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ABSTRACT

Despite their popularity in learning problems over graph structured data, exist-
ing Graph Neural Networks (GNNs) have inherent limitations for fundamental
graph problems such as shortest paths, k-connectivity, minimum spanning tree and
minimum cuts. In all these instances, it is known that one needs GNNs of high
depth, scaling at a polynomial rate with the number of nodes n, to provably encode
the solution space. This in turn affects their statistical efficiency thus requiring
a significant amount of training data in order to obtain networks with good per-
formance. In this work we propose a new hybrid architecture to overcome this
limitation. Our proposed architecture that we call as GNN+ networks involve a
combination of multiple parallel low depth GNNs along with simple pooling layers
involving low depth fully connected networks. We provably demonstrate that for
many graph problems, the solution space can be encoded by GNN+ networks using
depth that scales only poly-logarithmically in the number of nodes. This signifi-
cantly improves the amount of training data needed that we establish via improved
generalization bounds. Finally, we empirically demonstrate the effectiveness of
our proposed architecture for a variety of graph problems.

1 INTRODUCTION

In recent years Graph Neural Networks (GNNs) have become the predominant paradigm for learning
problems over graph structured data (Hamilton et al., 2017; Kipf & Welling, 2016; Veličković et al.,
2017). Computation in GNNs is performed by each node sending and receiving messages along the
edges of the graph, and aggregating messages from its neighbors to update its own embedding vector.
After a few rounds of message passing, the computed node embeddings are aggregated to compute
the final output (Gilmer et al., 2017). The analogy to message passing leads to a simple and elegant
architecture for learning functions on graphs. On the other hand, from a theoretical and practical
perspective, we also need these architectures to be sample efficient, i.e., learnable from a small
number of training examples, where each training example corresponds to a graph. Recent works
have shown that generalization in GNNs depends upon the depth of the architecture, i.e., the number
of rounds of message passing, as well as the embedding size for each node in the graph (Garg et al.,
2020). However, this requirement is in fundamental conflict with the message passing framework.
In particular, using GNNs to compute several fundamental graph problems such as shortest paths,
minimum spanning tree, min cut etc., necessarily requires the product of the depth of the GNN and the
embedding size to scale as

√
n where n is the size of the graph (Loukas, 2020). This in turn places a

significant statistical burden when learning these fundamental problems on large scale graphs. The
above raises the the following question: Can one develop sample efficient architectures for graph
problems while retaining the simplicity of the message passing framework?

Several recent works have tried to address the above question by proposing extensions to the basic
GNN framework by augmenting various pooling operations in conjunction with message passing
rounds to capture more global structure (Ying et al., 2018; Simonovsky & Komodakis, 2017; Fey
et al., 2018). While these works demonstrate an empirical advantage over GNNs, we currently do
not know of a general neural architecture that is versatile enough to provably encode the solution
space of a variety of graph problems such as shortest paths and minimum spanning trees, while being
significantly superior to GNNs in terms of statistical efficiency. In this work we propose a theoretically
principled architecture, called GNN+ networks for learning graph problems. While the basic GNN
framework is inspired from classical message passing style models studied in distributed computing,
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we borrow from two fundamental paradigms in graph algorithm design namely, sketching and parallel
computation, to design GNN+ networks. As a result of combining these two powerful paradigms,
we get a new neural architecture that simultaneously achieve low depth and low embedding size for
many fundamental graph problems. As a result our proposed GNN+ architecture have a significantly
smaller number of parameters that provably leads to better statistical efficiency than GNNs. Before
we present our improved architecture, we briefly describe the standard GNN framework.

Model for GNNs. In this work we will study GNNs that fall within the message passing framework
and using notation from previous works we denote such networks as GNNmp (Loukas, 2020). A
GNNmp network operates in the AGGREGATE and COMBINE model (Gilmer et al., 2017) that
captures many popular variants such as GraphSAGE, Graph Convolutional Networks (GCNs) and
GIN networks (Hamilton et al., 2017; Kipf & Welling, 2016; Xu et al., 2019a). Given a graph
G = (V,E), let x(k)

i denote the feature representation of node i at layer k. Then we have

a
(k−1)
i = AGGREGATE({x(k−1)

j : j ∈ N(i)}) (1)

x
(k)
i = COMBINE(x

(k−1)
i , a

(k−1)
i ). (2)

Here N(i) is the set of neighbors for node i. Typically the aggregation and combination is per-
formed via simple one or two layer full connected networks (FNNs), also known as multi layer
perceptrons (MLPs). In the rest of the paper we will use the two terms interchangeably.

GNN+ Networks. Our proposed GNN+ networks consist of one or more layers of a GNN+

block shown in Figure 1. The GNN+ block comprises of r parallel GNNmp networks follows by s
parallel fully connected network modules for pooling where r and s are the hyperparameters of the
architecture. More importantly we restrict the r GNNmp modules to share the same set of weights.
Hence the parallel GNNmp modules only differ in the way the node embeddings are initialized.
Furthermore, we restrict each GNNmp to be of low depth. In particular, for degree-d graphs of
diameter D, over n nodes, we will restrict the GNNmp to be of depth O((d + D) · polylog(n)).
Similarly, we require the s fully connected networks to be of depth O((d + D) · polylog(n)) and
share the network weights. We connect the outputs of the GNNmp modules to the fully connected
pooling networks in a sparse manner and restrict the input size of each fully connected network to
be O((d + D) · polylog(n)). Stacking up L layers of GNN+ blocks results in a GNN+ network
that is highly parameter efficient and in total has O((d + D)L · polylog(n)) parameters. For such
a network we call the depth as the total number of message passing rounds and the number of
MLP layers used across all the L stacks. Since we restrict our MLPs and GNNmp blocks inside a
GNN+ network to be of low depth, we will often abuse notation and refer to a GNN+ architecture
with L stacks of GNN+ blocks as a depth L architecture. Our proposed design lets us alternate
between local computations involving multiple parallel GNN blocks and global post-processing
stages, while still being sample efficient due to the enforced parameter sharing. We will show
via several applications that optimal or near-optimal solutions to many popular graph problems
can indeed be computed via a GNN+ architecture. Below we briefly summarize our main results.

GNN1

MLP1

GNN2 GNNr

MLPs

Figure 1: The basic GNN+ block.

Overview of Results. To demonstrate the general-
ity of our proposed GNN+ architecture, we study
several fundamental graph problems and show how
to construct efficient GNN+ networks to compute
optimal or near optimal solutions to these problems.
In particular, we will focus on degree-d graphs, i.e.,
graphs of maximum node degree d, with n nodes and
diameter D and will construct GNN+ networks of
depth polylog(n) and O

(
(D + d)polylog(n)

)
total

parameters.

Shortest Paths. The first problem we consider is the fundamental graph problem of computing
(approximate) all pairs shortest paths in undirected graphs. Given a graph G = (V,E), let dG(u, v)

be the shortest path between nodes u and v. We say that an output {d̃G(u, v) : u, v ∈ V } is an
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α-approximate solution if for all u 6= v it holds that

dG(u, v) ≤ d̃G(u, v) ≤ αdG(u, v).

