
A Mathematical Proofs359

Due to space limitations and to maintain coherency, proofs for propositions, lemmas, and theorems360

are presented in this section in the order in which they appeared in the main text.361

A.1 Proof of Proposition 4.3362

Assuming each pair (f̂i(x; Pi), vi(x; Qi)) individually satisfies the GAS conditions. Then, the sum363

v̂ =
∑n

i=1 vi(x; Qi) yields a valid standard Lyapunov function for f̂(x; P), proving that the policy364

satisfies GAS conditions.365

Proof. As vi(x; Qi) is an LPF candidate for f̂i(x; Pi), both the first and second Lyapunov366

conditions must be satisfied, i.e., ∀i ∈ {1, . . . , n}:367

(a) vi(x; Qi) ⪰ 0, ∀x ∈ X , (b)
∂vi(x; Qi)

∂t
≺ 0, ∀x ∈ X .

Define the sum of elements v̂(x; Q) =
∑n

i=1 vi(x; Qi). We show that v̂(x; Q) satisfies both368

Lyapunov global stability conditions:369

(i) vi(x; Qi) ⪰ 0 (a) ⇒ v1(x; Q1) + . . .+ vn(x; Qn) = v̂(x; Q) ⪰ 0,

(ii)
∂v̂(x; Q)

∂t
=

∂
∑n

i=1 vi(x; Qi)

∂t
=

n∑
i=1

∂vi(x; Qi)

∂t
,

∂vi(x; Qi)

∂t
≺ 0 (b). □

A.2 Proof of Lemma 4.4370

The first Lyapunov stability criterion, vi(x; Qi) ⪰ 0, is satisfied for each i ∈ {1, . . . , n} if Qi ⪰ 0371

and Qi ∈ Sβn+1.372

Proof. Considering that vi(x; Qi) = bT
x,βQibx,β and Qi is not singular, we can perform a Cholesky

factorization on the parameters’ matrix Qi. The result is Qi = LT
i Li, and the positivity of vi(x; Qi)

comes from,

vi(x; Qi) = bT
x,βQibx,β = bT

x,βL
T
i Libx,β = (Libx,β)

T (Libx,β) = ||Libx,β ||2 ⪰ 0,

that represents vi(x; Qi) as an SOS and therefore achieves the first Lyapunov condition. □373

A.3 Proof of Lemma 4.5374

The second Lyapunov criterion, ∂
∂tvi(x; Qi) ≺ 0, is fulfilled for each i ∈ {1, . . . , n} if there exists a375

symmetric matrix Gi ≺ 0 and Gi ∈ S(α+β)n+1 such that:376

∂

∂t
vi(x; Qi) =

∂vi(x; Qi)

∂x

∂x

∂t
=

∂vi(x; Qi)

∂x
f̂(x; P) = bT

x,α+βGibx,α+β , (8)

where α + β is the basis degree. The matrix Gi is acquired by polynomial coefficient matching,377

and depends on P and Qi. We summarize this dependence for all i ∈ {1, . . . , n} with the function378

G(P,Q) = G, where G symbolizes the block-diagonal form of all Gi matrices.379

Proof. We know that LPF rows are denoted by vi(x; Qi) = bT
x,βQibx,β . Hence, we write the380

second Lyapunov condition by taking the derivative of each row:381

∂vi(x; Qi)

∂t
=

∂vi(x; Qi)

∂x1

∂x1

∂t
+

∂vi(x; Qi)

∂x2

∂x2

∂t
+ . . .+

∂vi(x; Qi)

∂xn

∂xn

∂t

∂xj

∂t
= f̂j(x; Pj) ⇒

∂vi(x; Qi)

∂t
=

n∑
j=1

∂vi(x; Qi)

∂xj
f̂j(x; Pj)

=

n∑
j=1

∂[bT
x,βQibx,β]

∂xj
[bT

x,αPjbx,α]

1

Within the last summation, both the derivative of Lyapunov function and the policy are polynomials.382

The idea is that their multiplication could also be written as an SOS polynomial if the parameters Pi383

and Qi are chosen carefully. For this polynomial, we define a new basis bx,α+β and Gi ∈ S(α+β)n+1.384

