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A Additional mathematical background

A.1 p-Wasserstein distance

For p = 2 and µ, ν ∈ P2(Rd) such that µ is absolutely continuous (a.c.) with respect to Lebesgue
measure, the unique optimal plan is concentrated on the graph of a measurable map and Eq. (1) boils
down to Monge’s problem:

W2(µ, ν) =

(
min

T∈T(µ,ν)

∫
Rd×Rd

‖x− T (x)‖2dµ(x)

)1/2

, (14)

where T(µ, ν) is the set of measurable functions T : Rd → Rd such that ν = T#µ. The pushforward
operator # is defined such that for any measurable set B ⊂ Rd, we have ν(B) = µ(T−1(B)). In
such a case, the optimal measurable map T in Eq. (14) is uniquely defined (see e.g. Th. 9.4 in [42])
and called Monge map.

A.2 Continuity of V

Theorem 6 ([9], Theorem 1.5). Let (µn)n ⊂ P2(Rd) and (νn)n ⊂ P1(Rd). Then{
µn → µ in W2

νn → ν in W1
=⇒ lim

n
V (µn|νn) = V (µ|ν).

A.3 On the barycentric projection

For a given transport plan π ∈ Π(µ, ν), with µ, ν ∈ P2(Rd), the associated barycentric projection is
given by

S : x 7→
∫
Rd
ydπx(y).

First, for each x ∈ Rd, S(x) realises minz EY∼πx(‖z − Y ‖2). Second, this barycentric map S is
actually optimal for the Monge’s problem Eq. (14) between µ and S#µ, by Theorem 2.
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Figure 6: Example of pushforward measures constructed from barycentric projections for two
measures µ and ν in two dimensions (left) and one dimension (right).
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We next illustrate the differences between the optimal barycentric map and a barycentric map
constructed from an OT plan in the classical Kantorovich formulation in Eq. (1). We sampled
r = 50 observations Xi and m = 60 observations Yi, each sets from a 2D Gaussian. We then
defined the source and target distributions as µ = 1

r

∑
δXi and ν = 1

m

∑
δYi respectively. Figure

6(left), shows these discrete distributions together with the pushforward measures SOWT#µ and
SOT#µ constructed from the optimal weak plan πOWT and an optimal plan πOT respectively. The
measure SOT#µ reasonably fits the target distribution ν, since when µ is a.c., SOT#µ = ν. In
particular, if µ and ν had the same number of points, SOT#µ would have matched ν. Regarding the
measure SOWT#µ, recall that V (µ|ν) = infη≤cνW

2
2 (µ, η) = W 2

2 (µ, SOWT#µ), and therefore
SOWT#µ ≤c ν. Lastly, we have W 2

2 (µ, ν) = 0.85, and V (µ|ν) = 0.52 ≤W 2
2 (µ, SOT#µ) = 0.81

as expected.

In Figure 6(right), we present an example in one dimension, where we sample 4000 observations
from N (0, 2) (resp. N (14, 1.4)) to construct the empirical source measure µ (resp. empirical target
measure ν). The distributions µ and ν are presented in the form of histograms. The distribution
resulting from the optimal weak transport map Sνµ#µ is in convex order with ν.

B Proofs of Section 3

Proof of Proposition 1. Let (µm)m ⊂ P2(Rd) be a minimising sequence of F (µ) :=∑n
i=1 λiV (µ|νi) and let M < ∞ be such that F (µm) ≤ M for all m. Then (µm)m is tight.

Indeed,∫
‖x‖2dµm(x) ≤ 2

n∑
i=1

λi inf
π∈Π(µm,νi)

[∫
‖x−

∫
ydπx(y)‖2dµm(x) +

∫
‖
∫
ydπx(y)‖2dµm(x)

]

≤ 2M + 2

∫∫
‖y‖2dπx(y)dµm(x) ≤ 2M + 2

n∑
i=1

λi

∫
‖y‖2dνi(y),

where the second inequality comes from Jensen’s inequality. By Prokhorov’s theorem, there exists a
subsequence still denoted (µm)m that weakly converges toward a probability measure µ∗. Recall that
µ belongs toP2(Rd) since ‖·‖2 is a l.s.c. function bounded from below and therefore

∫
‖x‖2dµ(x) ≤

lim infm
∫
‖x‖2dµm(x) <∞. By Theorem 6, we have that

F (µ∗) =

n∑
i=1

λi lim
m
V (µm|νi) = lim

m
F (µm) = min

µ∈P2(Rd)
F (µ),

thus F admits at least a minimiser.

Proof of Lemma 1. By Strassen’s theorem, we can build X ′ ∼ µ′ and X ∼ µ in the same probability
space, in such a way that E(X|X ′) = X ′. Denote by η∗ the law η attaining infη≤cνW

2
2 (µ, η), and

let (X,Z) = (X,Sνµ(X)) be the realisation of the optimal coupling for W2 of µ and η∗, which can
also be constructed in the same probability space due to its specific form. Then, by (the conditional
version of) Jensen’s inequality we have

V (µ|ν) = W 2
2 (µ, η∗) = E

[
E
(
‖X − Sνµ(X)‖2|X ′

)]
≥ E‖X ′ − E(Sνµ(X)|X ′)‖2.

Recall now that Sνµ(X) = E(Y |X), where the conditional expectation is a measurable function
only of X , constructed from the joint law πµ,ν . Thus, for every nonnegative convex function φ, by
applying twice Jensen’s inequality we get

Eφ(E(Sνµ(X)|X ′)) ≤ Eφ(Sνµ(X)) = Eφ(E(Y |X)) ≤ Eφ(Y ),

where Y ∼ ν. That is to say, the law η of the r.v. E(Sνµ(X)|X ′) satisfies η ≤c ν. It follows that

V (µ|ν) ≥W 2
2 (µ′, η) ≥ inf

η̃≤cν
W 2

2 (µ′, η̃) = V (µ′|ν).