We construct efficient GNN+ networks for all pairs shortest paths with the following guarantee.

Theorem 1 (Informal Theorem). For any constant c > 1, there is a depth O(D log d+ log n) GNN+

network with O
(
(n

2
c + d)polylog(n)

)
parameters that computes (4c − 2)-approximate all pairs

shortest paths in the undirected unweighted degree-d graphs over n nodes. On the other hand,
computing a c-approximate shortest paths using GNNmp networks requires a network of depth Ω(n).

From the above theorem we see that by setting c = O(log n) we can encode a c-approximate solution
using an O(D log d+ log n) GNN+ network with only O(d ·polylog(n)) parameters. This is in stark
contrast with the depth requirement of Ω(n) for the traditional GNNmp networks.

Connectivity Measures. Next we consider computing various graph connectivity measures. We
first study the popular measure based on graph effective resistances (Chandra et al., 1996).

Definition 1 (Effective Resistance). Let G be a weighted undirected graph G with adjacency matrix
A and the associated Laplacian L = D − A. Given an edge u, v, the effective resistance between
u, v is defined as

Ru,v = ξ>u,vL
†ξu,v.

Here ξu,v is an n dimensional vector with +1 at position u, −1 at position v and zeros everywhere.
L† refers to the matrix pseudo-inverse.

We also study the following connectivity measure that was proposed by Panigrahy et al. (2012) in
the context of web graphs. Given an undirected graph G, let Gp be the random graph obtained by
sampling each edge with probability p.

Definition 2 (Affinity). For any two vertices u, v and for p ∈ [0, 1], define Ap(u, v) to be the
probability that u, v are connected in Gp. Then the affinity between u and v is defined as

A(u, v) = Ep[Ap(u, v)]

where the expectation is taken over p drawn from the uniform distribution in [0, 1].

For the above measures we show the following

Theorem 2 (Informal Theorem). There exists a GNN+ architecture with O(D log(nd)) parameters,
and depth O(D log(nd)) on graphs of diameter D with n nodes and maximum degree d, that
approximate the above connectivity measures up to constant factors. On the other hand using GNNmp

networks to compute the above measures, even approximately, necessarily requires a network of
depth Ω(

√
n).

Clustering, Minimum Cuts and Minimum Spanning Trees. Finally, we showcase the power of
a GNN+ architecture for computing other fundamental graph problems. Given an undirected graph
G, the spectral clustering of G corresponds to the cut obtained by taking the sign of the eigenvector
v corresponding to the second smallest eigenvalue λ2(L), where L is the graph Laplacian. For
computing the spectral clustering via GNN+ networks we show the following

Theorem 3 (Informal Theorem). There is a GNN+ network of depth ` = O( 1
λ2(L)ε2 log n), with

O(d) parameters that computes an ε-approximate spectral clustering on graphs of degree d. On the
other hand, using GNNmp networks to even approximately compute the spectral clustering requires
depth Ω(

√
n).

Next we consider the classical problems of computing a global minimum cut and minimum spanning
trees in undirected graphs.

Theorem 4 (Informal Theorem). There exist GNN+ networks of of depth O((D+ log n) log n), and
O(d) parameters for computing a global minimum cut (MINCUT ) and minimum spanning tree (MST)
in degree d graphs of diameter D. Furthermore, using GNNmp networks to compute these primitives
(even approximately) necessarily requires depth Ω(

√
n).
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Generalization Bounds. Our final result concerns the generalization properties of a depth L
GNN+ architecture. For ease of exposition, we state here the results for the case when the GNN+

architecture produces a one dimensional output. More general results are presented in Appendix D.
Our generalization bounds depend on the depth L and the total number of parameters P in the
GNN+ network. Following recent work on providing generalization bounds for fully connected
and convolutional neural networks (Bartlett et al., 2017; Long & Sedghi, 2020) that are based on
distance to initialization, we consider the class Fβ of depth L GNN+ networks with P parameters
that are at a distance β from a reference parameter configuration (typically the parameters at random
initialization). Let y ∈ R denote the output of the network and consider a Lipschitz loss function
`(y, ŷ). Then, we provide following guarantee.

Theorem 5 (Informal Theorem). Let `(ŷ, y) be a Lipschitz loss function bounded in [0, B]. Then,
given m i.i.d. samples (G1, y1), (G2, y2), . . . (Gm, ym) generated from a distribution D, with proba-
bility at least 2/3, it holds that for all f ∈ Fβ ,∣∣∣ÊD[`f ]− ED[`f ]

∣∣∣ ≤ O(B√P (β + L)

m

)
.

We refer the reader to Theorem 16 in Appendix D for a formal statement and the proof. Notice that
the above theorem implies that our proposed GNN+ architecture for the above graph problems can
indeed be trained using very few samples as opposed to the traditional GNNmp networks since the
GNN+ network requires much fewer parameters and depth. Furthermore, since a GNNmp network
is a special case of a GNN+ architecture, our analysis also leads to an improved bound on the
generalization guarantees for GNNmp networks as well. In particular, the above theorem improves
upon the recent work of Garg et al. (2020) that provides generalization guarantees for training GNNs
that scale with the branching factor of the graph. Using our improved analysis we are able to remove
this dependence on the branching factor. See Appendix D for details.

2 RELATED WORK

GNNs operate primarily in the message passing framework where nodes aggregate and combine
messages from their neighbors to update their embeddings. Several variants of this basic paradigm
have been proposed, with each differing in how the aggregation and combination is performed.
Popular variants include GraphSAGE (Hamilton et al., 2017), Graph Convolutions Networks (Kipf &
Welling, 2016), GIN networks (Xu et al., 2019a), and graph pooling (Ying et al., 2018).

Various recent works have also studied the representation power of GNNs. The work of Xu et al.
(2019a) demonstrates that the GNNs as considered in equation 1 are as powerful as the Weisfeiler-
Lehman test for graph isomorphism (Weisfeiler & Lehman, 1968). The recent work of Xu et al.
(2019b) compares the message passing framework of GNNs in representing computations involving
dynamic programming. GNN networks that can capture higher order variants of the WL test have
also been proposed recently (Maron et al., 2019).

Several works have also explored the limitations of GNNs for computing graph primitives. The
work of Loukas (2020) established a correspondence between the message passing GNN framework
and the well studied CONGEST model of distributed computing (Peleg, 2000). Based on the above
correspondence it follows that in order to represent several important graph problems such as shortest
paths, minimum cuts and minimum spanning tree, either the depth of the GNN or the embedding
size of the nodes has to scale with the graph size at a polynomial rate. Notice that these lower
bounds apply to any form of message passing framework and as a result recent work in incorporating
non-symmetric node messages (Sato et al., 2019) in GNNs also run into the same barriers.

