
Appendixes

A An Example for Scenario 2

We give an example of G(A) which falls into Scenario 2 but not Scenario 1. Let {φk(x)}k∈N be an
orthonormal basis of a Hilbert space L2(X), and (λk)k∈N be a sequence of positive real numbers
with

∑∞
k=1 λk <∞. We take

A =

{ ∞∑
k=1

ξk
√
λkφk(x)

∣∣∣∣∣ ξk ∈ [−1, 1]

}
⊂ L2(X), (1)

and consider the equation ut = −u on Ω = X × [0, 1] with initial condition u(x, 0) = η(x). It is
easy to see that

G(A) =

{ ∞∑
k=1

ξk
√
λkφk(x)e−t

∣∣∣∣∣ ξk ∈ [−1, 1]

}
⊂ U = L2(Ω). (2)

and no (Z, Ḡ)-pair can make Scenario 1 valid as G(A) is not finite-dimensional. As for Scenario 2,
once the number c is given, there exists a large enough l satisfying

∑∞
k=l+1 λk ≤ c2. Then we let

Z = Rl and choose a linear mapping Ḡ such that

Ḡ
(
(ξk)lk=1

)
=

l∑
k=1

ξk
√
λkφk(x)e−t. (3)

For any η =
∑∞
k=1 ξk

√
λkφk(x) ∈ A, taking z = (ξk)lk=1 ∈ Z gives

∥∥Ḡ(z)−G(η)
∥∥2
U =

∥∥∥∥∥
∞∑

k=l+1

ξk
√
λkφk(x)e−t

∥∥∥∥∥
2

L2(X×[0,1])

=

∞∑
k=l+1

ξ2kλk

∫
X

φk(x)2 dx

∫ 1

0

e−2t dt

=

∞∑
k=l+1

ξ2kλk
1− e−2

2

≤
∞∑

k=l+1

λk

≤ c2.
This indicates that Scenario 2 is indeed more general than Scenario 1.

B Default Experimental Configurations

Below is a detailed explanation of the comparative methods covered in the paper.
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• From-Scratch: Train the model from scratch based on the PINNs method for all PDE
parameters in S2, case-by-case.

• Transfer-Learning [7]: Randomly select a PDE parameter in S1 for pre-training stage based
on the PINNs method, and then load the obtained weight in pre-training stage for PDE
parameters in S2 during fine-tuning stage.

• MAML [16, 17]: Meta-train the model for all PDE parameters in S1 based on MAML
algorithm. In the meta-testing stage, we load the pre-trained weight θ∗ and fine-tune the
model for each PDE parameter in S2.

• Reptile [18]: Similar to MAML, except that the model weight is updated using the Reptile
algorithm in the meta-training stage.

• PI-DeepONet [15]: The model is trained based on the training method proposed in [15] for
all PDE parameters in S1, and the inference is performed directly for the parameters in S2.

• MAD-L: Pre-train the model for all PDE parameters in S1 based on our proposed method
and then load and freeze the pre-trained weight θ∗ for the second stage. In the fine-tuning
stage, we choose a z∗i obtained in the pre-training stage to initialize a latent vector for each
PDE parameter in S2, and fine-tune the latent vector. The selection of z∗i is based on the
distance between ηnew and ηi.

• MAD-LM: Different from MAD-L that freezes the pre-trained weight, we fine-tune the model
weight θ and the latent vector z simultaneously in the fine-tuning stage.

Unless otherwise specified, the following default configurations are used for the experiments:

• In each iteration, the batch sizes are selected as (Mr, Mbc) = (8192, 1024).
• For fairness of comparison, the network architectures of all methods (excluding PI-

DeepONet) involved in comparison are the same except for the input layer due to the
latent vector. For Burgers’ equation and Laplace’s equation, the standard fully-connected
neural networks with 7 fully-connected layers and 128 neurons per hidden layer are taken as
a default network structure. For Maxwell’s equations, the MS-SIREN network architecture
[26] is used that has 4 subnets, each subnet has 7 fully-connected layers and 64 neurons per
hidden layer. It is worth noting that our proposed method has gains in different network
architectures, and we choose the default network architecture that can achieve high accuracy
for the From-Scratch method to conduct our comparative experiments.

