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ABSTRACT

Diffusion models are powerful generative models, but their computational de-
mands, vulnerability to catastrophic forgetting, and class imbalance in generated
data pose significant challenges in continual learning scenarios. In this paper,
we introduce Fast Multi-Mode Adaptive Generative Distillation (MAGD), a novel
approach designed to address these three core challenges. MAGD combines gen-
erative replay and knowledge distillation, enhancing the continual training of dif-
fusion models through three key innovations: (1) Noisy Intermediate Generative
Distillation (NIGD), which leverages intermediate noisy images during the re-
verse diffusion process to improve data utility and preserve image quality without
additional computational costs; (2) Class-guided generative distillation (CGGD),
which uses classifier guidance to ensure balanced class representation in gener-
ated images, addressing the issue of class imbalance in traditional methods; and
(3) Signal-Guided Generative Distillation (SGGD), which reduces computational
overhead while maintaining image clarity through the reuse of the model’s de-
noising capabilities across tasks. Our experimental results on Fashion-MNIST,
CIFAR-10, and CIFAR-100 demonstrate that MAGD significantly outperforms
existing methods in both image quality, measured by Fréchet Inception Dis-
tance (FID), and class balance, measured by Kullback-Leibler Divergence (KLD).
Moreover, MAGD achieves competitive results with far fewer generation steps
compared to traditional methods, making it a practical solution for real-life con-
tinual learning applications.

1 INTRODUCTION

Diffusion models have become a cornerstone in the field of generative modeling due to their excep-
tional ability to produce high-quality images and achieve state-of-the-art performance across various
benchmarks Ho et al. (2020); Dhariwal & Nichol (2021). Despite their success, training diffusion
models presents significant challenges. Chief among these is their computational intensity, as
generating data typically requires simulating thousands of denoising steps Ho et al. (2020), making
them impractical for applications requiring rapid updates or operation under limited computational
resources. While some methods Song et al. (2020); Salimans & Ho (2022); Song et al. (2023) have
proposed strategies to reduce computational costs by decreasing the number of generation steps,
these approaches are designed primarily for offline scenarios and fail to address settings where data
distributions shift over time, requiring models to be periodically updated—a scenario known as
continual learning.

Current works Masip et al. (2023); Gao & Liu (2023); Meng et al. (2024); Jodelet et al. (2023) have
applied diffusion models for generative replay in class-incremental learning scenarios and have
primarily focused on improving classification accuracy by using diffusion models to replace past
datasets. However, they do not adequately address the challenges of efficiently training the diffu-
sion model itself in a continual learning framework, where catastrophic forgetting can significantly
impact the model’s generative capabilities. Masip et al. (2023) introduces the notion of generative
distillation which improves over generative replay by distilling the noise predictions of the teacher
model rather than relying on its synthesized images but it overlooks class balance and the rich
knowledge carried by the reverse diffusion process used in the teacher model for data generation.
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Thus, effectively training diffusion models in continual learning contexts is both an important and
challenging problem. The first challenge in this context is the degradation of image quality over
time. As the model updates with new data, it tends to forget how to generate earlier data distribu-
tions, resulting in deteriorated, blurry, or unusable images, as illustrated in Fig. 1 Lesort et al. (2018);
Masip et al. (2023); Meng et al. (2024). Additionally, the computational demands of the image
generation process for generative replay make it unsuitable for applications requiring rapid adap-
tation to new data Ho et al. (2020); Song et al. (2020). Finally, there is a significant issue of class
imbalance in generated data, as shown in Fig. 2. Diffusion models often fail to generate an equitable
representation of all classes, negatively affecting the performance of downstream applications due
to biased training samples.

Figure 1: Images generated using generative replay Shin et al. (2017) after training each task in the
split Fashion-MNIST scenario.

Figure 2: Comparison between images generated by an unconditional diffusion model and real
training data in a class-incremental learning scenario with 5 tasks on the Fashion-MNIST dataset.
The histogram shows an imbalanced distribution, especially for class 7. In task 0, the model learns
to generate images for classes 3 and 7, but the proportion of generated images for class 7 is already
low. This imbalance worsens with more tasks, eventually resulting in almost no images generated
for class 7.

In this work, we introduce Fast Multi-Mode Adaptive Generative Distillation (MAGD), a novel
framework designed to tackle the key challenges in continually training diffusion models. MAGD
seamlessly integrates the strengths of generative replay and knowledge distillation to efficiently and
comprehensively transfer learned knowledge across tasks, addressing critical issues such as image
quality degradation, computational inefficiency, and class imbalance. Our approach builds on three
key innovations, all centered around the concept of generative distillation:

• Noisy Intermediate Generative Distillation (NIGD): We propose an enhanced distilla-
tion strategy that utilizes intermediate noisy images (x̂τ ) directly, bypassing the need to
generate clean images (x0) before reapplying noise. This method leverages the entire se-
quence of noisy images produced during the reverse diffusion process, allowing knowledge
to be distilled at every stage of the generation process. This approach maximizes data util-
ity without adding computational overhead, preserving image quality over successive tasks
and improving overall training efficiency.

