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Logit-Based Losses Limit the

Effectiveness of Feature

Knowledge Distillation
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Knowledge distillation (KD) infuses the
generalization ability of computationally expensive
teacher models into lightweight student models.

How to transfer knowledge?
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Logit-losses such as VKD [1] are computed at
model output in low-dimensional space.
Feature-losses are computed at intermediate
layers in high-dimensional space.

Multiple losses are combined in the final training
recipe, including standard cross-entropy loss.

Training student backbones
with only feature-based losses
Improves performance

|

We demonstrate that logit losses dilute the rich
high-dimensional information transferred by
feature losses. Removing these low-dimensional
losses allows the student to maximally benefit
from the rich high-dimensional feature losses.

What’s the catch?
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Losses

Student Classifier

Student Backbone

Complete illustration of our feature knowledge distillation
framework. The highest knowledge quality teacher layers are
selected, and CE is only propagated through the classifier

Quantifying Knowledge Quality

We compare teacher layers with three geometric
measures: separation, information, and efficiency.

Separation is defined as the difference between
the average within-class dot-product similarity and
the average between-class dot-product similarity.
It is @ measure of how well the representations
convey information about the ground truth labels.

S(R) = avgDPW (R) — avgDPB(R)
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Information is defined as the product of the
normalized SVD-entropy and the complement of
the average intra-class similarity. It is a measure
of the richness of the knowledge contained in the
representations.

Z(R) = [1 — minDPW (R)] avgSV DE(R)
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Naively removing all logit losses from the student
training procedure can fail catastrophically if the
student is not provided with enough information
about the dataset labels. Care must be taken to
select the “best” teacher layers. We address this
by studying the geometric structure of teacher
representations.

Efficiency is defined as the ratio of the “optimal”
representation norm to the empirical norm. It is a
measure of the size-efficiency of the features. The
“optimal” norm is computed from a hypersphere
packing problem based the representation intrinsic
dimension.

_ 2KminDistB(R) iy
R = avgNorm(R) K= (7) ;
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Knowledge Quality is constructed as follows:

Q(R) := S(R) + VZ(R)E(R)
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ResNet34 Knowledge Quality on CIFAR 100
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Teacher knowledge quality vs. hidden layer index. Separation
shown in dark blue, information in light blue, efficiency in red,
and total knowledge quality in gray. Best/standard layer
selections indicated by black Xs/orange circles.

Experimental Results
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Distillation results. Our method in orange, various baseline
approaches in blues. Three image classification datasets of
varied difficulty along the columns, and four popular teacher-
student model pairs along the rows. ARI is the average
relative improvement [2] of our method over baselines.
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Fine-grained analysis. Solid/dashed bars denote
ours/standard teacher layer selection; orange - no logit-losses,
light blue - cross entropy, dark blue - cross entropy + vanilla
KD [1].

We observe that representation knowledge quality
closely follows the extraction and compression
stages of deep neural networks [3, 4]. This is
because the transition layers between stages
exhibit high separation and high information and
high efficiency. Selecting these “magic” layers
ensures that the student receives sufficiently rich
knowledge to converge without logit-losses.

Our proposed training recipe is highly effective at
improving the generalization ability of the distilled
students. On the standard KD benchmark of
ResNet34->MobileNet V2 on CIFAR 100, our
method boosts generalization performance by
upwards of 5%. Detailed analysis shows that logit-
losses act as “training wheels” which safeguard
against poor knowledge quality features but limit
the effectiveness of the distillation.
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