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Abstract

A significant obstacle in the development of robust machine learning models is
covariate shift, a form of distribution shift that occurs when the input distributions
of the training and test sets differ while the conditional label distributions remain
the same. Despite the prevalence of covariate shift in real-world applications, a
theoretical understanding in the context of modern machine learning has remained
lacking. In this work, we examine the exact high-dimensional asymptotics of ran-
dom feature regression under covariate shift and present a precise characterization
of the limiting test error, bias, and variance in this setting. Our results motivate
a natural partial order over covariate shifts that provides a sufficient condition
for determining when the shift will harm (or even help) test performance. We
find that overparameterized models exhibit enhanced robustness to covariate shift,
providing one of the first theoretical explanations for this ubiquitous empirical phe-
nomenon. Additionally, our analysis reveals an exact linear relationship between
the in-distribution and out-of-distribution generalization performance, offering an
explanation for this surprising recent observation.

1 Introduction
Theoretical justification for almost all machine learning methods relies upon the equality of the
distributions from which the training and test data are drawn. Nevertheless, in many real-world
applications, this equality is violated—naturally-occurring distribution shift between the training data
and the data encountered during deployment is the rule, not the exception [31]. Even non-adversarial
changes in distributions can uncover the surprising fragility of modern machine learning models
[55, 56, 43, 26, 12, 50]. Such shifts are distinct from adversarial examples, which require explicit
poisoning attacks [22]; rather, they can result from mild corruptions, ranging from changes of camera
angle or blur [26], to subtle, unintended changes in data acquisition procedures [56]. Moreover, this
fragility limits the application of deep learning in certain safety-critical areas [31].

Empirical studies of distribution shift have observed several intriguing phenomena, including linear
trends between model performance on shifted and unshifted test distributions [56, 26, 31], dramatic
degradation in calibration [50], and surprising spurious inductive biases [12]. Theoretical under-
standing of why such patterns occur across a variety of real-world domains is scant. Even basic
questions such as what makes a certain distribution shift likely to hurt (or help) a model’s performance,
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and by how much, are not understood. One reason that these phenomena have eluded theoretical
understanding is that there is often a strong coupling between model and distribution, implying that
the effect of a given shift cannot usually be understood in a model-agnostic way. Another reason
that satisfactory explanations have remained lacking is that the go-to formalism for studying general-
ization in classical models, namely uniform convergence theory (see e.g. [66]), may be insufficient
to explain the behavior of modern deep learning methods (even in the absence of distribution shift)
[47, 68]. Indeed, classical measures of model complexity, such as various norms of the parameters,
have been found to lead to ambiguous conclusions [49].

In this paper, we follow a different approach: instead of focusing on worst-case bounds for generic
distributions, we study average-case behavior for narrowly specified distributions. While this change
in perspective sacrifices generality, it allows us to derive more precise predictions, which we believe
are necessary to fully capture the relevant phenomenology. We study a specific type of distribution
shift called covariate shift, in which the distributions of the training and test covariates differ, while
the conditional distribution of the labels given the covariates remains fixed. Using random matrix
theory, we perform an asymptotically exact computation of the generalization error of random feature
regression under covariate shift. The random feature model provides a useful testbed to (1) investigate
the interplay between various factors such as model complexity, label noise, bias, variance, and
covariate shift; (2) rigorously define a model-agnostic notion for the strength of covariate shift; and (3)
provide a theoretical explanation for the linear relationships recently observed between in-distribution
and out-of-distribution generalization performance [55, 56, 27].

1.1 Contributions

Our primary contributions are to:

1. Provide a model-agnostic partial order over covariate shifts that is sufficient to determine when a
shift will increase or decrease the test error in random feature regression (see Def. 4.1);

2. Compute the test error, bias, and variance of random feature regression for general multivariate
Gaussian covariates under covariate shift in the high-dimensional limit (see Sec. 5.1);

3. Prove that overparameterization enhances robustness to covariate shift, and that the error, bias,
and variance are nonincreasing functions of the number of excess parameters (see Sec. 5.3);

4. Deduce an exact linear relationship between in-distribution and out-of-distribution generalization
performance, offering an explanation for this surprising recent empirical observation (see Sec. 5.4).

1.2 Related work

There is extensive literature on the empirical analysis of distribution shift in all of its myriad
forms, ranging from domain adaptation [62, 20, 8, 70, 69, 37, 36] to defenses against adversarial
attacks [39, 60] to distributionally robust optimization [59, 15, 16], among many others. Interestingly,
for naturally occurring distribution shifts [31, 26], standard robustness interventions provide little
protection [56, 63]. Indeed, empirical risk minimization on clean, unshifted training data often
performs better on out-of-distribution benchmarks than more sophisticated methods [31]. One of
the most striking observations in the context of natural distribution shifts is that model robustness
improves with the classifier’s accuracy [56, 63, 26, 43]. For example, if a classifier’s accuracy
increases by 1.0% on the unshifted CIFAR-10 test set, this tends to increase its accuracy by 1.7%
on the CIFAR-10.1 dataset (a dataset with natural distribution shift) [56]. Moreover, such linear
trends between the unshifted and shifted measures of error have now been observed in several
contexts [56, 63, 43, 40, 44].

The number of theoretical works studying the impact of distribution shift on generalization is far
smaller. One pioneering work provides VC-dimension-based error bounds for classification that
are augmented by a discrepancy measure between source and target domains [10], while another
demonstrates a similar class of uniform convergence-based results in the setting of kernel regres-
sion [11]. Recent work shows that learning domain-invariant features is insufficient to guarantee
generalization when the class-conditional distributions of features may shift [69]. When the source
domain gradually shifts toward the target domain, non-vacuous margin-based bounds for self-training
can be established [32]. In [40], assumptions based on model similarity are used to help explain why
classifiers exhibit linear trends between their accuracies on shifted and unshifted test sets [56, 43].
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Our technical tools build on a series of works that have studied the exact high-dimensional limit of
the test error for a growing class of model families and data distributions. In the context of linear
models, recent work analyzes ridge regression for general covariances and a general non-isotropic
source condition on the parameters which generate the targets [57], extending earlier work studying
minimum-norm interpolated least squares and ridge regression in the random design setting [9, 14, 24].
The non-isotropy of source parameter effectively induces a shift on the bias term of this model, but
the phenomenon is distinct from the covariate shifts we study here. Beyond linear regression, random
feature models provide a rich but tractable class of models to gain further insight into generalization
phenomena [2, 3, 41, 35]. These methods are of particular interest because of their connection to
neural networks, with the number of random features corresponding to the network width (or model
complexity) [48, 33, 29], and because they serve as a practical method for data analysis in their own
right [54, 61]. In this context, a precise characterization of the gaps between uniform convergence and
the (asymptotic) exact test error as a function of the sample size and number of random features can be
derived [68]. Since this paper’s publication, we released follow-up work considering unequal scales
in the training and test distributions and optimal regularization [64]. From the technical perspective,
our analytic techniques build upon these works and a series of recent results stemming from the
literature on random matrix theory and free probability [53, 52, 1, 2, 38, 51, 19, 45].

2 Preliminaries

2.1 Problem setup and notation

As in prior work studying random feature regression [24, 41, 2, 1], we compute the test error in the
high-dimensional, proportional asymptotics where the dataset sizem, input feature dimension n0, and
hidden layer size n1 all tend to infinity at the same rate, with φ := n0/m and ψ := n0/n1 held fixed.
We refer to φ/ψ as the overparameterization ratio, which is the limit of n1/m and characterizes the
normalized complexity of the (random) feature model.

Interestingly, in this high-dimensional limit, the conditional distribution of a linear labeling function is
asymptotically equivalent to a wide class of nonlinear teacher functions (see [41, 2] for more details).
With this in mind, we consider the task of learning an unknown function from m i.i.d. samples
(xi, yi) ∈ Rn0 × R for i ∈ {1, . . . ,m}, where the covariates are Gaussian, xi ∼ N (0,Σ) with
positive definite covariance matrix Σ, and the labels are generated by a linear function parameterized
by β ∈ Rn0 , drawn from N (0, In0

). In particular

y(xi) = β>xi/
√
n0 + εi, (1)

where εi ∼ N (0, σ2
ε ) is additive label noise on the training points.

We study the class of prediction models defined by kernel ridge regression using unstructured random
feature maps [54]. The random features are given by a single-layer, fully-connected neural network
with random weights. Given a set of training data X = [x1, . . . ,xm] and a prospective test point x,
the random features embeddings of the training and test data are given by

F := σ(WX/
√
n0) and f := σ(Wx/

√
n0) , (2)

for a random weight matrix W ∈ Rn1×n0 with i.i.d. standard Gaussian entries and an activation
function σ : R→ R applied elementwise. The induced kernel is

K(x1,x2) :=
1

n1
σ(Wx1/

√
n0)>σ(Wx2/

√
n0) , (3)

and the model’s predictions are given by ŷ(x) = Y K−1Kx, where Y := [y(x1), . . . , y(xm)],
K := K(X,X)+γIm, Kx := K(X,x), and γ ≥ 0 is a ridge regularization constant1. Owing to the
implicit regularization effect of the nonlinear feature maps [7], in low noise settings the optimal value
of γ can sometimes be negative [30]. For simplicity, we nevertheless make the standard assumption
that γ ≥ 0, though we emphasize our techniques readily accommodate negative values.

1We overload the definition of K to include the additive regularization whenever no arguments are present.
Also, if γ = 0 and K is not full-rank, K−1 should be understood as the Moore–Penrose pseudoinverse.
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Our central object of study is the expected test loss for a datapoint x ∼ N (0,Σ∗) where Σ∗ may be
different from the training covariance Σ. The test error (without label noise on the test point) is

EΣ∗ = E[(β>x/
√
n0 − Y K−1Kx)2] (4)

= Ex,β [(E[ŷ(x)]− y(x))2]︸ ︷︷ ︸
BΣ∗

+Ex,β [V[ŷ(x)]]︸ ︷︷ ︸
VΣ∗

, (5)

where the inner expectations defining the bias and variance are computed over W , X , and Y . We
decompose the training and test covariance matrices into eigenbases as Σ =

∑n0

i=1 λivivi
> and Σ∗ =∑n0

i=1 λ
∗
iv
∗
i v
∗
i
>, where the eigenvalues are in nondecreasing magnitude, i.e. λ1 ≤ λ2 ≤ . . . ≤ λn0

and λ∗1 ≤ λ∗2 ≤ . . . ≤ λ∗n0
. We define the overlap coefficients

ri := v>i Σ∗vi =

n0∑
j=1

(v∗j · vi)2λ∗j (6)

to measure the alignment of Σ∗ with the ith eigendirection of Σ. In particular, ri is the induced
norm of vi with respect to Σ∗. We use t̄r to denote the dimension-normalized trace: for a matrix
A ∈ Rn×n, t̄r(A) = 1

n tr(A). We use ‖A‖∞ and ‖A‖F to denote the operator norm and Frobenius
norm of matrix A respectively. Finally, we use δx to denote the Dirac delta function centered at x.

2.2 Assumptions

Regularity assumptions on the spectra of Σ and Σ∗ are necessary to state the limiting behavior of this
system. As in [67], it is not sufficient to consider the spectra of these matrices individually; they must
be considered jointly. We do this in an eigenbasis of Σ.
Assumption 1. We define the empirical joint spectral distribution (EJSD) as

µn0
:=

1

n0

n0∑
i=1

δ(λi,ri) (7)

and assume it converges in distribution to some µ, a distribution on R2
+ as n0 → ∞. We re-

fer to µ as the limiting joint spectral distribution (LJSD), and emphasize that this defines the
relevant limiting properties of the train and test distributions2. Additionally, we require that
lim supn0

max(‖Σ‖∞, ‖Σ∗‖∞) ≤ C for a constant C.

Often we use (λ, r) for random variables sampled jointly from µ and denote the marginal of λ under
µ with µtrain. The conditional expectation E[r|λ] is an important object in our study. We frequently
overload the notation E[r|λ] to view it as a function of λ, and we assume the following for simplicity.

Assumption 2. µ is either absolutely continuous or a finite sum of delta masses. Moreover, the
expectations of λ and r are finite.

When the eigenspaces of Σ and Σ∗ are aligned and ri = λ∗i = Φ(λi) for some smooth function Φ, the
support of the LJSD degenerates. Here, Assump. 1 is essentially equivalent to assuming the empirical
spectral distribution of Σ converges in distribution to some µtrain, which is a standard assumption
in the regression literature [14, 41]. One special case of note is when there is no shift, i.e. Φ is the
identity, in which case the LJSD degenerates to µ∅ defined by

µ∅(λ, r) := µtrain(λ)δλ(r) , i.e. (λ, λ) ∼ µ∅ for λ ∼ µtrain . (8)

As our analysis will eventually take place in the high-dimensional limit, we further define
the asymptotic scales of the training and test covariances as s := limn0→∞ t̄r(Σ) = Eµ[λ] and
s∗ := limn0→∞ t̄r(Σ∗) = Eµ[r] under the limiting behavior specified in Assump. 1.

Throughout this paper, we also enforce the following standard regularity assumptions on the activation
functions to ensure the existence of the moments and derivatives we compute.
Assumption 3. The activation function σ : R→ R is assumed to be differentiable almost everywhere.
We assume that, |σ(x)|, |σ′(x)| ≤ c0 exp(c1x) for constants c0, c1.

2Note that the EJSD depends not only on Σ and Σ∗ but also on a choice of eigendecomposition for Σ when
it has repeated eigenvalues. However, all possible choices for the EJSD form an equivalence class, and the
ambiguity does not affect later definitions and conclusions. See Sec. A3.
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2.3 A simple family of diatomic distributions

As the above assumptions allow such a general class of covariance structures, it is useful to consider
our results in the context of a simple family of distributions that readily admits a simple interpretation.

Definition 2.1. For α ≥ 1 and θ ∈ R, we define the family of (α, θ)-diatomic LJSDs with θ-power-
law shifts as

µdiatomic
α,θ :=

1

α+ 1
δ(α,Cαθ) +

α

α+ 1
δ(α−1,Cα−θ), (9)

where C is a normalization constant chosen so that Eµdiatomic
α,θ

[r] = 1. Note that µdiatomic
α,θ is the limit of

Σij :=


α if i = j and i ≤ b n0

1+αc
α−1 if i = j and i > b n0

1+αc
0 if i 6= j

and Σ∗ :=
1

t̄r(Σθ)
Σθ . (10)

This simple two-parameter family of distributions captures the fast eigenvalue decay observed in
many datasets in machine learning, for which the covariance spectra are often dominated by several
large eigenvalues and exhibit a long tail of many small eigenvalues [34]. Note that the trivial case of
α = 1 yields an identity covariance with no shift. For the nontrivial setting α > 1, the exponent θ
parameterizes the strength of the shift in an intuitive way: when θ = 1, there is no shift; when θ < 1,
αθ < α, so the large eigendirections of the training distribution are suppressed in the test distribution,
suggesting that the shift makes learning harder; when θ > 1, αθ > α, so the large eigendirections
of the training distribution are further emphasized in the test distribution, suggesting that the shift
makes learning easier. We will return to the notion of shift strength in Secs. 3 and 4.

3 Motivating example: linear regression
We first consider the relatively simple case of ridgeless linear regression (LR), which will help build
some intuition for the more general analysis of random feature regression in Sec. 5.1. Assuming the
labels are generated by the linear model defined above, i.e. yi = β>xi/

√
n0 + εi, the estimator is

given by β̂ = (XX>)−1XY , and the test risk (see Eq. (4)) has the following simple form.

Proposition 3.1. For fixed dimension n0 and sample size m>n0+1, the test error of LR is given by

ELR
Σ∗ = σ2

ε

n0

m− n0 − 1
t̄r(Σ∗Σ−1) = σ2

ε

n0

m− n0 − 1

1

n0

n0∑
i=1

ri
λi
. (11)

Under Assump. 1, as n0,m→∞ with φ = n0/m fixed, ELR
Σ∗ → ELR

µ = σ2
εφ/(1− φ)Eµ[r/λ].

One immediate question is whether a given shift will increase or decrease the test error relative to
ELR

Σ . While the precise answer is of course determined by the value of t̄r(Σ∗Σ−1), it useful for the
subsequent analysis to develop an understanding of the individual contributions to this term. Similar
decompositions of the test error into eigenspaces have proved useful in a variety of other contexts, e.g.
[42, 4]. We begin with a specific example in the setting of the finite-dimensional analog of Def. 2.1.

