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Abstract

Graph Convolutional Networks (GCNs) have emerged as powerful tools for learn-
ing on graph-structured data, yet the behavior of dropout in these models re-
mains poorly understood. This paper presents a comprehensive theoretical analy-
sis of dropout in GCNs, revealing that its primary role differs fundamentally from
standard neural networks - preventing oversmoothing rather than co-adaptation.
We demonstrate that dropout in GCNs creates dimension-specific stochastic sub-
graphs, leading to a form of structural regularization not present in standard
neural networks. Our analysis shows that dropout effects are inherently degree-
dependent, resulting in adaptive regularization that considers the topological im-
portance of nodes. We provide new insights into dropout’s role in mitigating
oversmoothing and derive novel generalization bounds that account for graph-
specific dropout effects. Furthermore, we analyze the synergistic interaction be-
tween dropout and batch normalization in GCNs, uncovering a mechanism that
enhances overall regularization. Our theoretical findings are validated through ex-
tensive experiments on both node-level and graph-level tasks across 14 datasets.
Notably, GCN with dropout and batch normalization outperforms state-of-the-art
methods on several benchmarks, demonstrating the practical impact of our theo-
retical insights.

1 Introduction

The remarkable success of deep neural networks across various domains has been accompanied
by the persistent challenge of overfitting, where models perform well on training data but fail to
generalize to unseen examples. This issue has spurred the development of numerous regularization
techniques, among which dropout has emerged as a particularly effective and widely adopted ap-
proach (LeCun et al., 2015). Introduced by Srivastava et al. (2014), dropout addresses overfitting
by randomly ”dropping out” a proportion of neurons during training, effectively creating an ensem-
ble of subnetworks. This technique has proven highly successful in improving generalization and
has become a standard tool in the deep learning toolkit. The effectiveness of dropout has prompted
extensive theoretical analysis, with various perspectives offered to explain its regularization effects.

Some researchers have interpreted dropout as a form of model averaging (Baldi & Sadowski, 2013),
while others have analyzed it through the lens of information theory (Achille & Soatto, 2018). Wager
et al. (2013) provided insights into dropout’s adaptive regularization properties, and Gal & Ghahra-
mani (2016) established connections between dropout and Bayesian inference. These diverse the-
oretical frameworks have significantly enhanced our understanding of dropout’s role in mitigating
overfitting in traditional neural networks. However, as the field of deep learning has expanded to
encompass more complex data structures, particularly graphs, new questions have arisen regarding
the applicability and behavior of established techniques. Graph Neural Networks (GNNs), espe-
cially Graph Convolutional Networks (GCNs), have demonstrated remarkable performance on tasks
involving graph-structured data (Kipf & Welling, 2017). Naturally, researchers and practitioners
have applied dropout to GNNs, often observing beneficial effects on generalization (Hamilton et al.,
2017).
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While dropout was originally designed to prevent co-adaptation of features in standard neural net-
works, our analysis reveals that its primary mechanism in GCNs is fundamentally different. We
demonstrate that dropout’s main contribution in GCNs is mitigating oversmoothing by maintaining
feature diversity across nodes, rather than preventing co-adaptation as in standard neural networks.
This finding represents a significant shift in our understanding of how regularization operates in
graph neural networks. Specifically, we demonstrate that:

• Dropout in GCNs creates dimension-specific stochastic sub-graphs, leading to a unique
form of structural regularization not present in standard neural networks.

• The effects of dropout are inherently degree-dependent, with differential impacts on nodes
based on their connectivity, resulting in adaptive regularization that considers the topolog-
ical importance of nodes in the graph.

• Dropout plays a crucial role in mitigating the oversmoothing problem rather than co-
adaption in GCNs, though its effects are more nuanced than previously thought.

• The generalization bounds for GCNs with dropout exhibit a complex dependence on graph
properties, diverging from traditional dropout theory.

• There exists a significant interplay between dropout and batch normalization in GCNs,
revealing synergistic effects that enhance the overall regularization.

Our theoretical framework not only provides deeper insights into the mechanics of dropout in graph-
structured data but also yields practical implications for the design and training of GCNs. We vali-
date our theoretical findings through extensive experiments on both node-level and graph-level tasks,
demonstrating the practical relevance of our analysis. This work bridges a critical gap in the theoret-
ical understanding of regularization in GCNs and paves the way for more principled approaches to
leveraging dropout in graph representation learning. Furthermore, we validate our theoretical find-
ings through extensive experiments, demonstrating that GCNs incorporating our insights on dropout
and batch normalization outperform several state-of-the-art methods on benchmark datasets. This
practical success underscores the importance of our theoretical contributions and their potential to
advance the field of graph representation learning.

2 RelatedWork

Dropout in Neural Networks. Overfitting can be reduced by using dropout Hinton et al. (2012)
to prevent complex co-adaptations on the training data. Since its inception, several variants have
been proposed to enhance its effectiveness. DropConnect (Wan et al., 2013) generalizes dropout
by randomly dropping connections rather than nodes. Gaussian dropout Srivastava et al. (2014)
replaces the Bernoulli distribution with a Gaussian one for smoother regularization. Curriculum
dropout (Morerio et al., 2017) adaptively adjusts the dropout rate during training. Theoretical inter-
pretations of dropout have provided insights into its success. The model averaging perspective (Baldi
& Sadowski, 2013) views dropout as an efficient way of approximately combining exponentially
many different neural networks. The adaptive regularization interpretation (Wager et al., 2013)
shows how dropout adjusts the regularization strength for each feature based on its importance. The
Bayesian approximation view (Gal & Ghahramani, 2016) connects dropout to variational inference
in Bayesian neural networks, providing a probabilistic framework for understanding its effects.

Regularization in Graph Neural Networks. Graph Neural Networks (GNNs), while powerful,
are prone to overfitting and over-smoothing (Li et al., 2018). Various regularization techniques (Yang
et al., 2021; Rong et al., 2020; Fang et al., 2023; Feng et al., 2020) have been proposed to address
these issues. DropEdge (Rong et al., 2020) randomly removes edges from the input graph dur-
ing training, reducing over-smoothing and improving generalization. Graph diffusion-based meth-
ods (Gasteiger et al., 2019) incorporate higher-order neighborhood information to enhance model
robustness. Spectral-based approaches (Wu et al., 2019) leverage the graph spectrum to design effec-
tive regularization strategies. Empirical studies have shown that traditional dropout can be effective
in GNNs (Hamilton et al., 2017), but its interaction with graph structure remains poorly understood.
Some works have proposed adaptive dropout strategies for GNNs (Gao & Ji, 2019), but these are
primarily heuristic approaches without comprehensive theoretical grounding.

