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A ADDITIONAL TRAINING AND MODEL DETAILS

The structure of our Model is shown in Figure 2. In this section, we will talk about some extra details
of our model. The language instruction is encoded by a pretrained clip model and freeze the encoder
in the training loop. We then resize the input images into 224224 and feed it into a pretrained ViT
model. The selected ViT is the base version of DinoV2. All the parameters in DinoV2 are trained.
After the above process, we use a Q-Former to decrease the size of image features. The Q-Former
is from scratched with a depth of 4. In each block, we insert the text token as a FILM Condition to
get the image features containing language information. The query length of the image features will
reduce to 32 when out of the Q-Former. Then, we concatenate the processed text features and image
features, together with the action nosied by a DDPM scheduler with 100 time-step. The multimodal
inputs then pass through a causal Transformer and predict the added noise, which will execute on
the robot arm after a series of post-processing. The Transformer is a from scratched Llama2-type
model with 12 self-attention blocks. The hidden size is set to 768. All the modules mentioned are
trained except the text encoder of clip. In summary, we have 334M parameters in total and 221M
trained. This is pioneering to get this performance with such a small-sized model.

B ADDITIONAL DETAILS ABOUT PRETRAINING DATA

We choose 15 large datasets from Open X-Embodiment [Padalkar et al.| (2023) as illustrated in Ta-
ble E} We mainly follow |Team et al|(2024); Kim et al.| (2024) to set the weights. Following Kim
et al.| (2024)), we further resize the image to the size of 224.

fractal Brohan et al.[(2022) DobbE|[Shafiullah et al.[(2023) | Droid|Khazatsky et al.[(2024)
16.15 1.94 13.69
Robo Set|Vikash Kumar Viola|Zhu et al.[(2023D) Kuka|Kalashnikov et al.[(2018)
2.99 1.30 17.47 B -
BridgeV2 |Walke et al.[(2023) NYU Franka |Cui et al[(2022) Furniture Bench[Heo et al.[(2023)
21.86 - 1.14 - 6.73 - o
StanfordHydra|Belkhale et al.[(2023) | DLR EDAN |Quere et al.[(2020) | BerkeleyFanuc [Zhu et al.[(2023a)
6.11 - T 0.08 - 1.07 - -
Jaco|Dass et al.|(2023) LanguageTable |Lynch et al.|(2023) toto|Zhou et al.[(2023)
0.67 6.01 B T 278

Table 1: The training dataset mixture

C ANALYSIS IN CALVIN
As illustrated in the main paper, we use a common learning rate scheduler to decay the learning rate

in the experiments in Calvin, rather than a fixed learning rate of 0.0001 in our pre-training stage. We
demonstrate that this can slightly improve the performance in Table 2]

D VISUALIZATION ANALYSIS

D.1 ZERO-SHOT GENERALIZATION

Figure [T] presents the proposed method is able to grasp the object, while OpenVLA and Octo fails.
We observe OpenVLA and Octo fail to rightly approach the right grasp position. This experiment
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Table 2: The Ablation of learning rate scheduler on Calvin Benchmark.
strategy No. Instructions in a Row (1000 chains)

72.8% | 61.3% | 50.0%

68.0% | 56.9% | 45.9%

wIrdecay | 94.5% | 82.5%
w/o Ir decay | 91.8% | 80.0%

3.61
3.43

OpenVLA Ours

Octo

Figure 1: Visualization of zero-shot genearalizaton of different models. The first raw is Diffusion
Transformer Policy(ours). The second raw of demonstration is OpenVLA (2024), the
third raw is Octo [Team et al. (2024). Our Model can complete the tasks successfully while both of
the others fails.

demonstrates the proposed Diffusion Transformer structure achieves more robust policy learning
compared to discretized actions or diffusion action head. The denoising transformer model has built
a better mapping from the image observation to corresponding action chunks.

D.2 FAILURE CASES

We visualize some failure cases and make some further research to explore why model fails on the
cases. Figure|2|shows the visualizations of some of these cases. We realize that, models can localize
the object and move forward to it in nearly all of the cases, but it is in trouble with predicting a
correct pose for the end-effector to grasp the object. Most of the cases fails due to the indiscernible
differences on the image or the leak of depth information sometimes. We will explore how to
increase the fineness of the prediction for the grasp pose and add the depth information to the model
in the future.
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Figure 2: Failure examples on Real Robot. Models can not predict a totally correct pose for grasping.
Many trajectories fail due to indiscernible differences or the lack of depth information.
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