• Class-Guided Generative Distillation (CGGD): Class imbalance in generated data is a
significant challenge in continual learning with diffusion models. To address this, we in-
corporate classifier guidance into the distillation process, ensuring that the diffusion model
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generates a balanced representation of each class. This class-guided distillation prevents
the model from over-representing certain classes, a common issue in traditional generative
replay methods, and supports more robust performance in downstream classification tasks.

• Signal-Guided Generative Distillation (SGGD): Inspired by recent studies on the denois-
ing capabilities of diffusion models Deja et al. (2022); Zajac et al. (2023), we separate the
denoising and generative stages, allowing for efficient reuse of the denoising component
across tasks. This signal-guided approach reduces computational costs while maintaining
image clarity, enabling the model to adapt to new tasks without sacrificing the quality of
generated images—an issue typically seen in continual learning frameworks.

We evaluate our methods on three widely-used datasets in the continual learning
community—Fashion-MNIST, CIFAR-10, and CIFAR-100. Our experimental results demon-
strate that our comprehensive generative distillation framework significantly outperforms traditional
methods that replace past datasets with diffusion models. Specifically, our approach yields
improvements in both Fréchet Inception Distance (FID), indicating effective preservation of image
quality over time, and Kullback-Leibler Divergence (KLD), demonstrating better class distribution
in generated images.

Notably, our method achieves competitive performance with only a few generation steps (5 steps for
Fashion-MNIST and 20 steps for CIFAR-10 and CIFAR-100), compared to the 1,000 steps required
by methods like DDGR Gao & Liu (2023). This substantial reduction in computational requirements
makes our approach suitable for real-life continual learning applications.

In summary, our contributions are as follows:

• Mitigating Image Quality Degradation: We mitigate image quality degradation over time
through Noisy Intermediate Generative Distillation (NIGD). By utilizing generated noisy
images at intermediate steps for distillation and leveraging the powerful denoising capabil-
ities of diffusion models, we ensure high-quality image generation across multiple tasks.

• Addressing Class Imbalance: With Class-Guided Generative Distillation (CGGD), we
incorporate classifier guidance into the generative distillation process. This ensures bal-
anced image generation across classes, preventing class dominance or bias and improving
the performance of downstream classifiers in continual learning scenarios.

• Efficient Continual Training of Diffusion Models: Our framework, Signal-Guided Gen-
erative Distillation (SGGD), introduces a method for efficiently training diffusion models
by reusing the denoising components across tasks. This significantly reduces computational
costs while maintaining the ability to generate high-quality images throughout continual
learning tasks.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Continual Learning has emerged as a significant challenge, focusing on enabling models to learn
new knowledge over time without forgetting previously acquired knowledge. To address the issue
of catastrophic forgetting, many recent approaches Rebuffi et al. (2016); Wu et al. (2019); Douillard
et al. (2020); Wang et al. (2023) involve storing training data from earlier classes as exemplars
and replaying them while learning new tasks. While exemplars are beneficial for reinforcing past
knowledge, their use may be impractical due to privacy concerns, legal restrictions, and limited
memory resources on devices.

To overcome these limitations, some researchers have proposed using generative models Shin et al.
(2017); Lesort et al. (2018); Zhai et al. (2019); Wu et al. (2018) to synthesize data from previous
classes instead of storing real data. These methods typically employ Generative Adversarial Net-
works (GANs) Goodfellow et al. (2014) or Variational Autoencoders (VAEs) Kingma & Welling
(2013) as image generators. However, in the context of continual learning, it is crucial to continu-
ally update the generative model itself. When trained solely on its own generated data due to a lack
of real data from earlier tasks, the quality of the generated images tends to progressively deteriorate,
often resulting in blurry outputs, as shown in Fig. 1.
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In this paper, we propose a novel approach that distills knowledge from all generated noisy images
during the diffusion model’s generation process. This method helps to reduce forgetting by lever-
aging the inherent properties of diffusion models, maintaining the quality of generated data, and
addressing the computational challenges associated with continual learning scenarios.

2.2 DIFFUSION MODELS IN CONTINUAL LEARNING

Diffusion models Ho et al. (2020) have gained significant attention for their performance on various
benchmarks Dhariwal & Nichol (2021), though their high computational cost remains a challenge.
To address this, methods like DDIM Song et al. (2020), progressive distillation Salimans & Ho
(2022), and consistency models Song et al. (2023) have been proposed. In this paper, we adopt
DDIM for generation, as it deterministically maps noise to original data while preserving noise
distribution, making it ideal for continual learning.

Although recent works have applied diffusion models in continual learning Zajac et al. (2023); Masip
et al. (2023); Gao & Liu (2023), they mostly use the diffusion model to replace the replay buffer in
memory-based methods, employing simple continual training strategies. Jodelet et al. (2023) uses a
pretrained Stable Diffusion model as a fixed supplementary replay buffer throughout training. Masip
et al. (2023) introduces the concept of generative distillation, which enhances generative replay by
distilling the noise predictions of the teacher model instead of relying on its synthesized images.
However, it overlooks both the issue of class balance and the rich knowledge embedded in the
reverse diffusion process used by the teacher model for data generation. Meng et al. (2024) achieves
the best results but requires a separate diffusion model for each task, making it inefficient. These
methods fail to explore continual training by leveraging the diffusion model’s inherent properties.

