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ABSTRACT

Recent large visual-language action models pretrained on diverse robot datasets
have demonstrated the potential for generalizing to new environments with a few
in-domain data. However, those approaches usually predict discretized or contin-
uous actions by a small action head, which limits the ability in handling diverse
action spaces. In contrast, we model the continuous action with a large multi-
modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which
we directly denoise action chunks by a large transformer model rather than a small
action head. By leveraging the scaling capability of transformers, the proposed ap-
proach can effectively model continuous end-effector actions across large diverse
robot datasets, and achieve better generalization performance. Extensive experi-
ments demonstrate Diffusion Transformer Policy pretrained on diverse robot data
can generalize to different embodiments, including simulation environments like
Maniskill2 and Calvin, as well as the real-world Franka arm. Specifically, without
bells and whistles, the proposed approach achieves state-of-the-art performance
in the Calvin novel task setting, and the pretraining stage significantly facilitates
the success sequence length on the Calvin by over 1.2. The code will be publicly
available.

1 INTRODUCTION

Traditional robot learning paradigm usually relies on large-scale data collected for a specific robot
and task, but collecting robot data for generalist tasks is time-consuming and expensive due to the
limitations of robot hardware in the real world. Nowadays, the foundational models OpenAI (2022;
2023; 2021); Rombach et al. (2021) in Natural Language Process and Computer Vision, pretrained
on broad, diverse, task-agnostic datasets, have demonstrated powerful ability in solving downstream
tasks either zero-shot or with a few task-specific samples. It is principally possible that a general
robot policy exposed to large scale diverse robot datasets improves generalization and performance
on downstream tasks Brohan et al. (2022; 2023). However, it is challenging to train a general robot
policy on a large scale of cross-embodiment datasets with diverse sensors, action spaces, tasks,
camera views, and environments.

Toward a unified robot policy, existing works directly map visual observation and language instruc-
tions to actions with large visual-language-action models for robot navigation Shah et al. (2023a;b)
or manipulation Brohan et al. (2022; 2023); Kim et al. (2024); Team et al. (2024), and demonstrate
zero-shot or few-shot generation to new environments. Robot Transformers Brohan et al. (2022;
2023); Padalkar et al. (2023) present robot policy based on transformer architecture, and demon-
strate robust generalization by training on the large scale of Open X-Embodiment Dataset Padalkar
et al. (2023). Octo Team et al. (2024) follows the autoregressive transformer architecture with a
diffusion action head, while OpenVLA Kim et al. (2024) discretizes the action space and lever-
age the pretrained visual-language model to build VLA model exposed to Open X-Embodiment
Dataset Padalkar et al. (2023). Though those Visual-Language-Action (VLA) models Team et al.
(2024); Kim et al. (2024) have shown the potential to learn robot policy from the large cross em-
bodiment datasets Padalkar et al. (2023), the diversity of robot space among the cross embodiment
datasets still limits the generalization of previous models with autoregressive transformers.

Recent diffusion policy Chi et al. (2023); Ze et al. (2024); Ke et al. (2024) has shown its stable ability
in robot policy learning for single task immitation learning with UNet or cross attention architecture,
and diffusion transformer demonstrates its scalability in multi-modal image generation Peebles &
Xie (2023). Specifically, Octo Team et al. (2024) presents a generalist policy that denoises the
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Figure 1: Illustrations of different robot policy architectures. (a) is the common robot transformer
architecture with discretization actions, e.g., Robot Transformer Brohan et al. (2022; 2023) and
OpenVLA Kim et al. (2024). (b) is the transformer architecture with diffusion action head which
denoises the continuous action with a small MLP with embedding from the causal transformer, e.g.,
Octo Team et al. (2024). (c) is the proposed Diffusion Transformer architecture that utilizes the large
transformer to denoise actions in an in-context conditioning style.

action with a small MLP network conditioned on a single embedding of auto-regressive multi-modal
transformer. However, the robot space of large-scale cross-embodiment datasets contains various
cameras views and diverse action spaces, which poses a significant challenge for a small MLP to
denoise the continuous action conditioned on a single action head embedding.