Example 3.1. For the finite form of the (α, θ)-diatomic density defined in Eq. (10), the test error of
LR is given by

ELR
Σ∗ = σ2

ε

n0

m− n0 − 1

α+ w(α2θ−1 − α)

1 + w(α2θ − 1)
for w =

1

n0

⌊
n0

1 + α

⌋
, (12)

and so ∂
∂θE

LR
Σ∗ = σ2

ε
n0

m−n0−1
2(1−w)wα2θ−1(1−α2) log(α)

(1+w(α2θ−1))2 ≤ 0, which implies ELR
Σ∗1
≤ ELR

Σ∗2
whenever

θ1 ≥ θ2, in accordance with the discussion in Sec. 2.3. It follows from Eq. (10) that the condition
θ1 ≥ θ2 not only implies t̄r(Σ∗1Σ−1) ≤ t̄r(Σ∗2Σ−1), but also that the ratios of overlap coefficients
ri,1/ri,2 form a nondecreasing sequence. It is this condition involving all the eigendirections that
will generalize to the nonlinear random feature setting in Sec. 4.

The following proposition captures the essence of these considerations in the context of linear
regression. See Sec. A4 for the proof.
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Proposition 3.2. Let ri,1 and ri,2 denote the overlap coefficients3 of Σ∗1 and Σ∗2 relative to Σ. If
tr(Σ∗2) ≥ tr(Σ∗1) and the ratios ri,1/ri,2 form a nondecreasing sequence, then in the setting of
Prop. 3.1, ELR

Σ∗2
≥ ELR

Σ∗1
.

Whereas the (α, θ)-diatomic LJSDs explicitly enforce the trace normalizations
tr(Σ) = tr(Σ∗1) = tr(Σ∗2) = 1, Prop. 3.2 provides sufficient conditions for the ordering of
test errors for non-unit traces. The fact that ELR

Σ∗ scales linearly with the overall scale of Σ∗ is a
unique feature of linear regression and does not generalize to the nonlinear random feature setting.
We return to this issue in Sec. 4.

4 Definition of shift strength
Deriving conditions on whether a shift will hurt or help a model’s performance is crucial to building
an understanding of covariate shift. Motivated in part by the above results for linear regression, and
in part by the results for random feature regression that we present in Sec. 5.3, we introduce the
following definition of shift strength, which is a direct generalization of the conditions of Prop. 3.2:
Definition 4.1. Let µ1 and µ2 be LJSDs with the same marginal distribution of λ, denoted µtrain. If
the asymptotic overlap coefficients are such that Eµ1 [r|λ]/Eµ2 [r|λ] is nondecreasing as a function of
λ on the support of µtrain and Eµ1 [r] ≤ Eµ2 [r], we say µ1 is easier than µ2 (or µ2 is harder than µ1),
and write µ1 ≤ µ2. Comparing against the case of no shift µ∅, we say µ1 is easy when µ1 ≤ µ∅ and
hard when µ1 ≥ µ∅.

A priori, there is little reason to hope that such a model-independent definition of shift strength would
adequately characterize a shift’s impact on the total error, bias, or variance of a given model. Even for
the relatively simple case of random feature kernel regression, the nonlinear feature maps of Eq. (2)
would seem to inextricably couple the covariance distribution to the model.

Nevertheless, as we show in Sec. 5.1, the coupling between model and shift simplifies considerably
in the high-dimensional proportional asymptotics. It is characterized by a handful of constants that
depend solely on the overall covariance scale Eµ[r] and a collection of functionals of µ, whose
magnitudes can be bounded in terms of the ratio Eµ[r|λ]/Eµ∅ [r|λ]. The conditions that Def. 4.1
places on Eµ[r] and Eµ[r|λ]/Eµ∅ [r|λ] can be augmented by various constraints on the model to
derive bounds on how the total error and bias will respond to a shift of a given strength. This
perspective introduces considerable complexity and we present the details of this analysis elsewhere.

In this work, we focus on a simpler, surprising result: by merely normalizing the scales of the
covariate distributions (i.e. enforcing s = s∗), Def. 4.1 provides a model-independent definition of
shift strength that determines how random feature models respond to shifts of different strength. This
observation motivates the following assumption.
Assumption 4. The training and test covariance scales are equal, Eµ[λ] = Eµ[r], i.e. s = s∗.

We emphasize that Assump. 4 reflects common practice for many models and data modalities, as
preprocessing techniques such as standardization are ubiquitous and many architectural components
such as layer- or batch-normalization achieve a similar effect [21, 28, 46].

5 Covariate shift in random feature kernel regression

5.1 Main results

Our main results characterize the high-dimensional limits of the test error, bias, and variance of the
nonlinear random feature model of Sec. 2. Before stating them, we first introduce some additional
constants that capture the effect of the nonlinearity σ. For z ∼ N (0, s), define

η := V[σ(z)] , ρ:= ( 1
sE[zσ(z)])2 , ζ := sρ , and ω := s(η/ζ − 1) . (13)

Our results also depend on the covariance spectra through two sets of functionals of µ,

Ia,b(x) := φ Eµ
(
λa (φ+ xλ)

−b
)

and I∗a,b(x) := φ Eµ
(
rλa−1 (φ+ xλ)

−b
)
. (14)

3Recall the definition of the overlap coefficients in Eq. (6).
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Figure 1: The asymptotic predictions of Thm. 5.1 as a function of the overparameterization ratio
(φ/ψ = n1/m) and the shift power (θ) for the (2, θ)-diatomic LJSD (Eq. (9)) with φ = n0/m = 0.5,
σ = ReLU, γ = 0.001, and σ2

ε = 0.1. (a) The test error exhibits the characteristic double descent
behavior for all shift powers. (b) The bias is a nonincreasing function of φ/ψ for all shift powers,
as in Prop. 5.2. (c) The variance is the source of the double-descent peak, and is a nonincreasing
function of φ/ψ for all shift powers in the overparameterized regime, as in Prop. 5.3. In (a,b), the
total error and bias are nonincreasing functions of θ, as in Prop. 5.1. (d) 1D horizontal slices of (a,b,c)
demonstrate the monotonicity in φ/ψ predicted by Props. 5.2 and 5.3. (e) 1D vertical slices of (a,b,c)
demonstrate the monotonicity in θ predicted by Prop. 5.1 (the variance also appears monotonic, but
it need not be in general). (f) The generalization gap between the error on shifted and unshifted
distributions is a nonincreasing function of φ/ψ in the overparameterized regime, as in Prop. 5.4.
Markers in (d,e,f) show simulations for n0 = 512 and agree well with the asymptotic predictions.

Theorem 5.1. Under Assumps. 1, 2, 3 and 4, as n0, n1,m → ∞ the test error EΣ∗ converges to
Eµ = Bµ + Vµ, with the bias Bµ and variance Vµ given by

Bµ = φI∗1,2 (15)

Vµ = −ρψ
φ

∂x

∂γ

(
I1,1(ω + φI1,2)(ω + I∗1,1) +

φ2

ψ
γτ̄I1,2I∗2,2

+ γτI2,2(ω + φI∗1,2) + σ2
ε

(
(ω + φI1,2)(ω + I∗1,1) +

φ

ψ
γτ̄I∗2,2

))
, (16)

where x is the unique nonnegative real root of x = 1−γτ
ω+I1,1

, ∂x∂γ = − x
γ+ργ(τψ/φ+τ̄)(ω+φI1,2) , and

τ =

√
(ψ − φ)2 + 4xψφγ/ρ+ ψ − φ

2ψγ
and τ̄ =

1

γ
+
ψ

φ

(
τ − 1

γ

)
. (17)

Numerical predictions from Thm. 5.1 can be obtained by first solving the self-consistent equation for
x by fixed-point iteration, x 7→ 1−γτ

ω+I1,1
, and then plugging the result into the remaining terms. Fig. 1

shows excellent agreement between these asymptotic predictions and finite-size simulations.

At times we will find it convenient to consider the ridgeless limit of Thm. 5.1. By carefully expanding
x and τ for small γ, it is straightforward to obtain the following corollary.
Corollary 5.1. In the setting of Thm. 5.1, as the ridge regularization constant γ → 0, Eµ = Bµ+Vµ
with Bµ given in Eq. (15) and Vµ given by

Vµ =
ψ

|φ− ψ|
x(σ2

ε + I1,1)(ω + I∗1,1) +

x
(

1− x(ω−σ2
ε)

1−x2I2,2

)
I∗2,2 φ ≥ ψ

x2ψI2,2

φ−x2ψI2,2

(
ω + φI∗1,2

)
φ < ψ

, (18)

where x is the unique positive real root of x = min(1,φ/ψ)
ω+I1,1

.
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Taking σ(x) = x and ψ → 0 in Cor. 5.1 yields an expression for the test error of ridgeless linear
regression that agrees with [24] and with the asymptotic form of Prop. 3.1 (see Sec. A4.2).

5.2 Harder shifts increase the bias and test error

The bias and variance in Thm. 5.1 depend on the covariate shift exclusively through I∗a,b — all other
terms such as x, τ , τ̄ , and Ia,b only depend on the marginal of λ under µ. The functionals I∗a,b
generalize the simple ratio of overlap coefficients to eigenvalues, Eµ[r/λ], that characterizes the error
for linear regression (indeed, I∗0,0 = φEµ[r/λ]). In contrast, the error in the random feature setting is
a combination of multiple such terms. Nevertheless, Def. 4.1 enables comparisons of the individual
I∗a,b functionals, which provide sufficient conditions to order the error and bias.

Proposition 5.1. Consider two LJSDs such that µ1 ≤ µ2 (see Def. 4.1). Then, in the setting of
Thm. 5.1, Bµ1 ≤ Bµ2 and, if σ2

ε ≤ ω, Eµ1 ≤ Eµ2 .

Prop. 5.1 shows that Def. 4.1 provides an essentially model-independent condition to determine
the impact of covariate shift on the test error4. Interestingly, both the bias (which arises from
both regularization and model misspecification) and the total error (which has additional variance
contributions from the randomness induced by W , X , and ε) respond to shifts in tandem in the
regime of small label noise. (For large label noise, the variance can dominate the error and cause
violations of monotonicity; see Sec. 5.5.) Prop. 5.1 is illustrated for the (α, θ)-diatomic LJSD in
Fig. 1: following the vertical lines upward in (a), (b), or the x-axis rightward in (e) yields easier shifts
and a corresponding decrease in the bias and total error.

5.3 The benefit of overparameterization

While Prop. 5.1 shows that harder shifts increase the error, it is natural to wonder whether this increase
can be mitigated by judicious model selection. In practice, empirical investigations have shown that
the performance of large, overparameterized models tends to deteriorate less under distribution shift
than their smaller counterparts [26]. We obtain a number of theoretical results that formally prove the
benefit of overparameterization in our random feature setting.

First, we show that the bias decreases (or stays constant) when additional random features are added,
which increases the model capacity and accords with the intuition of the bias as a measure of the
model’s ability to fit the data.
Proposition 5.2. In the setting of Thm. 5.1, the bias Bµ is a nonincreasing function of the overpa-
rameterization ratio φ/ψ.

In contrast to the bias, which is monotonic for all overparameterization ratios, the variance can
exhibit nonmonotonic behavior in the underparameterized regime. On the other hand, the following
proposition shows that in the overparameterized regime, the variance is also nonincreasing. Note that
our proof requires the setting of ridgeless regression (γ = 0), but numerical investigation suggests
this condition may not be necessary (see Fig. 1).
Proposition 5.3. In the setting of Cor. 5.1 and in the overparameterized regime (i.e. ψ < φ), the
variance Vµ is a nonincreasing function of the overparameterization ratio φ/ψ.

The explosion of variance at the interpolation threshold and then its subsequent decay have been
demonstrated in previous exact asymptotic studies of random feature regression in the absence of
covariate shift, in stark contrast to what classical theory would suggest [2, 41]. Prop. 5.3 confirms the
existence of analogous behavior under covariate shift.

Taken together, Props. 5.2 and 5.3 imply that some of the benefits of overparameterization extend
to models evaluated out-of-distribution. An additional benefit is that overparameterized models are
more robust: the difference in error between unshifted and shifted test distributions is smaller for
larger models. A formal statement of this enhanced robustness is given in the following result.
Proposition 5.4. Consider two LJSDs such that µ1 ≤ µ2 (see Def. 4.1). Then, in the setting of
Cor. 5.1 and in the overparameterized regime (i.e. ψ < φ), the generalization gap Eµ2

− Eµ1
is a

nonincreasing function of the overparameterization ratio φ/ψ.
4The weak model-dependence arising from the condition σ2

ε < ω can instead be regarded as a small
label-noise condition that can always be satisfied for ω > 0, which is true for any nonlinear σ (see Sec. A1).
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Figure 2: Linear relationship between in-distribution and out-of-distribution generalization error.
(a) Asymptotic predictions for shifted versus unshifted error for models with varying degrees of
overparameterization φ/ψ > 1, obtained via Cor. 5.1 for the (3, θ)-diatomic LJSD (Eq. (9)) with
φ = n0/m = 0.5, σ = ReLU, σ2

ε = 0.01 and two different values of the shift-power θ. Markers
represent simulations for n0 = 512. The negated errors are plotted so that performance improves left
to right and bottom to top, in order to match the behavior of the accuracy metric. (b) Reproduction
of the empirical results of [56, 63], showing the relationship between the classification accuracy of
various models on the original ImageNet test set and two shifted ImageNet datasets: a “hard" dataset
with greyscale corruptions, Grey, and an “easy" dataset with high inter-annotator agreement, TopImgs.
In both (a) and (b), the slope is greater than one for the hard shift and less than one for the easy shift,
in accordance with Prop. 5.5.

In Fig. 1, Props. 5.2, 5.3 and 5.4 are illustrated. Following the horizontal lines rightward in (a), (b),
and (c) or the x-axis rightward in (d) and (f) leads to models with more parameters. The monotonicity
of the bias across the whole range of parameterization is evident, as is the necessity of considering
the monotonicity of the variance and generalization gap only when φ > ψ.

5.4 Linear trends between in-distribution and out-of-distribution generalization

We have discussed how overparameterization yields improvements on both unshifted and shifted test
distributions, which hints that these two quantities are positively correlated. Indeed, recent work has
suggested increasing model size as a path to increased robustness [26]. Additional empirical studies
have further refined this observation by discovering a linear relationship between the performance
of models of varying complexity on unshifted and shifted data [56, 63]. In the context of ridgeless
random feature regression, we provide a formal proof of this linear relationship.
Proposition 5.5. In the setting of Cor. 5.1 and in the overparameterized regime (i.e. ψ < φ),

Eµ = E0 +
(ω + I∗1,1
ω + I1,1

)
︸ ︷︷ ︸

SLOPE

Eµ∅ , (19)

parametrically in the overparameterization ratio φ/ψ, where E0 and SLOPE are constants indepen-
dent of φ/ψ, and Eµ∅ is the error on the unshifted distribution. Moreover, SLOPE ≥ 1 when µ is
hard and SLOPE ≤ 1 when µ is easy.

Eq. (19) implies a parametrically linear relationship between Eµ and Eµ∅ by varying φ/ψ. Prop. 5.5
also makes the nontrivial prediction that an improvement on the unshifted distribution leads to a
relatively greater improvement on the shifted distribution when the shift is hard, and to a relatively
smaller improvement when the shift is easy. This prediction is corroborated qualitatively in the data
from [55, 56, 43]. We plot this linear behavior in Fig. 2, where (a) shows the random feature model
and (b) shows an example of data from [56, 63]. The striking similarity in these plots is evident.