The high computational cost of using diffusion models for image generation is a major concern in
real-life applications. To address this, we propose a novel approach that distills knowledge from
both generated and training images, Gaussian noise, and all intermediate noisy images produced
during generation. This comprehensive distillation strategy leverages diffusion model properties
for more efficient training, lowering computational costs and mitigating catastrophic forgetting and
image quality degradation.

2.3 KNOWLEDGE DISTILLATION OF DIFFUSION MODELS

The primary challenge in using diffusion models for real-world applications lies in the high compu-
tational cost of generating images, which typically requires thousands of steps to denoise the initial
noise. To reduce these costs, some studies, such as Salimans & Ho (2022); Song et al. (2023);
Zheng et al. (2022), have focused on distilling knowledge from pretrained diffusion models to de-
velop supplementary models that denoise with significantly fewer steps. However, these methods
face limitations in continual learning scenarios for two main reasons: 1) they rely on access to data
from previous tasks, which is not available in our case; and 2) they assume the pretrained model
remains static, whereas in our scenarios, the model must evolve to incorporate new information as
it becomes available. Thus, simply distilling a pretrained model into a more efficient version is
inadequate.

3 PROBLEM FORMULATION

In our paper, we consider the setting of class incremental learning as mentioned in van de Ven &
Tolias (2019), consisting of N tasks. The dataset is denoted as D = {Dk}k=N−1

k=0 , where, Dk =
{Xk,Yk,Ck} contains the dataset used in the task k. Here, Xk represents the training images, Yk

represents the class labels, Ck contains the unique class labels in task k, and dk represents the data
length In the class-incremental learning scenario, Ci

⋂
Cj = ∅. The diffusion model is denoted as

θ with T generation steps. M represent the memory set which store the true images or generated
images.Then the global objective from task 0 to current n can be denoted as:

L∗ =

n∑
k=0

lk ; lk =
1

dkT

∑
x0∈Dk

T∑
t=1

||ϵt − θ(xt, t)||2 (1)
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However, within the setting of class-incremental learning, the model cannot access to all data from
previous tasks. Thus, the objective at task n can be formulated as:

Ln = ln + lM ; lM =
1

dMT

∑
x0∈M

T∑
t=1

||ϵt − θ(xt, t)||2 (2)

4 METHODOLOGY

4.1 GENERATIVE REPLAY AND GENERATIVE DISTILLATION

In this section, we introduce the mechanisms of Generative Replay (DGR) and its variant, Genera-
tive Distillation(DGR-distill), as outlined in Algorithm 1. Both methods serve as baselines for our
discussion. During training each batch, it involves creating a memory batch, denoted as Xr, and
adding noise ϵr corresponding to step tr. The primary distinction between DGR and DGR-distill
lies in the computation of the replay loss lr. In DGR, the model is trained to predict the noise ϵr. In
contrast, DGR-distill trains the model to approximate the previous output θk−1(Xr, tr).

In the following, starting from DGR-distill, we introduce the proposed comprehensive generative
distillations in three significant ways to enhance its performance and applicability: 1) We modify
the generation process of Xr with NIGD and CGGD. 2) We revise the calculation of the replay loss
lr with NIGD. 3) We refine how we sample tr with SGGD.

4.2 NOISY INTERMEDIATE GENERATIVE DISTILLATION (NIGD)

𝑥𝜏𝑠 𝑥𝜏𝑖⋯⋯ ⋯⋯ 𝑥0

𝑆 − 𝑖

ො𝑥𝜏𝑖

~

ത𝛼𝜏𝑖𝑥0 + 1 − ത𝛼𝜏𝑖𝜖

Figure 3: Comparison of adding noise to original images, de-
noted as x̂τi , versus directly generating noisy images, denoted
as xτi

Figure 4: Evaluation of ri of 20
generation steps

To rapidly generate images, we use a DDIM schedulerSong et al. (2020). Rather than employing
all T steps, this method utilizes a subset xτ1 ,xτ2 , . . . ,xτs , where τ represents an increasing subse-
quence of [1, . . . , T ] with length S. Assuming the trained diffusion model is denoted by θ, we then
proceed with the reverse process by :

xτi =
√
ᾱτi ∗

xτi+1
−

√
1− ᾱτi+1

θ(xτi+1
)

√
ᾱτi+1

+
√

1− ᾱτiθ(xτi+1
) (3)

After completing S steps of the reverse process, we obtain the generated image denoted as x0. In
the forward process, the distribution q(xτi |x0) = N (xτi ;

√
ᾱτix0, (1 − ᾱτi)I) describes how the

image x0 transitions to its noisy versions. Specifically, we derive the noisy images x̂τi directly from
x0.

x̂τi =
√
ᾱτix0 +

√
(1− ᾱτi)ϵ (4)

We then derive (full demonstration is detailed in Appendix A.3) :
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x̂τi − xτi =

1∑
j=i

(rjθ(xτj )) ; rj =
√

ᾱτi(

√
1− ᾱτj−1

ᾱτj−1

−

√
1− ᾱτj

ᾱτj

) (5)

From Eq. (5), we observe that the difference between the noisy image x̂τ , derived from the generated
x0 by adding noise, and the directly generated noisy image xτ depends solely on the generation steps
from τi to τ1. As shown in Fig. 4, we evaluate the values of rj when τi = 500 (i = 10) for 20 steps
of DDIM. We find that for all j < 10, the residuals rj are smaller than 1 and significantly lower
than rj for j > 10. This indicates that the residual component is relatively weaker compared to the
noisy image xτi .