In order to address the above limitations recent works have proposed combining the GNN architecture
with pooling mechanisms for aggregating more global information (Ying et al., 2018; Defferrard
et al., 2016; Simonovsky & Komodakis, 2017; Fey et al., 2018; Bianchi et al., 2019; Du et al.,
2019). For example the work of Ying et al. (2018) proposes a hierarchical approach where a GNN
network is followed by a clustering step to compute higher level “nodes” to be used in the subsequent
GNN operation. While these approaches show empirical promise, ours is the first work to design a
principled architecture with theoretical guarantees that merges local distributed computations with
global postprocessing stages.
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Finally, the question of generalization for GNNs has also been studied in recent works. The most
relevant to us is the recent work of Garg et al. (2020) that analyzes the Rademacher complexity of
GNNs with the aggregate mechanism being a simple addition and the combine mechanism being
a one layer neural network. Via analyzing the Rademacher complexity the authors show that the
generalization for GNNs depends on the depth, the embedding size and the branching factor of
the graph. Our improved analysis in Section D extends the result of Garg et al. (2020). Not only
does our generalization bound apply to the more general GNN+ networks, for the case of GNNs
considered in (Garg et al., 2020) our analysis shows that the dependence on the branching factor can
be eliminated in the generalization bounds. Generalization bounds have also been proved recently
for GNN based networks that use the Neural Tangent Kernel (NTK) during the aggregation and
combination operations (Du et al., 2019).

3 SHORTEST PATHS

In this section we provide a proof sketch of Theorem 1 showing how to construct an efficient GNN+

architecture for the Shortest Paths problem. In particular we study all pairs shortest paths.

All Pairs Shortest Paths. The input is a graph G = (V,E) with n nodes. The desired output is an(
n
2

)
dimensional vector containing (approximate) shortest path values between each pair of vertices.

Given a graph G, let dG(u, v) be the shortest path between nodes u and v. We say that an output
{d̃G(u, v) : u, v ∈ V } is an α-approximate solution if for all u 6= v it holds that

dG(u, v) ≤ d̃G(u, v) ≤ αdG(u, v).

We first show that the GNNmp networks are highly inefficient for learning this problem.

Theorem 6. Consider a GNNmp N of depth L over n nodes where each node has a representation
size of B. If N encodes α-approximate all pairs shortest paths for graphs of diameter bounded by
D, and for α < 3/2, then it must hold that B · L ≥ Ω(n). Furthermore, the lower bound holds for
undirected unweighted graphs as well.

Proof. The recent work of Loukas (2020) established that computation in GNNmp networks is
equivalent to the CONGEST model of computation popularly studied in the design of distributed
algorithms (Peleg, 2000). In particular, a lower bound on the product of depth (L) and representation
size (B) can be obtained by establishing the corresponding lower bound on the product of the number
of rounds and the size of messages in the CONGEST model of computing. Furthermore, the result
of Holzer & Wattenhofer (2012) shows that in the CONGEST model approximating all pairs shortest
paths, even on unweighted undirected graphs requires the product of the number of rounds and the
message size to be Ω(n). Hence the corresponding lower bound on B · L follows.

Circumventing Lower Bounds via GNN+. Next we detail our proposed GNN+ architecture that
can encode approximate shortest paths with significantly smaller depth and parameter requirements.

Unweighted Graphs. To illustrate the main ideas we study the case of undirected unweighted graphs.
See Appendix A for the more general case of weighted graphs. The starting point of our construction
is the following fundamental theorem of Bourgain (1985) regarding metric embeddings.

Theorem 7 ((Bourgain, 1985)). Any n-point metric (X, d) can be embedded into the Euclidean
metric of dimensionality O(log n) and distortion O(log n).

The above theorem suggests that in principle, if we only want to estimate shortest paths up to an
approximation of O(log n), then we only need node embeddings of size O(log n). If there were a
GNNmp network that could produce such embeddings, then one could simply compute the Euclidean
distance between each pair of points to get the approximate shortest path. Furthermore, computing
the Euclidean distance given the node embeddings can be done easily via a low depth full connected
network. Unfortunately, producing the necessary low dimensional embeddings is exactly the task for
which GNNmp networks require large depth as proved in Theorem 6 above. While there do exist semi-
definite programming based algorithms (Linial et al., 1995) for computing the embeddings required
for Bourgain’s theorem, they are not suitable for implementation via efficient neural architectures.
Instead we rely on sketching based algorithms for computing shortest path distances.
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In particular, for the unweighted case we adapt the sketch based approximate shortest path algorithms
of Das Sarma et al. (2010) for designing an efficient network architecture. The sketch proposed in
the work of Das Sarma et al. (2010) computes, for each node u, the distance of u from a random
subset S of the nodes. This can be done via a simple breadth first search (BFS). Repeating this
process k-times provides a k-dimensional embedding for each vertex and for an appropriate choice
of k, these embeddings can be used to compute approximate shortest paths. Notice that this sketch
based procedure is highly amenable to be implemented in a message passing framework. Overall, the
algorithm performs multiple parallel BFS subroutines to compute the embeddings. It is also well
known that BFS on diameter D can be implemented by a GNNmp of depth O(D).

Based on the above intuition, our proposed architecture is shown in Figure 2. It consists of k parallel
breadth first search (BFS) modules for k = Θ(n

1
c log n) for a constant c > 1. Module i computes the

shortest path from each vertex in G to any vertex in the set Si. The sets S1, S2, . . . , Sk are randomly
chosen subsets of the vertex set V of various sizes. In particular there are Θ(n

1
c ) subsets of size 1,

Θ(n
1
c ) subsets of size 2, Θ(n

1
c ) subsets of size 22, and so on up to Θ(n

1
c ) subsets of size 2blognc.

The BFS module i produces n distance values v(i)
1 , . . . , v

(i)
n . These modules are followed by

(
n
2

)
fully connected networks where each module is responsible for computing the approximate shortest
path distance between a pair of vertices. In particular we have d̃G(s, t) = maxi |v(i)

s − v(i)
t |.

Figure 2: The network architecture for approximate all pairs
shortest paths in unweighted graphs.

Notice from the discussion in Sec-
tion 1 that the architecture in Fig-
ure 2 is a GNN+ network with a sin-
gle GNN+ block. In the next section
we will show how we can generalize
to a suite of graph problems by stack-
ing up multiple GNN+ blocks. For
our proposed network we have the fol-
lowing guarantee.
Theorem 8. For any constant c > 1,
and for a fixed graph topology over
n nodes with maximum degree d and
diameter D, there exists a neural net-
work as shown in Figure 2 of size
O(n2+1/c), Õ(n

2
c ) parameters, and

depth O(D log d + log n), that en-
codes (2c− 1)-approximate all pairs
shortest paths in G.

Before proving the theorem above we establish two supporting lemmas concerning the implementation
of the BFS modules and the MLP module in the network architecture described in Figure 2.
Lemma 1. The BFS module in Figure 2 can be implemented by a GNN of depth O(D), O(1) total
parameters and with each node having a representation size of O(1).
Lemma 2. For any k, the MLP module in Figure 2 can be implemented by a network of depth
O(log k), O(k2) total parameters.