2



Published as a conference paper at ICLR 2025

Theoretical Frameworks for GNNs. Despite the empirical success of Graph Neural Networks
(GNNs), establishing theories to explain their behaviors is still an evolving field. Recent works have
made significant progress in understanding over-smoothing (Li et al., 2018; Zhao & Akoglu, 2019;
Oono & Suzuki, 2019; Rong et al., 2020), interpretability (Ying et al., 2019; Luo et al., 2020; Vu
& Thai, 2020; Yuan et al., 2020; 2021), expressiveness (Xu et al., 2018; Chen et al., 2019; Maron
et al., 2018; Dehmamy et al., 2019; Feng et al., 2022), and generalization (Scarselli et al., 2018; Du
et al., 2019; Verma & Zhang, 2019; Garg et al., 2020; Zhang et al., 2020; Oono & Suzuki, 2019;
Lv, 2021; Liao et al., 2020; Esser et al., 2021; Cong et al., 2021). Our work aims to complement
these existing theoretical frameworks by focusing on the practical aspects of dropout in GNNs,
a widely used regularization technique that has not been thoroughly examined from a theoretical
perspective. Previous works have provided valuable insights using classical techniques such as
Vapnik-Chervonenkis dimension (Scarselli et al., 2018), Rademacher complexity (Lv, 2021; Garg
et al., 2020), and algorithm stability (Verma & Zhang, 2019). Recent efforts (Oono & Suzuki,
2019; Esser et al., 2021) have also made strides in incorporating the transductive learning schema of
GNNs into theoretical analyses. We bridge the gap between theoretical understanding and practical
implementation of GNNs, offering insights into how dropout affects generalization and performance
in graph-structured learning tasks.

3 Theoretical Framework

In this section, we develop a rigorous mathematical framework to analyze the behavior of dropout
in Graph Convolutional Networks (GCNs). We begin by establishing notations and definitions, then
formalize the GCN model with dropout, and finally introduce key concepts that will be central to
our analysis.

3.1 Notations and Definitions

Notations. Let G = (V,E,X) be an undirected graph with n = |V| nodes and m = |E| edges,
where X ∈ Rn×d0 represents the node feature matrix with d0 input features per node. We denote by
A ∈ Rn×n the adjacency matrix, D = diag(deg1, . . . , degn) the degree matrix where degi =

∑
j Ai j,

and Ã =D−
1
2 AD−

1
2 the normalized adjacency matrix.

Graph Convolutional Networks (GCNs). An L-layer GCN performs the following layer-wise
transformation:

H (l) = σ(ÃH (l−1)W (l)), (1)

where H (l) ∈ Rn×dl is the feature matrix, W (l) ∈ Rdl−1×dl is the weight matrix, σ(·) is a non-linear
activation, and H (0) =X . The feature energy measures representation smoothness:

E(H (l)) =
1

2|E|

∑
(i, j)∈E

∥h(l)
i − h

(l)
j ∥

2
2 (2)

Dropout in GCNs. For layer l, dropout applies a random mask M (l) ∈ Rn×dl where each element
M(l)

i j is drawn independently from Bernoulli(1 − p). The forward pass with dropout is defined as:

H (l) =
1

1 − p
M (l) ⊙ σ(ÃH (l−1)W (l)), (3)

where ⊙ denotes element-wise multiplication and p is the dropout probability.

Batch Normalization. When incorporating batch normalization, the layer transformation becomes:

H (l) = σ(BN(ÃH (l−1)W (l))), (4)

where BN applies feature-wise normalization BN(X) = γ ⊙ X−µB√
σ2

B+ϵ
+ β with learnable parameters

γ, β and batch statistics µB, σ
2
B.
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Figure 1: Illustration of how dropout creates dimension-specific sub-graphs. From left to right: the
original graph with complete feature vectors, the graph after applying dropout (where x indicates
dropped features), and the resulting sub-graphs for each feature dimension. Different colors indicate
different feature dimensions, and grayed-out nodes show where features are dropped, preventing
message passing along those paths in the next convolution.

3.2 Dimension-Specific Stochastic Sub-graphs

We demonstrate how dropout creates dimension-specific sub-graphs in Figure 1. At each iteration t,
dropout induces dimension-specific stochastic sub-graphs G(l, j)

t = (V,E(l, j)
t ) with:

E
(l, j)
t = {(u, v) ∈ E | M(l,t)

u j , 0 and M(l,t)
v j , 0}. (5)

The coupling between feature dropout and graph topology is captured by the feature-topology cou-
pling matrix:

C(l)
t = A ⊙ 1[(M (l,t)(M (l,t))⊤) > 0], (6)

which measures how dropout simultaneously affects connected nodes’ features. This interaction
manifests in each node’s effective degree:

degeff
i,t = |{ j ∈ N(i) : ∃k,M(l,t)

ik , 0 and M(l,t)
jk , 0}| =

∑
j

(C(l)
t )i j, (7)

representing the actual count of node i’s neighbors that maintain feature connections after dropout.
We consider a path P = (v0, . . . , vk) active for feature j when all nodes along the path retain this fea-
ture, i.e.,

∏k−1
i=0 M(l,t)

vi j M(l,t)
vi+1 j , 0. To elucidate the specific impact of dropout on embedding features,

we introduce these concepts:

Theorem 1 (Sub-graph Diversity). The expected number of distinct sub-graphs per iteration is:

E[|E(l, j)
t | j = 1, . . . , dl|] = dl(1 − (1 − p)2|E|),

where dl is the number of features at layer l, p is the dropout probability, and |E| is the number of
edges in the original graph (The complete proof is in the Appendix. A.1).

This theorem reveals that dropout in GCNs leads to a rich set of sub-graphs, providing a form
of structural data augmentation unique to graph-based models. The diversity of these sub-graphs
increases with both the dropout probability p and the number of features dl. This suggests that
higher-dimensional GCNs with moderate dropout rates can benefit from a wider range of struc-
tural variations during training, potentially leading to more robust and generalizable representations.
Moreover, this mechanism allows the GCN to implicitly explore different graph structures without
explicitly modifying the input graph. This could be particularly beneficial for tasks where the opti-
mal graph structure is uncertain or where multiple relevant sub-structures exist within the data.

Theorem 2 (Expected Active Features per Path). For a path P of length k, the expected number of
features for which it is active is:

E[#active features for P] = dl(1 − p)k+1.

This theorem demonstrates that while individual long paths are unlikely to be active for any given
feature, the multi-dimensional nature of GCNs allows for effective long-range information flow
through the ensemble effect across features. This theoretical insight is further supported by our
empirical analysis in Appendix A.6.
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3.3 Degree-Dependent Nature of Dropout Effects

The interaction between dropout and the graph structure leads to a form of degree-dependent regu-
larization in GCNs. This means that the effect of dropout varies based on the connectivity of each
node, creating an adaptive regularization scheme that considers the topological importance of nodes
in the graph.
Theorem 3 (Degree-Dependent Dropout Effect). The expected effective degree and its variance are
given by:

E[degeff
i,t ] = (1 − p)2degi and Var[degeff

i,t ] = degi(1 − p)2(1 − (1 − p)2), (8)

where degi is the original degree of node i and p is the dropout probability.