This immediately implies that µ′ is a weak barycenter whenever µ is. In particular, if µ is a weak
barycenter, then so is the Dirac mass supported on its mean. We then deduce that the set of minimisers
of
∑
i λiV (µ|νi) admits at least a Dirac mass δω and

V (δω|νi) =

∫
‖x−

∫
ydπx(y)‖2dδω(x) = ‖ω − EYi‖2.

This implies that infω
∑
λiV (δω|νi) is uniquely attained for ω̄ =

∑
λiEYi.
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Proof of Proposition 2. A probability measure µ is a weak barycenter if and only if
∑n
i=1 λiV (µ|νi)

is equal to the r.h.s. of (7). Let us suppose first that EYi = m for all 1 ≤ i ≤ n, in which case the
infimum in (5) is equal to 0. Then, µ is a weak barycenter if and only if µ ≤c νi for all 1 ≤ i ≤ n
by definition of weak optimal transport (2), since in this case V (µ|νi) = 0. The general case can be
reduced to the previous one, noting that

V (µ|νi) = inf
η≤cνi

W 2
2 (µ, η)

= inf
η≤cν̂i

W 2
2 (µ̂, η) + ‖Eµ(X)− Eνi(Yi)‖2

= V (µ̂|ν̂i) + ‖Eµ(X)− Eνi(Yi)‖2,

so that minimising
∑n
i=1 λiV (µ|νi) over µ ∈ P(Rd) is equivalent to minimising

∑n
i=1 λiV (µ′|ν̂i)+∑n

i=1 λi‖ω − EνiYi‖2 over the two independent parameters (ω, µ′), with ω ∈ Rd and µ′ ∈ P(Rd)
centered, taking µ as the law of X = X ′ + ω with X ′ ∼ µ′.

Proof of Lemma 2. Thanks to Prop. 3.3 in [5], we have that the (unique) Wasserstein barycenter
verifies µ̃ =

(∑n
i=1 λiT

νi
µ̃

)
#µ̃ where T νiµ̃ is the optimal Monge map between µ̃ and νi (see (14)).

Moreover, from Proposition 4, a weak barycenter µ̄ also checks µ̄ =
(∑n

i=1 λiS
νi
µ̄

)
#µ̄, where Sνiµ̄

is the optimal barycentric projection associated to π̄i for V (µ̄|νi). Therefore, by Jensen’s inequality
applied twice,

W 2
2 (µ̄, µ̃) ≤

∫∫
‖x− y‖2dµ̄(x)dµ̃(y) =

∫∫
‖

n∑
i=1

λiS
i
µ̄(x)−

n∑
i=1

λiT
i
µ̃(y)‖2dµ̄(x)dµ̃(y)

≤
n∑
i=1

λi

∫∫∫
‖T iµ̃(y)− z‖2dπ̄ix(z)dµ̄(x)dµ̃(y) =

n∑
i=1

λi

∫∫
‖T iµ̃(y)− z‖2dµ̃(y)dπ̄i(x, z)

=

n∑
i=1

λi

∫∫
‖y − z‖2dνi(y)dνi(z) = 2

n∑
i=1

λi

∫∫ (
E‖Yi‖2 − ‖EYi‖2

)
.

Proof of Theorem 3. Observe first that, by Theorem 2 and Strassen’s theorem, solving the OWT
problem (2) provides a unique (in law) coupling of three random variables (X,Y, Z) such that:

i) (X,Y ) has joint law πµ,ν ; in particular X and Y have the laws µ and ν respectively,

ii) Z = Sνµ(X) = E(Y |X) a.s., it has law η∗ and it is optimally coupled to X in the sense of
the optimal transport problem (1),

iii) (Z, Y ) is a martingale, that is E(Y |Z) = Z a.s..

Bringing all together we get the decomposition:

Y = Z + Y − Z = Sνµ(X) + Y − E(Y |X). (15)

Now, by Lemma 1, if X ∼ µ then the Dirac mass δEX is a weak barycenter too. Thus we have on
one hand:

n∑
i=1

λiV (µ|νi) =

n∑
i=1

λiV (δEX |νi). (16)

Using Jensen’s inequality, we see on the other hand that

V (µ|νi) = inf
η≤cνi

W 2
2 (µ, η)

= inf
η≤cνi

E‖X − Z‖2, with (X,Z) an optimal coupling for W 2
2 of µ and η

≥ inf
η≤cνi

‖EX − EZ‖2 = inf
η≤cνi

W 2
2 (δEX , δEZ)

≥ inf
η̃≤cνi

W 2
2 (δEX , η̃) = V (δEX |νi).
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Identity (16) thus implies V (µ|νi) = V (δEX |νi) for all i. Denoting by ηi the law η attaining
infη≤cνiW

2
2 (µ, η), and by (X,Zi) the optimal coupling forW2 of µ and ηi, we see that the latter can

only occur if the equality case E‖X−Zi‖2 = ‖EX−EZi‖2 in Jensen’s inequality holds. This implies
that X − Zi is deterministic for each i. Since EZi = EYi, we thus must have X − Zi = EX − EYi.
Taking Z = Zi and Y = Yi in Eq. (15), and noting that Sνiµ (X) = Zi = X − (EX − EYi) the
statement follows.

C Proofs of Section 3.3

Proof of Lemma 3. Let (µm) and (νm),m ∈ N, be two sequences in P2(Rd) respectively converging
to µ and ν w.r.t. W2. Then, (µm) and (νm) are tight and thus the sequence (πm) := (πµm,νm) is
tight too. Let πmk be a weakly convergent subsequence and π its limit. By Proposition 2.8 in [8] we
have

lim inf
m

V (µm|νm) = lim inf
m

∫
‖x−

∫
ydπmkx ‖2dµmk(x) ≥

∫
‖x−

∫
ydπx‖2dµ(x) ≥ V (µ|ν).