Proof of Theorem 8. The correctness of the network architecture follows from the work of Das Sarma
et al. (2010). Next we establish bounds on the total depth, size and the number of parameters. We
have k = Θ(n

1
c log n) copies of the BFS module. Each BFS module is of size O(nd log d) since

there are n nodes and each node implements a min function of size O(d log d). Hence, in total
the BFS modules have size O(n1+1/cd log d log n). Next we have

(
n
2

)
MLP modules each of size

O(k log k) for a total size of O(n2+1/c log n). Hence the total size of the neural network is bounded
by O(n2+1/c log n).

Next we bound the depth and the total number of parameters. The BFS module has O(D) rounds
with each requiring a depth of O(log d) for a total depth of O(D log d). The MLP module has a
depth bounded by O(log k) = O(log n). Hence the total depth is O(D logD + log n). Finally, the
BFS module requires O(1) parameters and the MLP module requires O(k2) parameters. Hence, the
total number of parameters in our architecture are bounded by O(k2) = O(n2/c).

6



Under review as a conference paper at ICLR 2021

4 MINIMUM CUTS

To illustrate another application, in this section we design an efficient GNN+ based architecture
for computing the minimum cut in an undirected graph. We first argue in Appendix C that even
computing an approximate mincut using traditional GNNmp networks requires Ω(

√
n) rounds. Our

efficient GNN+ based architecture is based on the parallel algorithm for computing mincut (Karger
& Stein, 1996) and is shown in Figure 3. More importantly the architecture comprises of mul-
tiple layers of GNN+ blocks in contrast to a single GNN+ block in the case of shortest paths.

G

GNN

GNN

Update Prefix

Update Prefix

Figure 3: The network archi-
tecture for minimum cut.

The algorithm of Karger & Stein (1996) relies on the following
lemma.
Lemma 3 ((Karger & Stein, 1996)). Letm be the number of edges in
the graph and let L be a random ordering of the m edges. Then with
probability at least 1

n2 , there exists a prefix L′ of L such that con-
tracting the edges in L′ results in exactly two connected components
corresponding to the global minimum cut. in the graph.

The above suggests a natural neural architecture of depth
O(logm) = O(log n) that aims to mimic a binary search proce-
dure to infer the correct prefix L′. At each of the O(log n) stages,
each vertex maintains a list of which of its connecting edges are ac-
tive, i.e., not contracted. This requires O(d) representation size. The
goal next is to infer whether the number of connected components
induced by the active edges is one, two, or more than two. This in
turn decides the part of the ordering the next stage will focus on
and which edges will become inactive during the current stage. The
computation of connected components can be carried out using at
most two breadth first searches and hence via O(D) rounds of a
GNNmp network. Following this intuition we arrive at the proposed
architecture in Figure 3. Formally, we have the following guarantee.
Theorem 9. For a fixed graph topology over n nodes with maximum degree d and diameter D, the
network in Figure 3 produces the minimum cut. Furthermore, the network is of depth ` = O(D log2 n),
size O(n`), and has O(d+ log n) parameters.

Proof. Each vertex maintains an O(d) sized representation indicating which of its edges are currently
active. The GNN module simply performs a BFS over active edges starting from a specified vertex
(output by the Update Prefix module). Initially random ordering of the edges is chosen. The goal
of the Update Prefix module is to update the current prefix in this ordering that specifies the set
of active edges. Let L be the initial ordering of the edges. Then the guarantee from Karger &
Stein (1996) implies that with probability at least 1/n2 there exists a prefix L′ of L such that the
subgraph comprising of edges in L′ consists of exactly two connected components corresponding
to the optimal mincut. Hence, given the output of the BFS performed by the GNN, the Update
Prefix module has to decide if the number of connected components is more than two, and update
the prefix accordingly. This can be implemented by an MLP using O(log n) depth and O(logm)
parameters where m is the number of edges in the graph. Hence overall we get O(D log n) depth
and O(d+ log n) parameters.

5 EXPERIMENTS

We show the efficacy of GNN+ on the aforementioned graph problems: Shortest Paths, Effective
Resistance, Affinity, MINCUT and MST, and compare to a state-of-the-art GNNmp model (Xu et al.,
2019a).

Dataset. We generated synthetic random graphs between 500 and 1000 nodes. For the affinity
measure, we used graphs with 250 nodes because of the need for using very dense graphs to have a
reasonable number of alternate paths between any two end points. In general, we generated the data
sets as follows: we fix the number of nodes n in the graph to take values in [250, 1000]. For each value
of n we generate graphs from the Erdos-Renyi model G(n, p) with edge sampling probability p = α

n .
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We vary α depending on the problem. Specifically, we set α to be a constant in [1, 100] to capture
varying degrees of sparsity. For each n, p we generate 30, 000 training examples consisting of tuples
of the form (G, s, t, d(s, t)) where G is a random graph drawn from G(n, p), s, t are two vertices
uniformly drawn at random and d(s, t) is one of shortest path value, effective resistance, or affinity
between the two vertices. In the case of min cut and minimum spanning tree, we generate tuples
(g, vG) where vG corresponds to the value of the minimum spanning tree or the global minimum cut.

Models and Configurations. For our baseline GNNmp implementation, we used the GIN model
proposed in Xu et al. (2019a). This has been empirically shown (Xu et al., 2019a; Loukas, 2020; Errica
et al., 2020) to be a state-of-the-art GNNmp model on several datasets. GIN updates feature represen-
tations x(k)

v of each node v at iteration k as: x(k)
v = MLP

(
(1 + ε(k)) · x(k−1)

v +
∑
u∈N(v) x

(k−1)
u

)
,

where MLP refers to a Multi-Layer Perceptron, N(v) is the set of neighbors of v, and ε is a learnable
parameter. For problems that involved weighted graphs (e.g. MST), we incorporated edge weights
into the GIN update equation by replacing the sum of neighbor representations by a weighted sum.

Our GNN+ implementation also used the same GIN implementation as its internal GNNmp block.
All graphs in our experiments were undirected. For both baseline and GNN+, we used node degree as
the input node features for MINCUT and MST. For Shortest Paths, Effective Resistance and Affinity,
we set input node features to be Booleans indicating if the node is a source/destination node or not.

Following Xu et al. (2019a), we performed 10-fold cross-validation for each of our experiments
(corresponding to the two models and five problems), and report the average validation mean squared
error(MSE) across the 10 folds. We run each 10-fold cross-validation experiment 10 times to compute
confidence intervals. We apply batch normalization at each layer, and use an Adam optimizer and
decay the learning rate by 0.5 every 50 epochs, and train for up to 600 epochs. For both the
baseline GNNmp and the GNN+ model, we tune the following parameters: initial learning rate
∈ {0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05}, number of hidden units ∈ {8, 16, 32, 64}, batch-
size ∈ {32, 64}, dropout ∈ {0, 0.5}. For GNNmp we also tuned the depth (number of layers)
∈ {2, 4, 8, 12}. For the GNN+ model, we tuned the number of parallel GNNs in each GNN+ block
to ∈ {1, 2, 3} with GNN depth ∈ {2, 4}. We also tuned the number of GNN+ layers ∈ {1, 2, 3}. We
fixed the depth of each MLP block in GNNmp and GNN+ to 2.