Note that the degree of this basis is calculated by 1
2 [(2β − 1) + (2α) + 1], which is the rounded-up385

degree of the above multiplication term.386

Next, we match polynomial coefficients on both sides, yielding Gi parameters as a function of both387

P and Gi, i.e.,388

bT
x,α+βGibx,α+β

Matching⇐========⇒
Coefficients

n∑
j=1

∂[bT
x,βQibx,β]

∂xj
[bT

x,αPjbx,α]

⇒ Gi = Gi(P,Qi)

We summarize the same relationship for all Gi matrices, and call the resulting function G. Hence,389

the second condition can be represented by G = G(P,Q) and G ≺ 0, and be viewed as SOS. □390

A.4 Proof of Theorem 4.6391

Assuming the polynomial representation of a nonlinear autonomous dynamical system (Defini-392

tion 4.1),393

f̂(x; P) = [bT
x,αP1bx,α bT

x,αP2bx,α ... bT
x,αPnbx,α]

T ,

the existence of a corresponding polynomial Lyapunov function (Definition 4.2),394

v(x; Q) = [bT
x,βQ1bx,β bT

x,βQ2bx,β ... bT
x,βQnbx,β]

T

guarantees the asymptotic global stability of the policy, if the following conditions are satisfied:395

(a) Q ⪰ 0, (b) G ≺ 0, (c) G(P,Q) = G.

Proof. The proof is straightforward and follows both Lemma 4.4 and Lemma 4.5. We know that396

each partial DS f̂i(x; Pi) is stable if the corresponding parameterized LPF satisfies (a), (b), and397

(c), where G is an affine function found in Lemma 4.5 by polynomial coefficient matching. Since398

each f̂i(x; Pi) explains the derivative along one of the orthogonal basis of f̂(x; P), their individual399

global stability is equivalent to the stability of the entire system. In other words,400

∀xi ∈ D{f̂i(x; Pi)}, lim
t→∞

xi = x∗
i

⇒ lim
t→∞

x = [lim
t→∞

x1 lim
t→∞

x2 ... lim
t→∞

xn]
T = x∗

Another proof can be provided using the LPF introduced in Proposition 4.3 as a Lyapunov candidate401

for the whole system. Both proofs equally validate the stability of the polynomial DS. □402

B Experiment Setup and Details403

Enclosed in this section are detailed descriptions of our experiment setup, main software packages,404

and datasets. Due to space limitations, crucial details from the experiments are explained here. Even405

though reading the section is not necessary to understand the paper, it provides useful insight into our406

setup and can aid reproducibility and future research.407

B.1 Datasets408

Handwriting dataset. The LASA Handwriting Dataset (Figure 7) is a collection of 2D hand-409

writing motions recorded from a Tablet-PC and by user’s input. The dataset includes 30 human410

handwriting motions, where each motion represents a desired pattern. For each pattern, there are411

seven demonstrations recorded, with each demonstration starting from a slightly different (but fairly412

close) initial position but ending at the same final point. These demonstrations may intersect with413

each other. Out of the 30 motions, 26 correspond to a single pattern, while the remaining four motions414

include multiple patterns, referred to as Multi Models. In all the handwriting motions, the target415

position is defined as (0, 0), without loss of generality. The dataset provides the following features:416

2

Angle

C G

N

Sine

P

Figure 7: Plots of handwriting dataset motions used in our experiments. We select a representative
subset of motions for baselining to keep the experiments computationally feasible. Each plot shows 7
demonstrations with 1000 recorded samples per each. Notice that the time indexing is included in the
dataset, but it is irrelevant to our work as we learn time-invariant policies.

Figure 8: Speed profile for the sine motion, normalized vs. natural. When we normalize the speed,
policies fail to capture the difference in speed along the trajectories. PLYDS works with both
normalized and regular velocities, but we mostly opt for normalized velocities for baselining and
comparisons, especially when plotting the policy vector fields.

