GA K(O)reaLip <00, 7§ £ sup || = Gar(0)|loco,Lip < 0.

kyji,StT,0 Kok, Str A OA
According to Assumption[d] we have

sup  ||Grk(0)|loco,Lip <L —nv+nye =1+n(y, —v) £ LY < 0.

g, St

According to Lemma and LemmaEl, 9(/\ St is Lo = L (LL"’G) I Llpschltz continuous and

~0 = O((L§)?K) Lipschitz smooth as a function of \. By definition, L% and 49 are independent of
the training dataset S'" and the random indices (j1,j2, " - , ji ) and thereby the randomness of 6.

According to Lemma 2] and Assumption 2} we have

Li= sup [[l(X0,2)l[xeaip <00, Ly = sup [[€(X,0,2)lloce,Lip < oc.
0€0,2€Z AEAz€Z

Similarly, we have

0 0
Y1 £ Sup H |:£()‘ 0 Z):| ||)\€A,L7,'p < 00, 72 - Sllp || |:30 (>‘a97Z>:| ||9€®,Lip < 090,

0 0
o6 2 ]| 500,02 Ihen iy < 06, 9 2 sup || F50.0.)] ey < .

Suppose z € Z, firstly we consider the Lipschitz continuity of £(\, (X, S'7), z):

16X, (N, 87, 2)|Ixen, Lip

< sup [N 0,2)|aeacip+ sup 16N 60, 2)lloco Lip - 110X, S™)|Ixen, i
0€0,26Z ANeEN,zeZ

<It+ Il 2L )

Then we consider the Lipschitz continuity of %8 (A, 6(), S™), z), which can be expanded as

SHO0,E7),2) = [aaA .8 Z)} s ¥ [880 (.0 )} i [;A " Str)}

Taking the Lipschitz norm w.r.t. A, we have

0
H L%g()\’ " Z)} ‘o:é(x,sw)HAGA,Lip <+



0
» < 5
I {89 (A0 Z)} ’a:é(,\,str)HAEA’Lw <%+

which yields
H*f(/\ B(X, 5). 2)lInen.Lip

<|{‘9 0,0, )M o Iheaip

9=6(,5tr)
0
—50(,6,2)] | L LZ—H)\S ;
g0 |y o Ienil? + L0008 e

<A+ AL+ (AL + L5 2 . (5)

With Eq. (4) and Eq. (5), we can conclude £(X, 6(), S™"), z) as a function of Ais L = O((1+ n(vp —
v))X) Lipschitz continuous and v = O((1 + n(v,, — v))?X) Lipschitz smooth. By definition, L and
~ are independent of the training dataset S*", z, the random indices (j1, ja2, - - - ,jr ) and thereby the

randomness of 6. Thereby, we have VS'" € Z",Vz € Z,Vg € Ga LN, g(N, S'), ) as a function

of Ais L = O((1 + n(v, — v))¥) Lipschitz continuous and v = O((1 + n(v, — v))?&) Lipschitz
smooth. Similarly, the result also holds for GD. O

A.4 Proof of Theorem 4

Theorem 4 (Expectation bound of CV). Suppose S ~ (D'")", Sv4 ~ (D)™ and S*" and SV
are independent, and let A (S'", SU%) denote the results of CV as shown in Algorithm 2, then

logT
2m

|E [R(ACU(StT, Sval)vaal) . Rval(Acv(Str’ Sval)7sval):| | < S([)

Proof. Let Ay € A be the tth hyperparameter, which is a random vector taking value on A, 6! be

the random function corresponding to the ¢th optimization in the inner level, then 6t (A, ST is the
output hypothesis given hyperparameter \; and training dataset S, Let t* be the index of the best
hyperparameter, i.e.,

t* = arg min R*“ (A, ét()\t, Stry, gvaly,
1<t<T

then the output of CV is A (S, §v8) = (A, 6" (N, ST7)).
Let X; = R(\, 0% (A, ST7), DVob) — Rval(\,, 0 (), S'), S, then we have
R(Acv(Str’ Sval)’ Dval) _ Rval(Acv(Str, Sval)’ Sval)
:R()\t* , ét* ()\t*; Str)7 Dval) _ Rval()\t* , ét* ()\t* , Str)7 Sval) = X