In this paper, we design a Diffusion Transformer architecture for generalist robot policy learning.
Similar to previous robot transformer models Brohan et al. (2022; 2023); Padalkar et al. (2023);
Team et al. (2024); Kim et al. (2024), we leverage the transformer as our base module to retain
the scalability on the large-scale cross-embodiment datasets. Different from Brohan et al. (2022;
2023); Padalkar et al. (2023); Team et al. (2024); Kim et al. (2024), we present an in-context con-
ditional diffusion transformer architecture to denoise the action chunks, rather than utilizing a small
MLP to denoise action embedding to continuous actions as illustrated in Figure 1. The Diffusion
Transformer Policy retains the scalability of transformer for diffusion, and thus more effectively
generalizes action policy from the large diverse datasets.

In a nutshell, we present a Diffusion Transformer Policy, that incorporates a causal transformer as an
in-context conditional diffusion backbone and denoise continuous action chunks with the transform-
ers. Extensive experiments demonstrate Diffusion Transformer Policy achieves considerably better
performance on two large-scale Sim datasets, Maniskill2 and Calvin, compared to corresponding
diffusion action head Team et al. (2024) and discretized action head Brohan et al. (2022) baselines.
Meanwhile, The proposed model trained on the Open X-Embodiment Dataset achieves better gen-
eralization performance compared to the baseline methods on the Real Franka platform.

2 RELATED WORK

Diffusion Policy Denoise diffusion techniques Ho et al. (2020); Rombach et al. (2022) are pioneer-
ing image generation, and recent Diffusion Policy Chi et al. (2023); Ze et al. (2024); Ke et al. (2024)
has exhibited a powerful ability in modeling multimodal actions compared to previous robot policy
strategies in both 2D Chi et al. (2023) and 3D observations Ze et al. (2024); Ke et al. (2024). Current
diffusion policy approaches usually follow an Unet structure or a shallow cross-attention network
for a single manipulation task, leaving large-scale multimodal diffusion policy poorly investigated.
For example, 3D diffusion Policy Ze et al. (2024) presents a diffusion approach conditional on a
3D point cloud, while 3D diffuser actor Ke et al. (2024) proposes a 3D diffusion strategy based on
point cloud with cross-attention. Differently, we present a scalable in-context conditioning diffu-
sion transformer architecture for generalist robot policy. Recent generalist policy Octo Team et al.
(2024) conditions the denoise process on the embedding from the Transformer model with a small
MLP diffuser. By contrast, the diffuser in Diffusion Transformer Policy is a large Transformer
architecture.

Generalist Robot Policies The embodiment community has shown increasing interest in generalist
robot policy with foundational multi-modal models for both robot navigation Shah et al. (2023a;b);
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Yang et al. (2024); Sridhar et al. (2024); Huang et al. (2023) and manipulation Bousmalis et al.
(2023); Brohan et al. (2022); Shah et al. (2023c); Shridhar et al. (2023); Brohan et al. (2023);
Padalkar et al. (2023); Kim et al. (2024); Team et al. (2024). Recent approaches Brohan et al. (2022;
2023); Padalkar et al. (2023); Kim et al. (2024); Team et al. (2024) aim to achieve generalist policy
with scalable Visual-Language-Action models. We follow this paradigm to approach generalist and
adaptive robot policy. Brohan et al. (2022; 2023); Padalkar et al. (2023); Kim et al. (2024) construct
the action token by discretizing each dimension of the robot actions separately into 256 bins. How-
ever, this discretization strategy incurs internal deviation in robot execution. Unlike those methods,
we present a Diffusion Transformer Generalist Policy, which denoises the continuous actions with
a large Transformer model. The proposed approach retains the scalability of the Transformer and
meanwhile facilitates the modeling of cross-embodiment action chunk representations. Meanwhile,
the Diffusion Transformer Policy aligns robot action together with the language instructions and
image observations as an in-context conditional style.