In our continual learning scenario, we utilize the previously trained diffusion model on task k − 1,
denoted as θk−1, as our teacher model. Our objective is to train the new model θk by distilling
knowledge from the teacher. Therefore, for any given τi, we require:

θk(xτi−1
|xτi , τi) = θk−1(xτi−1

|xτi , τi) (6)

However, during the generation process, the previously trained model only generates xτi without
access to x̂τi . Therefore, xτi is sufficient for distillation from the previous model.

We demonstrate that in a S-step DDIM generation process, for any given τi, the directly gener-
ated noisy image xτi and the noisy image x̂τi , obtained by adding noise to x0, are equivalent for
distillation purposes, as shown in Fig. 3.

This study suggests an equivalence between two methods of obtaining xt:

1. Two-Stage Approach: Generate x0 using S generation steps, and then add noise corre-
sponding to the time step t to obtain the noisy image xt.

2. Direct Approach: Directly generate xt by using S = τs−t
∆τ generation steps.

In practice, we use S generation steps and distill from all intermediate noisy images generated
throughout the inverse process. This approach suggests that we can efficiently enhance the quality
of the generated noisy images without increasing computational costs.

4.3 CLASS-GUIDED GENERATIVE DISTILLATION(CGGD)

In the continual learning community, several studies Wu et al. (2019); Lin et al. (2023a); Zhao et al.
(2019) have explored catastrophic forgetting in classification problems. These studies found that the
weights corresponding to previously learned classes tend to decrease, while the weights associated
with the current class increase, as the current class dominates the training data. As a result, the
model tends to overpredict the current class at the expense of the previous ones.

In diffusion models, there are primarily two types of conditioned models: classifier-guided Dhariwal
& Nichol (2021) and classifier-free Ho (2022). The classifier-free model typically requires higher
computational costs during both training and inference. In this paper, we opt for a classifier-guided
diffusion model, where a supplementary classifier is trained to guide the inference process. Our
method generates an equal number of samples for each learned class, helping to balance the gen-
erated images for effective distillation. For training task k, we employ the following process to
generate a noisy image for distillation from the model trained on the previous task, denoted as θk−1

for the diffusion model and gk−1 for the classifier. First, we randomly select a class label y from
a uniform distribution. Then one-step update process is defined as follows using cross-entropy loss
CE:

ϵ̂ = θk−1(xτi+1 , τi+1)−
√
1− ᾱτi+1∇xτi+1

CE(gk−1(xτi+1 , τi+1), y)

xτi =
√
ᾱτi ∗

xτi+1
−
√
1− ᾱτi+1

ϵ̂
√
ᾱτi+1

+
√
1− ᾱτi ϵ̂ (7)
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4.4 SIGNAL-GUIDED GENERATIVE DISTILLATION (SGGD)

Deja et al. (2022) discovered that a diffusion model operates in two distinct phases based on the time
steps (t): as a denoiser for refining corrupted images into final samples when t is small, and as a
generator for creating images from noise when t is larger. Their research shows robust generalization
across datasets such as CIFAR-10 and CelebA, particularly in the early stages of diffusion (when
(t/T < 0.1)), as illustrated in Fig. 3 of Deja et al. (2022)

The use of solely generated images for training in continual learning scenarios, as discussed in Shin
et al. (2017), Lesort et al. (2018), and Gao & Liu (2023), leads to progressive degradation in image
quality. To counter this, we propose utilizing the early-stage denoising capabilities of diffusion
models to distill knowledge directly from current training data, rather than generated images. This
approach yields several benefits: (1) Enhanced image clarity. (2) Preservation of knowledge from
earlier stages. (3) Reduced computational cost by eliminating the need for image generation in the
initial steps.

Figure 5: logSNR Across Time Steps in Fashion-MNIST and CIFAR-10

To find the turning point tc of the time step before which current training data could be used, we
calculate the Signal-to-Noise Ratio (SNR) along with the time step. We use the same formula as in
Deja et al. (2022):

SNR(x0, t) =
ᾱtx

2
0

1− ᾱt
(8)

where x0 is the original image. The SNR quantifies the amplitude ratio between the original image
and noise. Research by Deja et al. (2022) demonstrates that a log(SNR) = 3 serves as a reliable
threshold, which does not negatively impact the FID of generated images. The critical time steps,
tlow, are determined as 50 for Fashion-MNIST and 35 for CIFAR-10, as shown in Fig. 5.