By Hoeffding’s lemma, we have for any s > 0

Ee'X* =E, ; g Egua exp <; > R(A, 05 (A, S™), DY) — (A, 0" (A, ST, 1)‘11))
k=1

=E, e,sor || Eeyeroxp (= (RO, 0, $7), D) = 600, 8" (0, 57), 24 )

k=1
m 52 S 2 32 S 2
< TS5 ") = exp(2 205



Then we have

1 1
EX. <E 1I§%XTXt = ;Elogexp(s 1rgntangXt) < glogEexp(s 1rgntangXt)

1 1
= logE lIéltaSXT exp(sX;) < 5 log Z Eexp(sXt)
1<t<T
1 2 2 loc T . 2
<-log Texp(s—sw) )| = o8 42 s(0) .
s m 8 s 8m

Taking s — 8n;(lec3%T’ we have EX;- < s(/) lOgT . Similarly, we have —EX;. < s({) \/%-
Finally, |[EX;«| < S(@\/%‘ -

B Construct a Worst Case for Theorem 3

We construct a worst case where the Lipschitz constant L in Theorem 3 increases at least exponentially
w.r.t. K. It is a feature learning example with a small neural network. The model has one parameter

and one hyperparameter and uses squared activation function [1]]. We use the squared loss. The
data distribution is any distribution in the support Z = {(z,y) : 3 < 2 < 1,1 <y < 2}. The
parameter space and hyperparameter space are © = [0, 1] and A = [0, 7] respectively. Formally, the

loss function is £(\, 0, z) = (y — A\(0x)?)2. The inner loop is solved by SGD with a learning rate 7.
We formalize the result in Proposition

Proposition 1. Suppose (), 0,2) = (y — )\(Gx) 2 A=[0,4,0=[0,1], Z = {(z,9) :

v 4b
1,1 <y < 2} and the inner level problem is solved with K steps SGD with learning rat

VSt € Z" Nz € Z,Ng € Gy LN, g(\, S™), 2) as a function of X is at least L = Q((1 + 1677)K)
Lipschitz continuous.

Proof. We use z = (x,y) € Z to denote the data point used in one step of SGD, where we omit
the index of the data point for simplicity. Firstly, the gradient of the loss function is Vg£(\, 0, z) =
2(y — A(0z)?)(=A2%20) = —4(y 2?0 — A\2032*) and one step SGD satisfies

0 — nVel(\,0,2) = 0+ dn(yrz?0 — N2032h) = (1 + dnyrz?)0 — danr263z?
>(1 + dnyrz?)0 — 4nA202* = (1 + dnya? — anX\22h)0 > (1 + 3n a?)o > (1 + Zn/\)ﬁ.

Let {61.(\) }x>0 be the trajectory of SGD, then we have 0,(\) > (1 + 3nA)6,.
Taking gradient of 0, (\) w.r.t. A, we have
Vb1 (V) =dnyz?0c(N) + (1 + dnyra®) Vabi(N) — dnz* (2M5(A)® + X230, (V)2 VA0, (V)
=dnyz®0,(\) + (1 + 4y a®)Vable () — 80zt A0, (N)? — 12022220, (V)2 V A0k ()
=4nz20, (A (y — 222 M0,(N)?) + (1 + dnyra® — 1202 \20,(V)?)Vablk(N)
As for the first term, we have 47220, (A) (y — 222 M0, (A)2) > 27220, (X\) > 0. As for the coefficient

of the second term, we have 1 + dngyAz2 — 12n2*A20,(\)2 > 1+ nAz? > 1+ A /4 > 0. Besides,
Va01(\) = dnyx20y — 8nAx*03 > 22200n > %907). Thereby, V0, (\) > 0 and furthermore

—_

Valer1(A) = (14 nA/9VaA0k(N) > (1+0A/4)"V,0;(N) > 5(1 +1A/4) 00.

Then, we consider /() A (), 2) = (y — MOk (\)z)?)2. Tts gradient w.r.t. X is
VAL, 05 (V), 2) = 2(y = Al (N))*) (= (0 (V))* = 222201 (W) Vabic (V).
Thereby,
[VALX Ok (A), 2)| =2ly — A0k (V)2)?] - [0k (N)2)® + 20205 (\)VAbx (M)
=2ly — MOx(N)a)?| - [0 (\) + 22V 0k (V)] - Ok () - 2.