This theorem highlights that dropout affects nodes differentially depending on their degree. High-
degree nodes, typically more influential within the graph, exhibit less variation in their effective
degree due to dropout, potentially resulting in more stable representations for these important
nodes. This observation is empirically confirmed in the analysis of a 2-layer GCN presented in
Appendix A.6. Consequently, the degree-dependent nature of dropout in GCNs results in adaptive
regularization, where the regularization effect naturally adjusts to the local graph structure.
Corollary 4 (Relative Stability of High-Degree Nodes). The coefficient of variation of the effective

degree, defined as CV[degeff
i,t ] =

√
Var[degeff

i,t ]/E[degeff
i,t ], decreases with increasing node degree:

CV[degeff
i,t ] =

√
1 − (1 − p)2√
degi(1 − p)

.

This corollary further confirms that high-degree nodes experience relatively less variation in their
effective degree due to dropout. Figure 10 illustrates that the CV decreases as node degree increases.
This degree-dependent effect distinguishes dropout in GCNs from its application in standard neural
networks and suggests that the optimal dropout strategy for GCNs may need to consider the graph
structure explicitly.

3.4 Role of Dropout in Oversmoothing

Oversmoothing is a well-known issue in GCNs, where node representations become indistinguish-
able as the number of layers increases. Our analysis reveals that dropout plays a crucial role in this
context, though its effects are more nuanced than previously thought.
Theorem 5 (Dropout and Feature Energy). For a GCN with dropout probability p, the expected
feature energy at layer l is bounded by:

E[E(H (l))] ≤
degmax

|E|
(

1
1 − p

)l||Ã||2l
2

l∏
i=1

||W (i)||22||X ||
2
F (9)

where E(X) is the energy of the input features and W (i) are the weight matrices (The complete
proof is in the Appendix.A.2).

The derived bound demonstrates how dropout affects feature energy through the interplay of network
depth (l), graph structure (through degmax and Ã), and weight properties (∥W (i)∥22). Note that this
analysis only provides an upper bound; the absence of a lower bound in this derivation is due to
limitations in bounding certain terms. We will later show that when considering batch normalization,
we can establish the existence of a lower bound, providing a more complete characterization.

3.5 Generalization Bounds with Graph-Specific Dropout Effects

The unique properties of dropout in GCNs, such as the creation of stochastic sub-graphs and degree-
dependent effects, influence how these models generalize to unseen data. Our analysis provides
novel generalization bounds that explicitly account for these graph-specific dropout effects, offer-
ing insights into how dropout interacts with graph structure to influence the model’s generalization
capabilities.
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Figure 2: Feature energy vs dropout rates. Figure 3: BN feature energy vs dropout rates.

Theorem 6 (Generalization Bound for L-Layer GCN with Dropout). For an L-layer GCN F with
dropout probability pl at layer l and Lσ-Lipschitz activation function σ, with probability at least
1 − δ over the training examples, the following generalization bound holds:

ED[L(F(X))] − ES [L(F(X))] ≤ O


√

log(1/δ)
n

 L∑
l=1

Lloss · Ll ·

√
pl

(1 − pl)χ f (G)
∥σ(ÃH (l−1)W (l))∥F ,

(10)
where ED is the expectation over the data distribution, ES is the expectation over the training sam-
ples, L is the loss function with Lipschitz constant Lloss, Ll =

∏L
i=l(Lσ∥W

(i)∥2 · ∥Ã∥2) is the Lipschitz
constant from layer l to output, ∥W (i)∥2 is the spectral norm of the weight matrix at layer i, ∥Ã∥2 is
the spectral norm of the normalized adjacency matrix, and χ f (G) is the fractional chromatic number
of the dependency graph G induced by the message passing structure.

This generalization bound reveals how the network’s stability depends on the loss function’s Lip-
schitz constant, layer-wise Lipschitz constants capturing weight effects, graph structure through
χ f (G), feature activations, and dropout rates. This leads to several key insights: First, network
depth affects stability through the layer-wise Lipschitz constants Ll. The multiplicative accumula-
tion of weight and graph effects (

∏L
i=l+1 ∥W

(i)∥∥Ã∥) suggests deeper GCNs require careful regu-
larization as perturbations can amplify through layers. Second, the graph structure fundamentally
influences stability through χ f (G). Since χ f (G) > 1 for GCNs due to message passing (versus
χ f (G) = 1 for MLPs), GCNs gain natural regularization from their graph structure. This effect
strengthens with graph connectivity since larger χ f (G) leads to better stability. Combined with the
fact that the normalized adjacency matrix has bounded spectral norm (∥Ã∥2 ≤ 1), this provides a
built-in stabilizing mechanism unique to GNNs. Third, examining layer-specific terms reveals the
interplay between weights ∥W (l)∥, feature magnitudes ∥σ(ÃH (l−1)W (l))∥F , and dropout rates pl.
The contribution of each layer to the overall bound suggests that adaptive layer-wise dropout rates
might be more effective than uniform dropout, particularly when certain layers process more criti-
cal features. Finally, the bound mathematically explains the dropout rate trade-off through the term√

pl/((1 − pl)χ f (G)). Higher dropout provides stronger regularization but increases noise, while the
graph structure (through χ f (G)) moderates this effect. This helps explain why moderate dropout
rates often work best in practice, with the optimal rate depending on the graph’s connectivity pat-
terns. This theoretical insight aligns with empirical observations that GNNs often benefit more from
dropout than MLPs, as the graph structure provides additional stability through χ f (G) while allowing
effective information flow via message passing.

3.6 Interaction of Dropout and Batch Normalization in GCNs

While dropout provides a powerful regularization mechanism for GCNs, its degree-dependent nature
can lead to uneven regularization across nodes. Batch Normalization (BN) offers a complementary
approach that can potentially address this issue and enhance the benefits of dropout. Our analysis
reveals how the combination of dropout and BN creates a synergistic regularization effect that is
sensitive to both graph structure and feature distributions.

Theorem 7 (Layer-wise Energy Lower Bound for GCN with Dropout and BN). For an L-layer
Graph Convolutional Network with dropout rate p, batch normalization parameters {β(l)

d , γ
(l)
d }

dl
d=1 at
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each layer l, with probability at least (1 − δ)L, the expected feature energy at each layer l satisfies:

E(H (l)) ≥
p · degmin

2|E|(1 − p)

dl∑
d=1

Φ(β(l)
d /γ

(l)
d ) · (β(l)

d )2

where l = 1, 2, ..., L indicates the layer, degmin is the minimum degree in the graph, |E| is the total
number of edges, Φ is the standard normal CDF and β(l)

d , γ
(l)
d are the BN parameters for dimension

d at layer l (The complete proof is in the Appendix.A.4).

