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1 Theoretical Results and Proofs1

Recall that we have defined the distance between two categories yk, yt in Section 4.1 of the main paper,2

expressed as d(yk, yt) =
∑

ai∈A
1
2L

∑L
l=1

∣∣p(ali|yk)− p(ali|yt)
∣∣ if attribute space A is countable.3

Based on the distance definition, we introduce the following theoretical results and proofs.4

Lemma 1. Let A be the attribute space, L be the number of attributes. Assume all attributes are5

independent of each other given the class label, i.e. p(a|y) =
∏L

l=1 p(a
l|y). For all ai ∈ A and any6

two categories yk, yt, the following inequality holds:7 ∑
ai∈A

|p(ai|yk)− p(ai|yt)| ≤ d(yk, yt) + ∆, (1)

where ∆ =
∑

ai∈A
1
2L

∑L
l=1(p(a

l
i|yk) + p(ali|yt)).8

Proof. Firstly, the following inequality holds,9

1

L

L∑
i=1

xi ≥ (

L∏
i=1

xi)
1
L ≥

L∏
i=1

xi, (2)

where xi is a non-negative real number and ranges from 0 to 1. The proof of Eq. (2) is straightforward:10

the first inequality is an application of AM-GM inequality (or the inequality of arithmetic and11

geometric means) on a list of L non-negative real numbers {x1, ..., xL}, and the second inequality12

holds because
∏L

i=1 xi ranges from 0 to 1.13

Next, we try to prove Eq. (1) based on the above inequality. If all attributes are independent of each14

other given the class label, for any conditional probabilities p(ai|yk) and p(ai|yt), we have15

|p(ai|yk)− p(ai|yt)| ≤ max(p(ai|yk), p(ai|yt))

= max(

L∏
l=1

p(ali|yk),
L∏

l=1

p(ali|yt)). (3)

Note that p(ali|yk) and p(ali|yt) are both real numbers between 0 and 1. Thus, combining with Eq. (2),16

we have17

|p(ai|yk)− p(ai|yt)| ≤ max(
1

L

L∑
l=1

p(ali|yk),
1

L

L∑
l=1

p(ali|yt))

≤ 1

L

L∑
l=1

max(p(ali|yk), p(ali|yt))

≤ 1

2L

L∑
l=1

(
∣∣p(ali|yk)− p(ali|yt)

∣∣) + 1

2L

L∑
l=1

(p(ali|yk) + p(ali|yt)). (4)

For all ai ∈ A, denote ∆ =
∑

ai∈A
1
2L

∑L
l=1(p(a

l
i|yk) + p(ali|yt)), we have18 ∑

ai∈A
|p(ai|yk)− p(ai|yt)| ≤ d(yk, yt) + ∆. (5)

19

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Theorem 1. With the same notation and assumptions as Lemma 1, let H be the hypothesis space with20

VC-dimension d, fθ and gϕ be the meta-learner and the base-learner as introduced in Section 4.221

respectively. Denote gϕ∗ as the best base-learner on some specific task given a fixed meta-learner fθ.22

For any training task τi = (Di, Si) and novel task τ ′j = (D′
j , S

′
j), suppose the number of categories23

in the two tasks is the same, then with probability at least 1− δ, ∀gϕ ◦ fθ ∈ H, we have24

ϵ(fθ, τ
′
j) ≤ ϵ̂(fθ, τi) +

√
4

mi
(d log

2emi

d
+ log

4

δ
) + dθ(τi, τ

′
j) + ∆′ + λ, (6)

where λ = λi + λ′
j is the generalization error of gϕ∗ and fθ on the two tasks, i.e., λi =25

E(x,y)∼Di
[I(gϕ∗

i
(fθ(x)) ̸= y)], λ′

j = E(x,y)∼D′
j
[I(gϕ′∗

j
(fθ(x)) ̸= y)]. ∆′ is a term depending26

on learned base-learners gϕi , gϕ′
j

and the best base-learners gϕ∗
i
, gϕ′∗

j
.27

Proof. Note that the error ϵ(fθ, τ ′j) = E(x,y)∼D′
j
[I(gϕ′

j
(fθ(x)) ̸= y)] can be decomposed into two28

parts: with the same fθ, (1) the probability that the learned base-learner gϕ′
j

agrees with the best29

base-learner gϕ∗
j
, but they both output the wrong prediction; and (2) the probability that the learned30