As the time step increases and log(SNR) becomes significantly negative, indicating a strong dom-
inance of noise over signal, the diffusion model’s input approximates Gaussian noise. In such sce-
narios, distilling knowledge from Gaussian noise becomes crucial. We utilize a rescaled schedule,
as suggested by Lin et al. (2023b), where a log(SNR) = −9 marks the input as nearly indistin-
guishable from noise. The identified transition points, thigh, are 878 for Fashion-MNIST and 848
for CIFAR-10, detailed in Fig. 5.

In the yellow region of Fig. 6, we propose selecting images for distillation based on the training step
tr and two thresholds: tlow and thigh. Specifically:

• If tr < tlow, images are selected from the current batch for distillation.

• If tr > thigh, images are selected from a pool generated using Gaussian noise.

• Otherwise, noisy images are generated from previous model

To manage this process, log(SNR) for each image batch is calculated. Additionally, the thresh-
olds tlow and thigh are dynamically updated using a moving average formula based on each training
batch. This adaptive approach minimizes the need for manual tuning of these parameters and reduces
the overall number of images that need to be generated by approximately 20%, without compromis-
ing performance outcomes.
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4.5 WORKFLOW AND OVERALL OBJECTIVE

The workflow of our method is illustrated in Fig. 6, and the algorithm is shown in Algorithm 2. For
a task k, we leverage the previously trained diffusion model θk−1, the guidance classifier gk−1, and
the current dataset Dk = (Xk,Yk,Ck), which contains the images, labels, and class information,
respectively.

First, we randomly select a set of time steps tr from a uniform distribution over [0, T ], a set of class
labels yr from a uniform distribution over all encountered classes, and generate Gaussian noise ϵr.
Next, we use Sec. 4.4 to filter the selected time steps tr to determine the type of images to distill.
After filtering, we prepare the images (Xr) for distillation. We then compute the first term of the
replay loss with lwf representing the distillation loss proposed in Li & Hoiem (2016) for guidance
classifier.

lr1 = MSE(θk−1(Xr, tr), θ
k(Xr, tr)) + lwf(gk−1(Xr, tr), g

k(Xr, tr)) (9)

Next, we obtain the time steps tgene for generating noisy images. To enhance the efficiency of the
inverse process, we distill knowledge from all intermediate noisy images Xτi images, where τi the
corresponding time step, as illustrated in the blue region of Fig. 6.

lr2 = MSE(θk−1(Xτi , τi), θ
k(Xτi , τi)) + lwf(gk−1(Xτi , τi), g

k(Xτi , τi))] (10)

By combining the loss computed in the first step, we obtain the overall replay loss Lreplay. In our
experiment, we set α = 0.2.

Lreplay =
1

1 + α
(lr1 + αlr2) (11)

Next, we sample time steps tc and noise ϵc. We then pass the current noisy training data (Xc,yc, ϵc)
through our current model to obtain:

Lcurrent = MSE(θk(Xc, tc), ϵc) + CE(gk(Xc, tc),yc) (12)

Finally, the overall objective is formulated as:

Ltotal =
1

k + 1
Lcurrent + (1− 1

k + 1
)Lreplay (13)

𝑥𝜏𝑠 𝑥𝜏𝑠−1 𝑥𝑡𝑔𝑒𝑥𝜏1⋯⋯

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 1, 𝑇 ~ 𝑡𝑟

~ 𝜖𝑟
𝑡𝑔𝑒

𝑡𝑔𝑎𝑢𝑠

𝑡𝑐𝑢𝑟

𝐿𝑟𝑒𝑝𝑙𝑎𝑦

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 1, 𝑇 ~ 𝑡𝑐

~ 𝜖𝑐

𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝜃𝑘 , 𝑔𝑘

𝜃𝑘−1, 𝑔𝑘−1

𝐷𝑘−1 𝐷𝑘

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑪0:𝑘−1 ~ 𝑦𝑟

Figure 6: Illustration of Our Method. The yellow region represents SGGD, the blue region denotes
NIGD and CGGD, and the red region corresponds to training on the current dataset Dk.
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5 EXPERIMENTS AND RESULTS

Due to page limitations, the impact of generation steps is detailed in Appendix A.4, the distribution
of generated images is discussed in Appendix A.5, and the classification accuracy using generated
images is examined in Appendix A.2. .

5.1 DATASETS

We compare our method primarily with deep generative approaches such as DGR, DGR with dis-
tillation Masip et al. (2023), and DDGR Gao & Liu (2023), along with the memory-based method
ER Chaudhry et al. (2019), as well as Fine-tuning and Joint-training as lower and upper bound,
respectively.

• F.T. (Fine-tuning): Fine-tunes only on the current task (lower bound).

• J.T. (Joint-training): Trains on all encountered tasks jointly (upper bound).

We use DDGR-1000 with 1000 full generation steps, providing state-of-the-art performance but
with high computational cost, making it a second upper bound.

For Fashion-MNIST, we use a small UNet Ho et al. (2020); Ronneberger et al. (2015) with 5 DDIM
steps. For CIFAR-10 and CIFAR-100, a medium-sized UNet with 20 DDIM steps is used. The ER
method employs a memory buffer of size 1000.