Problem Label Variance Avg. MSE (GNNmp) Avg. MSE (GNN+)

Shortest Path 7.482 0.975± 0.031 0.849± 0.022
Effective Resistance 7.949 0.397± 0.025 0.187± 0.008

Affinity 3.030 0.0025± 1.75e−04 0.0018± 1.89e−05
MST 4637.4 1011.39± 106.94 733.901± 30.97

MINCUT 11.964 0.963± 0.110 0.694± 0.07

Table 1: Performance of the GNNmpand GNN+ architectures

Results. To validate our theory regarding the better generalization bounds for GNN+ models
compared to GNNmp, we compare the test mean squared errors for the two models across the five
datasets. For all the five problem, Table 1 lists the test MSEs and corresponding standard deviations
for the two models. As a sanity check, we also plot the variance of the labels in our datasets, which
corresponds to the MSE obtained by a naive model that predicts the mean label. We observe significant
gains in accuracy of anywhere between 15% relative MSE improvement over the GNNmp baseline
(for Shortest Paths) to as much as 108% relative MSE improvement (for Effective Resistance). Note
that the naive mean predictor’s MSE is at least an order of magnitude larger than all the MSE values
for GNNmp and GNN+ (except for the MSTdataset, where it is around five times larger - we suspect
that the weighted graphs involved in this dataset make this a harder problem).

We posit that these accuracy gains directly stem from the sample-efficiency of the GNN+ models
as captured in Theorems 1,2 and 4 - the most compact GNN+ networks that can represent these
problems are smaller than the corresponding most compact GNNmp networks. Hence, by Theorem 5,
such networks will have smaller generalization errors. In the appendix, we also plot the test accuracy
as a function of number of epochs that suggest that our models also converge faster than the baseline
GNNmp models, though we do not have any theoretical justification supporting this observation.
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A SHORTEST PATHS

Unweighted Graphs. We first provide more technical details for the case of unweighted graphs,
followed by the generalization to the weighted case.

We start with describing the construction of the BFS module in Figure 2. Recall that the BFS module
i produces n distance values v(i)

1 , . . . , v
(i)
n . These modules are followed by

(
n
2

)
fully connected

networks where each module is responsible for computing the approximate shortest path distance
between a pair of vertices. In particular we have

d̃G(s, t) = max
i
|v(i)
s − v

(i)
t |.

We restate and prove the following lemmas concerning the implementation of the BFS modules and
the MLP module in the network architecture described in Figure 2.

Algorithm 1 BFS module

1: function BFS(Graph G, subset S)
2: Initialize x(0)

i = 0 if i ∈ S and∞ otherwise.
3: for t = 1, . . . , D do
4:

a
(k−1)
i = min({x(k−1)

j : j ∈ N(i)})

x
(k)
i = min(x

(k−1)
i , a

(k−1)
i ).

5: Output {x(D)
1 , . . . , x

(D)
n }.

Lemma 4 (Restatement of Lemma 1). The BFS module in Figure 2 can be implemented by a GNN
of depth O(D), O(1) total parameters and with each node having a representation size of O(1).

Proof. The implementation of the BFS module is shown in Algorithm 1. Notice that each node i
stores two values, namely a`i and v`i where ` denotes the current depth of the GNN. In total we have a
depth of D corresponding to the total number of iterations and in each iteration one needs to compute
the minimum of up to d values. The min operation can be implemented by a one dimensional CNN
of depth O(log d) with a kernel of size 2 and ReLU activations, as described in Arora et al. (2016).
Since the min operation is repeatedly applied and has a kernel of constant size, in total we have O(1)
parameters.

Next we show how to implement the MLP module in Figure 2.

Algorithm 2 MLP module

1: function MLP(v(1)
s , v

(1)
t , . . . , v

(k)
s , v

(k)
t )

2: For i = 1, . . . , k, compute ri,1 = v
(i)
s − v(i)

t and ri,2 = v
(i)
t − v

(i)
s .

3: Output maxi maxj ri,j .

Lemma 5 (Restatement of Lemma 2). For any k, the MLP module in Figure 2 can be implemented
by a network of depth O(log k), O(k2) total parameters.

Proof. The MLP module is sketched in Algorithm 2. In the first step the module computes ri,j values
for i = 1 to k and j ∈ {1, 2}. This can be easily computed by a depth one linear network of width 2k
and O(k2) total parameters. In the next step, the module has to compute the maximum of 2k values.
Similar to the implementation of the BFS module, this can be done by a depth O(log k) network with
ReLU activations and O(1) total parameters.
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Figure 4: The network architecture for approximate all pairs shortest paths in weighted graphs.

Weighted Graphs. We next consider the case of weighted graphs with polynomially bounded
weights. We denote by w(u, v) the weight of the edge (u, v) ∈ E. In this case, we again follow
the sketch based approach of Das Sarma et al. (2010) as in Figure 2. However, we replace the BFS
module with a shortest path module to compute weighted shortest paths from vertices in sets Si
to the rest of the vertices in G. The new architecture in this case is shown in Figure 4. Next we

Algorithm 3 SP module

1: function SP(G, S, C)
2: Set h = |C|. Compute h hop distances d̂(x, v) from each x ∈ C to each v ∈ V .
3: Using distances d̂ compute shortest distance d′() between vertices in C to any vertex in S.
4: Compute and output h-hop distances between vertices in G to any vertex in S using the

weighting scheme w′ where

w′(u, v) =

{
d′(u, v), if (u, v) ∈ (S × C) \ E
2w(u, v), if (u, v) ∈ E \ (S × C)
min(d′(u, v), 2w(u, v)), if (u, v) ∈ E ∩ (S × C)

}

describe the implementation of the shortest path module (SP). The module implements the algorithm
of Forster & Nanongkai (2018) who designed a 2-approximate single source shortest path algorithm
in the CONGEST model of computation. As before SP module i takes as input the graph G, the set
of vertices Si. Furthermore, it also takes as input a subset Ci of O(

√
nD) vertices that are used to

approximate shortest path distances. The SP module is sketched in Algorithm 3. We next prove the
following regarding implementing the SP module as a neural network.

Lemma 6. The Shortest Path module in Algorithm 3 can be implemented by a neural network with
depth O(

√
nD log d), size O(n

√
nD) and O(1) total parameters.

Proof. We will implement the shortest path module using the GNN framework. Each node will
have a representation size of O(d + log n). This will let the hold original graph distances w(), as
well as the distances d̂ and the weights w′ in step 4 of the algorithm. Step 2 of the algorithm can
be implemented by using |C| parallel GNN modules with each implementing the Bellman-Ford
algorithm up to h =

√
nD rounds. As in the BFS implementation, this requires O(1) parameters and

O(
√
nD log d) total depth. Step 3 can be similarly implemented by running Bellman-Ford algorithm

for |C| =
√
nD steps. This adds a depth of O(

√
nD log d) to the network. Finally, step 4 can again

be performed by O(
√
nD) rounds of Bellman-Ford. Hence, in total we have O(

√
nD log d) depth

and O(1) parameters.

Using the lemma above and the analysis of Theorem 8 we get the following result for weighted
graphs.