Our theoretical analysis reveals a crucial interplay between dropout and batch normalization in
GCNs. The lower bound on feature energy combines three essential components: (1) A graph struc-
tural term degmin

2|E| that captures the network connectivity, (2) A dropout-induced scaling factor p
1−p that

amplifies preserved features, and (3) A BN-controlled feature activation term
∑dl

d=1Φ(β(l)
d /γ

(l)
d )·(β(l)

d )2

that establishes a non-zero energy floor. This interaction operates through several key mechanisms:
(1) The BN shift parameters β(l)

d directly contribute to feature energy through their squared magni-
tude, while the ratio β(l)

d /γ
(l)
d determines the proportion of features preserved through ReLU activa-

tion via the standard normal CDF Φ. Higher positive values of this ratio increase feature preserva-
tion. (2) Dropout’s p

1−p factor enhances this feature preservation effect, creating a controlled amplifi-
cation that prevents feature collapse. This amplification is naturally weighted by graph connectivity,
with minimum degree degmin ensuring baseline protection even for sparsely connected nodes. (3)
The entire bound scales with the graph’s minimum degree, illustrating how the mechanism adapts
to the underlying graph structure, providing stronger guarantees for more densely connected graphs.
This theoretical framework explains our empirical observations in Figures 2 & 3, where batch nor-
malization effectively moderates the energy dynamics in GCNs. By establishing a non-zero lower
bound on feature energy, BN prevents complete feature collapse regardless of weight updates, while
dropout enhances feature discrimination. Their joint application creates a specialized regularization
mechanism for graph-structured data, where BN’s parameter-controlled feature preservation inter-
acts with dropout-induced sparsity to maintain robust node representations across graph topologies.

3.7 Comparison with Other Dropout Variants

Various dropout mechanisms have been proposed for GNNs, each applying masks at different stages
of message passing. We formally characterize these variants through their masking operations and
their effects in Table 1. The key distinction of standard dropout lies in its feature-dimension-specific
masking, which creates unique sub-graph structures for each feature dimension. This leads to a
quadratic effect on the effective degree, providing stronger regularization than other variants. While
DropNode and DropEdge apply coarse-grained masks uniformly across features, and DropMessage
operates at the message level, dropout’s feature-specific approach provides finer-grained control over
information flow.

Table 1: Comparison of different dropout variants in GNNs. Each method is characterized by
its masking operation Md, the resulting sub-graph formation Gt, and expected effective degree
E[degeff

i,t ], where p is the dropout probability.

Method Masking Operation Sub-graph Formation Expected Effective Degree

DropNode Md = Ã((Mnode ⊙H
(l−1))W (l))d Gt = (V \Vdropped,E \ {(i, j)|i ∈ Vdropped}) degi

∏
j∈N(i)(1 − p)

DropEdge Md = (Medge ⊙ Ã)(H (l−1)W (l))d Gt = (V,E \ Edropped) (1 − p)degi

DropMessage Md = Ã(Mmsgd ⊙ (H (l−1)W (l)))d G
d
t = (V, {(i, j) ∈ E|Mmsgdi j

, 0}) (1 − p)degi

Dropout Md =M f eatd ⊙ Ã(H (l−1)W (l))d Gd
t = (V, {(i, j) ∈ E|M f eatdi

, 0,M f eatd j
, 0}) (1 − p)2degi

4 Experiments

To validate our theoretical analysis, we conducted extensive experiments on a variety of datasets,
considering both node-level and graph-level tasks. We implemented dropout technique on several
popular GNN architectures: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), and GatedGCN (Bresson & Laurent, 2017). For each model, we
compared the performance with and without dropout. Our code is available at https://github.
com/LUOyk1999/dropout-theory.
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Table 2: Node classification results (%). The baseline results are taken from Deng et al. (2024); Wu
et al. (2023). The top 1st, 2nd and 3rd results are highlighted. ”dp” denotes dropout.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS ogbn-arxiv ogbn-products

# nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 11,701 169,343 2,449,029
# edges 5,278 4,732 44,324 245,861 119,081 81,894 247,962 216,123 1,166,243 61,859,140
Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCNII 85.19 ± 0.26 73.20 ± 0.83 80.32 ± 0.44 91.04 ± 0.41 94.30 ± 0.20 92.22 ± 0.14 95.97 ± 0.11 78.68 ± 0.55 72.74 ± 0.31 79.42 ± 0.36

GPRGNN 83.17 ± 0.78 71.86 ± 0.67 79.75 ± 0.38 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08 78.12 ± 0.23 71.10 ± 0.12 79.76 ± 0.59

APPNP 83.32 ± 0.55 71.78 ± 0.46 80.14 ± 0.22 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07 78.87 ± 0.11 72.34 ± 0.24 78.84 ± 0.09

tGNN 82.97 ± 0.68 71.74 ± 0.49 80.67 ± 0.34 83.40 ± 1.33 89.92 ± 0.72 92.85 ± 0.48 96.24 ± 0.24 71.49 ± 1.05 72.88 ± 0.26 81.79 ± 0.54

GraphGPS 82.84 ± 1.03 72.73 ± 1.23 79.94 ± 0.26 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 78.66 ± 0.49 70.97 ± 0.41 OOM
NAGphormer 82.12 ± 1.18 71.47 ± 1.30 79.73 ± 0.28 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03 77.16 ± 0.72 70.13 ± 0.55 73.55 ± 0.21

Exphormer 82.77 ± 1.38 71.63 ± 1.19 79.46 ± 0.35 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 96.89 ± 0.09 78.54 ± 0.49 72.44 ± 0.28 OOM
GOAT 83.18 ± 1.27 71.99 ± 1.26 79.13 ± 0.38 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 77.00 ± 0.77 72.41 ± 0.40 82.00 ± 0.43

NodeFormer 82.20 ± 0.90 72.50 ± 1.10 79.90 ± 1.00 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 74.73 ± 0.94 59.90 ± 0.42 73.96 ± 0.30

SGFormer 84.50 ± 0.80 72.60 ± 0.20 80.30 ± 0.60 92.42 ± 0.66 95.58 ± 0.36 95.71 ± 0.24 96.75 ± 0.26 80.05 ± 0.46 72.63 ± 0.13 81.54 ± 0.43

Polynormer 83.25 ± 0.93 72.31 ± 0.78 79.24 ± 0.43 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 97.27 ± 0.08 80.10 ± 0.67 73.46 ± 0.16 83.82 ± 0.11

GCN 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 93.15 ± 0.34 95.03 ± 0.24 94.41 ± 0.13 97.07 ± 0.04 80.14 ± 0.52 73.13 ± 0.27 81.87 ± 0.41