base-learner gϕ′
j

disagrees with the best base-learner gϕ∗
j
, while gϕ′

j
outputs the wrong prediction. The31

first part can be bounded by the error of gϕ∗
j
, and the second part can be bounded by the probability32

that gϕ′
j

disagrees with gϕ∗
j
. Denote Zj′ = {(x, y)|gϕ′

j
(fθ(x)) ̸= gϕ∗

j
(fθ(x)), (x, y) ∼ D′

j}, then33

PD′
j
[Zj′ ] represents the probability that gϕ′

j
disagrees with gϕ∗

j
based on the same fθ on distribution34

D′
j . We have35

ϵ(fθ, τ
′
j) ≤ λ′

j + PD′
j
[Zj′ ]

= λ′
j + PDi

[Zi] + PD′
j
[Zj′ ]− PDi

[Zi]

≤ λ′
j + λi + ϵ(fθ, τi) + PD′

j
[Zj′ ]− PDi [Z

i]

= λ+ ϵ(fθ, τi) + PD′
j
[Zj′ ]− PDi

[Zi]. (7)

Assume that the two tasks both have C categories and p(y) is uniform, we can decompose the proba-36

bility PD′
j
[Zj′ ] as PD′

j
[Zj′ ] = 1

C

∑C
t=1 Px|yt

[Zj′

t ], where Zj′

t = {x|gϕ′
j
(fθ(x)) ̸= gϕ∗

j
(fθ(x)), x ∼37

p(x|yt)}. Thus, we have38

ϵ(fθ, τ
′
j) ≤ λ+ ϵ(fθ, τi) +

1

C
(

C∑
t=1

Px|yt
[Zj′

t ]−
C∑

k=1

Px|yk
[Zi

k])

= λ+ ϵ(fθ, τi) +
1

C

∑
etk∈M

(Px|yt
[Zj′

t ]− Px|yk
[Zi

k]), (8)

where M is a maximum matching, which contains C edges and each edge etk ∈ M links two39

categories yt, yk in task τ ′j and τi respectively.40

Next, we consider to replace the conditional distribution p(x|y) with the attribute conditional41

distribution p(a|y), because the former is usually unknown and difficult to estimate. For a con-42

ditional distribution p(x|y) and a mapping fθ : X → A, a new distribution can be induced43

over the space A as pθ(a|y) ≜ p(fθ(x)|y). Based on the induced distribution pθ(a|y), we have44

Px|yt
[Zj′

t ] = Pa|yt
[{a|gϕ′

j
(a) ̸= gϕ∗

j
(a), a ∼ pθ(a|yt)}]. For clarity, we define At = {a|gϕ′

j
(a) ̸=45

gϕ∗
j
(a), a ∼ pθ(a|yt)} and Ak = {a|gϕi

(a) ̸= gϕ∗
i
(a), a ∼ pθ(a|yk)}. Thus, Eq. (8) can be rewritten46

as47

ϵ(fθ, τ
′
j) ≤ λ+ ϵ(fθ, τi) +

1

C

∑
etk∈M

(Pa|yt
[At]− Pa|yk

[Ak]). (9)

Let At∪k = At ∪Ak be the union set of At and Ak, At∩k = At ∩Ak be the intersection set of At48

and Ak, then we have another inequality as49

Pa|yt
[At]− Pa|yk

[Ak] ≤ (Pa|yt
[At∪k]− Pa|yk

[At∪k]) +
∣∣Pa|yt

[At∩k]− Pa|yk
[At∩k]

∣∣
+
∣∣Pa|yt

[Ak]− Pa|yk
[At]

∣∣ . (10)
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For clarity, we use two notions ∆1 and ∆2 to denote 1
C