However, we have limm V (µm|νm) = V (µ|ν) thanks to Theorem 6, hence
∫
‖x−

∫
ydπx‖2dµ(x) =

V (µ|ν). By uniqueness of the optimum for problem (2) we deduce that π = πµ,ν . Since the same
holds true for any weak limiting point of (πm), it follows that πm weakly converges to πµ,ν . Last,
since

∫
‖x‖2 + ‖y‖2 dπm(x, y) =

∫
‖x‖2dµm(x) +

∫
‖y‖2dνm(y), this quantity converges to∫

‖x‖2dµ(x) +
∫
‖y‖2dν(y) =

∫
‖x‖2 + ‖y‖2 dπ(x, y), whence W2(πn, π) → 0, and (µ, ν) ∈

(P2(Rd))2 7→ πµ,ν ∈ P2(Rd × Rd) is continuous, as required (hence measurable).

We now establish the joint measurability of (x, ν) ∈ Rd ×P2(Rd) 7→ Sνµ(x) for fixed µ. Notice this
is a stronger statement than just measurability in the x variable, for each (µ, ν). Write B̄(x, r) for
the closed ball of radius r > 0 centered at x. One easily checks that the function

(x, π) 7→ Ψr(x, π) :=

∫
y1{(y,z):z∈B̄(x,r)}dπ(z, y)∫
1{(y,z):z∈B̄(x,r)}dπ(z, y)

is measurable w.r.t. the pair (x, π), the two integrals being limits of integrals with respect to dπ(z, y),
of some bounded continuous functions of (x, y, z). Thus, lim supr→0 Ψr(x, π), lim infr→0 Ψr(x, π)
and the function Φ(x, π) := lim supr→0 Ψr(x, π)1{lim supr→0 Ψr(x,π)=lim infr→0 Ψr(x,π)} depend in
a measurable way on (x, π). It follows that (x, µ, ν) 7→ Φ(x, πµ,ν) is measurable as the composition
of two measurable functions. But notice that for each fixed µ ∈ P2(Rd) one has Ψr(x, π

µ,ν) =∫
B̄(x,r)

[
∫
ydπz(y)]dµ(z)

µ(B̄(x,r))
which, by the Lebesgue derivation theorem for Radon measures (see e.g. [16]),

converges dµ(x) a.s. in x, to
∫
ydπx(y) = Sνµ(x). Thus, for each µ ∈ P2(Rd),

Sνµ(x) = Φ(x, πµ,ν) for all ν ∈ P2(Rd) and dµ(x) a.e. x,

with (x, ν) 7→ Φ(x, πµ,ν) a measurable function. The conclusion follows.

Proof of Proposition 3. By Theorem 6.16 in [42], we know that their exists a sequence of discretely
supported distributions (Qn)n ⊂ P2(P2(Rd)) of the form Qn =

∑n
i=1 λiδνi , with (λi)1≤i≤n in the

simplex, and such that W 2
2 (Q,Qn) := infπ∈Π(Q,Qn)

∫
W 2

2 (ν, ν̃)dπ(ν, ν̃)→ 0. We set

Ln(µ) :=

∫
P2(Rd)

V (µ|ν)dQn(ν) =

n∑
i=1

λiV (µ|νi).
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We denote µn ∈ P2(Rd) the minimiser of Ln. Let us prove that (µn)n is tight. First, µn admits
moments of order 2 thanks to Jensen’s inequality:∫
‖x‖2dµn(x) ≤

n∑
i=1

λi

[∫
‖x− Sνiµn(x)‖2dµn(x) +

∫
‖Sνiµn(x)‖2dµn(x)

]

≤
n∑
i=1

λiV (µn|νi) +

n∑
i=1

λi

∫
‖y‖2dνi(y)

≤
n∑
i=1

λiV (µ|νi) +

n∑
i=1

λi

∫
‖y‖2dνi(y) for some µ ∈ P2(Rd) since µn minimises Ln

≤ 2

∫
‖x‖2dµ(x) + 3

n∑
i=1

λi

∫
‖y‖2dνi(y),

where the last inequality comes from V (µ|νi) =
∫
‖x − Sνiµ (x)‖2dµ(x) ≤ 2

∫
‖x‖2dµ(x) +

2
∫
‖Sνiµ (x)‖2dµ(x). Moreover, since W 2

2 (Q,Qn) → 0, we have (Lemma 5.1.7 in [6]) that∫
ψ(ν)dQn(ν) →

∫
ψ(ν)dQ(ν) for any function ψ such that |ψ(ν)| ≤ a + bW 2

2 (ν, ν0), a, b ≥ 0.
In particular, choosing ψ(ν) = W 2

2 (ν, δ0) =
∫
‖y‖2dν(y), it implies that

∑n
i=1 λi

∫
‖y‖2dνi(y)→∫ ∫

‖y‖2dν(y)dQ(ν) < ∞. Therefore
(∑n

i=1 λi
∫
‖y‖2dνi(y)

)
n

is bounded and (µn)n is tight.
Thus by Prokhorov’s theorem, there exists a subsequence, still denoted (µn)n, that converges towards
µ̄.

Let us now prove that this particular µ̄ minimises the function L : µ 7→
∫
P2(Rd)

V (µ|ν)dQ(ν).
First, let η ∈ P2(Rd), still by Lemma 5.1.7 in [6] and since V (η|ν) ≤ W 2

2 (η, ν), we get that
L(η) =

∫
V (η|ν)dQ(ν) ≥ lim infn→∞

∫
V (η|ν)dQn(ν). Since for each n, the distribution µn

minimises Ln, we have

lim inf
n→∞

∫
V (η|ν)dQn(ν) ≥ lim inf

n→∞

∫
V (µn|ν)dQn(ν). (17)

Thanks to Fatou’s Lemma for sequences of measures (Q)n (see [22]), we have that

lim inf
n→∞

∫
V (µn|ν)dQn(ν) ≥

∫
lim inf
n→∞

V (µn|ν)dQ(ν) =

∫
V (µ̄|ν)dQ(ν),

where the last equality comes from the lower semi-continuity of V (Theorem 2.9 in [8]). This proves
that µ̄ minimises L.