5.5 Importance of assumptions

Props. 5.1, 5.2, 5.3, 5.4 and 5.5 rely on a number of assumptions and conditions; here we show the
necessity of some of these prerequisites for our results.
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Figure 3: Relaxing the assumptions and conditions can lead to counterexamples to the propositions.
(a) Asymptotic predictions (solid lines) and simulations with n0 = 4096 (markers) for the total error,
bias, and variance for the (4, θ)-diatomic LJSD with φ = 4, ψ = 0.25, γ = 10−4, and σ = ReLU
(implying ω = 1 − 2

π ≈ 0.36) as a function of increasing shift power θ. When σ2
ε < ω (dashed

curves), the bias and total error are nonincreasing, as predicted by Prop. 5.1, though the variance
is not. When σ2

ε > ω (solid curves), the total error is no longer nonincreasing. (b) Asymptotic
predictions (solid lines) and simulations with n0 = 256 (markers) for the total error with φ = 0.5,
γ = 0.1, σ = ReLU and σ2

ε = 0.01 as a function of the overparameterization ratio φ/ψ for four
different LJSDs µ1, . . . , µ4, chosen such that the only comparable pairs of LJSDs under the partial
order in Def. 4.1 are µ1 ≥ µ4 and µ2 ≥ µ4, and the strict ordering of the error for those pairs is
seen for all values of φ/ψ. The orange (µ2) and green (µ3) curves cross one another, illustrating how
nonmonotonicity of overlap ratios in Def. 4.1 can induce model-dependence in the ordering of the
error. (c) Asymptotic predictions (solid lines) and simulations for n0 = 512 (markers) for shifted
versus unshifted error for models with varying values of the overparameterization ratio φ/ψ, obtained
via Thm. 5.1 for the (3,−1/2)-diatomic LJSD with φ = 0.5, σ = ReLU, σ2

ε = 0.01, and γ = 0.005.
While the relationship is nearly linear in the overparameterized regime, it is markedly nonlinear in
the underparameterized regime, highlighting the importance of overparameterization in Prop. 5.5.

Prop. 5.1 relies on a small label-noise condition (σ2
ε ≤ ω) to ensure that the total error is ordered

with respect to shift strength. The reason this condition is necessary is that the variance can actually
increase as shifts become easier. While Fig. 1 presented a configuration for which the bias, variance,
and error all decrease for easier shifts, Fig. 3(a) shows that a decrease is not guaranteed for the
variance, and that it can increase even under the small label-noise condition. Moreover, while the
bias continues to decrease for large label noise (σ2

ε > ω), the variance can become so large that bias
can no longer offset it, causing the error itself to increase, as seen in Fig. 3(a).

The strict ordering of overlap coefficients in Def. 4.1 are also necessary to guarantee a complete
decoupling of the model and the shift strength. In the absence of these conditions, Fig. 3(b) shows
how even a single out-of-order overlap coefficient induces a violation of the monotonicity with respect
to shift strength suggested by Prop. 5.1 (this example is detailed further in Sec. A8).

Finally, we note that the exact linear relationship between in-distribution and out-of-distribution
generalization characterized by Prop. 5.5 in Eq. (19) relies crucially on the overparameterization
condition, ψ < φ, as evidenced in Fig. 3(c), which shows marked nonlinearity in the underparameter-
ized regime. This observation is perhaps unsurprising, as severely underparameterized models tend
towards chance predictions, which produce comparable errors on shifted and unshifted data. Indeed,
similar nonlinear behavior is seen in the low-accuracy regime for realistic models [56, Figure 17].

6 Conclusion

We have presented an exact, asymptotic calculation of the test error, bias, and variance for random
feature kernel regression in the presence of covariate shift. After defining a partial order over covariate
shifts (motivated by the setting of linear regression), we have proved that harder shifts imply increased
error. Our results capture many empirical phenomena such as the fact that overparameterization is
beneficial even under covariate shift and that a linear relationship exists between the generalization
error on shifted and unshifted data. Future directions include extending our results to the non-
asymptotic regime, accommodating feature learning and more general neural network models, and
investigating the impact of covariate shift for other loss functions.
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A1 Useful inequalities

Here we include the statements and proofs of several auxiliary inequalities that we use throughout
the Appendix.

A1.1 Basic properties of the self-consistent equation for x

We begin by establishing several basic inequalities. The definitions of the following quantities can be
found in Thm. 5.1.

Lemma A1.1. We have the following bounds: ω, τ, τ̄ , x, Ia,b ≥ 0 and ∂x
∂γ ≤ 0.

Proof. As shown in [53] for the unit-variance case, a simple Hermite expansion argument establishes
the relation η ≥ ζ, which implies ω = s(η/ζ − 1) ≥ 0. From Eqs. (A343) and (A344), τ and τ̄ are
traces of positive semi-definite matrices and are therefore nonnegative. From the same equations, it
follows that x = γρτ τ̄ ≥ 0. Nonnegativity of x implies Ia,b ≥ 0 and I∗a,b ≥ 0 from their definitions
in Eq. (14). Finally, using the nonnegativity of ω, τ , τ̄ , x, and Ia,b, the expression for ∂x∂γ in Thm. 5.1
immediately gives,

∂x

∂γ
= − x

γ + ργ(ψφ τ + τ̄)(ω + φI1,2)
≤ 0. (A1)

Next we show that the self-consistent equation x = 1−γτ
ω+I1,1

appearing in Thm. 5.1 and defined in
Eq. (A345) admits a unique positive real solution for x.

Lemma A1.2. There is a unique real x ≥ 0 satisfying x = 1−γτ
ω+I1,1

.

Proof. Let t = 1/x ≥ 0 and define

h(t) = t
(ρ(ψ − φ) +

√
ρ2(ψ − φ)2 + 4γρφψ/t

2ρψ
− 1
)

+ ω + I1,1(1/t) , (A2)

which is a rewriting of Eq. (A345). It suffices to show that h admits a unique real positive root. To
that end, first observe that limt→0 I1,1(1/t) = 0 and limt→∞ I1,1(1/t) = s, so that

h(0) = ω > 0 and lim
t→∞

h(t)/t = −min{1, φ/ψ} < 0 , (A3)

which together imply that h has an odd number of positive real roots. Next, we show that h is concave
for t ≥ 0:

h′′(t) = −2φ

t3

( γ2ρφψ

(ρ2(ψ − φ)2 + 4γρφψ/t)3/2
+ I2,3(1/t)

)
≤ 0 , (A4)

which implies that h has at most two positive real roots. Therefore, we conclude that h has exactly
one positive real root.

A1.2 I and I∗ inequalities

We now establish some useful properties of the I and I∗ functionals defined in Eq. (14). To begin,
we note that simple algebraic manipulations establish the following raising and lowering identities:

Ia−1,b−1 = φIa−1,b + xIa,b and I∗a−1,b−1 = φI∗a−1,b + xI∗a,b . (A5)

Next, we consider how the partial order of LJSDs given in Def. 4.1 leads to inequalities on the
I∗ functionals. We let (I∗a,b)1 and (I∗a,b)2 to denote the corresponding functionals with the LJSDs
µ1 and µ2 respectively. Similarly, when comparing two different LJSDs we define si as the test
covariance scale for µi for i ∈ {1, 2}. We can then establish the following useful lemma used in the
sequel.
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Lemma A1.3. Let µ1 ≤ µ2, so µ2 is harder than µ1 (recall Def. 4.1). Suppose the functions f, g, h :
R→ R are such that f(λ) = g(λ)h(λ), where g(λ) is nonnegative and h(λ) is nonincreasing for all
λ > 0, then

Eµ1
[rf(λ)]

Eµ2
[rf(λ)]

≤ Eµ1
[rg(λ)]

Eµ2
[rg(λ)]

. (A6)

If instead h(λ) is nondecreasing for all λ > 0, then

Eµ1
[rf(λ)]

Eµ2 [rf(λ)]
≥ Eµ1

[rg(λ)]

Eµ2 [rg(λ)]
. (A7)

Proof. By the law of iterated expectation, we have

Eµ1
[rf(λ)] = Eµ2

[rg(λ)]Eλ
[
Eµ2

[rg(λ)|λ]

Eµ2
[rg(λ)]

Eµ1
[r|λ]

Eµ2
[r|λ]

h(λ)

]
. (A8)

Note that the expectation Eλ in Eq. (A8) over λ is the same under µ1 and µ2 by assumption.
Moreover, the function h(λ) is nonincreasing in λ > 0 by assumption. Finally, observe that the factor
Eµ2 [rg(λ)|λ]/Eµ2 [rg(λ)] defines a change in distribution for the random variable λ, since taking its
expectation over λ yields 1. Denote a new random variable with this distribution by λ̃. Then, we may
apply the Harris inequality5 to Eq. (A8) to see

Eµ1
[rf(λ)] = Eµ2

[rg(λ)]Eλ̃

[
Eµ1

[r|λ̃]

Eµ2 [r|λ̃]
h(λ̃)

]
(A9)

≤ Eµ2
[rg(λ)]Eλ̃

[
Eµ1

[r|λ̃]

Eµ2
[r|λ̃]

]
Eλ̃
[
h(λ̃)

]
(A10)

= Eµ2 [rg(λ)]Eλ
[
Eµ2

[rg(λ)|λ]

Eµ2 [rg(λ)]

Eµ1
[r|λ]

Eµ2 [r|λ]

]
Eλ
[
Eµ2

[rg(λ)|λ]

Eµ2 [rg(λ)]
h(λ)

]
(A11)

=
Eµ1

[rg(λ)]

Eµ2 [rg(λ)]
Eµ2 [rf(λ)] . (A12)

To prove Eq. (A7), apply the same argument to −h, which is nonincreasing when h is nondecreasing.

The following corollary is an immediate consequence of Lem. A1.3.
Corollary A1.1. Let µ1 ≤ µ2 (recall Def. 4.1). Then, for a ≥ 0,

(I∗1,a)2

s2
−

(I∗1,a)1

s1
≥ 0. (A13)

If Assump. 4 also holds,

(I∗1,a)2 ≥ (I∗1,a)1. (A14)

Proof. This result follows from Lem. A1.3 by choosing g : λ 7→ 1 and h : λ 7→ φ(φ + xλ)−a

and recalling by definitions s1 = Eµ1 [r] and s2 = Eµ2 [r]. For the second conclusion, note when
Assump. 4 holds s1 = s = s2.

A2 Hardness is a partial order

We restate Def. 4.1 for clarity.
Definition A2.1 (Restatement of Def. 4.1). Let µ1 and µ2 be LJSDs with the same marginal distribu-
tion of λ. If the asymptotic overlap coefficients are such that Eµ1

[r|λ]/Eµ2
[r|λ] is nondecreasing as

a function of λ and Eµ1
[r] ≤ Eµ2

[r], we say µ1 is easier than µ2 (or µ2 is harder than µ1), and write
µ1 ≤ µ2. Comparing against the case of no shift µ∅, we say µ1 is easy when µ1 ≤ µ∅ and hard when
µ1 ≥ µ∅.

5See for example [23, Section 2.2].
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Proposition A2.1. Def. 4.1 (and Def. A2.1) form a partial order over covariate shifts µ.

Proof. Reflexivity is clearly satisfied as Eµ[r] ≤ Eµ[r] and Eµ[r|λ]/Eµ[r|λ] = 1 is nondecreasing
for all µ.

For antisymmetry, we see µ1 ≤ µ2 and µ2 ≤ µ1 imply Eµ1
[r] = Eµ2

[r] and that Eµ1
[r|λ]/Eµ2

[r|λ]
is constant in λ as it is nonincreasing and nondecreasing. However, setting Eµ1

[r|λ] = cEµ2
[r|λ]

and taking expectation over λ and rearranging yields 1 = Eµ1
[r]/Eµ2

[r] = c, so in fact
Eµ1

[r|λ] = Eµ2
[r|λ]. Assuming that µ1 and µ2 are absolutely continuous (the case where they

are a sum of point masses is similar), we can write their densities as pi(λ, r) = pi(λ)pi(r|λ). By
assumption p1(λ) = p2(λ), so it suffices to show p1(r|λ) = p2(r|λ) almost everywhere. Next note

0 = Eµ1
[r|λ]− Eµ2

[r|λ] =

∫
R+

r (p1(r|λ)− p2(r|λ)) dr, (A15)

but since r > 0 over the domain of the integral, we have p1(r|λ)− p2(r|λ) = 0 almost everywhere.

Finally, for transitivity assume µ1 ≤ µ2 and µ2 ≤ µ3, then clearly Eµ1
[r] ≤ Eµ2

[r] ≤ Eµ3
[r]. Next

note
Eµ1

[r|λ]

Eµ3
[r|λ]

=
Eµ1

[r|λ]

Eµ2
[r|λ]

· Eµ2
[r|λ]

Eµ3
[r|λ]

, (A16)

so Eµ1
[r|λ]/Eµ3

[r|λ] is the product of two nondecreasing, positive functions and is thus also nonde-
creasing.

A3 Repeated eigenvalues of Σ

When Σ has repeated eigenvalues (denote one such by λ), its eigendecomposition is not unique, since
the eigenvectors associated to λ need only span the eigenspace {v : Σv = λv}. Specifically, if the
eigenspace of λ has dimension nλ then the eigenvectors vλ1 , . . . ,v

λ
nλ

are orthonormal but not unique.
However, for any other choice of orthonormal vectors wλ

1 , . . . ,w
λ
nλ

that span the eigenspace of λ,
there exists some orthogonal matrix O such that W = V O, where V and W contain the two bases as
their columns.

Let v∗1, . . . ,v
∗
n0

and λ∗1, . . . , λ
∗
n0

denote a choice for the eigenvectors and eigenvalues of Σ∗. The
nonuniqueness of the eigenvectors implies that the corresponding overlaps to Σ∗, defined as

rλi =

n0∑
j=1

(v∗j · v∗i
λ)2λ∗j = (vλi )>Σ∗vλi (A17)

are also not unique (but do not depend on the choice of eigendecomposition for Σ∗). However, we note
that the conditional expectation E[r|λ] for the EJSD is invariant to the choice of eigendecomposition
for Σ. Indeed, for V , we have

E[r|λ] =
1

nλ

nλ∑
i=1

rλi =
1

nλ

nλ∑
i=1

(vλi )>Σ∗vλi = t̄r(V >Σ∗V ), (A18)

but this is the same as t̄r(W>ΣW ) using W = V O and the cyclic property of the trace.

Since E[r|λ] under the EJSD is invariant to the choice of eigendecomposition for Σ, this will also
be true of the LJSD. Said differently, while the choice of eigendecomposition affects both the EJSD
and its corresponding LJSD, all possible choices of eigendecomposition lead to JSD in the same
equivalence class, where µ1 and µ2 are equivalent when Eµ1

[r|λ] = Eµ2
[r|λ].

Finally, since all potential EJSDs associated to Σ and Σ∗ are in the same equivalence class, the
particular choice has no affect on their downstream use. Specifically, Def. 4.1 is not changed as it
depends only on E[r|λ], and none of the functionals of µ (e.g. Ia,b and I∗a,b) are changed due to the
law of iterated expectation.
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A4 Test error for linear regression

A4.1 Asymptotic and nonasymptotic results for m > n0 + 1

We present a short proof of the nonasymptotic test error for linear regression.

Recall data is generated via the model for yi = β>xi/
√
n0 + εi, which is fit with the ridgeless linear

regression estimator β̂ = (XX>)−1XY . Although in the main text we have assumed the same
isotropic prior on β that we utilize for the random feature model, no generative assumption is needed
on β for this result.

Proof of Prop. 3.1. Under the conditionm > n0+1, the sample covariance is almost surely invertible
so the test error can be written as

EΣ∗ = E
[(
β>x/

√
n0 − β̂>x

)2
]

(A19)

= σ2
ε tr
(
Σ∗E[(XX>)−1]

)
(A20)

= σ2
ε

n0

m− n0 − 1
tr(Σ∗Σ−1), (A21)

where we used the cyclicity and linearity of the trace, as well as a formula for the expectation of the
inverse sample covariance of a Gaussian matrix (which applies whenm > n0 +1) from [58, Theorem
3.1]. The asymptotic form of the result follows from the limit in the proportional asymptotics:

Eµ = lim
n0,m→∞

EΣ∗ =
σ2
εφ

1− φ
Eµ[r/λ] . (A22)

Next we prove Prop. 3.2 using the Harris inequality before proving a slightly more general result that
properly handles the case where Σ may have repeated eigenvalues.

Proof of Prop. 3.2. Using the Harris inequality,

ELR
Σ∗1

=
σ2
εn0

m− n0 − 1

t̄r(Σ∗2)

n0

n0∑
i=1

ri,2
t̄r(Σ∗2)

ri,1
ri,2

1

λi
≤ σ2

εn0

m− n0 − 1

t̄r(Σ∗1)

t̄r(Σ∗2)

1

n0

n0∑
i=1

ri,2
λi
≤ ELR

Σ∗2
, (A23)

since 1/λi and ri,1/ri,2 are nonincreasing and nondecreasing in i respectively.