3 METHOD

We describe the proposed architecture of diffusion transformer policy in this section, a DiT-based
generalist diffusion policy model that can be adapted to new environments and embodiment. The
model, built from a diffusion transformer architecture, achieves better generalization on both novel
camera views and environments from large amounts of diverse robot data.

3.1 ARCHITECTURE

Instruction Tokenization. The language instructions are tokenized by a frozon CLIP Radford et al.
(2021) model.

Image observation Tokenization. The image observations first pass into the DINOv2 Oquab et al.
(2023) to obtain the image tokens. Note that DINOv2 Oquab et al. (2023) is trained on the web data
which is different from the robot data, we thus jointly optimize the DINOv2 parameters together
with Transformers through an end-to-end way.

Q-Former. To reduce the computation cost, a Q-Former together with FiLM Perez et al. (2018)
conditioning is incorporated to select image tokens from the features of DIDOv2 Oquab et al. (2023)
by instruction context.

Action Tokenization. We use the end-effector action and represent each action with a 7D vector,
including 3 dimensions for translation vector, 3 dimensions for rotation vector, and a dimension for
gripper position. To align the dimension with image and language tokens, we simply pad the action
vector with zeros to construct the action token. We only add the noise into the 7D action vector
during denoise diffusion optimization.

Architecture. Our core design is the Diffusion Transformer structure Peebles & Xie (2023) which
denoises action token chunks, instead of each single action token, conditioned on image observation
and instruction tokens by an in-context conditioning style with a causal transformer network, i.e., we
simply concatenate image tokens, language tokens, and timestep token in the front of the sequence,
equally treating the noisy action tokens from the image/instruction tokens as illustrated in Figure 2.
This design retains the scaling properties of transformer networks. The model, conditioned on lan-
guage instructions and image observations with the causal transformer structure, is supervised by
the noise that we add to the continuous actions. In other words, we conduct the diffusion objective
directly in the action chunk space with a large transformer model, differently from a diffusion action
head with a few MLP layers Team et al. (2024).

The proposed Diffusion Transformer Policy is a general design that can be scaled to different
datasets, and demonstrate excellent performance. Meanwhile, we can also add additional obser-
vation tokens and input into the transformer structure. Appendix A provides more details.

3.2 TRAINING OBJECTIVE

In our architecture, the denoising network ϵθ(x
t, cobs, cinstruction, t) is the whole causal trans-

former, where cobs is the image observation, cinstruction is the language instruction, and t ∈
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1, 2, ...T is step index in our experiments. During the training stage, we sample a Gaussian noise
vector xt ∈ N (0, I) at timestep t, where T is the number of denoising timesteps, and add it to
action a as â to construct the noised action token, finally predicting the noise vector x̂ based on
the denoising network ϵθ(â, cobs, cinstruction, t), where t is randomly sampled during training. We
optimize the network with MSE loss between xt and x̂t.

To generate an action, we apply T steps of denoising with the optimized transformer architecture ϵθ
from a sampled gaussian noise vector xT as follows,

xt−1 = α(xt − γϵθ(x
t, cobs, cinstruction, t) +N (0, σ2I)).

where α, γ, σ is the noise scheduler Ho et al. (2020). In our experiments, ϵθ is to predict the noise
that adds to the action.

3.3 PRETRAINING DATA

To evaluate the proposed Diffusion Transformer Policy, we choose Open X- Embodiment
datasets Padalkar et al. (2023) for pretraining the model. We mainly follow Team et al. (2024);
Kim et al. (2024) to choose the datasets and set the weights for each dataset. We normalize the
actions similarity to Padalkar et al. (2023) and filter out outlier actions in the dataset. Additional
details are provided in Appendix B.