Since |y — A(Ox (N)z)?| > (1 — 1) = 3, 10x(\) + 2AVA0x(N)| > A1 + nA/4)50on and
O(\) > (1+ 3nA)% 6y, we have

« 3 3 1
VAN, 0K (M), 2)| >2 - 1 AL+ nA/4)5 " 0on - (1 + ZU)\)KHO "1

:gm /K102 (1 + 3pAJ4)K.
Finally,
1£0B).2) 14y > 51 AL+ A4 6Fn(1+ 3y /4
> 2 (14 0/16) 601 + 30/16) = I,
and |[£(), é()\), 2)|pip > L =1+ %n)K). O

C Improve Theorem 3 under Stronger Assumptions

When the inner loss ; is convex or strongly convex, we can get tighter bounds for L and ~y in
Theorem [3| In Proposition [2| we show that L = O(K) and v = O(K?) when the inner loss ¢;
is convex. In this case, the dependence on K of the generalization gap (i.e., 5 in Theorem [2) is
O(K?). In Proposition we show that L = O(1) and v = O(1) w.r.t. K when the inner loss ¢; is
strongly convex. In this case, the dependence on K of the generalization gap is O(1). We get these
tighter results by deriving tighter Lipschitz constants for updating functions of SGD w.r.t. 6, using
the (strongly) convex properties of ;. Other parts of the proof is the same as Theorem 3]

Notice that Theorem [3|implies that the learning rate ) in the inner level should be of the order of 1/ K
for a moderate L and ~y. Therefore, 7 will be very small when K is very large, and the algorithm will
converge slow in practice. However, Proposition 2] and Proposition [3|imply that if we use a (strongly)
convex inner loss, 1 will not affect the order of L and -y, and thereby we can use a larger 7 in practice
in this case.

Proposition 2. Suppose Assumption hold, ©;(\, 0, z) as a function of 0 is convex for all

1<i<m,z€ Zand X € A, and the inner level problem is solved with K steps SGD or GD with

learning rate nn < %, then VS'" € Z",Vz € Z, Vg € Gar LN, g(A, Str), 2) as a function of \ is
©

L = O(K) Lipschitz continuous and v = O(K3) Lipschitz smooth.
Proof. The kth updating step of SGD can be written as

1
G (6) =0 = 15005 (0 0,540) = Vo (51011 = s, (0,620 ).

where ji is randomly selected from {1,2,---,n}. The output of K steps SGD is
O(X, S) = G k(G x-1(--- (Gxr1(60)))) and G; is formed by iterates over (j1,j2, - ,jK) €
{1,2,-- ,n}¥.

According to Lemma[2]and Assumption 3] we have

1
192 sup [Gar(@)lhen s =5 90 (GI6P - ni(08.5)) nenssp < .
k,jx, St ,0 i,2,0

Similarly, we have

0
W E  sup ||5G/\,k(9)||/\eA.,Lip <00, 75 & sup ||%Gk,k<e>||9€@,Li1) < 00,
k,jk,StT,0 k,jk,StT,A
G a 9 G a
Y3 = sup ||%GA,k(9)||AeA,L¢p <00, 7f = sup ||5GA,k(9)||9e®,Lip < o0.
k,jk,StT,0 k,jk,StT, A



Then we consider ||Gx «(0)|lpco, Lip- According to the co-coercivity of Vogj, (A, 6, 27), we have

Gk (0) = Gaw (@11 =110 = 0|2 + 17| Vows,. (A, 0, 25,) — Vo (X, 0, 250 |2

? "k

=2 (0 — 0", Vop,, (X 0,27) — Vop,, (A, 0,27))

"Ik "Ik

<[10 = O'lI* + 0*[|Voi. (N, 0, 257) = Vs (X, 0, 23|I

? Tk

U r
-2 IIVo%k()\ 0,257) = Vo (X0, 250)|* < 110 — ']

Ik

Thereby, ||Gxx(0)|loco.rip < 1 and sup ||Grx(0)||oco,Lip < 1 £ LY. According to
E,jk, St A

Lemmaand Lemma O(X, ST is L) = K LY LlpSChltZ continuous and fy = O(K?3) Lips-
chitz smooth as a functlon of \. By definition, L9 and ~? are independent of the training dataset S*"
and the random indices (j1, j2, - - - , ji ) and thereby the randomness of 6.