• Position (2 × 1000) representing the motion in 2D space. The first row corresponds to the417

x-axis, and the second row corresponds to the y-axis in Cartesian coordinates.418

• Time (1 × 1000) being the time-stamp for each data point in the motion. We do not use this419

property, as our proposed method generates time-invariant policies.420

• Velocity (2 × 1000) representing the velocity corresponding to each position. We use this421

feature as a label and form our MSE cost function to calculate the difference between the422

predicted velocity and this data.423

• Acceleration (2 × 1000) matrix representing the acceleration. Not applicable to our research,424

but could potentially be utilized for future research.425

We will not experiment on the entire dataset of 30 motions due to computational unfeasibility. Instead,426

we select a representative set of motions with (8 × 5 × 2 × 1000) samples in total. The experiments427

are mainly conducted with this designated set, but since the set is chosen to be representative, we428

expect the results to generalize to other motions as well.429

3

Figure 9: Plots of the dataset collected using Kinova Gen3 Lite and teleoperation. The robot is
operated to complete the following trajectories multiple times, while the position and velocity data
are recorded in real-time. Expert’s demonstrations can also come from robot’s low-level controllers,
which leads to faster data gathering process. We tried to keep the scale of these trajectories aligned
with the handwriting dataset for further consistency.

Velocity normalization. Moreover, for some experiments, we opt to normalize the velocity values,430

such as in Figure 8, to avoid large cost values. This can cause a loss of generality, since the policy431

actions are now restricted to the direction of the action vector, and will not try to replicate its size.432

The size of this arrow might be important in scenarios where parts of the motion need to be carried433

out at a different pace. PLYDS can handle the dataset with or without velocity normalization. The434

dataset is also referenced and provided as a part of our reproducibility efforts.435

Real-world collected dataset. We collect data by teleoperating the Kinova Gen3 Lite Arm. Tele-436

operation involves employing human agents to operate a robotic device or system, recording their437

actions as expert demonstrations. The teleoperated actions are then recorded and utilized as training438

data for algorithmic learning. We have two options for teleoperation. First, a human expert can439

manually control the robot arm using a joystick or keyboard. This process results in natural but440

non-smooth trajectories. The second approach employs the robot’s internal control systems and441

trajectory planning systems to perform as an expert and execute some patterns. This leads to a442

smoother data collection process with higher reliability. Please keep in mind that planners only443

connect a series of few points, with no guarantee of stability, and are time-dependent. Consequently,444

the role of policies generated by PLYDS will not be obsolete.445

We gather an open-source dataset holding three distinct motions: the prolonged sine, root parabola,446

and pick-and-place (Figure 9). Each motion is represented by 50 demonstrations in a 3-dimensional447

world. Each demonstration contains a state (position) vector (3 × 1000) and a corresponding action448

(velocity) vector (3 × 1000). Note that orientation is not recorded in the dataset, as we assume449

the robot’s gripper will always face downwards. There will not be any loss of generality because450

controlling the orientation with PLYDS can be done in parallel, and in the exact same way as the451

end-effector’s position. The dataset is provided as a part of our reproducibility efforts in Section 7.452

B.2 SDP Optimization453

We primarily use the commercially available MOSEK [39] optimization software that provides solu-454

tions for numerous types of optimization issues, including nonlinear semidefinite programming. The455

flexibility and high-performance capabilities of MOSEK make it ideal for challenging optimization456

tasks in both commercial and academic settings. We currently use the MOSEK under an academic457

license. SCP is another solver specifically designed for solving semidefinite complementarity prob-458

lems, which include nonlinear SDP as a special case. SCP employs an augmented Lagrangian method459

combined with the Fischer-Burmeister function to handle the complementarity conditions in the SDP.460

At this time, we do not have any solid comparison between the efficiency of these solvers for our461

setup, but commercial software products often perform more efficient than open-source products.462

We also use SciPy [44], an open-source scientific computing library for Python that has many modules463

for numerical optimization. SciPy can handle a wide range of optimization problems, including464

4

nonlinear programming with semidefinite constraints, even though it may not provide specialized465

solvers for nonlinear SDP. Our software still supports SciPy; however, it is not as efficient in solving466

nonlinear SDP problems as MOSEK and SCP.467

B.3 Hyperparameters and architecture.468

We provide a summary of parameters related to each baseline we used in the paper. Note that we469

accelerate the computation of GAIL and BC with an NVIDIA GeForce RTX 3060 GPU, but SEDS470

and PLYDS use only a Core-i7 Gen8 CPU for optimization.471

PLYDS For our experiments, we primarily utilize parameters α = 3 and β = 1, which have proven472

effective in most cases. However, we also explore higher degrees to cover a broader range of settings.473