3.4 PRETRAINING DETAILS

We devise the proposed Diffusion Transformer architecture and evaluate the pretraining approach in
the large cross-embodiment datasets Padalkar et al. (2023). We use the DDPM Ho et al. (2020) diffu-
sion objective in the pretraining stage with T = 1000 for the Open X-Embodiment dataset Padalkar
et al. (2023), while we set T = 100 with DDIM Song et al. (2020) for zero-shot evaluation to accel-
erate the inference. According to the preliminary experiment from Maniskill2 Gu et al. (2023), we
use 2 observation images and predict 32 action chunks. We filter out the action chunks that include
outlier values. We train the network with AdamW Loshchilov (2017) by 100,000 steps. We set the
learning rate of the casual transformer and Q-Former as 0.0001, the learning rate of the pretrained
image tokenizers as 0.00001, and the batch size as 8902. More pretraining details are provided in
the Appendix.

4 EXPERIMENTS

We evaluate the proposed methods with two baselines in three environments. We leverage Man-
iskill2 to present the ability of Diffusion Transformer Policy on large scale novel view generaliza-
tion. Meanwhile, we demonstrate the generalization of the pretrained Diffusion Transformer Policy
on CALVIN benchmark. Lastly, we further show the generalization of Diffusion Transfromer Poicliy
on Real Franka Arm.

4.1 BASELINES

Discretization Action Head We implement the RT-1 Brohan et al. (2022) style baseline models
with a similar structure as ours. We maintain the Instruction Tokenization and Image Tokenization
strategy in the proposed method. Different from ours, we follow RT-1 Brohan et al. (2022) to
discretize each dimension of the action into 256 bins, and leverage the transformer network to predict
the action bin indexes. Following Brohan et al. (2022; 2023), we use cross-entropy loss to optimize
the network.

Diffusion Action Head. We also implement a diffusion action head strategy Team et al. (2024)
in our architecture. Specifically, we utilize a three-layer MLP network as our denoising network
condition on the output of each action token embedding by the same transformer architecture as
ours.
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Figure 2: Our model is a Transformer diffusion structure. The model first incorporates a pretrained
CLIP network to obtain instruction tokens. Meanwhile, we use the DINO-V2 Oquab et al. (2023)
model to encode image observations, followed by a Q-Former to query observation tokens for each
image observation. Next, we concatenate instruction tokens, image observation tokens, timestep
token, and noised action tokens together to construct a token sequence as the input for transformer
network to denoise the raw actions.

4.2 MANISKILL2

Maniskill2 Gu et al. (2023) is the next generation of the SAPIEN Maniskill benchmark Mu et al.
(2021), which is widely used to evaluate the generalized manipulation ability of the embodied mod-
els. It contains 20 different manipulation tasks families and over 4 million demonstration frames
with different settings, including rigid/soft body, single/dual arm, etc. Maniskill2 also provides a
fast and easy way to change the camera view and replay the trajectories. It is useful for the re-
searchers working on generalized policy.

Setup. In our experiments, we select 5 tasks (PickCube-v0, StackCube-v0, PickSingleYCB-v0,
PickClutterYCB-v0, PickSingleEGAD-v0) from Maniskill2, and then construct a camera pool with
300,000 random cameras, then sample 20 cameras from the camera pool to render a trajectory each
time, and finally obtain about 40K trajectories totally. Moreover, we split the dataset into training
set and validation set according to a ratio of 19:1. During the splitting, it is guaranteed that the single
trajectory rendered under different camera views will appear in either training set or validation set
in order to avoid data leaking. Specially, there are 74 different categories to pick and place in the
task family PickSingleYCB-v0. In addition to the mentioned rules, we ensure each category can
be found in both training set and validation set. After that, we sample 100 trajectories for each
task family randomly from the validation set, constructing a close loop evaluation dataset with 500
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Table 1: Comparision on Maniskill2 (success rate). SingleYCB indicates PickSingleYCB, Clut-
terYCB indicates PickClutterYCB, SingleEGAD indicates PickSingleEGAD. Disc ActionHead in-
dicates Discretized Action Head strategy Brohan et al. (2022), while Diff ActionHead shows Diffu-
sion Action Head Team et al. (2024).