According to Lemma [2]and Assumption 2} we have

Lf = sup ||€(/\’9’Z)||/\EA,L'L'I7 < 00, Lg = Ssup ||é()‘7072)||9€97Lip < 0.
[2SC] Z ANEAN2z€Z

,2€
Similarly, we have

ot 2 s | 5200, ey < 0. 95 2 sull| 55 £0,0.)] ey < .

0] 0
o8 2 sl [ 750002 Ihen iy < 0 2% 2 s | [ 52600,6.5)]loce i < o

Suppose z € Z, firstly we consider the Lipschitz continuity of (X, (), ST, 2):
16X 0N, 5™, 2)Iaen.Lip
< sup (6N 0, 2)]xeanip + sup  [[6(N, 6, 2)loco,Lip - [10(A, ST [xeA, Lip

0€0O,z¢e eN,ze

<L!+ L4102 L (6)

Then we consider the Lipschitz continuity of 2 b, (X, S'), z), which can be expanded as
0 [0 1 0 0

L\, (N, S = |==l(\0 A0, A, St
Senions = [Renea]| e [Roea)] L[],

Taking the Lipschitz norm w.r.t. A\, we have

6 1 ~
0008, ‘ i <9+,
| B ( Z) ezé()\vstr)”)\eA,Lp <N+
||_§e(wz) | e zip <% + 4L,
(96 s Uy 9:1§(A,St7') AEA,Lip > 73 Y2
which yields
H*f()\ (X, S™), 2)lIxen Lip
a
< A0, ‘ i
H [ (0.2 [,y o Irenss
+| {é(/\, 0, z)} )a—é(,\ S”)H,\e/\ LipL? + L[er(/\ S")Ixe, Lip
<yf + ALY + (4 + ALO)LO + LEy® 2 . (7)
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With Eq. @) and Eq. (7), we can conclude £(X, 6(), ™), z) as a function of A is L = O(K) Lipschitz
continuous and y = (9( 3) Lipschitz smooth. By definition, L and ~y are 1ndependent of the training

dataset S, z, the random indices (j1, j2, - - - , jx ) and thereby the randomness of 6. Thereby, we
have VS'" € Z",Vz € Z,Vg € G;, (X, g(\,S™), z) as a function of X is L = O(K) Lipschitz
continuous and v = O(K?) Lipschitz smooth. Similarly, the result also holds for GD. O

Proposition 3. Suppose Assumption hold, p;()\, 0, z) as a function of 0 is T-strongly convex
foralll<i<n,zeZ and A € A, and the inner level problem is solved with K steps SGD or GD
with learning rate n < < , then¥S' € Z™, Nz € Z, Vg € G, €(\, g(\, S'"), 2) as a function of X

is L = O(1) Lipschitz contmuous and v = O(1) Lipschitz smooth w.rt. K.

Proof. The kth updating step of SGD can be written as

1
G (6) =0~ 15005 (0 0,540) = Vo (51011 = s, (6.0 ).

where j, is randomly selected from {1,2,---,n}. The output of K steps SGD is
O\, S") = Ga k(Gax—1(- - (Gx1(6p)))) and G is formed by iterates over (ji,j2,- - ,JjKk) €
{17 2a e 7n}K'

According to Lemma[2]and Assumption[3} we have

L9 2 sup [|Gak(@lentip = 5101V (||e||2 Y. z>) xea zip < 0.
k,jr,StT,0 i,2,0

Similarly, we have

Q
(1>

" sup || = Gak(@)|aea,Lip <00, 7§ £ sup || =Grk(0)]|oco,Lip < 00,
kgr,Stro O kojr,5tr A 00

& sup || Gar(0)llrea,Lip < 00, 75 2 SUP || Gk (9)|loco,Lip < o0
k,ji, St ,0 o0 kyje,S oA