Prop. 3.2 can be strengthened, and doing so motivates the occurrence of the conditional expectation
in Def. 4.1. Note that we assume that the eigenvalues of Σ are in nondecreasing order, and each
eigenvalue has associated to it two overlap coefficients, ri,1 and ri,2. Prop. 3.2 assumes that ri,1/ri,2
form a nondecreasing sequence. However, what happens when Σ has repeated eigenvalues? In
this case, the ordering of the λi can be changed, which in turn changes the associated ri,1 and ri,2.
Therefore, the assumption on ri,1/ri,2 is too strong—reordering the repeated eigenvalues might be
sufficient to satisfy the condition even if it is violated for the original ordering. Instead, we can
introduce the conditional expectation to handle this more gracefully.

In the following, we use λ̃1, . . . , λ̃k to denote the k non-repeated eigenvalues of the training co-
variance Σ and the sets Sj for j ∈ {1, . . . , k} to denote the indices of eigenvalues in {1, . . . , n0}
associated to the jth repeated eigenvalue of Σ. Analogously, we define the corresponding non-
repeated overlap coefficients as,

r̃j =
1

|Sj |
∑
i∈Sj

ri, j ∈ {1, . . . , k} (A24)

This is equivalent to the conditional expectation discussed in Eq. (A18). In this case, the measure-
theoretic definition of hardness in Def. 4.1 becomes equivalent to stating that the sequence r̃j,2

r̃j,1
is

nondecreasing as j ranges from {1, . . . , k} when Σ∗2 is harder then Σ∗1 (here r̃j,1 and r̃j,2 denote the
non-repeated overlap coefficients of Σ∗1 and Σ∗2 respectively).
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Proposition A4.1. Let r̃j,1 and r̃j,2 denote the non-repeated overlap coefficients6 of Σ∗1 and Σ∗2
relative to Σ. If tr(Σ∗2) ≥ tr(Σ∗1) and the ratios r̃j,1/r̃j,2 form a nondecreasing sequence, then
ELR

Σ∗2
≥ ELR

Σ∗1

Proof. From Prop. 3.1 it is enough to show tr(Σ∗2Σ−1) ≥ tr(Σ∗1Σ−1). First, note that∑n0

i=1 ri,1 =
∑k
j=1|Sj |r̃j,1 = tr(Σ∗1) and

∑n0

i=1 ri,2 =
∑k
j=1|Sj |r̃j,2 = tr(Σ∗2). Then,

tr(Σ∗1Σ−1) =

n0∑
i=1

ri,1
λi

=

k∑
j=1

|Sj |
r̃j,1

λ̃j
= tr(Σ∗2)

k∑
j=1

|Sj |
r̃j,2

tr(Σ∗2)

r̃j,1
r̃j,2

1

λ̃j
(A25)

≤ tr(Σ∗2)

 k∑
j=1

|Sj |
r̃j,2

tr(Σ∗2)

r̃j,1
r̃j,2

 k∑
j=1

|Sj |
r̃j,2

tr(Σ∗2)

1

λ̃j

 (A26)

=
tr(Σ∗1)

tr(Σ∗2)
tr(Σ∗2Σ−1) (A27)

≤ tr(Σ∗2Σ−1), (A28)

where the inequality is a consequence of the Harris inequality (see e.g. [23, Section 2.2]): since
|Sj |r̃j,1/λ̃j is a normalized measured with respect to j, the sequence 1/λ̃j is nonincreasing in j,
while the sequence r̃j,1/r̃j,2 is nondecreasing in j.

A4.2 Linear regression limit of random feature regression

In this section, we show that taking an appropriate limit of Cor. 5.1 recovers existing results for
ridgeless linear regression in high-dimensions. These results fall into two cases based on whether
φ < 1 or φ > 1. In Sec. A4.2.1, we consider φ < 1 and Prop. 3.1 from the main text. In Sec. A4.2.2,
we consider φ > 1 and Cor. 2 of [24].

To recover these results, we let σ approach the identity activation function and ψ → 07, since as
more random features are added the kernel concentrate around its asymptotic limit. Moreover, since
we are taking the limit ψ → 0 and we assume φ > 0, we may assume φ > ψ in all calculations for
simplicity. We also note that as σ approaches the identity, the constants associated to σ approach the
following limits:

η, ζ → 1 and ω → 0. (A29)

From Cor. 5.1, the expression for the total error is

Eµ = φI∗1,2 +
ψ

φ− ψ
x(σ2

ε + I1,1)(ω + I∗1,1) + x
(

1− x(ω − σ2
ε)

1− x2I2,2

)
I∗2,2, (A30)

where x = 1/(ω + I1,1) since we are assuming ψ < φ. Taking the limit ψ → 0, the total error Eµ
converges to

φI∗1,2 + x
(

1− x(ω − σ2
ε)

1− x2I2,2

)
I∗2,2. (A31)

A4.2.1 Recovering asymptotic form of Prop. 3.1 for φ < 1

Recall that Prop. 3.1 assumes that φ < 1. We begin by analyzing the solution to the self-consistent
equation for x in the ridgeless limit when the activation function σ becomes linear.

Lemma A4.1. Suppose 0 < φ < 1 and ψ < φ. In the ridgeless limit, the solution x to the
self-consistent equation in Cor. 5.1,

x =
1

ω + I1,1
, (A32)

satisfies limω→0 x =∞.
6Recall the definition in Eq. (A24).
7The order of these limits does not change the result, but for concreteness we take take the limit as ψ → 0

first.
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Proof. From the definition of I1,1, we see

I1,1 = φEµ
[

λ

φ+ λx

]
=
φ

x
Eµ
[

λ

φ/x+ λ

]
≤ φ

x
. (A33)

Using Eq. (A32), we find x ≥ (1− φ)/ω. Taking ω → 0 completes the proof.

From Lem. A4.1, the solution to the self-consistent equation for x diverges, i.e. x→∞ as σ becomes
linear. In this case, by the dominated convergence theorem, we have that

lim
ω→0

xI∗1,1 = lim
x→∞

Eµ
[

xr

φ+ xλ

]
= φEµ [r/λ] , (A34)

lim
ω→0

x2I2,2 = lim
x→∞

φEµ
[

x2λ2

(φ+ xλ)2

]
= φ, (A35)

lim
ω→0

x2I∗2,2 = lim
x→∞

φEµ
[

x2rλ

(φ+ xλ)2

]
= φEµ [r/λ] , (A36)

lim
ω→0
I∗1,1 = lim

x→∞
φEµ

[
r

(φ+ xλ)2

]
= 0, (A37)

and lim
ω→0
I∗1,2 = lim

x→∞
φEµ

[
r

(φ+ xλ)2

]
= 0 . (A38)

As such, the total error in Eq. (A31) converges to

σ2
ε

φ

1− φ
Eµ[r/λ] (A39)

as ω → 0 and ψ → 0 as desired.

A4.2.2 Recovering results from [24] when Σ = Σ∗ and φ > 1

The minimum-norm solution for under-determined linear regression is the same as the limiting
ridge-regularized solution as the ridge constant converges to 0. As such, studying the ridgeless limit
as in Cor. 5.1 allows for a comparison to prior results on minimum-norm interpolants [24]. To do so,
we again take the limit as σ becomes linear; however, in contrast to the previous section, we now
assume φ > 1 in order to compare with [24, Cor. 2].

As [24] examines the setting in which the training and test covariate distributions are equal, Σ = Σ∗,
we have that I∗a,b = Ia,b. Using this relation, the total error Eq. (A31) becomes

Eµ = φI1,2 + x
(

1− x(ω − σ2
ε)

1− x2I2,2

)
I2,2. (A40)

Next, letting σ become linear as in Eq. (A29), we obtain x = 1/I1,1 and

Eµ
ω→0−→ I1,1 + σ2

ε

x2I2,2

1− x2I2,2
, (A41)

where we used the identity Eq. (A5).

We now simplify and relate the result for the asymptotic error from [24, Cor. 2] in the case of isotropic
β satisfying ‖β‖2 = 1, where the total error is written as8

1

φ2c0(H,φ)
+ σ2

ε c0φ

∫
s2

(1+c0φs)2dH(s)∫
s

(1+c0φs)2dH(s)

. (A42)

The measure H is the limiting empirical spectral density of the covariance, which is equivalent to the
marginal distribution of λ, and c0 satisfies the equation

1− 1

φ
=

∫
1

1 + c0φs
dH(s). (A43)

8[24, Cor. 2] provides expressions for a bias and variance term separately, but the decomposition is defined
slightly differently than the one we utilize, so we compare directly to the total error. Note that Eq. (A42) corrects
a typo in [24].
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Substituting c0 = x/φ2 and rearranging terms, we see

0 = 1− 1

φ
−
∫

1

1 + c0φs
dH(s) (A44)

= − 1

φ
+ 1−

∫
1

1 + (x/φ)s
dH(s) (A45)

= − 1

φ
+ x

∫
s

φ+ xs
dH(s) (A46)

= −x
φ

( 1

x
− I1,1

)
, (A47)

which is satisfied by x = 1/I1,1, implying the two self-consistent equations are equivalent and
validating the identification c0 = x/φ2. Using the same substitution c0 = x/φ2 in Eq. (A42) gives

I1,1 + σ2
ε

1

xφ

x2I2,2

I1,2
= I1,1 + σ2

ε

x2I2,2

1− x2I2,2
, (A48)

which matches our expression in Eq. (A41).

A5 Harder shifts increase the bias and the total error

To begin, we provide the proof of Prop. 5.1.

Proof of Prop. 5.1. Consider two LJSDs µ1 and µ2 such that µ1 ≤ µ2 where Assump. 4 holds. Then,

Bµ2
−Bµ1

= φ
(
(I∗1,2)2 − (I∗1,2)1

)
≥ 0 , (A49)

where we have used the inequalities in Eq. (A60) which follow from Cor. A1.1 when Assump. 4
holds.

Now, additionally assume that σ2
ε ≤ ω. Reorganizing the terms specifying the asymptotic variance,

we can rewrite the total error as

Eµ = Bµ + Vµ (A50)

= φ(I∗1,2)− ρψ
φ

∂x

∂γ

(
(σ2
ε + I1,1)(ω + φI1,2)(ω + I∗1,1) + γτI2,2(ω + φI∗1,2)

+
φ

ψx
γτ̄(σ2

ε + φI1,2)(I∗1,1 − φI∗1,2)

)
(A51)

≡ C1ω + C2I∗1,1 + C3I∗1,2 , (A52)

where the Ci ≥ 0 and depend on µ only through the marginal λ (i.e. they only depend on the training
distribution):

C1 = −ρψ
φ

∂x

∂γ

(
(σ2
ε + I1,1)(ω + φI1,2) + γτI2,2

)
≥ 0 (A53)

C2 = −ρ∂x
∂γ

(
ψ

φ
(σ2
ε + I1,1)(ω + φI1,2) +

γτ̄

x
(σ2
ε + φI1,2)

)
≥ 0 (A54)

C3 = −ρ∂x
∂γ

(
ψγτI2,2 −

φγτ̄

x
(σ2
ε + φI1,2)− φ

ρ∂x∂γ

)
(A55)

= −ρ∂x
∂γ

(
ψγτI2,2 −

φγτ̄

x
(σ2
ε + φI1,2) +

φ

ρx
(γ + ργ(τψ/φ+ τ̄)(ω + φI1,2))

)
(A56)

= −ργ ∂x
∂γ

(
ψτI2,2 +

φτ̄

x
(ω − σ2

ε) +
φ

ρx

(
1 + ρτ

ψ

φ
(ω + φI1,2)

))
(A57)

≥ 0 , (A58)
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where the inequalities follow from Lem. A1.1 and from the assumption σ2
ε ≤ ω. It is now straightfor-

ward to see that

Eµ2
− Eµ1

=
(
C1ω + C2(I∗1,1)2 + C3(I∗1,2)2

)
−
(
C1ω + C2(I∗1,1)1 + C3(I∗1,2)1

)
= C2

(
(I∗1,1)2 − (I∗1,1)1

)
+ C3

(
(I∗11,2)2 − (I∗1,2)1

)
≥ 0 , (A59)

where we have used the inequalities

(I∗1,1)2 − (I∗1,1)1 ≥ 0 , (I∗1,2)2 − (I∗1,2)1 ≥ 0 . (A60)

The former two inequalities again follow from Cor. A1.1 when Assump. 4 holds.

A6 The benefit of overparameterization

A6.1 The bias is nonincreasing

We begin by examining the behavior of the bias as a function of the overparameterization ratio φ/ψ
by showing Prop. 5.2.

Proof of Prop. 5.2. Recall from Thm. 5.1 that the bias is given by

Bµ = φI∗1,2 , (A61)

where x is the unique positive real root of the self-consistent equation

x =
1− γτ
ω + I1,1

. (A62)

Differentiating Eq. (A61) with respect to φ/ψ gives,

∂Bµ
∂(φ/ψ)

= −ψ
2

φ

∂Bµ
∂ψ

= 2
ψ2

φ

∂x

∂ψ
·
(
φI∗2,3

)
. (A63)

Since Lem. A1.1 gives I∗a,b ≥ 0, it is sufficient to show ∂x
∂ψ ≤ 0, which immediately follows by

implicitly differentiating Eq. (A62) and simplifying the expression:

∂x

∂ψ
= − ρxτ(ω + I1,1)

φ
(
1 + ρ(τ̄ + ψ

φ τ)(ω + φI1,2)
) ≤ 0 . (A64)

Therefore we conclude that ∂Bµ
∂(φ/ψ) ≤ 0.

A6.2 The variance is nonincreasing

Next, we turn our attention to the variance. We note the proposition only focuses on the ridgeless
limit, whereas Fig. 1(d) show that result may in fact hold for nonzero ridge constant. As the proof is
considerably simpler in the ridgeless limit, we defer the analysis of the nonzero ridge setting to future
work.

Proof of Prop. 5.3. Using the chain rule we have that

∂Vµ
∂(φ/ψ)

=
∂Vµ
∂ψ

[
∂(φ/ψ)

∂ψ

]−1

= −∂Vµ
∂ψ

ψ2

φ
, (A65)

so it is sufficient to show that ∂Vµ∂ψ ≥ 0.

From Cor. 5.1 in the overparameterized regime, the self-consistent equation for x reads x = 1
ω+I1,1

and is independent of ψ. Therefore, ∂x/∂ψ = 0 and the expression for ∂Vµ/∂ψ follows directly
from Eq. (18),

∂Vµ
∂ψ

=
φ

(φ− ψ)2
x(σ2

ε + I1,1)(ω + I∗1,1) ≥ 0 , (A66)

where the inequality follows from Lem. A1.1.
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A6.3 The generalization gap is nonincreasing

Finally, we prove that overparameterization also confers enhanced robustness, specifically that
the generalization gap between shifted and unshifted test error is a nonincreasing function of the
overparameterization ratio in the overparameterized regime.

Proof of Prop. 5.4. The chain rule gives ∂(Eµ2
−Eµ1

)

∂(φ/ψ) = −ψ
2

φ

∂(Eµ2
−Eµ1

)

∂ψ so it is sufficient to show
∂(Eµ2−Eµ1 )

∂ψ ≥ 0. To that end, recall from Cor. 5.1 in the overparameterized regime that the self-
consistent equation for x reads x = 1

ω+I1,1
and is independent of ψ. Therefore, ∂x/∂ψ = 0, which

implies ∂Bµ1
/∂ψ = 0 and ∂Bµ2

/∂ψ = 0, so that ∂(Eµ2
−Eµ1

)

∂ψ =
∂(Vµ2

−Vµ1
)

∂ψ , the expression for
which follows directly from Eq. (18). Finally,

∂(Eµ2
− Eµ1

)

∂ψ
=
(
CE(ω + (I∗1,1)2)

)
−
(
CE(ω + (I∗1,1)1)

)
(A67)

≥ CE
(
(I∗1,1)2 − (I∗1,1)1

)
(A68)

= 0 , (A69)

where we have introduced the shorthand CE = φ
(φ−ψ)2x(σ2

ε + I1,1) ≥ 0 and in the last inequality
we have used Cor. A1.1 to argue (I∗1,1)2 ≥ (I∗1,1)1 which holds whenever Assump. 4 holds.