D Proofs of Section 4

The proof of Theorem 4, on the continuity of G : µ 7→
(∑n

i=1 λiS
νi
µ

)
#µ, leans on the two following

technical lemmas.
Lemma 5. Let (ρm)m be a given sequence and ν be a fixed law in P2(Rd). For each m, let
Sm := Sνρm denote the barycenter map associated with the optimal coupling πρm,ν for (2). Then, the
sequence of laws (Sm#ρm)m has uniformly integrable second moments.

Proof of Lemma 5. Let (Xm, Ym) be a pair of random variables (r.v.) with joint law πµm,ν , defined
on some probability space (Ω,F ,P). Notice that Sm#ρm is the law of the r.v. E(Ym|Xm). Then,
for each M,K ≥ 0 we have∫

{‖x‖2≥M}
‖x‖2dSm#ρm(x) =E(‖E(Ym|Xm)‖21{‖E(Ym|Xm)‖2≥M})

≤E(E(‖Ym‖2|Xm)1{‖E(Ym|Xm)‖2≥M})

=E(‖Ym‖21{‖E(Ym|Xm)‖2≥M,‖Ym‖2≥K})

+ E(‖Ym‖21{‖E(Ym|Xm)‖2≥M,‖Ym‖2<K})

≤E(‖Ym‖21‖Ym‖2≥K}) +
K

M
E(‖E(Ym|Xm)‖2),
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where we have used Jensen’s inequality and the fact that E(Ym|Xm) is measurable w.r.t. the σ-field
generated by Xm. Applying Jensen’s inequality to the last term again, and recalling that Ym has law
ν ∈ P2(Rd), we deduce that

sup
m

∫
{‖x‖2≥M}

‖x‖2dSm#ρm(x) ≤
∫
{‖x‖2≥K}

‖x‖2dν(x) +
K

M

∫
‖x‖2dν(x), (18)

which is smaller than a given ε > 0, by choosing K > 0 and then M > 0 large enough.

Lemma 6. Let (ρm)n, ρ in P2(Rd) be such that W2(ρm, ρ)→ 0. We have:

i) For each ν ∈ P2(Rd) the sequence of laws ((id, Sνρm)#ρm)m converges w.r.t. W2 in
P2(Rd × Rd) to (id, Sνρ )#ρ .

ii) There exists in some probability space (Ω,F ,P), a sequence of r.v. (Xm)m of laws (ρm)m
and a r.v. X of law ρ such that, for each ν ∈ P2(Rd), the sequence (Xm, S

ν
ρm(Xm))m (with

laws ((id, Sνρm)#ρm)m) converges in L2(Ω,F ,P) to (X,Sνρ (X)) (with law (id, Sνρ )#ρ).

Proof of Lemma 6. For the entire proof, we fix a ν ∈ P2(Rd) and we write Sm := Sνρm and S := Sνρ
for simplicity.

i) By Theorem 2 and Part 1. of Theorem 1.5 in [9], (Sm#ρm)m converges to S#ρ w.r.t. W1 and, by
Lemma 5, also with respect to W2. In particular, the sequence ((id, Sm)#ρm)m has tight marginals,
and therefore it is tight too.

Let us identify its weak limiting points. For simplicity we rename ((id, Sm)#ρm)m a weakly
convergent subsequence. By the previous discussion, its weak limit dρ̂(x, z) clearly has first
and second marginal laws equal to dρ(x) and dS#ρ(z) respectively. Moreover,

∫
‖x‖2dρm(x) +∫

‖z‖2dSm#ρm(z)→
∫
‖x‖2 + ‖z‖2dρ̂(x, z), hence ((id, Sm)#ρm)m converges to some π̂ with

respect to W2 in P2(Rd × Rd).

Now, by the characterisation of optimisers in Theorem 2, we have V (ρm|ν) = W 2
2 (ρm, Sm#ρm) =∫

‖x− Sm(x)‖2dρm(x). Taking m→∞, and thanks to Theorem 6, we finally obtain

V (ρ|ν) = W 2
2 (ρ, S#ρ) =

∫
‖x− z‖2dπ̂(x, z).

In particular, using again Theorem 2, we conclude that dπ̂(x, z) must be of the form (id, S)#ρ.

ii) By Skorohod’s representation theorem, one can construct simultaneously in some probability
space (Ω,F ,P), a sequence of r.v. (Xm)m of laws (ρm)m and a r.v. X of law ρ such that (Xm)m
converges P− a.s. to X . Moreover, since the sequence (ρm)m converges w.r.t. W2 in P2(Rd), it
has uniformly integrable second order moments. It follows that the sequence of r.v. (|Xm|2)m is
uniformly integrable and, by the Vitali convergence theorem, that (Xm)m also converges to X in
L2(Ω,F ,P).

Now, by Lemma 5, the sequence of r.v. (|Sm(Xm)|2)n is uniformly integrable too. Thus, by the Vitali
convergence theorem, the statement will follow by proving that Sm(Xm) converges in P−probability
to S(X).

For each N ∈ N, let y 7→ (y)N denote the truncation of a vector y ∈ Rd obtained by projecting it
onto the centered ball of radius N , (y)N := (1 ∧ N

|y| )y, which is a 1−Lipschitz function bounded
by N . By Theorem 2, the functions SNm := (Sm)N are then 1−Lipschitz and bounded uniformly in
m ∈ N. Therefore, by the Arzela-Ascoli theorem, their restrictions to each compact cylinder set R of
Rd defines a relatively compact set of functions, with respect to the uniform topology in C(R,Rd).
It follows by a diagonal argument that some subsequence (SNmk)k converges, uniformly on compact
sets, to some continuous function S̃ on Rd. Since Xn converges a.s. to the finite value X , we deduce
that P−a.s. as k →∞,

(Xmk , S
N
mk

(Xmk))→ (X, S̃(X)).