5.2 EVALUATION METRICS

We assess image quality using the Fréchet Inception Distance (FID), calculated between generated
images and the test set of previously encountered tasks. To evaluate the model’s ability to gener-
ate balanced batches, we compute the Kullback-Leibler Divergence (KLD) between the uniform
distribution and the predicted class distribution of the generated images.

We also measure training time for all methods on a 2 × NVIDIA A100 40GB, using DGR-distill as
the baseline for comparison.

5.3 OVERALL RESULTS

In Sec. 5.3 and Fig. 7, we present our results as the mean and standard deviation over five random
runs. Across all scenarios, our method outperforms DGR-distill by 3 ∼ 6.1 in FID and 0.04 ∼ 0.09
in KLD, while achieving around 15% savings in computational cost.

These results demonstrate the effectiveness of our proposed comprehensive generative distillations
above DGR-distill. Even compared to DDGR-1000 with 1000 generation steps, our method achieves
similar performance in FID and KLD for Fashion-MNIST using only 5 steps, drastically reducing
computation.

For CIFAR-10 and CIFAR-100, the performance gap between our method and DDGR-1000 slightly
increases, likely due to the higher complexity of these datasets. However, using just 20 generation
steps makes this gap reasonable, and increasing to 50 steps could reduce it further, as shown in
Tab. 4.

Fig. 7 illustrates the evolution of FID and KLD across tasks, where our method consistently outper-
forms DGR-distill and approaches the performance of DDGR-1000.

6 ABLATION STUDY

Our method consists of three components, as detailed in Sec. 4. We begin with the baseline model,
DGR-distill, and sequentially introduce each component to assess their impact, testing on Fashion-
MNIST with 5 DDIM generation steps for all methods.

First, we add NIGD to the baseline, resulting in substantial improvements across both metrics. Next,
adding only CGGD to the baseline primarily enhances the KLD, while NGGD mainly improves the

9
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Table 1: Results Presented as Mean and Standard Deviation Over 5 Random Runs, with 5 Generation
Steps for Fashion-MNIST and 20 for CIFAR-10 and CIFAR-100

Fashion-MNIST CIFAR-10 CIFAR-100
FID↓ KLD↓ Time↓ FID↓ KLD↓ Time↓ FID↓ KLD↓ Time↓

F.T. 65.5 ± 8.2 5.27 ±1.57 ×0.15 53.5±3.2 1.23±0.15 ×0.08 65.6 ± 6.7 7.57 ± 2.37 ×0.08
DDGR-1000 16.2 ± 2.1 0.09 ± 0.01 ×19.17 29.8 ± 3.4 0.13 ± 0.02 ×6.85 34.6 ± 4.1 0.8 ± 0.27 ×6.85
J.T. 14.7 ± 1.5 0.07 ± 0.01 ×0.15 27.3±2.1 0.11±0.01 ×0.08 32.4 ±2.5 0.61 ± 0.03 ×0.08
ER 20.7±0.8 0.32±0.04 ×0.15 41.5±0.9 0.21±0.04 ×0.08 41.6±1.4 1.8 ± 0.37 ×0.08
DGR 95.8 ± 10.4 1.15 ±0.23 ×0.91 70.3 ± 5.2 0.65 ± 0.03 ×0.95 39.8 ± 3.2 2.6 ± 0.57 ×0.95
DGR-distill 19.5 ± 2.2 0.14 ± 0.05 2.5h ×1 37.5 ± 5.0 0.24 ± 0.02 9.3h ×1 41.3 ± 4.6 1.5 ± 0.41 9.3h ×1
Ours 16.5 ± 3.1 0.10 ± 0.04 ×0.85 32.7 ± 3.6 0.15 ± 0.03 ×0.83 35.2 ± 4.5 0.92 ± 0.39 ×0.83

Figure 7: Evaluation of FID Score and KLD Across Tasks for Different Methods on Fashion-MNIST
and CIFAR-10

FID. When all three components are combined, our method achieves significant improvements in
both metrics.

Table 2: Ablation Study on Fashion-MNIST Using 5 Generation Steps

FID↓ KLD↓
DGR-distill 19.5±2.2 0.14±0.05
w NIGD 17.2±2.7 0.12±0.04
w CGGD 18.4±3.2 0.11±0.05
w NGGD 18.2±1.8 0.14±0.04
Ours 16.5±3.1 0.10±0.04

7 CONCLUSION

We introduced Fast Multi-Mode Adaptive Generative Distillation (MAGD) approach, crafted to
effectively mitigate catastrophic forgetting, enhance image quality, and maintain balanced class
distribution in continually trained diffusion models. Incorporating Noisy Intermediate Generative
Distillation (NIGD), Class-Guided Generative Distillation (CGGD), and Signal-Guided Generative
Distillation (SGGD), our method not only sustains high-quality image generation across tasks but
also dramatically reduces computational overhead by up to 95% for Fashion-MNIST and 88% for
CIFAR, compared to traditional full-generation methods like DDGR-1000. Achieved with fewer
generation steps, this performance underscores the model’s efficacy in complex continual learn-
ing scenarios and its practicality for real-world applications. Future efforts will aim to expand our
model’s capabilities to a wider range of datasets and explore its potential in various artificial intelli-
gence domains.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Train diffusion model at task k