Corollary 1. For any constant c > 1, and for any graph over n nodes with maximum degree d and
diameterD, there exists a neural network as shown in Figure 4 of sizeO(n2+1/c), Õ(n

2
c ) parameters,

12
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and depth O(
√
nD log d+ log n), that encodes (4c− 2)-approximate all pairs shortest paths in the

weighted graph G.

B COMPUTING CONNECTIVITY MEASURES

In this section we study the limitations of using GNNs for computing various graph connectivity
measures and show how the GNN+ architecture can overcome these. We first study the following
connectivity measure as proposed in the work of Panigrahy et al. (2012). Given an undirected graph
G, let Gp be the random graph obtained by sampling each edge with probability p.
Definition 3 (Affinity). For any two vertices u, v and for p ∈ [0, 1], define Ap(u, v) to be the
probability that u, v are connected in Gp. Then the connectivity measure between u and v is defined
as

A(u, v) = Ep[Ap(u, v)]

where the expectation is taken over p drawn from the uniform distribution in [0, 1].

The work of Panigrahy et al. (2012) showed that the above measure is closely related to the notion of
strong connectivity in a graph. We will also consider the following weighted version of the above
measure.
Definition 4. Given a weighted undirected graph G = (V,E,w) with edge weights in [0, 1], and any
two vertices u, v, define Aw(u, v) to be the probability that u, v are connected in Gw. Here Gw is
the subgraph samples from G by picking each edge (u, v) independently with probability wu,v .

Finally, we will also study the popular connectivity measure based on graph effective resistances.
Definition 5. Let G be a weighted undirected graph with adjacency matrix A and the associated
laplacian L = D −A. Given an edge u, v the effective resistance between u, v is defined as

Ru,v = ξ>u,vL
†ξu,v.

Here ξu,v is an n dimensional vector with +1 at position u, −1 at position v and zeros everywhere.
L† refers to the matrix pseudo-inverse.

Below we establish the limitations of GNN based architectures in computing the above connectivity
measures.
Theorem 10. Consider a GNN N of depth L over n nodes where each node has a representation
size of B. If for a given pair u, v the GNN N computes A(u, v), Aw(u, v) or Ru,v then it must hold
that B · L ≥ Ω(

√
n

logn ).

Proof. We will establish the above lower bound using tools from communication complexity and
in particular the lower bound for the set disjointness problem. In the set disjointness problem we
are given two inputs x, y ∈ {0, 1}b each belonging to a different party. The goal is to communicate
and determine if x · y = 0 or not. It is well known that any protocol that succeeds with constant
probability for the set disjointess problem has communication complexity at least Ω(b) (Babai et al.,
1986).

We adapt the construction from Sarma et al. (2012). We construct a graph G(Γ, d, p) as follows.
There are Γ vertex disjoint paths P1,P2, . . . ,PΓ, each of length dp. The vertices on path ` are
denoted by v`0, v

`
1, . . . , v

`
dp−1. We add to this graph two special vertices s and r. The vertices s and

r will be endowed with two Γ dimensional Boolean inputs on which one wants to compute the set
disjointness problem. Let s(i) denote the ith input bit for vertex s and r(i) denote the ith input but for
vertex r. We connect s to v`0 for all ` such that s(`) = 1 and r to v`dp−1 for all ` such that r(`) = 1.
Furthermore, for a given value of p, we replicated each edge O(p log n) times.

Next, notice that when we samples edges with probability p, each path edge and edges involving s,
r will be sampled at least once with constant probability. Furthermore, conditioned on this event,
s and r are connected if and only if the inputs to s and r are not disjoint. Using the simulation
theorem of Sarma et al. (2012) we get that for a given value of p, if there is a distributed algorithm
that accurately estimates Ap(u, v) with constant probability in R ≤ (dp−1)/2 rounds, then there is a
protocol for computing solving set disjointness in at most O(dpR) bits of communication. Hence we
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Figure 5: The network architecture for approximate affinity A(u, v).

get that for any p, the number of rounds (B ·L) needed to computeAp(u, v) is at least min
(
dp−1

2 , Γ
dp

)
.

Writing in terms of n = θ(Γdp), and setting p = O(log n) we get that the number of rounds needed
is at least Ω(

√
n

logn ). Since for each p we have a bad input, by minmax we get that the number of

rounds (B · L) needed to compute A(u, v) = Ep[Ap(u, v)] is also at least
√
n

logn .

B.1 UPPER BOUNDS FOR CONNECTIVITY MEASURES

Next we show how to circumvent the above lower bounds via our proposed GNN+ architecture. We
first design an efficient architecture for the connectivity measures A(u, v) and Aw(u, v). For this
purpose we adapt the sketch based construction of Panigrahy et al. (2012). The GNN+ architecture is
shown in Figure 5. For an ε > 0, the sketch proceeds in q = O(logm/ε) parallel stages corresponding
to the width of the GNN+ architecture in Figure 5. In each stage q parallel BFS procedures are
performed on a sampled graph with edge probability denoted by p1, p2, . . . , pr. At the end of each
stage the Aggregate procedure maintains a running count of the number of subgraphs in which
vertices u and v are in the same connected component. Overall, this is repeated for r = O(logm/ε)
rounds for a total depth of O(logm/ε). Hence we have the following guarantee.
Theorem 11. For any constant ε > 0, and for any graph over n nodes with maximum degree d and
diameter D, the network in Figure 5 produces a (1 + ε) approximation to A(u, v). Furthermore, the
network is of size O(m log(m)), has O(logm) parameters, and depth O(D log(m)).

Proof. The proof of correctness of the procedure follows from the analysis of Panigrahy et al. (2012).
After each round of parallel BFS procedures, nodes u, v have the id of the connected components that
they belong to. The Aggregate procedure maintains a running count of in the fraction of connected
components in which u and v belonged together. Given q = O(logm) sized output from the previous
stage, this count can be updated by a simple fully connected network with O(logm) parameters.
Furthermore, all the Aggregate layers share the same set of parameters. From the previous section,
we know that the BFS procedure can be implemented by a GNN of depth O(D) and O(1) total
parameters. Hence we get a total depth of O(D logm) and O(logm) total parameters.

Given the architecture in Figure 5, computing the weighted affinity measure is straightforward by
replacing the sampling probability p1, . . . , pr with the edge weights. Furthermore, in this case one
only needs one stage of parallel BFS procedures. Hence we get the following corollary
Corollary 2. For any constant ε > 0, and for any graph over n nodes with maximum degree d and
diameter D, the network in Figure 6 produces a (1 + ε) approximation to Aw(u, v). Furthermore,
the network is of size O(m log(m)/wmin), has O(logm) parameters, and depth O(D). Here wmin

is the minimum edge weight in the graph G.

Effective Resistance. To approximately compute the effective resistance we consider the following
reformulation. Given a graph Laplacian L and vertices u, v consider the following optimization

min
x:∈Rn:x 6=0

xTLx (3)

s.t. xu − xv = 1.
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Figure 6: The network architecture for the approximate weighted affinity Aw(u, v).