Notice now that (Xmk , S
N
mk

(Xmk)) has the law (id, (·)N ◦Smk)#ρmk for each k and thus, by part a)
and continuity of the mapping (x, y) 7→ (x, (y)N ), the r.v. (X, S̃(X)) has the law (id, (·)N ◦ S)#ρ.
Hence we deduce that

(X, S̃(X)) = (X, (S(X))N )

6



P− almost surely. The previous arguments can be applied not just to (Xm)m but to any subsequence
of it. That is, we can similarly prove that any subsequence of (Xm, (Sm(Xm))N )m has a subsequence
that a.s. converges to (X, (S(X))N ). This means that, for each N ∈ N

(Xm, (Sm(Xm))N )→ (X, (S(X))N )

in P− probability when n→∞. To conclude, by tightness we can find for each η > 0 some N ∈ N
large enough so that P(|S(X)| ≥ N) ≤ η and P(|Sm(Xm)| ≥ N) ≤ η for all m ∈ N, which yields
for each ε > 0,

P(|Sm(Xm)− S(X)| ≥ ε) ≤ 2η + P(|(Sm(Xm))N − (S(X))N | ≥ ε).
Thus lim supm P(|Sm(Xm)−S(X)| ≥ ε) ≤ 2η for arbitrary η > 0 or, equivalently, P(|Sm(Xm)−
S(X)| ≥ ε)→ 0 as m→∞, which concludes the proof of b).

We can now proceed to the proof of continuity of G : µ 7→
(∑n

i=1 λiS
νi
µ

)
#µ.

Proof of Theorem 4. Let (ρm)m, ρ in P2(Rd) such that W2(ρm, ρ) → 0. We need to prove that
W 2

2 (G(ρm), G(ρ))→ 0. For each m, we write Sim := Sνiρm and Si := Sνiρ .

By Lemma 6.ii), there exists in some probability space a sequence (Xm)m of laws (ρm)m and a r.v.
X of law ρ such that

(S1
m(Xm), ..., Snm(Xm))→ (S1(X), ..., Sn(X)) in L2(P).

Therefore,
∑n
i=1 λiS

i
m(Xm) converges to

∑n
i=1 λiS

i(X) in L2(P). Since
∑n
i=1 λiS

i
m(Xm) has

law G(ρm) and
∑n
i=1 λiS

i(X) has law G(ρ), the proof is complete.

Proof of Proposition 4. As in [5], we easily see that
n∑
i=1

λi

∫
‖x− Sνiµ (x)‖2dµ(x) =

n∑
i=1

λi

∫
‖S̄(x)− Sνiµ (x)‖2dµ(x) +

∫
‖x− S̄(x)‖2dµ(x).

But
∫
‖x − Sνiµ (x)‖2dµ(x) = W 2

2 (µ, Sνiµ #µ) since from Thm 1.4 in [8] the barycentric map
Sνiµ is an optimal map for the Monge problem between µ and Sνiµ #µ. Moreover, by definition
G(µ) = S̄#µ, therefore

∫
‖x − S̄(x)‖2dµ(x) ≥ W 2

2 (µ,G(µ)). Finally, since Sνiµ #µ ≤c νi, we
have that

∫
‖S̄(x)−Sνiµ (x)‖2dµ(x) ≥ V (G(µ)|νi). This , recalling that V (µ|νi) = W 2

2 (µ, Sνiµ #µ),
yields

n∑
i=1

λiV (µ|νi) ≥
n∑
i=1

λiV (G(µ)|νi) +W 2
2 (µ,G(µ)). (19)

Therefore, if µ is a weak barycenter, we readily get that µ = G(µ).

Proof of Proposition 5. As in the proof of Theorem 4, we denote Sik the optimal barycentric projec-
tion associated to πk,i ∈ Π(µk, νi). First, we easily have that µk+1 ∈ P2(Rd), indeed by Jensen’s
inequality∫

‖x‖2dµk+1(x) =

∫∫
‖

n∑
i=1

λiS
i
k(x)‖2dµk(x) ≤

n∑
i=1

λi

∫
‖y‖2dνi(y) <∞.

Then (µk)k is tight, with uniformly integrable 2-moments by Lemma 5. Therefore (µk)k admits a
convergent subsequence in W2. Let µ̃ be a weak limit of a subsequence (µkj )j , then we have
W2(µkj , µ̃) −−−→

j→∞
0. By continuity of G in Theorem 4, we get W2(µkj+1, G(µ̃)) −−−→

j→∞
0.

Moreover, by Theorem 6 we have for F (µ) :=
∑n
i=1 λiV (µ|νi) that F (µkj ) → F (µ̃) and

F (µkj+1) → F (G(µ̃)) as j → ∞ . Let us prove that these two limits coincide. From (19),
we have

F (µkj ) ≥
n∑
i=1

λiV (G(µkj )|νi) =

n∑
i=1

λiV (µkj+1|νi) = F (µkj+1).

Iterating this inequality leads to F (µkj ) ≥ F (µkj+1) ≥ F (µkj+1
) which yields F (µ̃) = F (G(µ̃))

and then µ̃ = G(µ̃), using inequality (19). Thus (µkj )j converges w.r.t. W2 to a probability
distribution µ̃ which is a fixed point of G.
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Proof of Lemma 4. The proof is similar to that of [35, Lemma 3.8]. For the sake of clarity, we rewrite
it in our setting. We assume that x =

∫
Sνµ̄(x)dQ(ν), µ̄(x)-a.s. is not true, then

0 <

∫
‖x−

∫
Sνµ̄(x)dQ(ν)‖2dµ̄(x)

=

∫
‖x‖2dµ̄(x)− 2

∫∫
〈x, Sνµ̄(x)〉dQ(ν)dµ̄(x) +

∫
‖
∫
Sνµ̄(x)dQ(ν)‖2dµ̄(x).