Method All PickCube StackCube SingleYCB ClutterYCB SingleEGAD
Disc ActionHead 30.2% 41.0% 33.0% 22.% 1.0% 54.0%
Diff ActionHead 58.6% 86.0% 76.0% 37.0% 24.0% 70.0%
DiT Policy(ours) 65.8% 79.0% 80.0% 62.0% 36.0% 72.0%

trajectories in total. While training, considering the balance between different task families, we
adjust the number of data pieces to the same by simply copying the trajectories from task family
with fewer trajectories originally. The ability of the model is measured by the success rate of each
task family while executing the close loop evaluation dataset.

Optimization Details. We optimize the network with AdamW Loshchilov (2017) by 50,000 steps
on Maniskill2 and we set the learning rate as 0.0001. The number of training timesteps T is 100 in
Maniskill2 and the global batch size is 1024.

Comparisons. Table 1 compares the proposed method with discretized action head Brohan et al.
(2022; 2023) and diffusion action head Team et al. (2024). Here, the proposed method use the
same backbone and transformer architecture as the baseline methods. The experiments demonstrate
Diffusion Transformer Policy achieves better results compared to Discretization Action Head strat-
egy Brohan et al. (2022) under the large scale novel view maniskill2 benchmark. Specifically, we
observe the proposed Diffusion Transformer Policy achieves clear better performance compared
to the baselines. Meanwhile, Diffusion Transformer Policy demonstrates better performance in
more complex tasks, e.g., Diffusion Transformer Policy improves diffusion action head Team et al.
(2024) by 20% in task PickSingleYCB and by 12% task PickClutterYCB. Those experiments show
that Diffusion Transformer Policy achieves better scalability in the large scale diverse datasets, and
meanwhile achieves better generation in camera view generalization.

4.3 CALVIN

CALVIN (Composing Actions from Language and Vision) Mees et al. (2022) is an open-source
simulated benchmark to learn long-horizon language-conditioned tasks. CALVIN Mees et al. (2022)
includes four different scenes tagged as ABCD and presents a novel scene evaluation benchmark,
ABC→D, i.e., trained on environments A, B, and C and evaluated on environment D. The goal of
CALVIN is to solve up to 1000 unique sequence chains with 5 distinct subtasks. The benchmark
requires successfully solving the task sequence with 5 continuous subtasks, and one of the important
evaluation indicators is the success sequence length.

Setup. In this section, we utilize CALVIN (ABC→D) to evaluate the novel task generalization of
Diffusion Transformer Policy architecture. Specifically, we directly apply the proposed method on
CALVIN with a single static RGB camera and predict the end-effector action, including 3 dimen-
sions for translation, 3 dimensions for Euler angles rotation and 1 dimension for gripper pose. We
evaluate Diffusion Transformer Policy and Diffusion Action Head Team et al. (2024) on CALVIN,
and leverage the pretrained model on Open X-Embodiment to initialize the model for CALVIN.

Optimization Details. While training Calvin, 2 history images are used as input. For each iteration,
the model predicts 10 future frames supervised by MSE loss. An AdamW optimizer is used together
with a decayed learning rate with half-cycle cosine scheduler after several steps of warming up. The
learning rate is initialized as 1e-4. We use 4 NVIDIA A100 GPUs(80GB) to train the model for 15
epochs with a global batch size of 128.

Comparisons. Table 2 presents the comparisons with previous methods on Calvin and the pro-
posed methods. Without whistles and bells, the proposed Diffusion Tranformer Policy achieves the
state-of-the-art results. Particularly, we only use RGB camera stream for observation. The supe-
rior demonstrates the effectiveness of Diffusion Transformer Policy. Meanwhile, the pretraining
on Open X-Embodiment Datasets significantly facilitates the performance by 1.23, which demon-
strates the transferability of Diffusion Transformer Policy. By contrast, the performance of diffusion
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Table 2: The comparison on Calvin Benchmark. ’S’ indicates Static RGB, ’G’ indicate Gripper
RGB. ’SD’ indicate Static RGB-D, ’GD’ indicates Gripper RGB-D, ’P’ indicates Proprio, i.e., the
observation arm position, ’C’ indicates camera parameters.

Method Input No. Instructions in a Row (1000 chains)
1 2 3 4 5 Avg.Len.