It is well known that the solution to the above objective equals 1/Ru,v. Hence it is enough to
approximate equation 3. Furthermore, equation 3 is a convex optimization problem with a linear
constraint and hence can be solved using projected gradient descent. The architecture in Figure 7
implements this via the GNN+ architecture. In the GNN module each vertex i maintains an O(d)

Figure 7: The network architecture for approximate effective resistance Ru,v .

dimensional representation. At each stage of GNN each vertex computes its local gradient. Notice
that given current solution xt, the gradient of the objective in equation 3 equals Lxt. Hence, vertex
i will compute L(i)xti, where L(i) is the ith column of L. The Aggregate and Project module first
aggregates all the local gradients and performs a gradient step i.e., xt+1 = xt − ηLxt where η is the
learning rate. Then it projects xt+1 onto the linear subspace xu − xv = 1. As a result we have the
following guarantee

Theorem 12. For any constant ε > 0, and appropriately chosen learning rate η, for any graph over
n nodes with maximum degree d and diameter D, the network in Figure 7 produces an additive
ε approximation to equation 3. Furthermore, the network is of depth ` = O( 1

λ2(L)ε2 log n), size
O(nd`), and has O(d) parameters.

Proof. The number of steps of gradient descent needed for an ε approximation equals 1
λ2(L)ε2 where

λ2(L) bounds the strong convexity of the objective within the linear subspace. In each step, each
vertex computes L(i)xti by aggregating messages from its neighbors. This can be done using O(d)
parameters. The aggregate step involves first computing

∑
i L

(i)xti. This can be done by a fully
connected network of depth O(log n) and O(1) parameters. The gradient step can be computed using
O(1) parameters depth one. Finally, the project step can be implemented using O(1) parameters
since it only involves two coordinates of xt+1. Hence, overall we have O(d) parameters and depth of
O( 1

λ2(L)ε2 log n).

C CLUSTERING, MIN CUTS AND MST

In this section we demonstrate the power of the GNN+ architecture for other graph problems such
as clustering, cuts and minimum spanning trees. In each case we will achieve significantly better
statistical properties than the vanilla GNNmp architectures. We first discuss spectral clustering.
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Figure 8: The network architecture for minimum spanning tree (MST).

C.1 SPECTRAL CLUSTERING

. Given an undirected graph G, the spectral clustering of G corresponds to the cut obtained by taking
the sign of the eigenector v corresponding to the second smallest eigenvalue λ2(L). This can be
formulated as the following optimization problem

min
x∈Rn:x 6=0

xTLx (4)

s.t. x ⊥ 1.

From the above formulation it is evident that the GNN+ based architecture of Figure 7 can be used to
efficiently compute an approximate spectral clustering. The only difference between equation 3 and
equation 4 is the implementation of the projection step. We discuss this below in the proof of the
following theorem
Theorem 13. For any constant ε > 0, and appropriately chosen learning rate η, for any graph over
n nodes with maximum degree d and diameter D, the network in Figure 7 produces an additive
ε approximation to equation 4. Furthermore, the network is of depth ` = O( 1

λ2(L)ε2 log n), size
O(nd`), and has O(d) parameters.

Proof. The proof is exactly the same as that of Theorem 12 the only difference being the imple-
mentation of the projection step. In equation 4 given xt+1 we need to project it onto the subspace
orthogonal to the all ones vector. This corresponds to the following operation

xt+1 ← xt+1 −~1x
t+1 ·~1
n

.

The above can be implemented using an O(log n) depth neural network with O(1) parameters.

C.2 MINIMUM SPANNING TREE (MST)

In this section we implement an efficient GNN+ architecture for computing the minimum spanning
tree (MST) in undirected graphs. Note that in the traditional GNNmp framework computing even an
approximate MST requires Ω(

√
n) rounds (Loukas, 2020). Our efficient GNN+ architecture mirrors

the parallel implementation of Boruvka’s algorithm (Sollin, 1965) and is shown in Figure 8. We have
the following guarantee associated with the architecture in Figure 8.
Theorem 14. For any graph over n nodes with maximum degree d and diameter D, the network
in Figure 8 produces the minimum weight spanning tree. Furthermore, the network is of depth
` = O((D + log n) log n), size O(n`), and has O(d) parameters.

Proof. The architecture in Figure 8 implements Boruvka’s algorithm (Sollin, 1965) where in each
round comprises of a GNN step and an FNN computation. Each vertex maintains anO(d) dimensional
representation consisting of the current state of each of its edges. This state can be either contracted
or active. Furthermore, each vertex also maintains a component id that is initialized to be the id of
the vertex. Each GNN stage comprises of O(D) rounds of BFS for component id merging. During
this, each vertex aggregates messages along contracted edges to update its component id to be the
minimum of the component ids received via contracted edges. This can be achieved using O(D)
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G

GNN

GNN

Update Prefix

Update Prefix

Figure 9: The network architecture for minimum cut.

rounds of GNN computation with O(d) parameters. This is followed by a single round of GNN to
figure out the minimum weight edge from each vertex along active edges. This information is then
fed into the MLP module to decide for each vertex, if any of its active edges will be contracted in the
next step. Hence the FNN stage consists of n parallel modules, one per vertex. Each individual MLP
module can be implemented using depth O(log n) and O(1) parameters. Hence, overall we get an
architecture of depth O((D + log n) log n) and O(d) parameters.

C.3 MIN CUT

In this section we design an efficient GNN+ architecture for computing the global min cut in an
undirected graph. Similar to the minimum spanning tree problem, even computing an approximate
mincut using traditional GNNmp network requires Ω(

√
n) depth. As discussed in Section 4, our

efficient GNN+ based architecture is based on the parallel algorithm for computing mincut by Karger
& Stein (1996) and is shown in Figure 9. For the proposed architecture we have the following
guarantee

Theorem 15 (Restatement of Theorem 9). For any graph over n nodes with maximum degree d and
diameter D, the network in Figure 9 produces the minimum cut. Furthermore, the network is of depth
` = O(D log2 n), size O(n`), and has O(d+ logm) parameters.

Proof. Each vertex maintains an O(d) sized representation indicating which of its edges are currently
active. The GNN module simply performs a BFS over active edges starting from a specified vertex
(output by the Update Prefix module). Initially random ordering of the edges is chosen. The goal
of the Update Prefix module is to update the current prefix in this ordering that specifies the set of
active edges. Let L be the initial ordering of the edges. Then the guarantee from Karger & Stein
(1996) implies that with probability at least 1/n2 there exists a prefix L′ of L such that the subgraph
comprising of edges in L′ consists of exactly two connected components corresponding to the optimal
mincut. Hence, given the output of the BFS performed by the GNN, the Update Prefix module has to
decide if the number of connected components is more than two, and update the prefix accordingly.
This can be implemented by an FNN using O(log n) depth and O(logm) parameters. Hence overall
we get O(D log n) depth and O(d+ log n) parameters.