Dirichlet energy 74.671 9.934 4.452 8.020 3.765 20.241 8.966 6.109 8.021 7.771

GCN w/o dp 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 90.60 ± 0.84 94.10 ± 0.15 94.30 ± 0.22 96.92 ± 0.05 77.61 ± 1.34 72.05 ± 0.23 77.50 ± 0.37

Dirichlet energy 2.951 0.170 0.247 0.592 1.793 3.980 0.318 1.592 1.231 1.745

GCN w/o BN 84.97 ± 0.73 72.97 ± 0.86 80.94 ± 0.87 92.39 ± 0.18 94.38 ± 0.13 93.46 ± 0.24 96.76 ± 0.06 79.00 ± 0.48 71.93 ± 0.18 79.37 ± 0.42

SAGE 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 92.65 ± 0.21 95.71 ± 0.20 95.90 ± 0.09 97.20 ± 0.10 80.29 ± 0.97 72.72 ± 0.13 82.69 ± 0.28

SAGE w/o dp 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 90.17 ± 0.60 94.90 ± 0.17 95.80 ± 0.08 97.06 ± 0.06 78.84 ± 1.17 71.37 ± 0.31 79.82 ± 0.22

SAGE w/o BN 83.89 ± 0.67 71.39 ± 0.75 77.26 ± 1.02 92.54 ± 0.24 95.51 ± 0.23 94.87 ± 0.15 97.03 ± 0.03 79.50 ± 0.93 71.52 ± 0.17 80.91 ± 0.35

GAT 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99 93.47 ± 0.27 95.53 ± 0.16 94.49 ± 0.17 96.73 ± 0.10 80.21 ± 0.68 72.83 ± 0.19 80.05 ± 0.34

GAT w/o dp 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58 92.94 ± 0.30 93.88 ± 0.16 94.30 ± 0.14 96.42 ± 0.08 78.67 ± 0.40 71.52 ± 0.41 77.87 ± 0.25

GAT w/o BN 83.76 ± 1.32 71.82 ± 0.83 80.43 ± 1.03 92.16 ± 0.26 95.05 ± 0.49 93.33 ± 0.26 96.57 ± 0.20 79.49 ± 0.62 71.68 ± 0.36 78.21 ± 0.32

4.1 Datasets and Setup

Datasets. For node-level tasks, we used 10 datasets: Cora, CiteSeer, PubMed (Sen et al., 2008),
ogbn-arxiv, ogbn-products (Hu et al., 2020), Amazon-Computer, Amazon-Photo, Coauthor-CS,
Coauthor-Physics (Shchur et al., 2018), and WikiCS (Mernyei & Cangea, 2020). Cora, CiteSeer,
and PubMed are citation networks, evaluated using the semi-supervised setting and data splits from
Kipf & Welling (2017). Computer and Photo (Shchur et al., 2018) are co-purchase networks. CS
and Physics (Shchur et al., 2018) are co-authorship networks. We used the standard 60%/20%/20%
training/validation/test splits and accuracy as the evaluation metric (Chen et al., 2022; Shirzad et al.,
2023; Deng et al., 2024). For WikiCS, we adopted the official splits and metrics (Mernyei & Cangea,
2020). For large-scale graphs, we included ogbn-arxiv and ogbn-products with 0.16M to 2.4M
nodes, using OGB’s standard evaluation settings (Hu et al., 2020).

For graph-level tasks, we used MNIST, CIFAR10 (Dwivedi et al., 2023), and two Peptides datasets
(functional and structural) (Dwivedi et al., 2022). MNIST and CIFAR10 are graph versions of their
image classification counterparts, constructed using 8-nearest neighbor graphs of SLIC superpixels.
We follow all evaluation protocols suggested by Dwivedi et al. (2023). Peptides-func involves clas-
sifying graphs into 10 functional classes, while Peptides-struct regresses 11 structural properties.
All evaluations followed the protocols in (Dwivedi et al., 2022).

Baselines. Our main focus lies on the following prevalent GNNs and transformer models from
Polynormer (Deng et al., 2024): GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017), GAT
Veličković et al. (2018), GCNII (Chen et al., 2020), (Veličković et al., 2018), APPNP (Gasteiger
et al., 2018), GPRGNN (Chien et al., 2020), SGFormer (Wu et al., 2023), Polynormer (Deng et al.,
2024), GOAT (Kong et al., 2023), NodeFormer (Wu et al., 2022), NAGphormer (Chen et al., 2022),
GTDwivedi & Bresson (2020), SAN Kreuzer et al. (2021), MGT Ngo et al. (2023), DRew Gutteridge
et al. (2023), Graph-MLPMixer He et al. (2023), GRIT Ma et al. (2023) , GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), CKGCN (Ma et al., 2024), GRED (Ding et al.,
2024), Graph Mamba Behrouz & Hashemi (2024). We report the performance results of baselines
primarily from (Deng et al., 2024), with the remaining obtained from their respective original papers
or official leaderboards whenever possible, as those results are obtained by well-tuned models.

Experimental Setup. We implemented all models using the PyTorch Geometric library (Fey &
Lenssen, 2019). The experiments are conducted on a single workstation with 8 RTX 3090 GPUs.
For node-level tasks, we adhered to the training protocols specified in (Deng et al., 2024; Luo et al.,
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Figure 4: Effect of dropout on feature F-norm, average pair distance, and Dirichlet energy.

2024b;a), employing BN and adjusting the dropout rate between 0.1 and 0.7. In graph-level tasks,
we adopted the settings from (Tönshoff et al., 2023; Luo et al., 2025), utilizing BN with a consistent
dropout rate of 0.2. All experiments were run with 5 different random seeds, and we report the mean
accuracy and standard deviation. To ensure generalizability, we used Dirichlet energy (Cai & Wang,
2020) as an oversmoothing metric, which is proportional to our feature energy.

4.2 Node-level Classification Results

The node-level classification results in Table 2 not only align with our theoretical predictions but
also showcase the remarkable effectiveness of dropout. Notably, GCN with dropout and batch nor-
malization outperforms state-of-the-art methods on several benchmarks, including Cora, CiteSeer,
and PubMed. This superior performance underscores the practical significance of our theoretical
insights. Consistently across all datasets, models employing dropout outperform their counterparts
without it, validating our analysis that dropout provides beneficial regularization in GNNs, distinct
from its effects in standard neural networks. The varying levels of improvement observed across
different datasets support our theory of degree-dependent dropout effects that adapt to the graph
structure. Furthermore, the consistent increase in Dirichlet energy when using dropout provides em-
pirical evidence for our theoretical insight into dropout’s crucial role in mitigating oversmoothing in
GCNs, particularly evident in larger graphs. The complementary roles of dropout and batch normal-
ization are demonstrated by the performance drop when either is removed, supporting our analysis
of their synergistic interaction in GCNs.