• The network architecture of PI-DeepONet used for Burgers’ equation is such that both
branch net and trunk net are 7 fully-connected layers and 128 neurons per hidden layer.

• Sine function [27] is used as the activation function, as it exhibits better performance than
other alternatives such as ReLU and Tanh.

• The dimension of the latent vector z is determined by trial and error and is set to 128 for
Burgers’ equation and Laplace’s equation, and 16 for Maxwell’s equations.

• The Adam optimizer [28] is used with the initial learning rate set to 1e-3 or 1e-4 (whoever
achieves the best performance). When the training process reaches 40%, 60% and 80%, the
learning rate is attenuated by half.

C Detailed Experimental Setup and Extended Results for Burgers’ Equation

We set the viscosity to ν = 0.01 and solve the Eq.(13) using open source code implemented by [13]
to generate the reference solutions. The spatiotemporal mesh size of the ground truth is 1024× 101.
In order to solve the Eq.(13) better by using the PINNs-based method, we use the hard constraint on
periodic boundary condition mentioned in [29].

We generated 150 different initializations of u0(x) using GRF and randomly selected 100 cases as S1.
The remaining 50 cases are used as S2 for fine-tuning. For MAD-L and MAD-LM, the pre-training
stages run for 50k iterations while the Transfer-Learning pre-trains 3k steps since it only handles one
single case.

Fig.6 shows model predictions of MAD-L and MAD-LM compared with the reference solutions under
a randomly selected u0(x) in S2. The predictions of MAD-L are in overall approximate agreement
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Figure 1: Burgers’ equation: Reference solutions vs. model predictions at t = 0.0, t = 0.5 and
t = 1.0, respectively.
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Figure 2: Burgers’ equation: The mean L2 error of MAD-L (a) and MAD-LM (b) convergence with
respect to the number of training iterations under different numbers of samples in S1.

with the reference solutions, but the fit is poor at the spikes and troughs. However, the prediction
results of MAD-LM is almost the same as that of the reference solutions.

We investigated the effect of the number of samples |S1| in the pre-training stage on MAD-L and
MAD-LM. Fig.7(a) shows that the accuracy of MAD-L after convergence increases with |S1|. However,
when |S1| reaches about 200, increasing |S1| does not improve the accuracy of the MAD-L. This
result is consistent with the phenomenon shown in Fig.2(b). More samples in the pre-training stage
allow the Gθ∗(Z) to gradually fall within the region formed by G(A). However, when |S1| reaches
a certain level, the Gθ∗(Z) only swings in the region of G(A). Only optimizing z can make the
solution move inside the manifold formed by Gθ∗(Z), but uηnew may not be close enough to the
manifold. Therefore, in order to obtain a more accurate solution, we need to fine-tune z and θ
simultaneously. Fig.7(b) shows that the accuracy and convergence speed of MAD-LM do not change
significantly with the increase of samples in the pre-training stage. It is only when the number of
samples is very small (i.e., |S1| = 10) that the early convergence speed is significantly affected. This
shows that MAD-LM can perform well in the fine-tuning stage without requiring a large number of
samples during the pre-training stage.

For Burgers’ equation, we also consider the scenario when the viscosity coefficients ν in Eq.(13)
vary within a certain range, i.e., the PDE parameter η = (ν, u0(x)) is heterogeneous. Specifically,
ν ∈ {10β |β ∼ U(−3,−1)} where U is a uniform distribution and u0(x) ∼ N (0; 100(−∆+9I)−3).
In this experiment, |S1| = 100 and |S2| = 50 while S1 and S2 come from the same task distribution.
Fig.8 compares the convergence curves of mean L2 error corresponding to different methods. MAD-
LM has obvious speed and accuracy improvement over From-Scratch and Transfer-Learning. It’s
worth noting that MAML and Reptile also perform well in this scenario.