A7 Linear trends between in-distribution and out-of-distribution
generalization

In Sec. 5.4, we investigated the linear relationship between the shifted and unshifted test error in
the ridgeless, overparameterized regime. Here, we generalize the result to show that the linear
relationship holds between any two LJSDs in the ridgeless, overparameterized regime.
Proposition A7.1 (Strengthened form of Prop. 5.5). Consider two LJSDs µ1 and µ2. In the setting
of Cor. 5.1 and in the overparameterized regime (i.e. ψ < φ),

Eµ2
= E0 +

(ω + (I∗1,1)2

ω + (I∗1,1)1

)
︸ ︷︷ ︸

SLOPE

Eµ1
, (A70)

parametrically in φ/ψ, where E0 and SLOPE are constants independent of the overparameterization
ratio φ/ψ. Moreover, SLOPE ≥ 1 when µ1 ≤ µ2.

Proof of Prop. A7.1. In the overparameterized regime (i.e. φ > ψ) and in the ridgeless limit, the
asymptotic test error for LJSD µ1 is given by Cor. 5.1 as

Eµ1 = Bµ1 +
1

φ/ψ − 1
x(σ2

ε + I1,1)(ω + (I∗1,1)1) + x
(

1− x(ω − σ2
ε)

1− x2I2,2

)
(I∗2,2)1 . (A71)

Similarly, the asymptotic test error for LJSD µ2 is given by Cor. 5.1 as

Eµ2
= Bµ2

+
1

φ/ψ − 1
x(σ2

ε + I1,1)(ω + (I∗1,1)2) + x
(

1− x(ω − σ2
ε)

1− x2I2,2

)
(I∗2,2)2 . (A72)

Note that in both expressions, the self-consistent equation for x reads x = 1
ω+I1,1

, which has
no dependence on ψ, and, as such, x, Ia,b, (I∗a,b)1, (I∗a,b)2, Bµ1 , and Bµ2 do not depend on the
overparameterization ratio φ/ψ. Hence we can simply eliminate the quantity 1

φ/ψ−1 from Eqs. (A71)
and (A72) to obtain

Eµ2
= E0 +

(ω + (I∗1,1)2

ω + (I∗1,1)1

)
Eµ1

, (A73)

where E0 does not depend on the overparameterization ratio φ/ψ and is given by

E0 := Bµ2 −
ω + (I∗1,1)2

ω + (I∗1,1)1
Bµ1 + x

(
1− x(ω − σ2

ε)

1− x2I2,2

)(
(I∗2,2)2 −

ω + (I∗1,1)2

ω + (I∗1,1)1
(I∗2,2)1

)
. (A74)
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To establish the second conclusion, recall from Sec. A5 that the conditions µ1 ≤ µ2 in conjunction
with Assump. 4 show (I∗1,1)1 ≤ (I∗1,1)2 which establishes SLOPE ≥ 1.

The first half of Prop. 5.5, namely Eq. (19), can be obtained from Prop. A7.1 by specializing to the
case µ1 = µ∅. The second half of Prop. 5.5, namely the conditions on the slope, can be obtained
from Prop. A7.1 by separately specializing to the cases µ1 = µ∅ and µ2 = µ∅.

A8 Necessity of monotonicity of overlap coefficients in Def. 4.1

Here we provide an explicit description of the construction used in Sec. 5.5 and Fig. 3(b) that shows
the monotonicity of overlap coefficients in Def. 4.1 is necessary in order to guarantee the ordering of
errors in Prop. 5.1. The example is given by the following four LJSDs:

µ1 =
1

4
(δλ1,λ4

+ δλ2,λ3
+ δλ3,λ2

+ δλ4,λ1
) (A75)

µ2 =
1

4
(δλ1,λ4

+ δλ2,λ3
+ δλ3,λ1

+ δλ4,λ2
) (A76)

µ3 =
1

4
(δλ1,λ2 + δλ2,λ4 + δλ3,λ3 + δλ4,λ1) (A77)

µ4 =
1

4
(δλ1,λ1 + δλ2,λ2 + δλ3,λ3 + δλ4,λ4) , (A78)

where λ1 = 0.6, λ2 = 0.24, λ3 = 0.12 and λ4 = 0.04. Note that µ4 = µ∅, and these LJSDs have
equal training and test covariance scales, i.e. s = s1 = s2 = s3 = s4 = 1. Moreover, the partial
order in Def. 4.1 gives µ1 ≥ µ4 and µ2 ≥ µ4, and all other pairs of LJSDs are incomparable. In
particular, focusing on µ2 and µ3, the ratios of overlap coefficients are

r2,1

r3,1
=

1

6

r2,2

r3,2
= 3 ,

r2,3

r3,3
= 5 , and

r2,4

r3,4
=

2

5
, (A79)

so the sequence r2,i/r3,i is nonmonotonic in i. The violation of monotonicity is minimal, in the
sense that only a single ratio (r2,4/r3,4) is out of order; nevertheless, the strict model-independent
ordering of test errors is broken because of this nonmonotonicity, as can be seen in Fig. 3(b). For
the comparable pairs of LJSDs, µ1 ≥ µ4 and µ2 ≥ µ4, and the strict ordering of the error is seen
for all values of φ/ψ. The ordering is not guaranteed for the other pairs, and indeed the ordering is
not satisfied for µ2 and µ3, which is evidenced by the crossing of the corresponding curves in the
figure. In this way, we see that the error can exhibit model dependence induced by nonmonotonicity
of overlap coefficients in Def. 4.1, thereby showing that the monotonicity condition is necessary
for Prop. 5.1. Finally, we note that even though Prop. 5.1 may no longer hold, it is nevertheless
possible to develop nontrivial bounds when the strict monotonicity is violated, but we pursue this
investigation elsewhere.

A9 Proof of Thm. 5.1

As discussed in Sec. 2, we consider predictive functions ŷ defined by random feature kernel ridge
regression,

ŷ(x) := Y K−1Kx (A80)

for K := K(X,X) + γIm, Kx := K(X,x), with γ is a ridge regularization constant. Here

K =
1

n1
F>F + γIm , (A81)

and, as in the main text, we have introduced the abbreviations F := σ(WX/
√
n0). The labels are

generated by a linear function parameterized by β ∈ Rn0 , whose entries are drawn independently
from N (0, 1), i.e. Y = β>X/

√
n0 + ε. In this section, we develop the techniques and detailed

calculations needed to determine the high-dimensional asymptotic limit of the test error,

EΣ∗ = Ex,βE[(y(x)− ŷ(x))2]− σ2
ε = Ex,βE[(β>x/

√
n0 − Y K−1Kx)2] , (A82)
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as well as its decomposition into bias and variance terms,

EΣ∗ = Ex,βE[(E[ŷ(x)]− y(x))2]︸ ︷︷ ︸
BΣ∗

+Ex,β [V[ŷ(x)]]︸ ︷︷ ︸
VΣ∗

. (A83)

We may also write the test loss as

EΣ∗ = E(x,y)(y − ŷ(x))2 = E1 + E2 + E3 (A84)

with

E1 = E(x,β,ε)y(x)2 = E(x,β,ε)tr(y(x)y(x)>) (A85)

E2 = −2E(x,β,ε)(K
>
x K

−1Y )y(x) = −2E(x,ε)tr(K
>
x K

−1Y >y(x)) (A86)

E3 = E(x,β,ε)(K
>
x K

−1Y >)2 = E(x,ε)tr(K
>
x K

−1Y >Y K−1Kx) . (A87)

A9.1 Reducing to the mean-zero case

In this section, we aim to show that we may assume without loss of generality that the activation
function is centered. More precisely, we define

F̄ij := Fij − EZσ
(√

t̄r(Σ)Z
)

and f̄i := fi − EZσ
(√

t̄r(Σ∗)Z
)

(A88)

for all i and j and Z ∼ N (0, 1). Note that this centering operation is n0-dependent, but in the limit
under Assump. 4, t̄r(Σ), t̄r(Σ∗)→ s, which appear in the limiting self-consistent equation. Note that
although we invoke Assump. 4 throughout the rest of the paper, this proof holds non-asymptotically
and allows for t̄r(Σ) 6= t̄r(Σ∗).

To show that replacing F and f by F̄ and f̄ does not alter the test error in the limit, we have to show
that the E1, E2, and E3 terms of Eqs. (A85)-(A87) are not changed in the limit. Clearly this is true
for E1 as it contains neither F nor f . For E2 we must show

E
[
(K>x K

−1Y > − K̄>x K̄−1Y >)y(x)
]
→ 0 (A89)

and for E3 we must show

E
[
(K>x K

−1Y >)2 − (K̄>x K̄
−1Y >)2

]
→ 0, (A90)

where
K̄ :=

1

n1
F̄>F̄ + γI and K̄x :=

1

n1
F̄>f̄ . (A91)

Define the random variable
∆ := (K>x K

−1 − K̄xK̄
−1)Y >. (A92)

To control the typical behavior of ∆, we will define an event E (see Def. A9.1), and let 1E be an
indicator for E . In Lem. A9.7 we show P[Ec]→ 0.

We can argue
|E [∆y(x)]| ≤ |E [1E∆y(x)]|+ |E [(1− 1E)∆y(x)]| , (A93)

for Eq. (A89), and

|E [∆y(x)]| ≤
∣∣E [1E∆(K>x K

−1Y > + K̄>x K̄
−1Y >)

]∣∣ (A94)

+
∣∣E [(1− 1E)

(
(K>x K

−1Y >)2 − (K̄>x K̄
−1Y >)2

)]∣∣ , (A95)

for Eq. (A90). We demonstrate Eqs. (A93) and (A94) are o(1) in two steps. The first terms on the
right-hand sides of Eqs. (A93) and (A94) represent the typical behavior of the random variables. To
bound them, we show that, given E , ∆→ 0 in Lem. A9.8. The second terms on the right-hand sides
of Eqs. (A93) and (A94) represent the atypical behavior of the random variables. To bound them, we
use the Cauchy-Schwarz inequality and the fact that P[Ec]→ 0 in Lem. A9.6.

To briefly outline the structure of this section: Sec. A9.1.1 proves concentration of some quadratic
forms of the underlying random matrices and bounds their operator norms with high probability;
Sec. A9.1.2 controls the atypical behavior mentioned above; Sec. A9.1.3 applies the Schur comple-
ment formula to derive an expression for ∆ that we can bound; Sec. A9.1.4 defines an event where
the expression for ∆ from the Schur complement formula can be easily bounded; and Sec. A9.1.5
completes the argument by bounding ∆ on this typical event.
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A9.1.1 Prerequisites for concentration and linearization

Just as in [1], the concentration of the linear data kernel about its expectation is a key ingredient to
the analysis. Define the random variables

Υ :=
1

n0
X>X and υ∗ := ‖x‖22/n0. (A96)

Remark A9.1. Throughout this section and the next we will use C to denote an arbitrarily large,
n0-independent, positive constant, which can increase from line to line. For example, if X ≤ C
and Y ≤ C, we will simply write XY ≤ C, since C2 is still some n0-independent constant. This
approach is valid as such replacements only occur a finite number of times. Similarly, c denotes some
arbitrarily small, n0-independent, positive constant that can decrease from line to line.

Then we note
EΥ = t̄r(Σ)In0

and Eυ∗ = t̄r(Σ∗). (A97)
For the variance, we see by Assump. 1 that

VΥij =
1 + I(i = j)

n0
t̄r(Σ) ≤ C/n0 and Vυ∗ =

2

n0
t̄r((Σ∗)2) ≤ C/n0. (A98)

This motivates the following lemma.
Lemma A9.1. The event

Edata := {‖Υ‖∞ ≤ C}∩
{
|υ∗−t̄r(Σ∗)| ≤ Cnc−1/2

0

}
∩
⋂
i,j

{
|Υij−δij t̄r(Σ)| ≤ Cnc−1/2

0

}
(A99)

occurs with high-probability, that is, for some positive, n0-independent constant C

P[Ecdata] ≤ Cn−c0 (A100)

for any positive, n0-independent constant c.

Proof. Tighter concentration than is obtained directly from the variance can be shown by observing
that Υ and υ∗ are equal in distribution to

1

n0
ZTΣZ and

1

n0
z>Σ∗z (A101)

for Z an (n0,m)-dimensional matrix and z an n0-dimensional vector both containing i.i.d. standard
Gaussian random variables. Then using the assumption ‖Σ‖∞, ‖Σ∗‖∞ ≤ C and applying the results
of Sec. B of [18] (or similar concentration results), we find that for some positive constant C that

P[|Υij − δij t̄r(Σ)| ≥ Cnc−1/2
0 ] ≤ C exp(−nc0), (A102)

where c is any positive constant. An identical concentration result holds for υ∗ − t̄r(Σ∗). Then, by
the union bound, we see

P

{|υ∗ − t̄r(Σ∗)| ≥ Cn−c0

}
∪
⋃
i,j

{
|Υij − δij t̄r(Σ)| ≥ Cnc−1/2

0

} (A103)

≤ Cn2
0C exp (−nc0) (A104)

≤ C exp(−nc0). (A105)

The operator norm of Υ can also be bounded probabilistically. For some n0-independent constant C,

‖Υ‖∞ ≤ ‖Σ‖∞‖Z/
√
n0‖2∞ ≤ C‖Σ‖∞

1 +

√
m

n0
+

√
log(2/δ)

n0

 ≤ C (A106)

with probability at least 1 − δ, where Z is i.i.d. Gaussian (see for example [65, Theorem 4.4.5]).
Thus, setting δ = n−c0 , we see P[‖Υ‖∞ ≥ C] ≤ n−c0 . Applying the union bound again completes
the proof.
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Lemma A9.2. The (squared) expected operator norm of Υ is also bounded:

E‖Υ‖2∞ ≤ C (A107)

for some positive, n0-independent constant C.

Proof. This result follows from a tail integration argument. That is from [65, Theorem 4.4.5]) we
have that

‖Υ‖∞ ≤ ‖Σ‖∞‖Z/
√
n0‖2∞ ≤ C‖Σ‖∞

(
1 +

√
m

n0
+ u

)
(A108)

with probability at least 1 − 2 exp(−n0u
2), where Z is i.i.d. Gaussian. Hence we have that

P[‖Υ‖∞ ≥ C‖Σ‖∞
(

1 +
√

m
n0

+ u
)

] ≤ 2 exp(−n0u
2). Now by the tail integration identity,

E[‖Υ‖2∞] = 2

∫ ∞
0

uP[‖Υ‖∞ ≥ u]du (A109)

≤ C2‖Σ‖2∞
(

1+

√
m

n0

)2

+C2‖Σ‖2∞
∫ ∞

0

uP
[
‖Υ‖∞≥C‖Σ‖∞

(
1+

√
m

n0
+u

)]
du

(A110)

≤ C2‖Σ‖2∞
(

1 +

√
m

n0

)2

+ C2‖Σ‖2∞ ·
1

n0
(A111)

≤ C. (A112)

by integrating the Gaussian tail.

Next, we state similar results for the matrix Υ̃ := WΣ∗W>/n0 as were obtained for Υ above.
Lemma A9.3. The event

EW :=
{∥∥∥Υ̃

∥∥∥
∞
≤ C

}
∩
⋂
i,j

{∣∣∣Υ̃ij−δij t̄r(Σ∗)
∣∣∣ ≤ Cnc−1/2

0

}
(A113)

occurs with high-probability, that is, for some positive, n0-independent constant C

P[EcW ] ≤ Cn−c0 (A114)

for any positive, n0-independent constant c.

Proof. The claims follow identically to Lem. A9.1.

Lemma A9.4. Moreover on the event EW , we have

Exσ̄(Wx/
√
n0)i ≤ Cnc−1/2

0 (A115)

and
Exσ̄(Wx/

√
n0)σ̄(Wx/

√
n0)> = ζΥ̃ + (η − ζ)Im + ∆, (A116)

where ‖∆‖∞ ≤ Cnc0.