∑
etk∈M

∣∣Pa|yt
[At∩k]− Pa|yk

[At∩k]
∣∣ and50

1
C

∑
etk∈M

∣∣Pa|yt
[Ak]− Pa|yk

[At]
∣∣, respectively. Based on Lemma 1 and Eq. (10), we have51

1

C

∑
etk∈M

(Pa|yt
[At]− Pa|yk

[Ak]) ≤
1

C

∑
etk∈M

(Pa|yt
[At∪k]− Pa|yk

[At∪k]) + ∆1 +∆2

=
1

C

∑
etk∈M

∑
ai∈At∪k

(pθ(ai|yt)− pθ(ai|yk)) + ∆1 +∆2

≤ 1

C

∑
etk∈M

dθ(yt, yk) + ∆ +∆1 +∆2

= dθ(τ
′
j , τi) + ∆ +∆1 +∆2, (11)

where ∆ = 1
C

∑
etk∈M

∑
ai∈At∪k

1
2L

∑L
l=1(pθ(a

l
i|yk)+ pθ(a

l
i|yt)). Denoting ∆′ = ∆+∆1 +∆2,52

and combining Eq. (9) and Eq. (11), we can get53

ϵ(fθ, τ
′
j) ≤ λ+ ϵ(fθ, τi) + dθ(τi, τ

′
j) + ∆′. (12)

Finally, we apply Vanik-Chervonenkis theory [11] to bound the generalization error ϵ(fθ, τi) in54

Eq. (12) by its empirical estimate ϵ̂(fθ, τi). Namely, if Si is a mi-size i.i.d sample set, then with55

probability at least 1− δ,56

ϵ(fθ, τi) ≤ ϵ̂(fθ, τi) +

√
4

mi
(d log

2emi

d
+ log

4

δ
). (13)

Combining with Eq. (12), with probability at least 1− δ, we have57

ϵ(fθ, τ
′
j) ≤ ϵ̂(fθ, τi) +

√
4

mi
(d log

2emi

d
+ log

4

δ
) + dθ(τi, τ

′
j) + ∆′ + λ. (14)

58

Corollary 1. With the same notation and assumptions as Theorem 1, for n training tasks {τi}ni=159

and a novel task τ ′j , define ϵ̂(fθ, τ
n
i=1) = 1

n

∑n
i=1 ϵ̂(fθ, τi), then with probability at least 1 − δ,60

∀gϕ ◦ fθ ∈ H, we have61

ϵ(fθ, τ
′
j) ≤ ϵ̂(fθ, τ

n
i=1) +

1

n

n∑
i=1

√
4

mi
(d log

2emi

d
+ log

4

δ
) +

1

n

n∑
i=1

dθ(τi, τ
′
j) + ∆′ + λ, (15)

where λ = 1
n

∑n
i=1 λi + λ′

j , and ∆′ is a term depending on the learned base-learners {gϕi
}ni=1, gϕ′

j
62

and the best base-learners {gϕ∗
i
}ni=1, gϕ′∗

j
.63

Proof. The proof of Corollary 1 is similar to the proof of Theorem 1. Denote λ = 1
n

∑n
i=1 λi + λ′

j ,64

we have65

ϵ(fθ, τ
′
j) ≤ λ′

j + PD′
j
[Zj′ ]

= λ′
j +

1

n

n∑
i=1

PDi
[Zi] + PD′

j
[Zj′ ]− 1

n

n∑
i=1

PDi
[Zi]

≤ λ′
j +

1

n

n∑
i=1

λi + ϵ(fθ, τ
n
i=1) + PD′

j
[Zj′ ]− 1

n

n∑
i=1

PDi
[Zi]

= λ+ ϵ(fθ, τ
n
i=1) +

1

n

n∑
i=1

(PD′
j
[Zj′ ]− PDi [Z

i]). (16)

Now, we can follow the same procedure as the proof in Theorem 1 and have the following inequlaity66

ϵ(fθ, τ
′
j) ≤ λ+ ϵ̂(fθ, τ

n
i=1) +

1

n

n∑
i=1

√
4

mi
(d log

2emi

d
+ log

4

δ
) +

1

n

n∑
i=1

dθ(τi, τ
′
j) + ∆′, (17)

where ∆′ = 1
n

∑n
i=1 ∆

′
i, and ∆′

i corresponds to the additional non-negative term as in Eq. (12),67

which is derived from PD′
j
[Zj′ ]− PDi

[Zi].68
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Theorem 2. With the same notation and assumptions as in Corollary 1, assume the conditional69

distribution p(x|al) is task agnostic. If the number of labeled samples mi in n training tasks and the70

number of labeled samples m′
j in novel task τ ′j tend to be infinite, the following inequality holds:71

1

n

n∑
i=1

dθ(τi, τ
′
j) ≤

1

n

n∑
i=1

d(τi, τ
′
j). (18)