SPIL Zhou et al. (2024) S,G 74.2% 46.3% 27.6% 14.7% 8.0% 1.71
RoboFlamingo Li et al. (2023) S,G 82.4% 61.9% 46.6% 33.1% 23.5% 2.47

SuSIE Black et al. (2023) S 87.0% 69.0% 49.0% 38.0% 26.0% 2.69
GR-1 Wu et al. (2023) S,G,P 85.4% 71.2% 59.6% 49.7% 40.1% 3.06

3D Diffuser Ke et al. (2024) SD,GD,P,C 92.2% 78.7% 63.9% 51.2% 41.2% 3.27
diffusion head w/o pretrain S 75.5% 44.8% 25.0% 15.0% 7.5% 1.68

diffusion head S 94.3% 77.5% 62.0% 48.3% 34.0% 3.16
Ours w/o pretrain S 89.5% 63.3% 39.8% 27.3% 18.5% 2.38

Ours S 94.5% 82.5% 72.8% 61.3% 50.0% 3.61

KiwifruitBanana Block Tiny block Pink block

Figure 3: Illustration of Franka environment and corresponding objects.

action head is worse than Diffusion Transformer Policy by 0.45, though we load similar pretrain-
ing weights for diffusion head architecture. Diffusion Transformer Policy can scale across different
environments, e.g., transferring the knowledge from the diverse real datasets to the CALVIN dataset.

4.4 REAL FRANKA ARM

We finally evaluate the proposed method on the Real Franka Arm. Specifically, we train the model on
Open X-Embodiment Datasets Padalkar et al. (2023), and evaluate it in our Franka Arm environment
under zero-shot generalization and few-shot finetuning generalization.

setup. We set up the franka on the table with a black background. Meanwhile, we use a single
third-person RGB camera about 1.5 meters away from the Franka Arm. Please refer to Figure 3 for
the visualized demonstration. Considering the environment of our Franka setup is different from
the scenes in Open X-Embodiment Stone et al. (2023), we mainly evaluate the proposed method
on out-of-the-box generation and few-shot generation. In our experiments, we evaluate each model
with the same scene, and the object is placed in 9 similar positions in a 9-grid format in front of
the franka arm. Meanwhile, we maintain a small variance in those positions placing the objects for
evaluation.

To evaluate the ability of the proposed model on new environments with a few demonstrations. We
set 5 tasks, including “Pick up the green block”, “Pick up the kiwifruit”, “Pick up the banana”, “Pick
up the tiny green block”, “Pick up the pink block”. Meanwhile, we collect 50 trajectories for each
task in the first three tasks, while leaving the remaining two tasks (“Pick up the tiny green block” and
“Pick up the pink block”) for out-of-distribution evaluation. Figure 3 presents the scenes and tasks.
The image in Figure 3 is the exact image for our model. Our real-world environment is challenging
since the object is small compared to the whole scene.

Finetuning details. In our experiments, we finetune the proposed method on the real Franka Arm
with Lora Hu et al. (2021) and AdamW for 10,000 steps. We set the number of timesteps as 100 for
DDPM Ho et al. (2020), and batch size as 512. Meanwhile, we finetune all the networks with one
observation and one step prediction.

Zero-shot Generalization We directly take the models pretrained on Open X-Embodiment to eval-
uate zero-shot generalization in our environments. We compare the proposed method with the dis-
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Table 3: Zero-Shot Comparision on Real-Franka. Here the baseline is the model with discretization
actions, similar to RT-1 Brohan et al. (2022), that we implement and train on Open X-Embodiment.

Method Baseline OpenVLA Kim et al. (2024) Octo Team et al. (2024) Ours
PickBlock 0 0 0 10%
PickBanana 0 0 0 15%
PickKiwifruit 0 0 0 0

Table 4: Comparision on Real-Franka with few-shot fine-tuning. We represent the values in success
rate (%). Task-1 is “Pick up the green block”, Task-2 is “Pick up the banana”, Task-3 is “Pick up
the Kiwifruit”, Task-4 is unseen object task “Pick up the green tiny block”, Task-5 is unseen object
task “Pick up the pink oval block”.