4.3 Graph-level Classification Results

Our graph-level classification results, presented in Tables 3 and 4, further validate the broad applica-
bility of our theoretical framework. First, compared to recent SOTA models, we observe that simply
tuning dropout enables GNNs to achieve SOTA performance on three datasets and is competitive
with the best single-model results on the remaining dataset. Second, the significant accuracy im-
provements on graph-level tasks such as Peptides-func and CIFAR10 highlight that our insights ex-
tend beyond node classification. The varying degrees of improvement across different graph datasets
are consistent with our theory that dropout provides adaptive regularization tailored to graph proper-
ties. Third, the consistent increase in Dirichlet energy when using dropout supports our theoretical
analysis of dropout’s role in preserving feature diversity.

These results robustly validate our theory, showing that dropout in GCNs produces dimension-
specific stochastic sub-graphs, has degree-dependent effects, mitigates oversmoothing, and offers
topology-aware regularization. Combined with batch normalization, dropout enhances GCN per-
formance on graph-level tasks, affirming the relevance and utility of our framework and suggesting
directions for improving GNN architectures.

4.4 Mitigating Oversmoothing Rather Than Co-adaptation

In traditional neural networks, dropout primarily prevents co-adaptation of neurons. However, our
theoretical framework suggests that dropout in GCNs serves a fundamentally different purpose: mit-
igating oversmoothing rather than preventing co-adaptation. To validate this hypothesis, we exam-
ined how dropout affects weight matrices in a 2-layer GCN, focusing specifically on spectral norm
changes (see Appendix A.5). We further analyzed three key metrics to quantify dropout’s influence
on feature representations, as shown in Figure 4. The left panel of Figure 4 demonstrates that the
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Table 3: Graph classification results on two pep-
tide datasets from LRGB (Dwivedi et al., 2022).

Model Peptides-func Peptides-struct

# graphs 15,535 15,535
Avg. # nodes 150.9 150.9
Avg. # edges 307.3 307.3
Metric AP ↑ MAE ↓

GT 0.6326 ± 0.0126 0.2529 ± 0.0016

SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012

GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0012

MGT+WavePE 0.6817 ± 0.0064 0.2453 ± 0.0025

DRew 0.7150 ± 0.0044 0.2536 ± 0.0015

Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007

Graph-MLPMixer 0.6970 ± 0.0080 0.2475 ± 0.0015

GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012

CKGCN 0.6952 ± 0.0068 0.2477 ± 0.0019

GRED 0.7085 ± 0.0027 0.2503 ± 0.0019

Graph Mamba 0.6972 ± 0.0100 0.2477 ± 0.0019

GCN 0.7015 ± 0.0021 0.2437 ± 0.0012

Dirichlet energy 9.649 6.121

GCN w/o dp 0.6484 ± 0.0034 0.2541 ± 0.0026

Dirichlet energy 6.488 3.725

Table 4: Graph classification results on two im-
age datasets from (Dwivedi et al., 2023).

Model MNIST CIFAR10

# graphs 70,000 60,000
Avg. # nodes 70.6 117.6
Avg. # edges 564.5 941.1
Metric Accuracy ↑ Accuracy ↑

GT 90.831 ± 0.161 59.753 ± 0.293

SAN+RWSE - -
GraphGPS 98.051 ± 0.126 72.298 ± 0.356

MGT+WavePE - -
DRew - -
Exphormer 98.550 ± 0.039 74.696 ± 0.125

Graph-MLPMixer 97.422 ± 0.110 73.961 ± 0.330

GRIT 98.108 ± 0.111 76.468 ± 0.881

CKGCN 98.423 ± 0.155 72.785 ± 0.436

GRED 98.383 ± 0.012 76.853 ± 0.185

Graph Mamba 98.392 ± 0.183 74.563 ± 0.379

GatedGCN 98.684 ± 0.137 76.931 ± 0.367

Dirichlet energy 1.119 1.541

GatedGCN w/o dp 98.235 ± 0.136 71.384 ± 0.397

Dirichlet energy 0.987 0.845

Frobenius norm of features remains relatively stable regardless of dropout application, indicating
that dropout does not uniformly scale all features. The middle panel reveals that dropout consis-
tently doubles the average pairwise distance between nodes, helping maintain distinct node repre-
sentations. Most significantly, the right panel shows that dropout substantially increases Dirichlet
energy. This dramatic rise in Dirichlet energy, compared to the modest changes in Frobenius norm
and pairwise distances, provides compelling evidence that dropout enhances discriminative power
between connected nodes, explaining its effectiveness in preventing oversmoothing rather than sim-
ply reducing co-adaptation.

4.5 Comparison with Dropout Variants

To further explore the practical impact of these different regularization techniques, we conducted
hyperparameter tuning for DropEdge, DropNode, and DropMessage on the Cora, Citeseer, and
Pubmed datasets. The results, summarized in Table 5, demonstrate that while these methods yield
comparable performance, traditional dropout generally performs best.

Table 5: Experimental results of different regularization methods on Cora, Citeseer, and PubMed.

Cora (GCN) CiteSeer (GCN) PubMed (GCN) Cora (SAGE) CiteSeer (SAGE) PubMed (SAGE) Cora (GAT) CiteSeer (GAT) PubMed (GAT)
GNN 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58
GNN+Dropout 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99
GNN+DropEdge 84.88 ± 0.68 72.96 ± 0.38 80.42 ± 1.15 83.10 ± 0.51 71.72 ± 0.92 77.88 ± 1.31 83.44 ± 0.78 71.60 ± 1.14 79.82 ± 0.68
GNN+DropNode 84.92 ± 0.52 73.08 ± 0.39 80.60 ± 0.49 83.42 ± 0.58 71.92 ± 0.65 78.06 ± 1.09 83.80 ± 0.97 71.30 ± 0.87 79.50 ± 0.68
GNN+DropMessage 84.78 ± 0.58 73.12 ± 1.19 80.92 ± 0.88 83.18 ± 0.62 71.22 ± 1.34 78.20 ± 0.80 83.46 ± 1.06 71.38 ± 1.12 79.36 ± 1.22

5 Conclusions

Our comprehensive theoretical analysis of dropout in GCNs has unveiled complex interactions be-
tween regularization, graph structure, and model performance that challenge traditional understand-
ing. These insights not only deepen our understanding of how dropout functions in graph-structured
data but also open new avenues for research and development in graph representation learning. Our
findings suggest the need to reimagine regularization techniques for graph-based models, explore
adaptive and structure-aware dropout strategies, and carefully balance local and global information
in GCN architectures. Furthermore, the observed synergies between dropout and batch normaliza-
tion point towards more holistic approaches to regularization in GNNs. As we move forward, this
work lays a foundation for developing more robust and effective graph learning algorithms, with
potential applications in dynamic graphs, large-scale graph sampling, and adversarial robustness.
Ultimately, this research contributes to bridging the gap between the empirical success of GNNs and
their theoretical foundations, paving the way for designing graph learning models.
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A Appendix

A.1 Proof of Theorem 1

Proof. Let’s approach this proof:

Step 1: For a single feature j, the probability that an edge is present in the sub-graph E(l, j)
t is (1− p)2,

as both endpoints need to retain this feature.