Additionally, to strike a balance between stability and accuracy, we occasionally adjust the tolerance474

level from 10−4 to 10−9. This allows us to trade off precision for stability when necessary. For the475

Lyapunov candidate to remain convex beyond the quadratic form, we opt for only square elements in476

the LPF basis vector. This ensures stability and reliability in our system. Although it is possible to477

enforce a positive Hessian for the Lyapunov function, it incurs additional computational time while478

providing greater flexibility in stability conditions.479

GAIL. The discriminator network takes as input the state-action pairs or observations generated480

by the policy network and expert demonstrations. Hidden Layers: The network may consist of two or481

three hidden layers, each with 256 or 512 units. Activation Function: Rectified Linear Unit (ReLU)482

activation function is commonly used between the layers. Output: The discriminator produces a483

single output value, representing the probability of the input being from the expert or the generated484

policy. Hyperparameters: Learning Rate: 0.0001, Number of Discriminator Updates per Generator485

Update: 1 or 2, Discount Factor (for reinforcement learning algorithm): 0.99, Batch Size: 64 or 128,486

Number of Training Iterations: 1000.487

BC. The behavioral cloning network takes the state-action pairs as input. Hidden Layers: The488

network may have two or three hidden layers, each consisting of 128 or 256 units. Activation Function:489

Rectified Linear Unit (ReLU), Output: The output layer of the network corresponds to the action490

space dimensionality, producing the predicted action. Hyperparameters: Learning Rate: 0.0001,491

Number of Training Iterations: 5000, Batch Size: 64, Regularization Strength (L2 regularization):492

0.001, Optimizer: Adam, Loss Function: Mean Squared Error (MSE).493

SEDS. Takes position-velocity pairs as input (or state-action pairs in general). Number of Gaussian494

Components: Typically ranges from 3 to 10, depending on the complexity of the motion being learned.495

Gaussian Mixture Model (GMM) Parameters: Covariance Type: Diagonal covariance is commonly496

used for efficiency and simplicity, Regularization Weight: Often set to a small value, such as 1e-6,497

to avoid singularities and overfitting, Maximum Number of Iterations: 100 iterations. Convergence498

Tolerance: 1e-6 or 1e-7. SEDS is implemented in Python Scipy, and the original MATLAB code is499

not used in our comparisons to remain consistent with other baselines.500

C Supplemental Results501

We present a comprehensive set of additional experiments aimed at putting the proposed framework502

to test from a variety of angles including access to fewer demonstrations, demonstrating the variety503

of LPFs, more baseline policy rollouts, additive noise, and lastly, we conduct an ablation study by504

removing the stability guarantee, and present computation times in comparison with the baselines.505

C.1 Baseline policy rollouts506

We plot more policy rollouts for PLYDS in comparison to the baselines. The key takeaway is the507

pattern of instability among neural based imitation learning methods for unknown areas of state-space.508

5

PLYDSGAIL

BCSEDS

* *

**

Figure 10: Policy rollout for G-shaped motion in handwriting dataset.

SEDS

GAIL

BC

PLYDS* *

**

Figure 11: Policy rollout for Angle-shaped motion in handwriting dataset.

Note that even though some arrows might appear diverging from the target, they can be part of a509

converging trajectory with decreasing energy, that circles back towards the goal in the end. We make510

sure of this by plotting a larger portion of state-space and energy functions after each experiment.511

We present more optimized policies for the following handwriting dataset motions: G (Figure 10),512

Angle (Figure 11), C (Figure 12), and P (Figure 13). Each figure represents a trained policy (red513

and green arrows) along with the original trajectories in the dataset (blue dots). The same instability514

patterns continue to persist with GAIL and BC as the vector field diverges from the target. The same515

patterns as the plots in the main text continue to emerge.516

6

SEDS

GAIL PLYDS

BC

* *

**

Figure 12: Policy rollout for C-shaped motion in handwriting dataset.

GAIL

SEDS

PLYDS

BC

* *

**

Figure 13: Policy rollout for P-shaped motion in handwriting dataset.