Method All Task-1 Task-2 Task-3 Task-4 Task-5
Discretized Action Head Brohan et al. (2022) 19.3% 29.6% 51.9% 14.8% 0 0
Diffusion Action Head Team et al. (2024) 34.8 % 40.7% 85.2% 25.9% 22.2% 0
DiT Policy (ours) 46.9% 55.6% 90.3% 44.4% 37.0% 7.4%

cretization action head baseline Brohan et al. (2022) (RT-1) that are optimized on the same dataset
mixtures, as well as the released OpenVla Kim et al. (2024) and Octo-base Team et al. (2024) mod-
els. Besides, we evaluate it on three simple tasks: “pick up the green block”, “pick up the banana”,
and “pick up the kiwifruit”. Table 3 shows OpenVLA and Octo without in-domain finetuning fail
to pick up the object, while the proposed method can pick the green block with a success rate of
10%. We think it is because the proposed model is able to scale better the mixture data from Open
X-Embodiment. We provide a visualized analysis in Appendix C.1, where we find the OpenVLA
and Octo fail to pick due to wrong grasp pose, while the proposed model can grasp the object with
a small success rate.

Few-shot Generalization Table 4 presents the performance of the proposed Diffusion Transformer
Policy compared to baseline methods. We observe different objects demonstrate various perfor-
mances according to their attributes. The banana is the easiest object to pick up because the banana
is longer, while kiwifruit is fat compared to other objects and all models achieve poor performance.
The proposed Diffusion Transformer Policy effectively improves the diffusion action head accord-
ing to Table 4. We find the discretized action head baseline achieves poor performance. Meanwhile,
the Diffusion Transformer Policy is still able to pick up the novel object (e.g., the pink object) with
a low success rate, while the baseline methods totally fail.

4.5 ABLATION STUDY

In this section, we ablate some of the important designs of the model architecture, including the
length of horizon, the length of observation, execution steps for evaluation on Maniskill2.

Trajectory length. The length of action chunks has an important effect on the performance of dif-
ferent tasks. Table 5 demonstrates that the performance increases as the increase of trajectory length.
Meanwhile, we notice the performance of more complex tasks, e.g., PickClutterYCB, significantly
increases with the increase of trajectory length, while the easy task, e.g., PickCube, maintains high
performance after the trajectory length is more than 4. Meanwhile, the long horizon optimization
significantly facilitates the performance since long horizon optimization is able to provide the tar-
get object position and help the model understand the localization of the object. For example, task
PickClutterYCB with multiple YCB objects, requires the model to understand which one is the
corresponding object.

Observation length. In our experiments, we find the length of history observation images also sig-
nificantly affects the performance. At first, the performance significantly drops when we increase
the length of observation history to 3. It might because it is more difficult for the model to converge
with more observations since the number of corresponding image tokens also increases. Secondly,
we observe using two image observations is more helpful for the performance when the prediction
horizon is long. For example, when the length of trajectory is 32, the experiment with two observa-
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Table 5: Ablation on Maniskill2. #obs indicates the number of history observation images. #traj
shows the length of trajectory, i.e., the sum length of observation and action prediction chunks. Sin-
gleYCB indicates PickSingleYCB, ClutterYCB indicates PickClutterYCB, SingleEGAD indicates
PickSingleEGAD.

#obs #traj All PickCube StackCube SingleYCB ClutterYCB SingleEGAD
2 2 40.8% 68.0% 54.0% 33.0% 9.0% 40.0%
2 4 51.6% 81.0% 69.0% 44.0% 11.0% 53.0%
2 8 62.4% 89.0 % 78.0% 54.0% 25.0% 66.0%
2 16 65.6% 83.0% 80.0 % 70.0 % 25.0% 70.0%
2 32 65.8 % 79.0% 80.0 % 62.0% 36.0 % 72.0%
1 32 61.6% 78.0% 76.0% 64.0% 24.0% 66.0%
1 1 51.0% 79.0% 66.0% 42.0% 19.0% 49.0%
3 3 35.4% 54.0% 49.0% 27.0% 5.0% 42.0%
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Pick up the apple and move it to the green point