We investigated the effect of the dimension of the latent vector (latent size) in Burgers’ equation
on performance. As can be seen from Fig.9(a), for MAD-L, different latent sizes have different
performances and the best performance is achieved when it is equal to 128. As can be seen from
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Figure 3: Burgers’ equation: The mean L2 error convergence with respect to the number of training
iterations under heterogeneous PDE parameters.
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Figure 4: Burgers’ equation: The mean L2 error of MAD-L (a) and MAD-LM (b) convergence with
respect to the number of training iterations under different latent size.

Fig.9(b), for MAD-LM, although these latent sizes are quite different, they achieve very close
performance.

D Detailed Experimental Setup and Extended Results for Time-Domain
Maxwell’s Equations

Except for the difference in equation coefficients εr and µr, the settings of solution domain Ω, initial
conditions, boundary conditions and point source term J are the same as those in [26]. Specifically,
the solution domain Ω is [0, 1]2 × [0, 4e− 9]. The initial electromagnetic field is zero everywhere
and the boundary condition is the standard Mur’s second-order absorbing boundary condition [30].
J in Eq.14 represents a known source function and we set it to a Gaussian pulse. In temporal, this
function can be expressed as:

J(x, y, t) = e−(
t−d
τ )2δ(x− x0)δ(y − y0). (4)

where d is the temporal delay, τ is a pulse-width parameter, δ(·) is the Dirac function used to represent
the point source, and (x0, y0) = (0.5, 0.5) is the location of the point source, τ = 3.65×

√
2.3/(πf)

and the characteristic frequency f is set to be 1GHz. To solve the singularity problem caused by
the point source, we use the δ(·) function approximation method and the lower bound uncertainty
weighting method proposed by [26]. In addition, the MS-SIREN network structure proposed by
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Figure 5: Maxwell’s equations: Model predictions of MAD-L (a) and MAD-LM (b) vs. the FDTD
solutions at t = 4ns. Top: The numerical results of (Ex, Ey, Hz) by FDTD method; Middle: The
predicted (Ex, Ey, Hz) through the deep learning model; Bottom: The absolute error between model
predictions and the reference solutions.

[26] is used. To measure the accuracy of the model, the reference solution is obtained through the
finite-difference time-domain (FDTD) [30] method.

We collect 25 pairs of (εr, µr) at equal intervals from the region of [1, 5]2 and randomly select 20
samples as S1 with the rest 5 samples as S2. For the training of From-Scratch, the pre-training and
fine-tuning of Transfer-Learning, we set the total number of iterations to 100k. For the pre-training
and fine-tuning of MAD-L and MAD-LM, we set the total iterations to 200k and 100k, respectively.

The instantaneous electromagnetic fields at time 4ns of MAD-L and MAD-LM compared with the
reference FDTD results when (εr, µr) = (3, 5) are depicted in Fig.10(a) and Fig.10(b), respectively.
By observing the absolute error between the model predictions and the reference FDTD results, we
can see that MAD-LM can achieve a lower absolute error. Specifically, the L2 error of MAD-L is
0.037 and that of MAD-LM is 0.030.

We also apply PI-DeepONet to the solution of time-domain Maxwell’s equations with a point source.
In this experiment, the branch net of PI-DeepONet is a 4-layer fully connected network with 64
neurons in each hidden layer. The trunk net is an MS-SIREN [26] network, which consists of
4 subnets, each with 7 fully connected layers and 64 neurons in each hidden layer. We take the
PDE parameter (εr, µr) directly as the input of branch net. Because there are 3 output functions
(Ex(x, y, t), Ey(x, y, t), Hz(x, y, t)), we adopt the method proposed in [31] to solve the multi-output
problem, i.e. split the outputs of both the branch net and the trunk net into 3 groups, and then the
k-th group outputs the k-th solution. However, due to the optimization difficulties caused by the
singularity of the point source, PI-DeepONet appears to be very poor in accuracy (mean L2 error is
0.672), while the mean L2 error of MAD-LM is 0.028.