Moreover, Sµµ̄#µ̄ ≤c µ, therefore by Theorem 1.4 in [8], we get∫
V

([∫
Sνµ̄dQ(ν)

]
#µ̄|µ

)
dQ(µ) ≤

∫
‖
∫
Sνµ̄dQ(ν)− Sµµ̄‖2L2(µ̄)dQ(µ)

=

∫∫
‖Sνµ̄(x)‖2dµ̄(x)dQ(ν)−

∫
‖
∫
Sνµ̄dQ(ν)‖2dµ̄(x).

Finally, noticing that
∫∫
‖x− Sνµ̄(x)‖2dµ̄(x)dQ(ν) =

∫
V (µ̄|ν)dQ(ν), we hence get∫

V

([∫
Sνµ̄dQ(ν)

]
#µ̄|µ

)
dQ(µ) <

∫
V (µ̄|ν)dQ(ν),

which is in contradiction with µ̄ weak barycenter of Q.

In order to study the convergence of the iterative scheme in (10), we define the following objects:

L(µ) :=
1

2

∫
V (µ|ν)dQ(ν) (20)

H(µ)(x) := −
∫

(Sνµ − id)dQ(ν)(x) x ∈ Rd. (21)

Moreover, we denote by {Fk}k the filtration of the i.i.d. sample νk ∼ Q, namely F−1 is the trivial
sigma-algebra and Fk+1 is the sigma-algebra generated by ν0, . . . , νk and therefore µk in (10) is
Fk-measurable.

The next two Propositions are needed to prove Theorem 5.
Proposition 6. The functions µ ∈ P2(Rd) 7→ ‖H(µ)‖2L2(µ) and µ ∈ P2(Rd) 7→ L(µ) are continu-
ous w.r.t W2.

Proof. Let us first assume that (ρm)m, ρ in P2(Rd) are such that W2(ρm, ρ)→ 0. We want to prove
that

‖H(ρm)‖2L2(ρm) → ‖H(ρ)‖2L2(ρ) (22)
when m → ∞. Consider the probability space (Ω,F ,P) and r.v.’s (Xm)m and X constructed in
Lemma 6.ii), and recall that, for each ν ∈ P2(Rd), the r.v.’s (Xm, S

ν
ρm(Xm)) have law (id, Sνρm)#ρm

for each m and converge in L2(Ω,F ,P) to the r.v. (X,Sνρ (X)), which has the law (id, Sνρ )#ρ. We
next extend this construction in order to suitably randomise ν. More precisely, we enlarge the
probability space (Ω,F ,P) to the product space (Ω̄, F̄ , P̄) = (Ω×P2(Rd),F ⊗B(P2(Rd)),P⊗Q),
that is, we add an independent random variable, called ν, taking values in P2(Rd) and which has
distribution Q.

Thanks to the measurability of the mappings (x, ν) 7→ Sνρm and (x, ν) 7→ Sνρ proven in Lemma 3, by
replacing ν by ν in the previous objects we obtain random vectors (Xm, S

ν
ρm(Xm)) and (X,Sν

ρ (X))

defined in (Ω̄, F̄ , P̄) which have, conditionally on {ν = ν}, the laws (id, Sνρm)#ρm and (id, Sνρ )#ρ

respectively. Moreover, ν is independent of the r.v. X,X1, . . . Xm under P̄.

Now, by conditioning on {ν = ν}, using the convergence result in Lemma 6.ii) and the dominated
convergence Theorem, we can easily check that ((Xm, S

ν
ρm(Xm)))m converges to (X,Sν

ρ (X)) in
P̄−probability. Furthermore, one can integrate w.r.t. Q the bound (18) obtained for fixed ν in the
proof of Lemma 5 and, denoting Ē the expectation with respect to P̄, deduce that

sup
m

Ē
(
‖Sν

ρm(Xm)‖21{‖Sν
ρm

(Xm)‖2≥M}

)
≤
∫ ∫

{‖x‖2≥K}
‖x‖2dν(x)Q(dν)

+
K

M

∫ ∫
‖x‖2dν(x)Q(dν),
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for each M,K ≥ 0, where the r.h.s. is finite since Q ∈ P2(P2(Rd)). It follows that the sequence
((Xm, S

ν
ρm(Xm)))m has uniformly integrable second moments, and therefore converges also in

L2(Ω̄, F̄ , P̄) to (X,Sν
ρ (X)), thanks to the Vitali convergence theorem. In particular, as m tends to

infty, we have∫
V (µm|ν)dQ(ν) = E‖Xm − Sν

ρm(Xm)‖2 → E‖X − Sν
ρ (X)‖2 =

∫
V (µ|ν)dQ(ν),

which proves the continuity of the function µ ∈ P2(Rd) 7→ L(µ).

We observe now that Ē
(
Sν
ρm(Xm)|Xm

)
=

∫
Sνρm(Xm)dQ(ν) and Ē

(
Sν
ρ (X)|X

)
=∫

Sνρ (X)dQ(ν), P̄− a.s., Moreover, if F∞ denotes the σ-algebra generated by (X1, X2, . . .), one
has Ē

(
Sν
ρm(Xm)|F∞

)
= Ē

(
Sν
ρm(Xm)|Xm

)
and Ē

(
Sν
ρ (X)|F∞

)
= Ē

(
Sν
ρ (X)|X

)
. Using the

continuity in L2(Ω̄, F̄ , P̄) of the conditional expectation with respect to F∞, we deduce that

Xm − Ē
(
Sν
ρm(Xm)|Xm

)
→ X − Ē

(
Sν
ρ (X)|X

)
(23)

in L2(Ω̄, F̄ , P̄). We conclude that Ē‖Xm − Ē(Sν
ρm(Xm)|Xm)‖2 → Ē‖X − ĒSν

ρ (X)|X)‖2 as
m→∞, which is exactly the required convergence (22).