Pick up the cup and move it to the green point

Figure 4: Visualized comparison between Diffusion Transformer Policy and Diffusion Action Head
baseline on Maniskill2 (PickClutterYCB). The first raw is Diffusion Tranformer Policy, while the
second raw is the baseline method with Diffusion Action Head.

tions achieves better performance. We think two observations can provide the visualized difference
between two positions, and the difference of continunous gripper position indicates the action. The
visualized difference is beneficial for future action prediction. However, for short horizon, the model
majorly learns the projection from current observation to the corresponding actions.

Execution steps. Since the proposed model is able to predict multiple future actions, we can execute
multiple steps in one inference. Here, we ablate the effect of execution steps using a model that has
a trajectory length of 32 for quick evaluation in Table 6. The ablation study shows that the short
execution steps are slightly better longer execution steps, i.e., the farther away from the current
frame, the worse the prediction quality.

4.6 VISUALIZED COMPARISON

Maniskill2. The proposed Diffusion Transformer Policy is able to model better action sequences.
We conduct visualized analysis between the proposed method and the diffusion action head baseline

9
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Table 6: The effect of the number of Execution steps on Maniskill2. #steps indicates the number of
steps that we execute each prediction.

#steps 1 2 4 8 16
All 61.6% 60.8 % 60.6 % 60.0 % 58.0 %
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Figure 5: Visualized comparison between Diffusion Transformer Policy and Diffusion Action Head
strategy on Real Franka Arm (Pick up the green block). The first raw is Diffusion Tranformer Policy,
while the second raw is the baseline method with Diffusion Action Head.

on Maniskill2 in Figure 4. We select two trajectories from PickClutterYCB task, which is the most
challenging task in Maniskill2. Figure 4 presents the grasp position is significantly important for
picking up successfully, and the main reason that the baseline fails to pick up is the wrong grasp po-
sition. Meanwhile, we observe the major challenge of task PickClutterYCB is the grasping position
prediction, especially when the target object is near by other objects. Compared to the diffusion ac-
tion head baseline, Diffusion Transformer Policy is able to predict better action chunks for correctly
picking the object with a suitable end-effector pose.

Real Franka Arm. We also illustrate the comparison between the Diffusion Transformer Policy
and diffusion action head baseline on real Franka Arm in Figure 5. We demonstrate the experimen-
tal results under few-shot finetuning setting. We find the proposed method achieves better action
prediction when the Gripper is approaching the object and finally picks up the small green object
successfully, while the baseline fails to pick up due to the inaccurate grasp position. Meanwhile, we
observe that failures are usually caused by a tiny position bias and we can not even directly discrimi-
nate the position by eyes from the image. For those cases, we argue the diffusion transformer policy
has learnt better grasp position during the pretraining stage, and thus reduce failure rate due to the
wrong grasp pose, while it is difficult for the diffusion action head. We demonstrates more failure
cases to analyze the challenges in the Franka Arm.

5 CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper, we present a Diffusion Transformer architecture for generalist robot learning, named as
Diffusion Transformer Policy. Diffusion Transformer Policy directly utilizes the large transformers
as a denoising network to denoise the continuous actions conditioned on language instruction and
image observations. The proposed architecture retains the scale attribute of the transformer, thus
is capable of generalizing to different datasets with a unified architecture. Extensive experiments
on Maniskill2, CALVIN, real Frank Arm demonstrate the effectiveness of the proposed method.
Particularly, the proposed approach achieves state-of-the-art performance in CALVIN (ABC→D)
with only a single observation.

A limitation of the Diffusion Transformer Policy is that it requires multiple denoising steps during
inference, which will impede the inference speed in the real application. In this paper, we focus
on the modeling of complex and diverse actions. We think it is possible to improve the finetuning
strategy with a few denoising steps to accelerate the inference speed. Meanwhile, the failure cases
indicate it is important for the model to plan a right trajectory and grasp pose for picking object.
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