E Detailed Experimental Setup and Extended Results for Laplace’s Equation

We generated 150 samples using GRF and randomly selected 100 samples as S1, the remaining 50
cases are used as S2. It should be declared that each sample corresponds to a different h inside the
boundary circle. For each sample, we randomly select 16 × 1024 points from the interior of the
triangle and obtain the analytic solutions corresponding to these points to evaluate the accuracy of the
model. When we apply the MAD method to solve this problem, it is not convenient to measure the
distance between ηnew and ηi since the variable PDE parameter η is the shape and boundary condition
of the solution domain. Therefore, the average of |S1| latent vectors obtained in the pre-training
stage is used as the initialization of z in the fine-tuning stage. For the training of From-Scratch, the
pre-training and fine-tuning of Transfer-Learning, we set the total number of iterations to 10k. For
the pre-training and fine-tuning of MAD-L and MAD-LM, we set the total iterations to 50k and 10k,
respectively.
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Figure 6: Laplace’s equation: Analytical solutions, model predictions of MAD-L and MAD-LM (left
to right).
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Figure 7: Laplace’s equation: The mean L2 error convergence with respect to the number of
training iterations when the solution domain Ω is a polygon with different shapes.

Fig.11 shows the predictions of MAD-L and MAD-LM compared with the analytical solutions under
a randomly selected sample in S2. To the naked eye, the prediction results of MAD-L and MAD-LM
are almost identical to those of the analytical solution. However, the L2 error of MAD-L is 0.0015,
and that of MAD-LM is 0.0005.

We also consider a more complex scenario for Laplace’s equation. Specifically, the shape of the
solution domain Ω is a convex polygon arbitrarily taken from the interior of the unit circle. The
number of sides of the polygon is in the range [3, 10] and the boundary conditions of the polygon

Figure 8: Laplace’s equation: Analytical solutions, model predictions of MAD-LM when the solution
domain Ω is a polygon with different shapes.
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Figure 9: Laplace’s equation: The mean L2 error convergence with respect to the number of
training iterations for extrapolation experiments.

Figure 10: Laplace’s equation: Analytical solutions, model predictions of MAD-LM for extrapolation
experiments.

are generated in the same way as in Sec.3.3. It should be emphasized that the PDE parameters
are heterogeneous for all experiments of Laplace’s equation. Therefore, different solution domain
shapes correspond to different h and different g(x, y). In this experiment, |S1| = 100 and |S2| = 50.
Fig.12 compares the convergence curves of mean L2 error corresponding to different methods, and
Fig.12(a) shows the entire fine-tuning process and Fig.12(b) zooms in on the results of the first 1000
iterations. Compared to other methods, MAD-L and MAD-LM can achieve faster adaptation, i.e. very
low L2 error in less than 100 iterations. Fig.13 shows a comparison of the prediction of MAD-LM
with the analytical solution under 5 randomly selected samples in S2.

We also do an extrapolation experiment for Laplace’s Equation. Specifically, in the pre-training stage,
the shape of the solution domain Ω in S1 is a convex polygon arbitrarily taken from the interior of the
unit circle. However, in the fine-tuning stage, the shape of the solution domain Ω in S2 is an ellipse
arbitrarily taken from the interior of the unit circle. In this experiment, |S1| = 100 and |S2| = 20.
Fig.14(b) shows that even in the case of extrapolation, MAD-LM can show faster adaptation compared
to other methods. Fig.15 shows a comparison of the prediction of MAD-LM with the analytical
solution under 5 randomly selected samples in S2, which demonstrates the high accuracy of the
solution obtained by MAD-LM.
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