C.2 Performance with additive noise517

The presence of noise in imitation learning has substantial impacts on the learning process and the518

resultant policies. Excessive levels of noise can lead to instability, inhibiting the algorithm from519

converging to an optimal policy. To address this, we adjust the noise levels to gauge the performance520

of PLYDS. We impose a uniform additive noise, where samples are uniformly distributed over the521

specified interval. We change the size of this interval and expand it bilaterally around zero.522

The results in Figure 14 demonstrate a moderate level of noise-robustness that can be further improved523

in future studies. Noisy data also increases the error bands, leading to increased uncertainty in the524

outcome of policy optimization.525

C.3 Ablation study: stability vs. accuracy526

When working with DS policies, there is a dilemma known as the stability-accuracy trade-off [19].527

This means that a balance must be struck between the reliability and robustness of generated policies528

to guarantee global convergence to the target (referred to as stability), and minimizing errors to obtain529

precise solutions (referred to as accuracy). It is important to find a compromise between these two530

factors, as more stable algorithms may not be as accurate, while more accurate algorithms may be531

sensitive to instabilities.532

7

(a) (b)

Figure 14: Performance of PLYDS in the face of uniform additive noise (a) and a sample of a noisy
trajectory with noise-level set to 2 (b). Noise levels are in centimeters, therefore, a noise-level of 4
means each reading could be deviated from its true value by ±4cm.

(a) (b)

Figure 15: PLYDS policy rollout: (a) with without enforced stability, and (b) with the stability
constraints in effect. The instability is caused by having a complex polynomial without regularization,
while setting the tolerance parameter in favor of accuracy.

The higher the degree of the polynomial, the more accurate imitation of expert behavior. Hence,533

in theory, any nonlinearity may be approximated by our DS formulation. However, in practice, we534

introduce regularization and tolerance parameters in the code. The tolerance can be used to choose in535

the favor of accuracy or stability (see Figure 15). Another way to balance this equation is to start with536

lower-degree polynomials, and increase the policy’s complexity when the accuracy is not sufficient.537

C.4 Complexity of Lyapunov functions538

Figure 16 demonstrates the complexity of the Lyapunov function affects trajectory planning in539

the state-space in various ways, such as optimization efficiency, trajectory smoothness, obstacle540

avoidance, robustness to perturbations, and planning accuracy. If the Lyapunov function is more541

complex, it may increase computational costs but in turn result in more complex and nonlinear542

trajectories. On the other hand, simpler Lyapunov functions may offer faster computations, smoother543

trajectories, and satisfactory planning accuracy, but they may not be adaptable to intricate expert544

demonstrations.545

When deciding on the complexity of the Lyapunov function, it is necessary to consider the feasibility546

of computations, and the desired smoothness and accuracy of planned trajectories and always start547

with the most simple: quadratic distance function. Figure 16 illustrates this by showing both stable548

and unstable Lyapunov possibilities gauged across various LPF complexities. Additionally, Figure 17549

depicts two same executions of PLYDS with high and low complexity of the Lyapunov function.550

8

0

1e5

1e5

0
U

ns
ta

bl
e

St
ab

le

Degree = 2 Degree = 4 Degree = 6

Figure 16: During our policy optimization, we obtain LPF samples such as the ones depicted above.
Even though variation in complexity notably affects the computation time, employing more complex
Lyapunov functions (polynomials of higher degrees) appears necessary to achieve stable and precise
policies in some cases. Currently, we manually determine the complexity of the Lyapunov function
and shift to higher complexities only if the optimization fails to deliver satisfactory results.

PLYDS

X1 X1

X
2

SEDS

X1

* * *
PLYDS*

Figure 17: Comparison of policy trajectories between PLYDS and SEDS. PLYDS* uses an LPF
representation with higher nonlinearity, and, therefore, results in trajectories where distance to the
target is not reduced monotonically (highlighted).

C.5 Computation times551

We conduct all the experiments on a machine with a Core-i7 Gen8 CPU, NVIDIA GeForce RTX552

3060 GPU, and 32 GB RAM DDR2. Among the methods we experimented on, only GAIL and BC553

utilize a GPU to accelerate the computation of neural networks. PLYDS and SEDS only use CPU for554

optimization in our implementations. Even so, the computation times are compared in Figure 18.555

9

(a) (b)

Figure 18: Computation time (averaged over 20 trials) of PLYDS compared to other baselines (a),
and for different dataset sizes (b). It is noteworthy that GAIL and BC are utilizing a GPU to expedite
their computations.

10