Then we consider ||G 1(0)]|oco,Lip- Since wj, (X, 0, 2%") as a function of 6 is 7-strongly convex,
we have ;, (X, 0, 2!7) — Z|0]|* as a function of § is convex and 7y, — 7 Lipschitz smooth. According
to the co-coercivity of Vo (j, (X, 0, 257) — Z11011?), we have

<6‘ — 0, Vopj, (X 0,27) — 70 — Vgp;, (A, 0',207) + 79’>

? Tk ’jk

1 r
>———||Vopie (A 0, 250) = 70 = Vs, (A, 0, 257) + 70|,
©

which is equivalent to

<9—9’,Vggojk()\ 0, 2!") — Vo, (A, 0 757)>

ik ’Jk

1 2 2
21V 00, 250) — Vi, (8201 + S50 -

As a result,

|Gk (0) — G (6)]]?
=[160 = 0'|]> + n*[|Vowj, (A, 6, 217) — Vopj, (A, 0, 257)||?

7 Ik ’Jk

—2n <0 —0',Vop; (N 0,257) — Vop;, (A, 0,2 T)>

? "Ik ’]k

<0 =011 +n?| Vo, (A, 0, 25) — Ve, (A, 0, 250)||?

? Ik

T 2 YT
20 Vo2 (0, 28) = Vs 0 A0+ 2l — 0
YeT U
=(1 =20 2ElI0 = 01+ (0 = )V 00 250) = Vs, O8I
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Since < - < 7 , we have ||G 1 (0)|loco,Lip < /1 — 25 Lo and
T
sup  [|Gak(0)lloco,rip < /1 - 29— — 2 L <1.
kyJjk,StTLA Yo T T

Accordmg to Lemmaand Lemma@ O(\, S') as a function of X is L9 O(1) Lipschitz continuous
and v? = O(1) Lipschitz smooth w.r.t. K. By definition, L% and Y are 1ndependent of the training
dataset S*" and the random indices (j1, 52, - - , jx ) and thereby the randomness of 6.

According to Lemma 2] and Assumption 2} we have

L‘{ = sup ||\ 6,2)|Iren,Lip < 00, Lg = sup [|€(N\6,2)||oco,Lip < .
0€0,z€Z ANEN,zE€Z

Similarly, we have

0 0
Vi 2 sup|| | w00, 2) | |laea,Lip < 00, v5 Zsup || | 5,(N,0,2) | |loco,Lip < 00,
0,2 o\ Az 00

0 0
o6 2 ]| 500,0.2) Ihen iy < 06, 9 £ sup | | 550.0.)] ey < .

Suppose z € Z, firstly we consider the Lipschitz continuity of £(X, (), St"), z):

| |£()‘7 é(Aa Str)) Z) ‘ |/\€A,Lip

< sup [|6(N0,2)|aeaLip +  sup 16N, 0, 2)lloco,Lip - 110N, S™)[ren,Lip
0€0,z€Z ANEN,zeZ

<I{4 It 2L ®)

Then we consider the Lipschitz continuity of %Z(A, (X, S'"), z), which can be expanded as
0 [0 1 0 0
0N, ST, 2) = | b(A, 0 70,2)| | A S
ax MO ST, 2) = |52l 6. 2) o gyt [aa ( )} 9=i(507) [8)\ (A5 )}

Taking the Lipschitz norm w.r.t. A\, we have

0

—{(\, 0, i < ‘re,
| 8>\( Z) Q:é()\7S")||)\€A7LP—71 + 7

f 9 .

=0\, 0, o < 0,
13500502 [, gy guyIre 0 < 24 #2427,

which yields
0 2 r
Hag()‘a 0()‘7 St )a Z)HAGAyLiP

P
<|| | = .
<] { a)\é(/\,ﬁ,z)} \GZMSMHAEA,LW

0 6 b4
+ ] {13(/\,9,2)} )0—50 gunyren i’ + L H*Q(/\ S Ixea,zip

<A+ AL+ (AL + L0 2 . 9)

With Eq. (8) and Eq. @), we can conclude (X, §(\, S*), z) as a function of X is L = O(1) Lipschitz
continuous and v = O(1) Lipschitz smooth w.r.t. K. By definition, L and ~y are independent of

the training dataset S'”, z, the random indices (j1, 42, ,ji ) and thereby the randomness of 0.
Thereby, we have VS™" € Z",Vz € Z,Yg € Gy, L(X, g(\, S'), z) as a function of A is L = O(1)
Lipschitz continuous and v = O(1) Lipschitz smooth. Similarly, the result also holds for GD. [J

12



D UD with GD in the Outer Level

Since GD is deterministic, we can derive a high probability bound for UD with GD in the outer level.
Firstly, we define the notion of uniform stability on validation for a deterministic HO algorithm.