Step 2: The probability that an edge is not present in E(l, j)
t is 1 − (1 − p)2 = p(2 − p).

Step 3: For a sub-graph to be identical to the original graph, all edges must be present. The proba-
bility of this is: ((1 − p)2)|E| = (1 − p)2|E|.

Step 4: Therefore, the probability that E(l, j)
t is different from the original graph (i.e., unique) is

1 − (1 − p)2|E|.

Step 5: Define an indicator random variable X j for each feature j:

X j =

{
1 if E(l, j)

t is unique
0 otherwise

.

Step 6: We have:
P(X j = 1) = 1 − (1 − p)2|E|][P(X j = 0) = (1 − p)2|E|.

Step 7: The expected value of X j is:

E[X j] = 1 · P(X j = 1) + 0 · P(X j = 0) = 1 − (1 − p)2|E|.

Step 8: The total number of unique sub-graphs is
∑dl

j=1 X j. By the linearity of expectation:

E[|E(l, j)
t | j = 1, . . . , dl|] = E[

dl∑
j=1

X j] =
dl∑
j=1

E[X j] = dl(1 − (1 − p)2|E|).

This completes the proof. □
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A.2 Proof of Theorem 5

Proof. We start with the definition of feature energy:

E(H (l)) =
1

2|E|

∑
i, j∈E

∥h(l)
i − h

(l)
j ∥

2
2

Step 1: Taking the expectation:

E[E(H (l))] =
1

2|E|

∑
i, j∈E

E[∥h(l)
i − h

(l)
j ∥

2
2].

.

Step 2: Since
∑

(i, j)∈E[∥hi∥
2 + ∥h j∥

2] = 2
∑

i degi∥hi∥
2:

1
2|E|

∑
i, j∈E

E[∥h(l)
i − h

(l)
j ∥

2
2] =

1
2|E|

∑
i, j∈E

E[∥
1

1 − p
M (l)

i ⊙ z
(l)
i −

1
1 − p

M (l)
j ⊙ z

(l)
j ∥

2
2]

=
1

2|E|(1 − p)2

∑
i, j∈E

E[∥M (l)
i ⊙ z

(l)
i −M

(l)
j ⊙ z

(l)
j ∥

2
2]

=
1

2|E|(1 − p)2

∑
i, j∈E

[(1 − p)(∥z(l)
i ∥

2
2 + ∥z

(l)
j ∥

2
2) − 2(1 − p)2(z(l)

i )⊤z(l)
j ]

=
1

1 − p
1
|E|

∑
i

degi∥z
(l)
i ∥

2
2 −

1
|E|

Tr(Z⊤AZ)

where zi = σ(
∑

k Ãikh
(l−1)
k W (l)).

Step 3: Since degi ≤ degmax for all i:

1
|E|

∑
i

degi∥zi∥
2
2 ≤

degmax

|E|

∑
i

∥zi∥
2
2 =

degmax

|E|
∥Z∥2F .

Step 4: By ReLU non-negative homogeneity and submultiplicative property:

||Z(l)||2F ≤ ||ÃH (l−1)W (l)||2F ≤ ||W
(l)||22||Ã||

2
2||H

(l−1)||2F

Step 5: By dropout scaling with probability p:

||H (l−1)||2F =
1

1 − p
||Z(l−1)||2F

Step 6: By applying steps 4-5 recursively:

||Z(l)||2F ≤ (
1

1 − p
)l−1||Ã||2l

2

l∏
i=1

||W (i)||22||X ||
2
F

Step 7: Combining all inequalities:

E[E(H (l))] ≤
degmax

|E|
(

1
1 − p

)l||Ã||2l
2

l∏
i=1

||W (i)||22||X ||
2
F

□

A.3 Proof of Theorem 6

Proof. The proof proceeds in several steps:

Step 1: Dependency Graph. Let G = (V,E) be the dependency graph where verticesV represent
nodes in the graph, and an edge (i, j) ∈ E exists if nodes i and j are connected through message
passing via Ã. The graph G is fixed across all layers as it is determined by the structure of Ã.
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Step 2: Dropout Effect as Perturbation. At layer l with dropout probability pl, let δ(l) be the
perturbation matrix:

δ(l) =
1

1 − pl
M(l) ⊙ σ(ÃH (l−1)W (l)) − σ(ÃH (l−1)W (l)), (11)

where M(l) has elements drawn from Bernoulli(1 − pl).

Step 3: Perturbation Propagation. Let Fl(X) denote the network output with dropout applied up
to layer l. With Lσ-Lipschitz activation:

Ll =

L∏
i=l

(Lσ∥W (i)∥2 · ∥Ã∥2) (12)

By operator norm properties:

∥Fl(X) − Fl−1(X)∥F ≤ Ll∥δ
(l)∥F (13)

Step 4: Bounding Matrix Perturbation. Let δ(l)i j denote the (i, j)-th entry of δ(l). By Janson’s
inequality for dependent variables over G (Zhang & Amini, 2024):

E

∑
i, j

(δ(l)i j )2

 ≤ 1
χ f (G)

∑
i, j

E[(δ(l)i j )2] (14)

Taking the square root and using the definition of Frobenius norm:

E[∥δ(l)∥F] ≤

√
1
χ f (G)

· E[∥δ(l)∥2F] (15)

=

√
pl

(1 − pl)χ f (G)
∥σ(ÃH (l−1)W (l))∥F (16)

where we use E[(M (l))2] = E[M (l)] = 1 − pl.