Input: θk−1, Dk, Nb is the batch size, n is the number of iterations
1: θk = deepcoy(θk−1)
2: for n steps do
3: sample a batch Xc,yc of size Nb from Dk

4: tc, tr ∼ Uniform({1, . . . , T})
5: ϵc, ϵr ∼ N (0; I)
6: Xc =

√
ᾱtcXc +

√
1− ᾱtcϵc

7: Xr = DDIM(ϵr,θk−1) {Gnerate Images from previous diffusion model}
8: Xr =

√
ᾱtrXr +

√
1− ᾱtrϵr

9: lc = MSE(θk(Xc, tc),ϵc) {current loss}
10: if method == ”DGR” then
11: lr = MSE(θk(Xr, tr),ϵr)
12: else if method == ”DGR-distill” then
13: lr = MSE(θk(Xr, tr),θk−1(Xr, tr))
14: end if
15: lt =

1
k+1 lc + (1− 1

k+1 )lr
16: lt.backward()
17: Update θk

18: end for

A.2 CLASSIFICATION ACCURACY

To evaluate classification accuracy, we replace the memory buffer with our trained diffusion model,
following the standard training strategies outlined in Chaudhry et al. (2019); Shin et al. (2017). For
conciseness, we omit the specific implementation details from the main text.

The results are presented for three benchmark datasets: Fashion-MNIST, CIFAR-10, and CIFAR-
100. For Fashion-MNIST, we use a small CNN as the classifier, while for CIFAR-10 and CIFAR-
100, we employ ResNet-18.

Additionally, we introduce two new methods: BIRvan de Ven et al. (2020), a latent distillation
approach, and PASSZhu et al. (2021), a memory-free method.

A.3 DEMONSTRATION

We can reformulate Eq. (3) as follows:
xτi = kτi+1

xτi+1
+ lτi+1

θ(xτi+1
) (14)

where kτi+1
=

√
ᾱτi

ᾱτi+1
, and lτi+1 =

√
1− ᾱτi − kτi+1

√
1− ᾱτi+1

For a DDIM process comprising S steps, we have:

xτs−1
= kτsxτs + lτsθ(xτs)

xτs−2
= kτs−1

xτs−1
+ lτs−1

θ(xτs−1
)

. . .

xτi = kτi+1
xτi+1

+ lτi+1
θ(xτi+1

) (15)
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Algorithm 2 Train diffusion model at task k

Input: θk−1, gk−1, Dk, Nb is the batch size, n is the number of iterations, C presents the previously
learned classes, tlow is the transition point for current batch, and thigh is the transition point for
Gaussian noise.

1: θ = deepcoy(θk−1)
2: g = deepcoy(gk−1)
3: for n steps do
4: sample a batch Xc,yc of size Nb from Dk

5: tc, tr ∼ Uniform({1, . . . , T})
6: ϵc, ϵr ∼ N (0; I)
7: t̂low = {t|log(SNR(Xc, t)) = 3}
8: t̂high = {t|log(SNR(Xc, t)) = −9}
9: Xc =

√
ᾱtcXc +

√
1− ᾱtcϵc {Add noise to the current training batch}

10: Xr,Xg = [], [] { Xr store the images to replay, and Xg represents the noisy images generated}

11: tg = [] {time steps for the generation process}
12: ϵtarget gene, ϵtarget cl = [], [] { taget for training diffusion model and classifier}
13: for i, t in enumerate(trSec. 4.4) do
14: if t < tlow then
15: Xr add Xc[i] {Add Current image}
16: else if t > thigh then
17: Xr add ϵr[i] {Add Gaussian}
18: else
19: y ∼ Uniform(C)
20: xg = ϵr[i]
21: for j in range(S) do
22: xg = DDIM(xg, θ

k−1, gk−1, τs−j)Eq. (7)
23: ϵtarget gene ADD θk−1(xg)
24: ϵtarget cl ADD gk−1(xg)
25: Xg ADD xg

26: tg ADD τs−j

27: end for
28: end if
29: end for
30: Xr =

√
ᾱtrXr +

√
1− ᾱtrϵr {Add noise to the replay batch}

31: lcurrent = MSE(θ(Xc, tc), ϵc) + CE(g(Xc, tc),yc)
32: lr1 = MSE(θ(Xr, tr), θ

k−1(Xr, tr)) + LWF(g(Xr, tr), g
k-1(Xr, tr))

33: lr2 = MSE(θ(Xg, tg), ϵtarget gene) + LWF(g(Xg, tg), ϵtarget cl)
34: lreplay = 1

1+α (lr1 + αlr2)

35: lt =
1

k+1 lcurrent + (1− 1
k+1 )lreplay

36: lt.backward()
37: Update θ and g
38: tlow = 0.999tlow + 0.001t̂low
39: thigh = 0.999thigh + 0.001t̂high
40: end for
41: return θ and g