Proof. Note that conditional on W , Wx/
√
n0 ∼ N (0, Υ̃). Using a Taylor expansion in

ε := Υ̃ii − t̄r(Σ∗) below with Assump. 3 shows that elementwise

|Exσ̄(Wx/
√
n0)i| =

∣∣∣∣EZ σ̄(√Υ̃iiZ

)∣∣∣∣ (A117)

=
∣∣∣EZσ (√ε+ t̄r(Σ∗)Z

)
− EZσ

(√
t̄r(Σ∗)Z

)∣∣∣ (A118)

≤ Cε (A119)

≤ Cnc−1/2
0 , (A120)

where Z is a standard Gaussian. See [1] for additional details, but note that we are not Taylor
expanding the function σ, we are expanding the p.d.f. we integrate against. This allows us to assume
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that σ(Wx) is centered as a conditional expectation over x at the expense of an elementwise Cnc−1/2
0

error. Denoting f̄ := σ̄(Wx/
√
n0), we note this can be extended to the matrix Ef̄ f̄>. We see

Exf̄ f̄
> = Ex[(f̄ − Exf̄)(f̄ − Exf̄)>] + (Exf̄)(Exf̄)>. (A121)

However, the second term on the right-hand side of Eq. (A121) is small is operator norm, since it is
rank-1 and ∥∥(Exf̄)(Exf̄)>

∥∥
∞ =

∥∥Exf̄
∥∥2

2
≤ Cnc0 (A122)

by Eq. (A120). Next, we see for i 6= j that

Exf̄if̄j = EZ1,Z2
σ̄(c1Z1)σ̄(c12Z1 + c2Z2) (A123)

for constants c1, c2, and c12 depending on W and Σ∗, where Z1 and Z2 are independent, stan-
dard Gaussians. See [1] for details. The i = j terms can be handled similarly. Moreover,
c12 = Υ̃ij/

√
Υ̃ii ≤ Cnc−1/2

0 , so Taylor expanding in c12Z1, we find

Exf̄ f̄
> = ζΥ + (η − ζ)I + ∆̃ + (Exf̄)(Exf̄)>. (A124)

As a consequence of the Taylor expansion and Assump. 3, ∆̃ has entries that are bounded by Cnc−1
0

in absolute value. Again, see [1]. The final conclusion for ∆ = ∆̃ + (Exf̄)(Exf̄)> follows by upper
bounding ‖∆̃‖∞ ≤ ‖∆̃‖F ≤ Cnc0 and using the previous bound in Eq. (A122).

Finally we include a bound on the operator norm of the random feature matrix. The argument follows
[41, Lemma C.3] closely.

Lemma A9.5. Under Assump. 3, the event

EF :=
{∥∥F̄ /√n0

∥∥
∞ ≤ Cn

c
0

}
(A125)

occurs with high-probability, that is, for some positive, n0-independent constant C

P[EcF ] ≤ Cn−c0 (A126)

for any positive, n0-independent constant c < 10.

Proof. Consider the matrix

R̄ij = 1i 6=j σ̄(z>i Σ1/2zj/
√
n1)/
√
n1 (A127)

for zi = Σ−1/2Xi (i.e. columns of Σ−1/2X) for 1 ≤ i ≤ m and zm+i = Wi (i.e. rows of W ) for
1 ≤ i ≤ n0. By construction, we note that F̄ /

√
n1 is a minor of R̄. Thus, bounding the operator norm

of R̄ suffices to bound the operator norm of F̄ . Moreover, zi are independent Gaussians distributed
as N (0, In0

).

Next we show that the entries to the activation function cannot be too large with high probability. For
convenience throughout we define M = m+ n0 and let Ω be a symmetric matrix with ‖Ω‖∞ ≤ C.
Note that, for i 6= j, the random variable z>i Ωzj/

√
n0 =

∑n0

k=1 λk(Ω)akbk/
√
n0 where ak and bk

are i.i.d. from ∼ N (0, 1). So the moment generating function can be bounded as,

E

[
exp

(
n0∑
i=1

tλi(Ω)aibi/
√
n0

)]
=

n0∏
i=1

E[exp(ai · tλi(Ω)bi/
√
n0)] (A128)

=

n0∏
i=1

E[exp(t2b2iλi(Ω)2/(2n0)] (A129)

≤
n0∏
i=1

E[exp(t2b2iC
2/(2n0)] (A130)

≤ E[exp(t2b2iC
2/2)] (A131)

=
1√

1− C2t2
(A132)
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for |t| ≤ 1
C . Further 1√

1−C2t2
≤ exp(C2t2) for |t| ≤ 1

2C . This establishes the original random
variable is subexponential. Thus this random variables satisfies

P[|z>i Ωzj/
√
n0| ≥ u] ≤ 2 max{exp(−u2/2C2), exp(−u/2C)} (A133)

(see for example [66, Proposition 2.9]). Define the event

G :=
⋂

1≤i<j≤M

{∣∣∣∣z>i Σ1/2zj√
n0

∣∣∣∣ ≥ C√logM

}
∩

⋂
1≤i<j≤M

{∣∣∣∣z>i Σzj√
n0

∣∣∣∣ ≥ C2
√

logM

}
. (A134)

Then by a union bound and Markov’s inequality, we have that

P[Gc] ≤ 4/M20 (A135)

for large enough C.

We now define a modified version of σ̄, that is the same up to a constant factor on G but is truncated
outside of G. Let ū = C

√
logM and taking the constants from Assump. 3, we see

σ̃(u) :=


σ̄(u) exp(−c1|ū|)/c0 for |u| ≤ ū
σ̄(ū) exp(−c1|ū|)/c0 for u > ū

σ̄(−ū) exp(−c1|ū|)/c0 for u < −ū
. (A136)

Just as we did with σ in Eq. (A88), we center σ̃ with its mean ã. Note σ̃ is a 1-bounded and 1-Lipschitz
function so |ã| ≤ 1.

Now consider the matrix

R̃ij := 1i 6=j(σ̃(z>i Σ1/2zj/
√
n0)− ã)/

√
n1. (A137)

By controlling the operator norm of R̃, we can control the operator norm of R̄ at the end of the proof.
By a covering argument it suffices to control

‖R̃‖∞ ≤ max
v∈S

10 |v>R̃v|︸ ︷︷ ︸
Fv(Z)

, (A138)

where S is a 1/4-covering of the M -dimensional sphere with cardinality exp(cM) and the matrix Z
is of all the variables zi.

We now seek to apply [13, Lemma 9, Lemma 20]. To this end we wish to show that Fv(Z) is
Lipschitz in Z, that is, if we define Z :=

√
tZ +

√
1− tZ ′ for (Z,Z ′) ∈ G × G, we need to show

that

max
v∈S

max
t∈[0,1]

∥∥∥∇Fv(√tZ +
√

1− tZ ′)
∥∥∥
F
≤ L (A139)

for suitable L. Consider the gradient with respect to a column of Z (denoted by ζl):

∇ζlFv(Z) = 2
vl√
n0n1

∑
i6=l

Σ1/2ζi viσ̃
′(ζ>i Σ1/2ζ>l /

√
n0)︸ ︷︷ ︸

ξi

(A140)

= 2
vl√
n0n1

Σ1/2Zξ, (A141)

where ξ is the vector with coordinates ξi except at l where it is zero. Continuing, on the set G, we find

‖∇wlFv(W )‖22 ≤ C2v2
l /n

2
0

∑
i 6=l,j 6=l

∣∣ξiξjw>i Σwj
∣∣ (A142)

≤ Cv2
l

√
logM/n2

0

∑
i

∑
j 6=i

|ξiξj | (A143)

≤ Cv2
l

√
logM/n2

0

∑
i

∑
j 6=i

(ξ2
i + ξ2

j ) (A144)

≤ Cv2
l

√
logM/n0 (A145)
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where the last line follows since |σ̃′(·)|2 ≤ 1 implies that ‖ξ‖ ≤ 1. So finally, we obtain

‖∇WFv(W )‖2F ≤ C
√

logM/n0 =: L2. (A146)

Now [13, Lemma 9] shows for constant a D that

P[|v>R̃v| > D] ≤ C exp

(
Cn0 −

D2

L2

)
+

C

D2
E[max

v∈S
(Fv(Z)− Fv(Z ′))2 · 1Gc ]. (A147)

We use a crude bound on the complement. First note that

max
v∈S

(Fv(Z)− Fv(Z ′))2 ≤ C‖σ̃(Z>Σ1/2Z/
√
n0)‖2F ≤ C‖Z>Z/

√
n0‖2F + Cn2

0, (A148)

since removing the 1-bounded-Lipschitz σ̃(·) can be done by centering each activation with σ̃(0).
Then,

E
[
max
v∈S

(Fv(Z)− Fv(Z ′))2 · 1Gc

]
≤
√
C

n1
(E[‖Z>Σ1/2Z/

√
n0‖4F ] + n4

0)P[Gc]. (A149)

A short computation shows that E[‖Z>Σ1/2Z/
√
n0‖4F ] ≤ Cn8

0. Combining all terms then shows
that

P[|v>R̃v| > D] ≤ C exp(Cn0) · exp

(
− n0D

2

logM

)
+

C

D2
· C
M5

. (A150)

Choosing D = c3
√

logM for sufficiently large c3 shows that

P[|v>R̃v| > D] ≤ C exp(−cn0) +
C

n10
0

≤ C

n10
0

, (A151)

where c > 0.

Recalling the original ε-net covering, this implies that

‖R̃‖∞ ≤ C
√

log n0 (A152)

with probability at least C/n10. We can now finish the argument by relating the operator norm of R̄
and R̃. Recalling the rescaling between the modified and unmodified activations, we see

P[‖R̄‖∞ ≥ C
√

log n0 · c0 exp(c1|ū|)] ≤ P[‖R̃‖∞ ≥ C
√

log(n0),G] + P[Gc] ≤ C/n10
0 . (A153)

A9.1.2 Controlling the atypical behavior

Since the argument for the atypical event is the most straightforward, we provide that first.
Lemma A9.6. Suppose P[Ec] = Cn−c0 for some n0-independent constants C > 0 and c > 0. Then,

|E [(1− 1E)∆y(x)]| → 0 (A154)

and ∣∣E [(1− 1E)
(
(K>x K

−1Y >)2 − (K̄>x K̄
−1Y >)2

)]∣∣→ 0 (A155)
as n0 →∞.

Proof. Applying the Cauchy-Schwarz inequality to the left-hand side of Eq. (A154), we may bound
it by

E |[(1− 1E)∆y(x)]| ≤ (E [1Ec ])
1/2
(
E |∆y|2

)1/2

. (A156)

Since the first term P[Ec] → 0 it also follows that (P[Ec])1/2 → 0. So it suffices to show
E[|∆y|2] = O(1).

We now apply the Cauchy-Schwarz inequality again to bound the second term by

E
∣∣(∆y(x))2

∣∣ ≤√E[∆4]E[y(x)4]. (A157)
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A simple argument shows that E[y(x)4] ≤ C(E[(β>x)4/n2
0]+E[ε4]) ≤ CE[‖Σ1/2z‖4/n2

0]+Cσ4
ε ≤

C for z ∼ N (0, Id) since E[‖z‖42]/n2
0] ≤ C. Hence it suffices to show E[∆4] ≤ C. To this end note

that

E[∆4] ≤ C(E[(K>x K
−1Y >)4] + E[(K̄>x K̄

−1Y >)4]) (A158)

An identical argument can be applied to bound both terms. We outline the argument for the first term.
We see

|E[(K>x K
−1Y >)4]| ≤ E|Eβ,ε[(K>x K−1Y >)4|W,X, x]|. (A159)

Now note that by the definition of Y = β>X/
√
n0 + ε we have that,

(K>x K
−1Y >)4 ≤ C

(
(K>x K

−1 X
√
n0
β)4 + (K>x K

−1ε)4

)
(A160)

Recalling that β ∼ N (0, In0) and ε ∼ N (0, Im), we can compute the Gaussian moments (marginally
in β, ε) as,

Eβ,ε[(K>x K−1 X
√
n0
β)4 + (K>x K

−1ε)4|W,X, x] (A161)

≤ C
(

(K>x K
−1

(
X>X

n0

)
K−1K>x )2 + σ2

ε (K>x K
−2K>x )2

)
(A162)

Continuing, using the definition of Kx,

E
[
(K>x K

−1

(
X>X

n0

)
K−1K>x )2

]
≤ E

[∥∥∥∥ f>√n0

FK−1

√
n0

X>X

n0

K−1F>
√
n0

f
√
n0

∥∥∥∥2

∞

]
(A163)

≤ E

[∥∥∥∥ f
√
n0

∥∥∥∥4

2

·
∥∥∥∥FK−1

√
n0

∥∥∥∥4

∞
·
∥∥∥∥X>Xn0

∥∥∥∥2

∞

]
. (A164)

Noting that K = FF>/n0 + γIm so an application of the SVD to F√
n0

(denoting the corresponding

singular values as si) shows that ‖FK
−1

√
n0
‖∞ = maxi

si
s2i+γ

≤ maxs≥0
s

s2+γ = 1/(2
√
γ). Hence, we

can continue bounding Eq. (A164) by

CE[‖f/
√
n0‖4∞] · E[‖X>X/n0‖2∞], (A165)

where we exploited the independence of f and X . Lem. A9.2 ensures that E[‖X>X/n0‖2∞] =

E[‖Υ‖2∞] ≤ C. The former term becomes E[‖f/√n0‖42] = E[σ(
√

t̄r(Σ∗)z)4] ≤ C for z ∼ N (0, 1)
by Assump. 3. Thus, the previous displays are bounded by some constant C. An entirely analogous
argument shows that E[(K>x K

−2K>x )2] ≤ C. Together these two results along with the previous
computations establish that,

|E[(K>x K
−1Y >)4]| ≤ C (A166)

Note that our argument did not exploit any explicit properties of the centered vs uncentered activation
function σ vs. σ̄. Hence an identical argument shows that, |E[(K̄>x K̄

−1Y >)4]| ≤ C. These two
results imply E[∆4] ≤ C as desired.

Now we turn to the second term. Using an identical application of the Cauchy-Schwarz inequality as
used for the first term, we can bound Eq. (A155) by

(E [1Ec ])
1/2
(
E
∣∣(K>x K−1Y >)2 − (K̄>x K̄

−1Y >)2
∣∣2)1/2

. (A167)

Hence we can show Eq. (A155) is o(1) if E
∣∣(K>x K−1Y >)2 − (K̄>x K̄

−1Y >)2
∣∣2 = O(1). This

result follows immediately from the computations shown for the previous term since we have already
established that E[(K>x K

−1Y >)4] ≤ C and E[(K̄>x K̄
−1Y >)4] ≤ C. These two previously shown

results imply

E
∣∣(K>x K−1Y >)2 − (K̄>x K̄

−1Y >)2
∣∣2 ≤ C (E[(K>x K

−1Y >)4] + E[(K̄>x K̄
−1Y >)4]

)
≤ C.
(A168)
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A9.1.3 Schur complement formula for bounding ∆

The centering procedure is a rank-1 change to F and f , so applying the Schur complement for-
mula to understand its effect is natural. Write a := EZσ

(√
t̄r(Σ)Z

)
, a∗ := EZσ

(√
t̄r(Σ∗)Z

)
,

v := 1/n1F̄
>1n1

, u := a1m, U := [u,v]>, and C := ( 1 1
1 0 ). Then,

K−1 = (K̄ + uv> + vu> + uu>)−1 (A169)

= (K̄ + U>CU)−1 (A170)

= K̄−1 − K̄−1U>(C−1 + UK̄−1U>)−1UK̄−1 , (A171)

and, for δ := 1/n1f̄
>1n1

and P := (δ + a∗, a∗)>,

Kx = K̄x +
1

n1
(F − F̄ )>f̄ +

1

n1
F̄>(f − f̄) +

1

n1
(F − F̄ )>(f − f̄) (A172)

= K̄x + (δ + a∗)u + a∗v (A173)

= K̄x + U>P . (A174)

Combining these expressions,

K−1Kx = K−1(K̄x + U>P ) (A175)

= K̄−1(K̄x + U>P )− K̄−1U>(C−1 + UK̄−1U>)−1UK̄−1(K̄x + U>P ) (A176)

= K̄−1K̄x + T1 + T2 , (A177)

with

T1 = K̄−1U>
(
I2 − (C−1 + UK̄−1U>)−1UK̄−1U>

)
P (A178)

= K̄−1U>
(
I2 + CUK̄−1U>

)−1
P (A179)

T2 = −K̄−1U>(C−1 + UK̄−1U>)−1UK̄−1K̄x (A180)

= −K̄−1U>
(
I2 + CUK̄−1U>

)−1
CUK̄−1K̄x . (A181)

Furthermore, writing c0 := 1
mu>K̄−1u, c1 := 1 + u>K̄−1v, c2 := 1− v>K̄−1v,(

I2 + CUK̄−1U>
)−1

=
1

c21 +mc0c2

(
c1 c2 − c1
−mc0 mc0 + c1

)
, (A182)

so that, (
I2 + CUK̄−1U>

)−1
P =

1

c21 +mc0c2

(
c1δ + c2a

∗

−mc0δ + c1a
∗

)
, (A183)

and, (
I2 + CUK̄−1U>

)−1
C =

1

c21 +mc0c2

(
c2 c1
c1 −mc0

)
. (A184)

A9.1.4 Concentration with high-probability

Definition A9.1. Recall the definitions from Sec. A9.1.3. To characterize the typical behavior of the
random variables, we define the event

E := Edata ∩ EW ∩ EF ∩
{
|δ| ≤ Cnc−1/2

0

}
∩
{
cn−c0 ≤ c0 ≤ Cnc0

}
∩
{
c1 ≤ Cnc+1/2

0

}
(A185)

∩
{
cn−c0 ≤ c2 ≤ Cnc0

}
∩
{
Y K̄−1v> ≤ Cnc0

}
∩
{
Y K̄−1u> ≤ Cnc+1/2

0

}
. (A186)

∩
{
K̄xK̄

−1u> ≤ Cnc0
}
∩
{
K̄xK̄

−1v> ≤ Cnc−1/2
0

}
∩ {y(x) ≤ Cnc0} (A187)

Lemma A9.7. The event E is high-probability, that is, P[Ec] ≤ Cn−c0 for some constant C > 0 and
any constant 0 < c < 10.
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Proof. First, we already know Edata, EW , and EF all occur with high-probability (see Lems. A9.1,
A9.3 and A9.5). When bounding the other events in Eqs. (A185)-(A187), it will be useful to introduce
conditioning on one of Edata, EW , or EF . This will suffice since for any event A, we have

P[Ac] ≤ P[Ac|Edata] + P[Ecdata] ≤ P[Ac|Edata] + Cn−c0 (A188)

for example. We will explicitly denote this conditioning, but when taking expectation over some
random variables (e.g. x orW ) we will not explicitly denote that we are conditioning on the remaining
independent random variables (e.g. X). Once we have bounded the probability of the complement of
each event in Eqs. (A185)-(A187), we can apply the union bound to complete the proof.