Definition 7. A deterministic HO algorithm A is B-uniformly stable on validation if for all validation
datasets S, SV € Z™ such that S*™, S v differ in at most one sample, we have

VST e 2" Nz € ZU(A(ST, 87, 2) — L(A(ST, S, ) < B.

If a deterministic HO algorithm is S-uniformly stable on validation, then we have the following high
probability bound.

Theorem 5. (Generalization bound of a uniformly stable deterministic algorithm). Suppose a
deterministic HO algorithm A is B-uniformly stable on validation, S ~ (D)™, §val ~ (Dval)m
and S'" and S are independent, then for all § € (0, 1), with probability at least 1 — §,

26m + s(£))2Iné—1
2m '

E(A(Strvsval)’Dval) S E(A(Str’sval)vsual) + B + \/(

Proof. Let ®(S'", S”‘”) = L(A(S", S”al), D”“l) — L(A(S?, S”‘“)7 S”‘”). Suppose SV, §'val ¢
Z™ differ in at most one point, then

B(Str, gvaly — (I)(Strys'val”
<|e(A(S', 8V, DY) — ¢(A (S, S/”“l), DU)| 4 [£(A(S', Svet), Svaly — (A (S, S/'”“l), S/'““l)|.
For the first term,
M(A(Str7sval)’Dval) _ E(A(Strys'val)’Dval)‘
=|E...pval [z(A(stT,Svamz) —U(A(S', 8™, 2)| | < B.
For the second term,

| (A(Str Sval)7sval) . E(A(Str7s’val)7s’val)|

1 & , :
<= tr qQual val A tr val ‘val

m 2 JHCA(S, 87,217 — HA(S™, §), 27
S&—Fm_lﬂ.

m m

As aresult,
/ l
|@(Str’ Sval) o (I)(Str, S val)| < % + 26
According to McDiarmid’s inequality, we have for all ¢ € R,

me2

0 1 2mp?

PSUalN(Dual)m ((I)(Str, Sval) - ESvaZN(Dvu.l)m [(I)(Str, Sval)] Z 6) S exp(72

Besides, we have

Eguatn(pratyn [B(ST,5°)] = Eguata(pratym [((A(S™,87), DY) — £(A(S™, 5), §7)]
:ESUGLN(D'U@l)m"Z,\,Dval [( (Sfr Sval )—f( (Str Svnl) zual)]
(Str P Z;)al,,‘. Zval) Zfal) ( (Str Sval) val)] Sﬁ

rm

:ES'UD.[N(Dval)m7ZND'UCLL [ (

Thereby, we have for all € € R,

Pgoa valym tr gual >e€) < 22— ).
Sval~(D ( (S S ) B - 6) = eXp( (s(€)+2mﬁ)2

13



Notice the above inequality holds for all S*" € Z", we further have € € R,

meQ

Pair o piryn gvat o pratym (®(ST,87) — B> €) < exp(—2———— ).
Strn(Diryn, gvaln(pratym (B(ST,87) — > €) < exp( (3(£)+2m5)2)

Equivalently, we have V§ € (0, 1),

r ova 2m+s(€))?Ilno—1
PStrN(DtT)'n,7S1m,lN(D1)a,l)'rn, (@(St ,S l) < ,8 + \/( 2(,”3) ) >1-46.

O

Then we analyze the stability for UD with GD in the outer level. At each iteration in the outer level,
it updates the hyperparameter by:

Aep1 = (1= i)\ — a1 VAR (A, O(Ng, SPT), SV,
where o is the learning rate and u is the weight decay.