Step 5: Loss Stability. By the Lipschitz property of the loss function:

E[|L(Fl(x)) − L(Fl−1(x))|F] ≤ Lloss · E[∥Fl(x) − Fl−1(x)∥F] (17)

≤ Lloss · Ll · Lσ ·
√

pl

(1 − pl)χ f (G)
∥σ(ÃH (l−1)W (l))∥F (18)

Step 6: Final Concentration Bound. Using McDiarmid’s inequality and noting the impact of
message passing through χ f (G), with probability at least 1 − δ:

ED[L(F(x))] − ES [L(F(x))] ≤ O


√

log(1/δ)
n

 L∑
l=1

Lloss · Ll ·

√
pl

(1 − pl)χ f (G)
∥σ(ÃH (l−1)W (l))∥F

(19)

The bound shows that GNNs (χ f (G) > 1 due to message passing) achieve better stability than MLPs
(χ f (G) = 1, no message passing), with the benefit increasing with graph connectivity. □

A.4 Proof of Theorem 7

Proof. Step 1: Start with feature energy and node representation:

E(H (l)) =
1

2|E|

∑
(i, j)∈E

∥h(l)
i − h

(l)
j ∥

2

h(l)
i =

1
1 − p

M (l)
i ⊙ z

(l)
i

where z(l)
i ∈ R

dl and z(l)
i = σ(BN(

∑
k Ãikh

(l−1)
k W (l)))
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Step 2: For the BN output before ReLU at layer l, for each feature dimension d ∈ {1, ..., dl}:

(Y (l)):,d = BN((ÃH (l−1)W (l)):,d) = γ(l)
d

(ÃH (l−1)W (l)):,d − µ
(l)
d√

(σ(l)
d )2 + ϵ

+ β(l)
d

Step 3: For ReLU activation z = max(0, y) at layer l, for each dimension d:

E[(z(l)
d )2] ≥ Φ(β(l)

d /γ
(l)
d ) · (β(l)

d )2

where Φ is the standard normal CDF.

Step 4: Using the BN-induced bound:

∥z(l)
i ∥

2 =

dl∑
d=1

(z(l)
i )2

d

≥

dl∑
d=1

Φ(β(l)
d /γ

(l)
d ) · (β(l)

d )2 > 0

Step 5: For feature energy with merged terms:

E(H (l)) =
1

2|E|

∑
(i, j)∈E

[
1

1 − p
(∥z(l)

i ∥
2 + ∥z(l)

j ∥
2) − 2(z(l)

i )Tz(l)
j ]

≥
1

2|E|

∑
(i, j)∈E

[
1

1 − p
(∥z(l)

i ∥
2 + ∥z(l)

j ∥
2) − (∥z(l)

i ∥
2 + ∥z(l)

j ∥
2)]

=
1

2|E|

∑
(i, j)∈E

(
1

1 − p
− 1)(∥z(l)

i ∥
2 + ∥z(l)

j ∥
2)

=
p

1 − p
1

2|E|

∑
(i, j)∈E

(∥z(l)
i ∥

2 + ∥z(l)
j ∥

2)

=
p

1 − p
1

2|E|

∑
i

degi∥z
(l)
i ∥

2

≥
p · degmin

1 − p
1

2|E|
∥Z(l)∥2F

Then with BN bound:

E(H (l)) ≥
p · degmin

1 − p
1

2|E|

dl∑
d=1

Φ(β(l)
d /γ

(l)
d ) · (β(l)

d )2

□

A.5 Effect of Dropout onMax Singular Values of theWeightMatrices

We analyze why dropout leads to larger weight matrices in terms of spectral norm ∥W ∥2. Consider
the gradient update for weights W (2) between layers:

∂L
∂W (2) = (ÃH (1)

drop)⊤ ×
∂L
∂H (2) = (Ã(H (1) ⊙M (1))/(1 − p))⊤ ×

∂L
∂H (2) (20)

where p is the dropout rate and M1 is the dropout mask. This leads to weight updates:

∆W (2) = −η(ÃH (1)
drop)⊤ ×

∂L
∂H (2) = −η(Ã(H (1) ⊙M (1))/(1 − p))⊤ ×

∂L
∂H (2) (21)

The 1/(1 − p) scaling factor in dropout has two key effects: 1) For surviving features (where
M(1)

i j = 1), the gradient is amplified by 1/(1 − p). This leads to larger updates for these weights
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during training. 2) During each iteration, different subsets of features survive, but their gradients are
consistently scaled up. Over many iterations, this accumulates to larger weight values despite the
unbiased expectation maintained by dropout. Specifically, with dropout rate p when p = 0.5, sur-
viving gradients are doubled. This amplification effect compounds over training iterations. While
dropout maintains unbiased expected values during forward propagation, the consistent gradient
scaling during backward propagation leads to systematically larger weight magnitudes. Empirically,
we observe that higher dropout rates correlate with larger spectral norms ∥W ∥22 (as shown in Fig-
ure 5), supporting this theoretical analysis. The increased weight magnitudes directly contribute to
higher feature energy E(H (2)) during inference, as:

E(H (2)) =
1

2|E|

∑
(i, j)∈E

∥h(2)
i − h

(2)
j ∥

2
2 (22)

where larger weights produce more distinctive features between connected nodes, helping mitigate
oversmoothing.

Figure 5: Effect of dropout on max singular values of the weight matrices.

A.6 Empirical Validation of Theoretical Properties

In this section, we provide empirical evidence supporting the theoretical properties derived in Sec-
tion 3.

Dimension-Specific Stochastic Sub-graphs. Figure 6 shows how varying dropout rates impact the
number of edges Et in stochastic sub-graphs of a 2-layer GCN, defined by Equation 3, across the
Cora and Citeseer datasets. We observe that higher dropout rates correlate with fewer edges in these
sub-graphs. This variation demonstrates dropout’s role in GCNs as a form of structural regulariza-
tion, where dimension-specific stochastic sub-graphs are generated. Each feature dimension samples
a different sub-graph from the original graph at each iteration. This mechanism provides a rich set
of structural variations during training, potentially enhancing the model’s ability to capture diverse
graph patterns. Figures 7 & 8 illustrate the behavior of active features along paths of length 1 and 2
within a 2-layer GCN equipped with 16 hidden dimensions, across varying dropout rates. Notably,
at a dropout rate of 0.6, the average number of active features approaches zero. This characteristic
also underscores the importance of multidimensional feature spaces in ensuring robust information
transmission under feature dropout.

Degree-Dependent Nature of Dropout Effects. Figure 9 demonstrates that dropout affects the
effective degree of nodes. Figure 10 illustrates that the CV decreases as node degree increases.
This degree-dependent effect distinguishes dropout in GCNs from its application in standard neu-
ral networks and suggests that the optimal dropout strategy for GCNs may need to consider the
graph structure explicitly. Figure 11 presents empirical evidence supporting Theorem 3 (Degree-
Dependent Dropout Effect), which predicts that high-degree nodes experience relatively less varia-
tion in their effective degree due to dropout. The figure shows classification accuracy on the Cora
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Figure 6: Sub-graph size. Figure 7: Active path on Cora. Figure 8: Active path on Citeseer.

Figure 9: Effective degree. Figure 10: Effective CV vs de-
gree. Figure 11: Accuracy on Cora.

dataset broken down by node degree, demonstrating that nodes with higher degrees consistently
achieve better performance. This aligns with our theoretical finding that high-degree nodes maintain
more stable representations under dropout, as their effective degree has lower coefficient of variation.
The observed pattern confirms that dropout naturally provides adaptive regularization that adjusts to
the local graph structure, with stronger stabilizing effects for topologically important nodes.
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