For future reference recall v := 1/n1F̄
>1n1

and u := a1m. We deal with each event in Eqs. (A185)-
(A187) in turn.

Controlling δ: Here, we introduce conditioning on the event Edata. To control δ, we want to
calculate its mean and variance to apply Chebyshev’s inequality. Note that Edata is independent of W ,
so the expectations over W below are unchanged by this conditioning. Recall

δ =
1

n1

n1∑
k=1

σ

 n0∑
j=1

Wkjxj/
√
n0

− a∗ (A189)

and note that conditional on x the sum
∑
jWkjxj/

√
n0 is distributed as N (0, υ∗) for all k.

Expanding in υ∗ − t̄r(Σ∗), we see

EW [δ|Edata] = E[EZ∼N (0,1)[σ(
√

t̄r(Σ∗) + (υ∗ − t̄r(Σ∗))Z)]− a∗|Edata] (A190)

= E[EZ [σ(
√

t̄r(Σ∗)Z)]− a∗|Edata] (A191)

+ E
[

1

2

(υ∗ − t̄r(Σ∗))

t̄r(Σ∗)
EZ [

√
t̄r(Σ∗)Zσ(

√
t̄r(Σ∗)Z)] + ∆

∣∣∣Edata

]
(A192)

= E
[

1

2

(υ∗ − t̄r(Σ∗))

t̄r(Σ∗)
EZ [

√
t̄r(Σ∗)Zσ(

√
t̄r(Σ∗)Z)] + ∆|Edata

]
, (A193)

where Z is a standard Gaussian. The first term of Eq. (A193) is less than Cnc−1/2
0 and the remainder

term ∆ is less than Cnc−1
0 on Edata. More detail on this argument can be found in [1]. Taking

expectation over the remaining randomness, we see E[δ|Edata] ≤ Cnc−1/2
0 .

Similarly,

VW [δ|Edata] =
1

n2
1

n1∑
k=1

VW

σ
 n0∑
j=1

Wkjxj/
√
n0

∣∣∣Edata

 =
1

n1
VZ∼N (0,υ∗)σ(Z), (A194)

where we can again Taylor expand in υ∗ − t̄r(Σ∗) to get the bound VW [δ|Edata] ≤ C/n0 on Edata.
Using the law of total variance, we can then bound V[δ|Edata] ≤ C/n0.

Finally applying Chebyshev’s inequality implies for all c > 0 that

P[|δ − E[δ|Edata]| > Cn
c−1/2
0 |Edata] ≤ Cn−c0 , (A195)

and so
P[|δ| > Cn

c−1/2
0 |Edata] ≤ Cn−c0 . (A196)

Controlling c0, c1, and c2: Here, we introduce conditioning on the event EF . The results for c0, c1,
and c2 can be found using a similar argument to terms in [41, Lemma 9.6/Step 3]. The identifications
c0 ↔ K11, c1 ↔ K12, c2 ↔ 1−K22 hold.

For c0 = 1
mu>K̄−1u we have that

c0 ≤
a2‖1m‖2

m
‖K̄−1‖∞ ≤

C

γ
(A197)
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and

c0 ≥
a2‖1m‖2

m
λmin(K̄−1) ≥ C

(γ + ‖F̄‖2∞/n0)
≥ cn−c0 (A198)

using the operator norm bound on the event EF .

For c1 = 1 + u>K̄−1v we have

|c1| =
∣∣∣∣1 + a1>mK̄

−1 F̄
>
√
n1

1n1√
n1

∣∣∣∣ ≤ 1 + a‖1m‖2
‖1n1‖2√

n1
‖K̄−1 F̄

√
n1
‖ ≤ Cn1/2

0 , (A199)

where the bound ‖K̄−1 F̄√
n1
‖ ≤ C follows by considering the SVD of F̄ .

For c2 = 1− v>K̄−1v we obviously have that c2 ≤ 1 since v>K̄−1v ≥ 0. Additionally, we have
that

c2 = 1− 1

n1
1>n1

F̄
√
n1
K̄−1 F̄

>
√
n1

1n1 (A200)

=
1>n1√
n1

(
In1
− F̄
√
n1
K̄−1 F̄

>
√
n1

)
1n1√
n1

(A201)

≥ 1− ‖ F̄
√
n1
K̄−1 F̄

>
√
n1
‖∞ (A202)

= 1−
‖F̄ /√n1‖2∞

γ + ‖F̄ /√n1‖2∞
≥ 1− cnc0

γ + cnc0
(A203)

≥ Cγ

cnc0
(A204)

≥ cn−c0 (A205)

as desired once again using the conditioning on the event EF .

Finally,

v>K̄−1v =
1

n1
1>n1

F̄
√
n1
K̄−1 F̄

>
√
n1

1n1 ≤
‖1n1
‖22

n1

∥∥∥∥ F̄
√
n1
K̄−1 F̄

>
√
n1

∥∥∥∥
∞
≤ C (A206)

since F̄√
n1
K̄−1 F̄>√

n1
≤ C follows once again by considering the SVD of F̄ .

Controlling Y K̄−1v>: Here, we introduce conditioning on the event Edata and note its indepen-
dence from β and ε. Recalling that Y = β>X/

√
n0 + ε, we note that Y has expectation zero since

Eβ,ε[Y K̄−1v>|Edata] = 0. Similarly the conditional variance can be bounded as

Vβ,ε[Y K̄−1v>|Edata] = v>K̄−1(Υ + σ2
εIm)K̄−1v (A207)

≤
∥∥Υ + σ2

εIm
∥∥
∞

∥∥∥∥K̄−1 F̄
>
√
n1

∥∥∥∥2

∞

∥∥∥∥ 1n1√
n1

∥∥∥∥2

2

(A208)

≤ C. (A209)

The bound ‖K̄−1 F̄>√
n1
‖∞ ≤ C follows by considering the SVD of F as in the proof of

Lem. A9.6, while the bound ‖Υ‖ ≤ C holds on Edata. The law of total variance then shows
V[Y K̄−1v>|Edata] ≤ C also. Hence an application of Chebyshev’s inequality shows that

P[|Y K̄−1v>| ≥ Cnc0|Edata] ≤ Cn−c0 (A210)

for some C > 0 and any c > 0.

Controlling Y K̄−1u>: Again, we introduce conditioning on the event Edata and note its indepen-
dence from β and ε. A nearly identical argument to the previous one suffices, so we only outline the
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argument. Again E[Y K̄−1v>|Edata] = 0 and the conditional variance can be bounded as

Vβ,ε[Y K̄−1u>|Edata] = u>K̄−1(Υ + σ2
εIm)K̄−1u (A211)

≤ ‖K̄−1‖2∞‖Υ + σ2
εIm‖∞‖u‖22 (A212)

≤ 1

γ2
· a2m · ‖Υ + σ2

εIm‖∞ (A213)

≤ Cn0. (A214)

Finally, Chebyshev’s inequality suffices to show

P[|Y K̄−1u>| ≥ Cnc+1/2
0 |Edata] ≤ Cn−c0 (A215)

for some C > 0 and any c > 0.

Controlling K̄>x K̄−1u>: Here, we introduce conditioning on the event EW and note its indepen-
dence from x. The overall argument then uses Chebyshev’s inequality exploiting the randomness in
x. First, ∣∣Ex[K̄>x K̄

−1u>|EW ]
∣∣ =

∣∣∣∣Ex[f̄>|EW ]
F̄
√
n1
K̄−1u>/

√
n1

∣∣∣∣ (A216)

≤
∥∥Ex[f̄ |EW ]

∥∥
2

∥∥∥∥ F̄
√
n1
K̄−1

∥∥∥∥
∞
‖u/
√
n1‖2 (A217)

≤ Cnc0. (A218)

The bound ‖ F̄√
n1
K̄−1‖∞ ≤ C follows by an SVD as before, while the first bound

‖Ex[f̄>|EW ]‖2 ≤ Cnc0 follows from the fact Exσ̄(Wx)i ≤ Cn
c−1/2
0 on EW (see Lem. A9.4).

Next we turn to the conditional variance. We see

Vx[K̄xK̄
−1u|EW ] = u>K̄−1Ex[K̄xK̄

>
x |EW ]K̄−1u (A219)

=
1

n2
1

u>K̄−1F̄>
( ρ
n0
WΣ∗W> + (η − ζ)In1

+ ∆
)
F̄ K̄−1u (A220)

≤
∥∥∥∥ u
√
n1

∥∥∥∥2

2

∥∥∥∥K̄−1 F̄
>
√
n1

∥∥∥∥2

2

·
(∥∥∥ρΥ̃

∥∥∥
∞

+ ‖(η − ζ)In1
‖∞+ ‖∆‖∞

)
(A221)

≤ C · (C + C + nc0) (A222)
≤ Cnc0. (A223)

Once again the bound ‖K̄−1 F̄>√
n1
‖22 follows by considering the SVD, while the nontrivial operator

norm bounds follow from Lem. A9.4. Using the law of total variance, we see

V[K̄xK̄
−1u|EW ] = E[Vx[K̄xK̄

−1u|EW ]|EW ] + V[Ex[K̄xK̄
−1u|EW ]|EW ] ≤ Cnc0 (A224)

by Eqs. (A218) and (A223). Applying Chebyshev’s inequality yields

P[|K̄>x K̄−1u− Ex[K̄>x K̄
−1u]| ≥ Cnc0|EW ] ≤ Cn−c0 , (A225)

and so
P[|K̄>x K̄−1u| ≥ Cnc0|EW ] ≤ Cn−c0 (A226)

by the triangle inequality since |Ex[K̄>x K̄
−1u]| ≤ Cnc0.

Controlling K̄>x K̄−1v>: Again, we introduce conditioning on the event EW and note its indepen-
dence from x. A nearly identical argument to the previous one shows the result for this term. Hence
we only outline the argument. First, we see

|Ex[K̄>x K̄
−1v>|EW ]| =

∣∣∣∣Ex[f̄>|EW ]
F̄
√
n1
K̄−1 F̄

>
√
n1

1n1

n1

∣∣∣∣ (A227)

≤
∥∥Ex[f̄>|EW ]

∥∥
2

∥∥∥∥ F̄
√
n1
K̄−1 F̄

>
√
n1

∥∥∥∥
∞

∥∥∥∥1n1

n1

∥∥∥∥
2

(A228)

≤ Cnc−1/2
0 . (A229)
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The bound ‖ F̄√
n1
K̄−1 F̄>√

n1
‖∞ ≤ 1 follows by an SVD as before, while the first bound again follows

from Lem. A9.4. Next we compute the conditional variance and bound as in Eq. (A223) to find

Vx[K̄xK̄
−1v>|EW ] = v>K̄−1Ex[K̄xK̄

>
x |EW ]K̄−1v (A230)

=
1

n4
1

1>n1
F̄ K̄−1F̄>

(
ρ

n0
WΣ∗W> + (η − ζ)In1

+ ∆

)
F̄ K̄−1F̄>1n1

(A231)

≤ 1

n1

∥∥∥∥ 1n1√
n1

∥∥∥∥2

2

·
∥∥∥∥ F̄
√
n1
K̄−1 F̄

>
√
n1

∥∥∥∥2

2

·
(∥∥∥ρΥ̃

∥∥∥
∞

+‖(η−ζ)In1
‖∞+‖∆‖∞

)
(A232)

≤ C · (C + C + nc0)

n1
(A233)

≤ Cnc−1
0 . (A234)

Once again the bound ‖ F̄√
n1
K̄−1 F̄>√

n1
‖2 ≤ 1 follows by considering the SVD while the nontrivial

operator norm bounds follow on EW . Now applying Chebyshev’s inequality as before shows

P[|K̄>x K̄−1v>| ≥ Cnc−1/2
0 |EW ] ≤ Cn−c0 . (A235)

Controlling y(x): Finally we show y(x) ≤ Cnc0 with probability at least Cn−c0 . Note that
E[y(x)] = 0 and a short computation shows that V[y(x)] = t̄r(Σ∗) + σ2

ε ≤ C. So a direct
application of Chebyshev’s inequality shows that

P[|y(x)| ≥ Cnc0] ≤ Cn−c0 . (A236)

A9.1.5 Completing the argument for the typical behavior

Lemma A9.8. For some n0-independent constants c > 0 and C > 0, we have

|E [1E∆y(x)]| ≤ Cn−c0 (A237)

and ∣∣E [1E∆(K>x K
−1Y > + K̄>x K̄

−1Y >)
]∣∣ ≤ Cn−c0 (A238)

Proof. Obviously, |E [1E∆y(x)]| is bounded by |E [∆y(x)] |E|, so we can remove the indicator 1E
from the expectations in Eqs. (A237) and (A238) by conditioning on E .

We want to show that conditional on E and for some n0-independent constants c > 0 and C > 0, the
bounds |∆| ≤ Cn−2c

0 , |y(x)| ≤ Cnc0, and
∣∣(K>x K−1Y > + K̄>x K̄

−1Y >)
∣∣ ≤ Cnc0 hold.

Recall, a := EZσ
(√

t̄r(Σ)Z
)

, a∗ := EZσ
(√

t̄r(Σ∗)Z
)

, v := 1/n1F̄
>1n1 , u := a1m,

U := [u,v]>, and C := ( 1 1
1 0 ).