Proposition 7. For the sequence (µk)k defined in (10), we have

E(L(µk+1)− L(µk)|Fk) ≤ γ2
kL(µk)− γk‖H(µk)‖2L2(µk). (24)

Proof. The arguments are similar to the ones used for the population Wasserstein barycenter iterative
scheme in the proof of Proposition 3.2 in [10]. Let us set them for the present problem. Let
ν ∈ supp(Q), then ([(1 − γk)id + γkS

νk

µk
], Sνµk ]#µk belongs to Π(µk+1, S

ν
µk

#µk). Therefore we
have

V (µk+1|ν) ≤W 2
2 (µk+1, S

ν
µk

#µk) since Sνµk#µk ≤c ν

≤
∫
‖(1− γk)x+ γkS

νk

µk
(x)− Sνµk(x)‖2dµk(x)

=

∫
‖x− Sνµk(x)‖2dµk(x)− 2γk

∫
〈x− Sνµk(x), x− Sν

k

µk
(x)〉dµk(x)

+ γ2
k

∫
‖x− Sν

k

µk
(x)‖2dµk(x)

= V (µk|ν) + γ2
kV (µk|νk)− 2γk

∫
〈x− Sνµk(x), x− Sν

k

µk
(x)〉dµk(x).

Integrating with respect to ν, and divided by 2 we get

L(µk+1) ≤ L(µk) +
γ2
k

2
V (µk|νk)− γk

∫
〈H(µk)(x), x− Sν

k

µk
(x)〉dµk(x).

We can then take the conditional expectation with respect to the filtration Fk, knowing that µk is
Fk-measurable and that νk is independently sampled from Fk, we have

E(L(µk+1)|Fk) ≤ L(µk) +
γ2
k

2

∫
V (µk|ν)dQ(ν)− γk

∫
〈H(µk)(x),

∫
x− Sνµk(x)dQ(ν)〉dµk(x)

= L(µk) + γ2
kL(µk)− γk

∫
〈H(µk)(x), H(µk)(x)〉dµk(x)

= (1 + γ2
k)L(µk)− γk‖H(µk)‖2µk .

Proof of Theorem 5. We will proceed in a similar way as in the proof of Theorem 1.4 in [10]. Let us
first note that the set KQ is compact in P2(Rd) w.r.t. W2 (see [42]). Moreover, the sequence (µk)k is
a.s. included in this compact set, as can be seen by induction using the facts that the function | · |2+ε
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is convex and that Sνkµk#µk ≤c νk, with νk ∼ Q. Now let µ̄ be a weak population barycenter, i.e. µ̄
minimises L defined in (20), and write L̄ := L(µ̄). We introduce the sequences

hk := L(µk)− L̄ ≥ 0 and αk :=

k−1∏
i=1

1

1 + γ2
k

.

From condition (11), the sequence (αk)k converges to some α∞ > 0. By Proposition 7, we have

E(hk+1 − (1 + γ2
k)hk|Fk) ≤ γ2

kL̄− γk‖H(µk)‖2µk ≤ γ
2
kL̄

⇒E(αk+1hk+1 − αkhk|Fk) ≤ αk+1γ
2
kL̄ upon multiplying by αk+1. (25)

Defining now

δk :=

{
1 if E(αk+1hk+1 − αkhk|Fk) > 0
0 otherwise,

we deduce that
∞∑
k=1

E(δk(αk+1hk+1 − αkhk)) =

∞∑
k=1

E(δkE(αk+1hk+1 − αkhk|Fk))

≤ L(µ̄)

∞∑
k=1

αk+1γ
2
k ≤ L(µ̄)

∞∑
k=1

γ2
k <∞.

Since hkαk ≥ 0, by the quasi-martingale convergence theorem (hkαk)k converges almost surely.
Since (αk)k converges to α∞ > 0, then (hk)k also converges almost surely to some h∞ ≥ 0. Taking
expectations in Eq. (25) and summing we get

E(αk+1hk+1) ≤ E(α0h0) + L̄

k∑
m=1

αm+1γ
2
m ≤ C.

Fatou’s Lemma yields E(α∞h∞) < ∞, and since α∞ < ∞, we deduce that h∞ is almost surely
finite. Our goal now is to show that h∞ = 0. From (25) we deduce as before that

E(αk+1hk+1)− E(α0h0) ≤ L̄
k∑

m=1

αm+1γ
2
m −

k∑
m=1

αm+1γmE
(
‖H(µm)‖2L2(µm)

)
.

Taking liminf, using Fatou on the l.h.s. and monotone convergence on the r.h.s. we obtain that

−∞ < E(α∞h∞)− E(α0h0) ≤ C − E

( ∞∑
m=1

αm+1γm‖H(µm)‖2L2(µm)

)
hence, in particular,

∞∑
k=1

γk‖H(µk)‖2L2(µk) < +∞ a.s. (26)

Note that the conditions in Eqs. (26) and (11) imply that

lim inft→∞ ‖H(µk)‖2L2(µk) = 0, a.s. (27)

Observe also that, by the compactness of KQ and the continuity of L in Proposition 6, the set
{ρ : L(ρ) ≥ L̄ + δ} ∩ KQ is W2-compact. Therefore, the function ρ 7→ ‖H(ρ)‖2L2(ρ), also W2-
continuous by Proposition 6, attains its minimum on that set. That minimum cannot be zero, as
otherwise we would have obtained a fixed-point that is not a weak barycenter, contradicting our
hypothesis. It follows that

∀δ > 0, inf{ρ:L(ρ)≥L̄+δ}∩KQ‖H(ρ)‖2L2(ρ) > 0. (28)

Since {µk}k ⊂ KQ a.s., we deduce from the previous result the a.s. inclusions of events:

{h∞ ≥ 2δ} ⊂ {µt ∈ {ρ : L(ρ) ≥ L(µ̄) + δ} ∩KQ ∀t large enough}

⊂
⋃
`∈N

{
‖H(µt)‖2L2(µt)

> 1/` : ∀t large enough
}
⊂
{

lim inft→∞‖H(µt)‖2L2(µt)
> 0
}
,
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where Eq. (28) was used to obtain the second inclusion. It follows using Eq. (27) that P(h∞ ≥ 2δ) =
0 for every ε > 0, hence h∞ = 0 a.s. as claimed. In other words, L(µk)→ L̄ a.s. as k →∞.