Proof. Without loss of generality, we first consider a single training task τi and prove dθ(τi, τ
′
j) ≤72

d(τi, τ
′
j). Assume the number of training samples is infinite. Thus, for any category yk in train-73

ing task τi, the induced distribution piθ(a|yk) is equal to the ground-truth distribution pi(a|yk).74

However, for any category yt in novel task τ ′j , even with the infinite novel samples, the induced75

distribution pjθ(a|yt) does not equal the ground-truth distribution pj(a|yt). This is because we76

fix fθ and train a new base-learner gϕ′
j

to adapt to novel task τ ′j , as introduced in Section 4.2.77

Thus, we have dθ(τi, τ
′
j) = 1

C

∑
ekt∈M

1
L

∑L
l=1 dL1

(pi(al|yk), pjθ(al|yt)), which measures the78

distance between the ground-truth distribution pi(al|yk) and the induced distribution pjθ(a
l|yt).79

Next, for any attribute l, we consider three cases: (1) the values of attribute l in training and80

novel tasks are disjoint, which means it is a new attribute or new values of observed attribute81

for novel task τ ′j . In this case, for any two categories yk and yt, the model-related distance82

dL1(p
i(al|yk), pjθ(al|yt)) ≤ dL1(p

i(al|yk), pj(al|yt)) = 1; (2) the values of attribute l in train-83

ing and novel tasks are completely overlapped. As the conditional distribution p(x|al) is task-84

agnostic, the attribute classifier fθ can also identify attribute l in novel task τ ′j . In this case,85

dL1
(pi(al|yk), pjθ(al|yt)) = dL1

(pi(al|yk), pj(al|yt)); (3) the values of attribute l in training and86

novel tasks are overlapped but not the same. We can divide the values of attribute l into two parts:87

the completely overlapped values and the disjoint values, then we can follow the same analysis88

procedures as in the case (1) and case (2).89

In summary, we can arrive that the model-related distance dθ(τi, τ
′
j) is no more than the model-90

agnostic distance d(τi, τ
′
j), thus we have 1

n

∑n
i=1 dθ(τi, τ

′
j) ≤ 1

n

∑n
i=1 d(τi, τ

′
j).91

92

2 Attribute Prototypical Network93

Our theoretical analysis is based on a specific meta-learning framework with attribute learning. Thus,94

we instantiate a simple model under that framework as an example, we call this model Attribute95

Prototypical Network (APNet). A sketch of APNet is presented in Fig. 1.96

Let S = {(xk, yk)}mk=1 include all labeled samples in n training tasks. For each sample (xk, yk) ∈ S,97

assume we have L binary attribute labels {alk}Ll=1. As Corollary 1 reveals, we can reduce the98

generalization error on novel tasks by maximizing the attribute discrimination ability of meta-learner99

fθ and the classification ability of base-learner gϕ. Specifically, we adopt a convolutional network100

with an additional MLP as fθ. The convolutional network extracts feature representations from101

images, then the MLP takes features as input and output attribute labels. The attribute classification102

loss is defined as103

L(fθ) = − 1

m

m∑
k=1

1

L

L∑
l=1

[
alk log z

l
k + (1− alk) log(1− zlk)

]
, (19)

where zlk is the l-th dimension of fθ(xk) after a sigmoid function.104

For base-learner, we simply choose an non-parametric base-learner like ProtoNet [9]1, which takes105

the attributes generated by the meta-learner fθ as input to calculate cosine distance between test106

samples and attribute prototypes, then predicts the target label. The few-shot classification loss is107

1Any other models that map a ∈ A to y ∈ Y are also feasible, such as a MLP in Relation Network [10] and
a parametric cosine classifier in Baseline++ [3].
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Figure 1: A sketch of APNet.

defined as108

F(fθ, gϕi
) = − 1

mi

mi∑
k=1

yk log
exp(dk/t)∑
yk

exp(dk/t)
, (20)

where dk ≜ cos(fθ(xk), cyk
) denotes cosine similarity and cyk

denotes the attribute prototype of109

category yk. t is a scalar temperature factor. In practice, we use a hyperparameter β to balance the110

two losses, so that the final training objective is111

L = β ∗ L(fθ) +
1

n

n∑
i=1

F(fθ, gϕi). (21)