D GENERALIZATION BOUNDS

In this section we derive generalization bounds for the network architectures proposed in this work.
In general our network architectures consist of a combination of GNNmp blocks and fully connected
layers. We denote by Wi the weight matrix at a fully connected layer and by Ki the kernel matrix
of a convolutional operation, either for a GNN or a convolutional layer. Initially, these matrices
are initialized to W 0

i and K0
i respectively. Furthermore, for any Ki we will denote by op(Ki) the

corresponding linear operator for the kernel matrix Ki. Our generalization bounds will depend on
the number of trainable parameters in the network, the depth of the network and the distance of the
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parameters to initialization. Let W0,K0 be the initial parameters and let W0,K0 be the final trained
parameters. We will define the distance between parameters as

d({W0,K0}, {W,K}) :=
∑
i

‖W 0
i −Wi‖∞→2 +

∑
i

‖op(K0
i )− op(Ki)‖∞→2,

where for any matrix M , ‖M‖∞→2 norm is defined as

‖M‖∞→2 := max
x:‖x‖∞≤1

‖Mx‖2.

Let f(G;W,K) be the function, with
(
n
2

)
outputs, defined by a given set of parameters. For any

given parameter β > 0 and initial parameters {W0,K0}, we define the class F to be

Fβ = {{W,K} : d({W0,K0}, {W,K}) ≤ β}. (5)

Our main result will be the following
Theorem 16. Let `(ŷ, y) be a λ-Lipschitz loss function bounded in [0, B]. Then, given m i.i.d.
samples (G1, y1), (G2, y2), . . . (Gm, ym) generated from a distribution D, with probability at least
1− δ it holds that for all f ∈ Fβ ,

∣∣Ê[`f ]− E[`f ]
∣∣ ≤ O(B

√
P
(
β + νL+ log(λβ)

)
+ log(1/δ)

m

)
.

Here 1 + ν is the ‖‖∞→2 operator norm bound on the randomly initialized matrices, L is the total
depth of the network, and P is the total number of trainable parameters in the network.

As an immediate corollary of the above theorem we get the following guarantees for the shortest path
problem.
Corollary 3. Let Fβ be as defined in equation 5 for the network architecture proposed in Fig-
ure 2. Let `(ŷ, y) be a λ-Lipschitz loss function bounded in [0, B]. Then, given m i.i.d. samples
(G1, y1), (G2, y2), . . . (Gm, ym) generated from a distribution D, with probability at least 1− δ it
holds that for all f ∈ Fβ ,

∣∣Ê[`f ]− E[`f ]
∣∣ ≤ O(B

√
n2/c

(
β + ν(D log d+ log n) + log(λβ)

)
log n+ log(1/δ)

m

)
.

Corollary 4. Let Fβ be as defined in equation 5 for the network architecture proposed in Fig-
ure 4. Let `(ŷ, y) be a λ-Lipschitz loss function bounded in [0, B]. Then, given m i.i.d. samples
(G1, y1), (G2, y2), . . . (Gm, ym) generated from a distribution D, with probability at least 1− δ it
holds that for all f ∈ Fβ ,

∣∣Ê[`f ]− E[`f ]
∣∣ ≤ O(B

√
n2/c

(
β + ν(

√
nD log d+ log n) + log(λβ)

)
log n+ log(1/δ)

m

)
.

In order to prove Theorem 16 we will use the following general guarantee from the work of Giné &
Guillou (2001).
Theorem 17 (Giné & Guillou (2001)). Let G be a set of functions, parameterized by θ ∈ Rd, from
a domain Z to [0, B]. Furthermore, let G be (γ, d)-Lipschitz, i.e., for some norm ‖‖, and for any
g ∈ G and any θ, θ′ such that ‖θ‖, ‖θ′‖ ≤ 1, we have

|gθ(z)− gθ′(z)| ≤ γ‖θ − θ′‖

. Then for any distribution Z and i.i.d. samples z1, z2, . . . zm, with probability at least 1− δ, it holds
that for any g ∈ G ∣∣Ê[g]− E[g]

∣∣ ≤ O(B

√
d log γ + log(1/δ)

m
).

Using the above theorem we need to show that the class Fβ is Lipschitz. We will establish this next.
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Proof of Theorem 16. Consider f(G;W,K ∈ Fβ with P total trainable parameters. Hence, the
dimensionality of the parameter space is P . We will show that `f is (λβeνL+β , P )-Lipschitz thereby
establishing the theorem statement in light of Theorem 17 above.

Consider parameters W,K and W′,K′. We will move from the two sets of parameters by replacing
one parameter at a time. Without loss of generality assume that the parameter Ki at layer i is changed
to K ′i. Then we have∣∣`f (G;W,K)− `f (G;W′,K′)

∣∣ ≤ λ‖f(G;W,K)− f(G;W′,K′)‖

≤ λ
∏
j>i

‖Wj‖∞→2‖op(Kj)‖∞→2‖(op(Ki)− op(K ′i))u‖.

Here the first inequality follows from the Lipschitz property of the loss function and the second
inequality follows from the fact that all layers except i have the same weight parameters. The vector
u represents the input to layer i. Since RELU activation is 1-Lipschitz and non-expansive we have∣∣`f (G;W,K)− `f (G;W′,K′)

∣∣ ≤ λ∏
j>i

‖Wj‖∞→2

∏
j>i

‖op(Kj)‖∞→2‖(op(Ki)− op(K ′i))u‖

≤ λ
∏
j 6=i

‖Wj‖∞→2

∏
j 6=i

‖op(Kj)‖∞→2‖(op(Ki)− op(K ′i))‖∞→2

≤ λ
∏
j 6=i

(‖W 0
j ‖∞→2 + ‖Wj −W 0

j |∞→2)

×
∏
j 6=i

(‖op(K0
j )‖∞→2 + ‖op(Kj)− op(K0

j )‖∞→2)‖(op(Ki)− op(K ′i))‖∞→2

≤ λ
∏
j 6=i

(1 + ν + γj)
∏
j 6=i

(1 + ν + βj)‖(op(Ki)− op(K ′i))‖∞→2.

Here γj is the distance to initialization for Wj and βj is the distance to initialization for op(Kj).
Noting that ∑

j

(γj + βj) = β

and that the product is maximized when all are equal we get that∣∣`f (G;W,K)− `f (G;W′,K′)
∣∣ ≤ λ∏

j>i

‖Wj‖∞→2

∏
j>i

‖op(Kj)‖∞→2‖(op(Ki)− op(K ′i))u‖

≤ λ(1 + ν + β/L)L‖(op(Ki)− op(K ′i))‖∞→2

≤ λeνL+β‖(op(Ki)− op(K ′i))‖∞→2.

Using triangle inequality and moving one set of parameters at a time we get that `f is (λeνL+β , P )-
Lipschitz.

E ADDITIONAL EXPERIMENTS

In this section, we provide test MSE plots for each of the five graph problems as a function of the
number of epochs. While the final test MSE values are presented separately in the main paper and
show accuracy gains for the GNN+ nomdels over GNNmp, these plots here indicate that for most of
the problems (except MST), GNN+ also converges faster than GNNmp.
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(a) Shortest Paths (b) Effective Resistance

(c) MST (d) MINCUT

(e) Affinity

Figure 10: Comparison of GNNmpand GNN+ on the five graph problems
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