Theorem 6. (Uniform stability of algorithms with GD in the outer level). Suppose 6 is a deterministic

function and VS € Z", Nz € Z, {(\, (X, S'), ) as a function of X is L-Lipschitz continuous and
~-Lipschitz smooth. Then, solving Eq. (4) in the full paper with T steps GD, learning rate a; < «
and weight decay p < min(y, é) in the outer level is 3-uniformly stable on validation with

a2r? N T
8= (L al =) 1)

Proof. Suppose S' € Z™, we use F(\, 7%, ) = (1 — ap)\ — aV AR (X, (), S17), Svat)
to denote the updating rule of GD, where we omit the dependency on S* for simplicity. Suppose
Sval g'val ¢ zm differ in at most one point, let {\; };>0 and {\}}+>¢ be the trace of gradient descent
with 5* and "% respectively. Let §; = ||\, — A}||, then

Ot41 :||F(/\t7 Swlaat-s-l,ﬂ) - F(A{‘m S/ml7 Oét+1>M)H

SHF()‘tvsval»atHnu) - F()‘;Sval’aﬂrlau)” + HF()‘;vSUalvatJrlv/j') - F()‘Qa SlvalaatJrlvﬂ)”

2at+1 L 20¢t+1 L

<1 — 1| + eq1y)ds + = (14 a1 (y — p))os +

2aL
< +aly = m)de + ——=.

Thereby, we have §; < m(fﬁu) (1 + a(y — p))* — 1) for all t > 0. Finally, we have

Vz € Z,[l(\r, 0\, ST, 2) — b\, O( N, SP7), 2)| <

—_— aly— )’ =1).
,m(y_u)((lJr (y=m)" =1

O

Remark: We derive such a bound by using the recursive updates of the outer level GD with the
smoothness of the loss function and the inner level optimization. This technique can be directly applied
to traditional GD (i.e., GD with one level optimization) to get a stability bound of exponentially
increasing w.r.t T and O(1/m).

E Curse of dimensionality in CV

Lemma 5. Suppose f()\), A\ € A = [0,1]% is L Lipschitz continuous, {\;}1_, are i.i.d. uniform
random vectors on [0,1]%, then B inf f()\;) < inf f()\) + LYd,
1<i<T AEA Td
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Proof. Let \* = argmin f(\). Firstly, we have f(\;) < f(\*) 4+ L||A\; — A*|| forall 1 <i < T.
XeA
Thereby,

b fQ) = A+ L If 1A= ATl

Taking expectation, we have
B inf f(A) < fO)+ LB inf[A = X

1<:i<T

AsforE inf ||\, — \*||, we have
1<i<T

E inf H)\i—/\*”:/ P( inf [|A; = A*|| > t)dt
1<i<T 0

1<4i<T
o0
:/ P(||)\1—X“||>t)Tdt:/ (1= |BO, ) N A)Tdt
0 0

%) B - B . .
< [ a-1BO.ONANTE =B int ]

1
<E inf Vd sup Aij = \/(j/ inf  sup A;; >t)dt
0

1<i<T 1<5<d 1<i<T 1<5<d
:\/&/ P(sup A\, >t)Tdt = \/&/ (1— P\ <t)HTat
0 0

1<j<d
ff/ Tdt<f/ e T At = vd et dt

T 0
1 1
/ vd e‘tdﬁ = £1 tie tdt = \/laf‘(l +-)< @.
Td Ta Jo Ta d Ta
As a result,
o Vd
E1<1?£Tf( i) < f(A )+LT7§'

O

The following result implies that CV suffers from curse of dimensionality. CV requires exponentially
large T" w.r.t. the dimensionality of the A to achieve a reasonably low empirical risk.

Theorem 7. (Curse of dimensionality in CV). Suppose (1) the inner level optimization is solved
deterministically, i.e., 0 in Eq. (4) in the full paper is a deterministic function, (2) {)\t}t L arei.id.
uniform random vectors taking value in A = [0,1]%, (3) VS € Z™, Vz € Z, U(\,0(\, S™), 2) as
a function of X is L Lipschitz continuous. Let S o (D)™ and S* ~ (D)™ be independent,

then we have
R . R LVd

val cv(Qtr gQual val < : val tr val
E[R (A (ST, §val) S )} _E[}l\relf\R (60, 817, 57 | + T

Proof. Let t* be the index of the best hyperparameter, i.e.,

t* = argmin R (A, O( A, ST, SV,
1<t<T

then the output of CV is A (S, §v8) = (A, B( A=, STT)).