During the inference phrase, we fix fθ then calculate the cosine distance between each query sample112

and attribute prototypes to predict the target label.113

3 Experiment Details114

3.1 Implementation Details115

We run experiments with APNet and five classical FSL methods (MatchingNet [12], ProtoNet [9],116

RelationNet [10], MAML [4], Baseline++ [3]). Here we explain more implementation details about117

these methods. As existing work [3] has provided a unified testbed for several different FSL methods,118

we use the codebase and run the experiments for the above methods. For a fair comparison, we use119

the four-layer convolution network (Conv4) as backbone model for all methods. On the CUB dataset,120

we perform standard data augmentation, including random crop, rotation, horizontal flipping and121

color jittering, as in [2]. On the SUN dataset, we simply use two augmentation operations, including122

image scaling and horizontal flipping. For APNet, we use all provided attribute information (attribute123

locations and labels) to calculate the attribute classification loss L(fθ). Because the SUN dataset124

does not provide attribute locations, we only use attribute labels to calculate L(fθ). We use the Adam125

optimizer [5] with an initial learning rate of 10−3 and weight decay of 0. We train models on 5-shot126

tasks for 40,000 episodes and on 1-shot tasks for 60,000 episodes. The hyperparameter β is tuned on127

the validation set. We set β to 0.6 and 1.0 for 1-shot and 5-shot setting respectively on CUB dataset,128

and 0.6 for both settings on SUN dataset.129

3.2 Complete Results130

Here we show complete experimental results which have been partially shown in the main paper.131

Tab. 1 shows the results on CUB and SUN dataset. Tab. 2 shows the results on miniImageNet and the132

cross-dataset scenario (miniImageNet → CUB).133
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Table 1: 5-way 1-shot and 5-shot performance of different FSL methods on CUB and SUN datasets.
Conv4 is used as the backbone model. We report the average accuracy on 600 novel tasks with 95%
confidence interval.

Method Backbone CUB SUN
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet

Conv4

61.02 (0.88) 79.99 (0.75) 57.87 (0.95) 76.80 (0.68)
ProtoNet 57.12 (0.94) 76.67 (0.65) 60.20 (0.90) 76.75 (0.65)
RelationNet 61.86 (0.98) 76.63 (0.71) 60.52 (0.91) 76.49 (0.65)
MAML 58.73 (0.97) 76.20 (0.69) 59.65 (0.94) 76.82 (0.68)
Baseline++ 60.57 (0.80) 80.17 (0.61) 49.78 (0.82) 74.09 (1.11)

APNet Conv4 72.96 (0.89) 85.48 (0.55) 60.53 (0.86) 76.35 (0.63)

Table 2: 5-way 1-shot and 5-shot performance of different FSL methods on miniImageNet and
cross-dataset scenario (miniImageNet→CUB). Conv4 is used as the backbone model. We report the
average accuracy on 600 novel tasks with 95% confidence interval.

Method Backbone miniImageNet miniImageNet→CUB
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet

Conv4

49.36 (0.79) 62.77 (0.69) 37.48 (0.68) 49.98 (0.66)
ProtoNet 42.53 (0.84) 62.89 (0.72) 33.91 (0.67) 53.74 (0.72)
RelationNet 48.38 (0.80) 64.37 (0.72) 38.19 (0.69) 52.57 (0.66)
MAML 45.70 (0.85) 62.64 (0.72) 36.97 (0.69) 51.60 (0.70)
Baseline++ 47.01 (0.71) 66.72 (0.62) 37.11 (0.66) 52.42 (0.67)

4 Additional Experiments134

4.1 Deeper Backbone135

As mentioned in the main paper, we have shown that TAD can serve as a metric to measure the136

adaptation difficulty on novel tasks for different FSL methods. Here we consider how a deeper137

backbone affects this conclusion. Following [3], we use ResNet18 as backbone model and train the138

five FSL models. The experimental results are shown in Tab. 3. Fig. 2 shows the task distance and the139

corresponding accuracy of 2,400 novel tasks. As shown in Fig. 2, we observe similar phenomenon140

that with the increase of task distance, the accuracy of these models tends to decrease. This indicates141

that the proposed TAD metric works for different FSL methods with a deeper backbone model.142

4.2 Comparison with Other Metrics143

Here we present comparisons between proposed TAD and other metrics to show the effectiveness of144

it. For comparing different metrics, we design a task selection experiment. More specifically, we145

select top 5% novel tasks with the highest distances computed by different metrics, and then evaluate146

the accuracy of FSL models on these chosen tasks. The central hypothesis behind this experiment is147

Table 3: 5-way 1-shot and 5-shot performance of different FSL methods on CUB and SUN. ResNet18
is used as the backbone model. We report the average accuracy on 600 novel tasks with 95%
confidence interval.