We already established that {µk}k ⊂ KQ, hence the sequence is relatively compact. We finally
conclude that the limit µ̂ of any convergent subsequence {µkj}kj satisfies L(µ̂) = limj L(µkj ) = L̄,
whence, it is a weak barycenter.

Remark 2. Assumption (A) can be replaced by the following more general condition:

(A’) Q gives full measure to a W2-compact set KQ which is “weakly geodesically closed”,
in the sense that for any µ, ν ∈ KQ and t ∈ [0, 1], ((1− t)id + tSνµ)#µ ∈ KQ.

E Numerical results

E.1 Proximal algorithm for the computation of the OWT plan

This section is dedicated to the resolution of the OWT problem. Let µ =
∑r
i=1 aiδxi and ν =∑m

j=1 biδyj , be two discrete measures, the OWT problem boils down to solving

min
π∈Rr×m

r∑
i=1

ai‖xi −
(πy

a

)
i
‖2︸ ︷︷ ︸

f(π)

+ 1Π(µ,ν)(π)︸ ︷︷ ︸
g(π)

, (29)

where 1C is the indicator function of the set C i.e.

1C(π) =

{
π if π ∈ C
∞ otherwise.

The proximal algorithm to solve Eq. (29) then reads:

π`+1 = proxθ`g(π
` − θ`∇f(π`)). (30)

As Π(µ, ν) is a closed non-empty convex set, the proximal operator of g reduces to the Euclidean
projection onto Π(µ, ν):

projΠ(µ,ν)(P ) = arg min
π∈Rr×m

‖P − π‖2 = arg min
π∈Rr×m

〈π,−P 〉+
1

2
‖π‖2

where ‖ · ‖ is the Frobenius norm. This projection problem can be solved by Dykstra’s algorithm
with alternate Bregman projections [20] or by stochastic dual approaches of OT regularised by an L2

norm [36]. This method is summarised in Algorithm 3. In particular, we used an accelerated version
of Eq. (30) via FISTA [12] (with ω` ∈ [0, 1) an extrapolation parameter and θ` the usual stepsize
chosen by a line search) in order to compute the optimal plan πνµ in the weak transport problem.

The optimal barycentric projection is then given by Sνµ =
πνµy

a . We initialised the algorithm with a
random matrix whose elements sum to 1. Observe that, from Algorithm 1, the K optimal barycentric
projection computations can be parallelised for each step n.

Algorithm 3: Computation of the optimal weak plan
Output: πνµ;
Input: µ =

∑r
i=1 aiδxi and ν =

∑m
j=1 bjδyj ;

Initialise π0 random matrix;
while not converge do

P`+1 := π` + ω`(π` − π`−1);
π`+1 := projΠ(µ,ν)(P`+1 − θ`∇f(P`+1));

end

With respect to the efficiency of this algorithm, Figure 7 shows a comparison of different settings
for Eq. (30) in order to compute an optimal weak transport plan. For that purpose, we considered
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Figure 7: Convergence of the algorithm (3) in several settings for measures µ and ν supported on
r = m points.

two discrete distributions µ and ν each constructed from r = m = 10, 100 and 250 samples of two
dimensional Gaussian measures. We illustrate the convergence for both the standard and accelerated
versions of the proximal algorithm, as well as for the projection into Π(µ, ν) via Dykstra’s algorithm
or the stochastic dual approach. As expected, the accelerated version of Eq. (30) converges faster
than the classical proximal algorithm, and the projection step in more stable with Dykstra’s algorithm.
Moreover, the smaller the number of support points, the faster the convergence. We have also noted
that the random initialisation does not affect the convergence towards the minimiser of Eq. (29).

E.2 Additional experiments

Gaussian distributions As in Section 5 of [5], we computed a weak barycenter between two 2D
centered ellipses E(Σi) = {s ∈ R2 : xtΣ−1

i x = 1} with covariances matrices

Σ1 =

(
2 0
0 1

)
and Σ2 =

(
1 0
0 2

)
,

by considering 300 random observations foe each ellipse. We then executed the iterations of
Algorithm 1 until the difference of the objective function (i.e., the sum in Eq. (5)) between two
successive iterations was smaller than 1e− 5. This occurred at the 8th iteration, and the resulting
weak barycenter was a circle within both ellipses. As we have access to the value of the weak
barycenter problem (see Eq. (7)), we also compared the value of the objective function at the 8th
iteration (that is 3.62e− 4) to 1

2

∑2
i=1 ‖E(Yi)‖2 − ‖ 1

2

∑2
i=1 E(Yi)‖2, with a plug-in estimator for

E(Yi). The approximated objective was equal to 3.21e− 4, therefore, Algorithm 1 gave a satisfactory
optimised weak barycenter.

Ellipse distributions (r = 100 & K = 15). We considered ellipse distributions with random center
in (−5, 5), random semi-major and semi-minor axes in (6, 14). The results are presented in Fig. 8,
where the same conclusions as in the Gaussian examples hold.

Pair-of-ellipses (r ∈ (200, 300) & K = 10). In the same fashion, we considered distributions
supported on two ellipses with random centers in (−5, 5), random semi-major and semi-minor axes
in (1, 7) and (7, 13) respectively. Fig. 9 shows the distributions (left) as well as the OT and OWT
barycenters (right) computed from random samples of the distributions. Observe that, once again, the
weak barycenter better preserved the structure of the distributions when computing Algorithm 2.
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Figure 8: (left) Ellipse distributions and their OWT (black) and OT (red) barycenters computed with
Algorithm 2. (center & right) Illustration of the weak (black), OT (red) and OT Sinkhorn (blue)
barycenters for different values of ε = 1, 50.
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Figure 9: (left) Distributions supported on a pair-of-squares. (right) OWT (black), OT (red) and OT
Sinkhorn for ε = 1 (blue) barycenters computed with Algorithm 2.
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