According to Lemma[5] we have

E{At}z;l [Rval()\t*’é()\t*’st’r‘)’Sval) _E{At}?=1|: inf Rval()\t ()\t,StT),Sval)

1<t<T
< inf RU™(X,0(), S'), Sv) + L—\{a.
AEA Ta

15



Thereby,
T

A ,Str,sval [R’Ual ()\t* 5 é()\t* 9 St’r), Sval)
LVd

1
d

E [Rval(Acv(Str7 svaly, S'ual):| — B,

< o v : pval ) tr val
_ES ,Sval |:){2£R ()‘70(Aa5 )75 ):| +

F Discussion of the Boundedness Assumption of the Loss Function

The bounded assumption is mild and common (e.g., also used in Theorem 3.12 of [2] and Section 2 in
[3]]). Indeed, given a machine learning model of a finite number of parameters (e.g. neural networks
of finite depth and width used in our experiments), a bounded parameter space (Assumption|I)), and
a bounded input space (Assumption|[I), the feature space is also bounded. Note that previous work
makes a similar assumption (at the bottom of Page 9 in [2]]) as Assumption I}

G Additional Experiments

G.1 Generalization Gap

In Figure [T} we plot the generalization gap (estimated by difference between test and validation loss)
of UD on the FL and DR experiments. When the K > 64E|, the generalization gap increases as K
increases. These results validate our Theorem 2and Theorem 3

In Figure[2] we plot the generalization gap of CV on the FL and DR experiments. There is not a clear
relationship between the generalization gap and K. These results validate our Theorem 4]

45 I
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2 =] —_— o — K=16
2 40 — 2 R
o o — [e] —
e e g
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[ w w
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T

(f) Generalization gap (DR)

Figure 1: The generalization gap of UD in feature learning (FL) and data reweighting (DR).

G.2 Empirical Verification of the Expectation Bound of CV

We empirically validate the O(4/1/m) expectation bound of CV in Theorem In the data reweight-
ing experiment, we chose ten different m from [10, 1000] such that /1/m is distributed linearly and

“The test loss is dominated by training loss when K is too small due to underfitting on the training dataset.
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Figure 2: The generalization gap of CV in feature learning (FL) and data reweighting (DR).

we plot the curve of the generalization gap v.s. 1/1/m. We fix T' = 1000 and K = 64. We run on 5
different seeds and use the averaged result. As shown in Figure 3] the curve is approximately linear,
which accords with our Theorem [l

0.075

0.050

0.025

0.000

Generalization gap

0.1 0.2 0.3

v1/m

Figure 3: Generalization gap v.s. 1/1/m of CV in data reweighting (DR).

G.3 UD with a Smaller Learning Rate in the Inner Level

We also try a smaller learning rate = 0.1 in the inner level on the data reweighting task. As shown
in Figure[] it requires K' = 1024 inner iterations to overfit. This can be explained by our Theorem 3]
which implies that a smaller 7 requires a larger K to make the generalization gap unchanged.

G.4 Experiments with a Smaller Number of Hyperparameters

We also experiment with 4 hyperparameters. We create a two dimensional toy dataset in the feature
learning task: y = 2% + 23 + 0.3¢, where 71, x5 ~ Uniform(0, 1) and € ~ A(0, 1). The number of
training data is 10 and the number of validation data is 2. The hyperparameter A is a 2 X 2 matrix
following the input = and the parameter 6 is a 2 x 1 matrix to predict the y. The learning rate of the
outer level problem is 0.01 and that of the inner level problem is 0.1 and the batch size is 1 in both
problems. K is 16 and 7" is 1000. In this case, the validation losses of UD and CV are comparable
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Figure 4: Results of UD in data reweighting (DR) with a smaller learning rate 7 = 0.1. We run on 3
different seeds. The performance of UD is sensitive to the values of K and 7.

and both algorithms fit well on the validation data. However, UD overfits much severely, leading to a
worse testing loss than CV. The results agree with our theory.

0.3 = D, validation

== UD, testing
- CV, validation
= CV, testing

Cross entropy loss

200 400 600 800
Hyperiterations

Figure 5: Compare between CV and UD with 4 hyperparameters.
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