Starting from the initial step, with τs = 999 for a total of 1000 steps, xτs represents random noise.
Based on the recurrence relation, we obtain:

xτi =

√
ᾱτi

ᾱτs

ϵ+

√
ᾱτi

ᾱτs−1

lτsθ(xτs) + · · ·+
√

ᾱτi

ᾱτi+1

lτi+2
θ(xτi+2

) + lτi+1
θ(xτi+1

) (16)
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Table 3: Results Presented as Mean and Standard Deviation Over 5 Random Runs, with 5 Generation
Steps for Fashion-MNIST and 20 for CIFAR-10 and CIFAR-100

Fashion-MNIST CIFAR-10 CIFAR-100
Acc↑ Acc↑ ACC↑

F.T. 17.3 ± 2.1 19.5±0.1 16.5±2.2
DDGR-1000 83.2 ± 1.1 44.3 ± 1.2 34.5±0.7
i.i.d. Off 92.3 ± 0.3 83.2±0.1 67.4±0.3
ER 79.4±2.4 28.3±2.4 25.1±1.2
DGR 57.4±5.3 27.5 ± 3.5 23.5 ± 2.4
DGR-distill 75.2±3.1 35.4 ± 4.1 28.7 ± 1.1
BIR 78.5±2.8 36.1 ± 5.7 21.7 ± 0.4
PASS 79.7±3.7 39.2 ± 3.2 30.3 ± 0.8
Ours 80.4 ± 4.1 41.5 ± 2.8 32.1 ± 1.2

Figure 8: Evaluation of the Final Classification Accuracy Across Tasks for Different Methods on
Fashion-MNIST and CIFAR-10

x0 =

√
ᾱ0

ᾱτs

ϵ+

√
ᾱ0

ᾱτs−1

lτsθ(xτs) + · · ·+
√

ᾱ0

ᾱτ1

lτ2θ(xτ2) + lτ1θ(xτ1) (17)

By introduce Eq. (17) into Eq. (4) and minus Eq. (16), we derive:

x̂τi = xτi +

1∑
j=i

(rjθ(xτj )) (18)

where:

rj =

√
ᾱτi

ᾱτj−1

lτj =
√

ᾱτi(

√
1− ᾱτj−1

ᾱτj−1

−

√
1− ᾱτj

ᾱτj

) (19)

A.4 THE INFLUENCE OF GENERATION STEPS

In this section, we analyze the impact of varying generation steps on our method. As shown in
Tab. 4, our method consistently outperforms the baseline (DGR-distill) by a large margin in both
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FID and KLD across all generation steps. Notably, our method with only 20 steps achieves FID
scores close to those of DGR-distill with 100 steps. Furthermore, our method with 50 steps closely
matches DDGR-1000, achieving FID scores of 30.8 vs 29.8 and KLD of 0.13 vs 0.13.

Table 4: FID and KLD on CIFAR-10 Across Different Generation Steps

Steps 5 10 20 50 100
FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑

DGR-distill 45.4 ± 3.8 0.47 ± 0.05 41.3±4.4 0.33±0.05 37.5±5.0 0.24±0.02 35.1 ±2.8 0.18 ±0.02 31.5±1.9 0.15 ±0.03
Ours 40.5± 4.7 0.28 ± 0.06 35.8± 4.1 0.20 ±0.05 32.7 ± 3.6 0.15 ±0.03 30.8 ± 4.5 0.14 ±0.02 30.1±2.5 0.13 ± 0.03

A.5 THE DISTRIBUTION OF GENERATED IMAGES

We analyze the distribution of generated images by our method and DGR-distill on Fashion-MNIST,
as shown in Fig. 9. This analysis is based on one experimental run. Task 0 includes classes [7, 9],
and the left figure of Fig. 9 illustrates the image distribution after the first task, where both methods
operate identically. We observed fewer images of class 7 during this task.

The middle figure shows the proportion of class 7 in the generated images after training on each
task. With DGR-distill, the proportion rapidly decreases and nearly disappears by the final task due
to error accumulation from replaying only generated images. In contrast, our method uses a simple
guided-classifier to maintain balanced image generation, keeping class 7 at a stable proportion.

The right figure compares the overall KLD, where our method significantly outperforms DGR-distill,
generating more balanced images across all classes.

Figure 9: Comparative Evaluation of Image Distribution Generated by Our Method and DGR-Distill
on Fashion-MNIST

16


	Introduction
	Related Work
	Continual Learning
	Diffusion models in continual learning
	Knowledge distillation of Diffusion models

	Problem formulation
	Methodology
	Generative replay and Generative distillation
	Noisy Intermediate Generative Distillation (NIGD)
	Class-guided generative distillation(CGGD)
	Signal-Guided Generative Distillation (SGGD)
	Workflow and overall objective

	Experiments and Results
	datasets
	Evaluation metrics
	Overall results

	Ablation Study
	Conclusion
	Appendix
	Algorithm
	Classification Accuracy
	Demonstration
	The Influence of Generation Steps
	The Distribution of Generated Images