Method Backbone CUB SUN
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet

ResNet18

74.62 (0.87) 85.02 (0.54) 67.42 (0.90) 78.30 (0.67)
ProtoNet 74.04 (0.88) 87.30 (0.49) 67.71 (0.87) 81.68 (0.60)
RelationNet 70.37 (0.98) 84.41 (0.57) 63.85 (0.93) 79.60 (0.67)
MAML 70.76 (1.04) 81.31 (0.70) 61.47 (0.98) 75.24 (0.73)
Baseline++ 70.20 (0.93) 84.11 (0.57) 53.06 (0.77) 74.21 (0.68)
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Figure 2: Accuracy of different methods in terms of the average task distance. From left to right,
5-way 1-shot and 5-shot on CUB/SUN. ResNet18 is used as the backbone model.

Table 4: The difference in accuracy between the chosen tasks and all novel tasks for various FSL
models. In the last column, we report the computation time (seconds) of different metrics. We run
the experiment on the CUB dataset with 5-way 1-shot setting.

Metrics MatchingNet ProtoNet RelationNet Baseline++ APNet Time

FID -3.71 -1.78 -0.57 -0.33 -3.63 480
EMD -0.24 -1.33 1.60 -0.75 1.17 22
Task2Vec -0.54 -0.30 -3.64 -0.54 -2.45 6000
TAD -8.23 -6.64 -7.39 -3.52 -7.24 3

that if a distance metric can better reflect task difficulty, then novel tasks with the highest distances148

should be more challenging. We choose three methods for comparison, which have been proposed in149

the few-shot learning or related area: (1) Frechet Inception Distance (FID) [6], FID is a metric to150

measure the distance between two image distributions by comparing their mean and covariance. (2)151

Earth Mover’s Distance (EMD) [7], EMD is a measure of dissimilarity between two distributions152

by considering the distance as the cost of moving images from one distribution to the other. (3)153

Task2Vec [1], TaskVec is a task embedding method which represents each task as an embedding154

with Fisher Information Matrix, and the norm of embedding reflects task difficulty. Note that the155

above three methods rely on a pretrained model. Following [7], we use ResNet-101 pre-trained on156

ImageNet for them. Tab. 4 illustrates the results of different metrics on the CUB dataset. We find that,157

with human-annotated attributes, TAD significantly outperforms other three methods in identifying158

more challenging novel tasks across all FSL models, demonstrating the effectiveness of TAD metric.159

Furthermore, the computational efficiency of TAD greatly surpasses other methods, as illustrated in160

the last column of table. Notably, TAD requires only 3 seconds to compute across 2400 novel tasks,161

underscoring its advantage of ease of computation.162

5 Analysis of Auto-Annotated Attributes163

We try to evaluate the quality of the auto-annotated attributes generated by pretrained CLIP and164

then give some examples for qualitative analysis. Due to the absence of attribute annotations in165

the miniImagenet dataset, we collect the annotations ourselves. Initially, we predefine 25 attribute166

labels (as shown in Tab. 5) following [8], and then randomly select 50 images for annotation. By167

comparing the ground-truth annotations with the results produced by the CLIP model, we discern168

that the average accuracy across the 25 attributes approaches 0.65. Notably, we observe that CLIP169

achieves good performance across the majority of attributes, with accuracies ranging from 0.7 to170

0.9. However, it fails on some attributes such as "white," "pink," "smooth," and "shiny," where the171

accuracy decreases to approximately 0.2. Fig. 3 shows qualitative examples of the obtained attributes.172

We find that the common wrong cases are color attributes, as the CLIP model always predicts more173

colors than manual annotations. Thus, in all other experiments under the cross-dataset scenario, we174

remove 11 color attributes and only considere the remaining 14 attributes when calculating the task175

distance for the TAD metric.176
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