First, consider the term ∆ = Y T1 + Y T2. To show that |∆| ≤ Cn−2c
0 on E , we write out Y T1 and

Y T2 more explicitly:

Y T1 = Y K̄−1U>
(
I2 + CUK̄−1U>

)−1
P (A239)

=
1

c21 +mc0c2

(
Y K̄−1u
Y K̄−1v

)>(
c1δ + c2a

∗

−mc0δ + c1a
∗

)
(A240)

=
1

c21 +mc0c2

(
Y K̄−1u · (c1δ + c2a

∗) + Y K̄−1v · (−mc0δ + c1a
∗)
)

(A241)

(A242)
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and

Y T2 = −Y K̄−1U>
(
I2 + CUK̄−1U>

)−1
CUK̄−1K̄x (A243)

=
1

c21 +mc0c2

(
Y K̄−1u
Y K̄−1v

)>(
c2 c1
c1 −mc0

)(
u>K̄−1K̄x

v>K̄−1K̄x

)
(A244)

≤ 1

c21 +mc0c2

(
Y K̄−1u · (c2u>K̄−1K̄x + c1v

>K̄−1K̄x) (A245)

+ Y K̄−1v · (c1u>K̄−1K̄x −mc0v>K̄−1K̄x)
)
. (A246)

Now using Eq. (A239) and the definition of E , we see that on E

|Y T1| ≤
∣∣∣∣ 1

c21 +mc0c2

∣∣∣∣ (∣∣Y K̄−1u
∣∣ (|c1| |δ|+ |c2| |a∗|) +

∣∣Y K̄−1v
∣∣ (m |c0| |δ|+ |c1| |a∗|))

(A247)

≤ Cn2c−1
0

(
Cn

c+1/2
0 (Cnc0Cn

c−1/2
0 + Cnc0) + Cnc0(Cn0Cn

c
0Cn

c−1/2
0 + Cnc0)

)
(A248)

≤ Cn5c−1/2
0 . (A249)

Since the cs used in the bounds above can be arbitrarily small, we may replace write |Y T1| ≤ Cnc−1/2
0

for arbitrarily small c > 0. Finally, a similar argument for Eq. (A243) yields the bound

|Y T2| ≤
∣∣∣∣ 1

c21 +mc0c2

∣∣∣∣ (|Y K̄−1u| · (|c2||u>K̄−1K̄x|+ |c1||v>K̄−1K̄x|) (A250)

+ |Y K̄−1v| · (|c1||u>K̄−1K̄x| −m|c0||v>K̄−1K̄x|)
)

(A251)

≤ Cn2c−1
0 ·

(
Cn

c+1/2
0 · (Cnc0Cnc0 + Cn

c+1/2
0 Cn

c−1/2
0 ) (A252)

+ Cnc0 · (Cn
c+1/2
0 Cnc0 + Cn0Cn

c
0Cn

c−1/2
0 )

)
(A253)

≤ Cn2c−1
0 · (Cn3c+1/2

0 + Cn
3c+1/2
0 ) (A254)

≤ Cn5c−1/2
0 . (A255)

and as before since c can be chosen arbitrarily small we can write |Y T2| ≤ Cnc−1/2
0 .

A9.2 Gaussian equivalents

Before describing how Gaussian equivalents can be used to compute the test error in the high-
dimensional limit, we make the following observation: the asymptotic test error is invariant to the
centering of the activation function across the train and test distributions. More concretely, from the
results in Sec. A9.1, the asymptotic test error is unchanged under the replacements Fij → F̄ij and
fi → f̄i, for all i and j, where,

F̄ij := Fij − Ez∼N (0,t̄r(Σ))σ (z) and f̄i := fi − Ez∼N (0,t̄r(Σ∗))σ (z) . (A256)

With this simplification in mind, the proof of Thm. 5.1 relies on the concept of Gaussian equivalents
and the linearization analysis developed in [2, 3, 1], which we briefly review here, though we refer the
reader to these works for a more detailed description. The centered activation-constants are defined
as ζ̄ = sρ̄ with

η̄ := Ez∼N (0,s)[σ̄(z)2] and ρ̄ :=

(
1

s
Ez∼N (0,s)[zσ̄(z)]

)2

. (A257)

Note that by the continuity of σ, we know that as n0 →∞
Ez∼N (0,t̄r(Σ))[σ̄(z)2]→ η̄. (A258)

Similarly for ζ̄ and ρ̄ or when t̄r(Σ) is replaced by t̄r(Σ∗). To proceed, we define the moment-
matched Gaussian linearizations,

F̄ →
√

ρ̄

n0
WX +

√
η̄ − ζ̄Θ and f̄ →

√
ρ̄

n0
Wx +

√
η̄ − ζ̄θ (A259)
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where f̄ := σ̄(Wx/
√
n0) is the random feature representation of the test point x and y := β>x/

√
n0

is its corresponding label, which we assume has no additive noise9.

The new objects Θ and θ are matrices of the appropriate shapes with i.i.d. standard Gaussian entries
independent of the other random variables under consideration. The constants η̄ and ζ̄ are chosen so
that the mixed moments up to second order are the same for the original and linearized matrices. The
Gaussian equivalents defined are essentially constructed via a Taylor expansion of the nonlinearity σ̄.
The explicit calculations defining these expressions can be found via the Gaussian moment matching
technique in [1].

Having appropriately linearized the random feature matrices, we can map back to the definition of
the original activation functions by recalling that the variable ζ, defined in Sec. 5.1 as ζ = sρ, with

η := η̄ = Ez∼N (0,s)[(σ(z)− Ez∼N (0,s)[σ(z)])2] = Vz∼N (0,s)[σ(z)] (A260)

ρ := ρ̄ = (
1

s
Ez∼N (0,s)[z(σ(z)− Ez∼N (0,s)[σ(z)])])2 = (

1

s
Ez∼N (0,s)[z(σ(z)])2 (A261)

by using the definition of the centering. Effectively, this is equivalent to using the linearizations,

F → F̄ →
√

ρ

n0
WX +

√
η − ζΘ and f → f̄ →

√
ρ

n0
Wx +

√
η − ζθ (A262)

directly to compute the test error.

Simply by definition, the teacher function is exactly linear,

Y =

√
1

n0
β>X + ε and y =

√
1

n0
β>x . (A263)

We emphasize that the restriction to linear teacher functions is simply a matter of convenience and
simplicity — nonlinear teacher neural networks can be studied by means of an analogous linearization
process, as discussed in [2], which merely requires introducing additional moment-matching constants
and additional i.i.d. standard Gaussian terms θ and θy .

In the high-dimensional limit the bulk statistics we compute defining the error, bias, and variance
are invariant to the above replacements by linearized Gaussian equivalents. We remark that further
intuition for these linearized information-plus-noise replacements can be gathered from the universal-
ity results of [5, 6]. To summarize briefly, the final expressions we compute are tracial (nonlinear)
functions of several random matrices. A large body of universality results (e.g. [6, 17]) show that in
the asymptotic limit it is sufficient to calculate with an equivalent tracial functional of a (linearized)
rational function of random matrices, whose moments match their nonlinear counterparts.

More specifically, two basic trace objects arise in the calculations, which take the form

tr(AB) and tr

(
A

1

B − zI

)
. (A264)

For the first case, tr(AB), if the random matrices A and B are independent, its asymptotics can be
understood via concentration of measure arguments. Conditionally on A, it is sufficient to replace
B with an equivalent matrix designed to match low-order moments, at the expense of an error that
vanishes asymptotically. The second case, tr

(
A 1
B−zI

)
, is a bit more involved. Our arguments

proceed by 1) utilizing the linearized matrices in Eq. (A262) to express the trace object as a rational
function of i.i.d. Gaussian matrices, and then 2) using the linear pencil method10 [25, 45] to express
it as the trace of a large (inverted) block matrix. The reason the linearization over B preserves
the asymptotic statistics even for general A with correlated entries stems from the matrix Dyson
equation [17].

A9.3 Decomposition of the test loss

Recall the expression for the test loss in Eq. (A84),

EΣ∗ = E1 + E2 + E3 (A265)
9Including noise on the test labels merely shifts by the total error by an irreducible additive constant.

10This is essentially an iterative application of the Schur complement formula.
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with

E1 = E(x,β,ε)y(x)2 = E(x,ε)tr(y(x)y(x)>) (A266)

E2 = −2E(x,β,ε)(K
>
x K

−1Y )y(x) = −2E(x,ε)tr(K
>
x K

−1Y >y(x)) (A267)

E3 = E(x,β,ε)(K
>
x K

−1Y >)2 = E(x,ε)tr(K
>
x K

−1Y >Y K−1Kx) , (A268)

where the kernels K = K(X,X) and Kx = K(X,x) are given by,

K =
F>F

n1
+ γIm and Kx =

1

n1
F>f . (A269)

Using the cyclicity and linearity of the trace, the expectation over x requires the computation of

ExKxK
>
x , Exy(x)K>x , Exy(x)y(x)> . (A270)

As described in Sec. A9.2, without loss of generality we consider the case of a linear teacher, and
Eqs. (A262) and (A263) read

y =
1
√
n0
β>x and f → f lin =

√
ρ

√
n0
Wx +

√
η − ζθ . (A271)

The expectations over x are now trivial and we readily find,

ExKxK
>
x =

1

n2
1

F>
( ρ
n0
WΣ∗W> + (η − ζ)In1

)
F (A272)

Exy(x)K>x =

√
ρ

n0n1
β>Σ∗W>F (A273)

Exy(x)y(x)> =
1

n0
βΣ∗β> (A274)

One may interpret the substitution in Eq. (A271) as a tool to calculate the expectations above to leading
order, which generates terms like Eq. (A264). Next, we recall the definition, Y = β>X/

√
n0 + ε,

and, as above, we consider the leading order behavior with respect to the random variables β to find

Eβ,ε
[
Y >Y

]
=

1

n0
X>X + σ2

εIm (A275)

Eβ,ε
[
Y >Exy(x)K>x

]
=

√
ρ

n
3/2
0 n1

X>Σ∗W>F . (A276)

Putting these pieces together, we have

E1 =
tr(Σ∗)

n0
(A277)

E2 = E21 (A278)
E3 = E31 + E32 , (A279)

where,

E21 = −2

√
ρ

n
3/2
0 n1

Etr
(
X>Σ∗W>FK−1

)
(A280)

E31 = σ2
εEtr

(
K−1Σ3K

−1
)

(A281)

E32 =
1

n0
Etr

(
K−1Σ3K

−1X>X
)

(A282)

and,

Σ3 =
ρ

n0n2
1

F>WΣ∗W>F +
η − ζ
n2

1

F>F . (A283)
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A9.4 Decomposition of the bias and total variance

Note that it is sufficient to calculate the bias term since given the total test loss, since the total variance
can be obtained as VΣ∗ = EΣ∗ −BΣ∗ . Following the total multivariate bias-variance decomposition
of [3], for each random variable in question we introduce an i.i.d. copy of it denoted by either the
subscript 1 or 2. We can then write,

BΣ∗ = E(x,y)(y − E(W,X,ε)ŷ(x;W,X, ε))2 (A284)

= E(x,y)E(W1,X1,ε1)E(W2,X2,ε2)(y − ŷ(x;W1, X1, ε1))(y − ŷ(x;W2, X2, ε2)) (A285)

=
tr(Σ∗)

n0
+ E21 +H000 , (A286)

where an expression for E21 was given previously and H000 satisfies

H000 = Eŷ(x;W1, X1, ε1)ŷ(x;W2, X2, ε2) , (A287)

where the expectations are over x,W1, X1, ε1,W2, X2, and ε2. Recalling the definition of ŷ,

ŷ(x;W,X, ε) := Y (X, ε)K(X,X;W )−1K(X,x;W ) (A288)

and the techniques described in the previous section, it is straightforward to analyze the above term.
First note we can write,

ExK(X1,x;W1)K(x, X2;W2) =
ρ

n0n2
1

F>11W1Σ∗W>2 F22 (A289)

since the f linearizations use different sources of auxiliary randomness. Here we have defined
F11 ≡ F (W1, X1) and F22 ≡ F (W2, X2). Now we proceed to calculate H000 as

H000 = Eŷ(x;W1, X1, ε)ŷ(x;W2, X2, ε2) (A290)

= EK(x, X2;W2)K(X2, X2;W2)−1Y (X2, ε2)>Y (X1, ε1)K(X1, X1;W1)−1K(X1,x;W )
(A291)

= Etr
(
K(X2, X2;W2)−1X>2 X1K(X1, X1;W1)−1K(X1,x;W )K(x, X2;W2)

)
(A292)

=
ρ

n2
0n

2
1

Etr
(
K−1

22 X
>
2 X1K

−1
11 F

>
11W1Σ∗W>2 F22

)
(A293)

≡ E4 , (A294)

where in the second-to-last line we have defined K11 ≡ K(X1, X1;W1) and K22 ≡
K(X2, X2;W2).

A9.5 Summary of linearized trace terms

We now summarize the requisite terms needed to compute the total test error, bias, and variance after
using cyclicity of the trace to rearrange several of them. In the following, we slightly change notation
in order to make explicit the dependence on the population covariance matrices Σ and Σ∗. To be
specific, whereas above we assumed that the columns of X1 and X2 were drawn from multivariate
Gaussians with covariance Σ, below we assume that they are drawn from multivariate Gausssians
with identity covariance. This change is equivalent to replaceing X1 → Σ1/2X1 and X2 → Σ1/2X2

in the above expressions. We utilize this definition so that X1, X2, W1, W2, and Θ all have i.i.d.
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standard Gaussian entries. From the previous computations, we can now write the requisite terms as,

Σ3 =
ρ

n0n2
1

F>11W1Σ∗W>1 F11 +
η − ζ
n2

1

F>11F11 (A295)

E21 = −2

√
ρ

n
3/2
0 n1

tr
(
X>1 Σ1/2Σ∗W>1 F11K

−1
11

)
(A296)

E31 = σ2
ε tr
(
K−1

11 Σ3K
−1
11

)
(A297)

E32 =
1

n0
tr
(
K−1

11 Σ3K
−1
11 X

>
1 ΣX1

)
(A298)

E4 =
ρ

n2
0n

2
1

tr
(
F22K

−1
22 X

>
2 ΣX1K

−1
11 F

>
11W1Σ∗W>2

)
(A299)

EΣ∗ =
tr(Σ∗)

n0
+ E21 + E31 + E32 (A300)

BΣ∗ =
tr(Σ∗)

n0
+ E21 + E4 (A301)

VΣ∗ = EΣ∗ −BΣ∗ (A302)

In the remainder of this section we use the machinery of operator-valued free probability [45]
and a series of lengthy algebraic computations to compute the asymptotic tracial expressions in
E21, E31, E32, E4, from which the total test error, bias, and variance can be reconstructed.

A9.6 Calculation of error terms

To compute the test error, bias, and total variance, we need to evaluate the asymptotic trace objects
appearing in the expressions for E21, E31, E32, and E4, defined in the previous section. As these
expressions are essentially rational functions of the random matrices X , W , Θ, Σ, and Σ∗, these
computations can be accomplished by constructing a linear pencil [19] and using the theory of
operator-valued free probability [45]. These techniques and their application to problems of this type
have been well-established elsewhere [1, 2, 3], we only sketch the mathematical details, referring the
reader to the literature for a more pedagogical overview. Instead, we focus on presenting the details
of the requisite calculations.

Relative to the prior work of [2, 3], the main challenge in the current setting is generalizing the
calculations to include an arbitrary training covariance matrix Σ. This generalization is facilitated
by the general theory of operator-valued free probability, and in particular through the subordinated
form of the operator-valued self-consistent equations that we first present in Eq. (A322). The form of
this equation enables the simple computation of the operator-valued R-transform of the remaining
random matrices, W , X , and Θ, which are all i.i.d. Gaussian and can therefore be obtained simply
by using the methods of [19]. The remaining complication amounts to performing the trace in
Eq. (A322), which becomes an integral over the LJSD µ in the limit. While this might in general
lead to a complicated coupling of many transcendental equations, it turns out that the trascendentality
can be entirely factored into a single scalar fixed-point equation, whose solution we denote by
x (see Eq. (A345)), and the remaining equations are purely algebraic given x. To facilitate this
particular simplification, it is necessary to first compute all of the entries in the operator-valued
Stieltjes transform of the kernel matrix K, which we do in Sec. A9.6.1. Using these results, we
compute the remaining error terms in the subsequent sections.

As a matter of notation, note that throughout this entire section whenever a matrix X , X1, or
X2 appears it is composed of i.i.d. standard Gaussian entries as in Sec. A9.5. This differs from
the notation of the main paper, but we follow this prescription to ease the already cumbersome
presentation. This definition of X allows us to explicitly extract and represent the training covariance
Σ in our calculations.

28



A9.6.1 K−1

Define the block matrix QK
−1

as,

QK
−1

=



Im
√
η−ζΘ>
γ
√
n1

√
ρX>

γ
√
n0

0 0 0

−Θ
√
η−ζ√
n1

In1
0 0 −

√
ρW√
n1

0

0 0 In0
−Σ1/2 0 0

0 −W>√
n1

0 In0
0 0

0 0 0 0 In0
−Σ1/2

− X√
n0

0 0 0 0 In0


. (A303)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GK
−1

1,1 = γ t̄r(K−1) (A304)

GK
−1

2,2 = γ t̄r(K̂−1) (A305)

GK
−1

3,3 = GK
−1

6,6 = 1−
√
ρ t̄r

(
Σ1/2W>FK−1X>

)
√
n0n1

(A306)

GK
−1

4,3 = GK
−1

6,5 = t̄r(Σ1/2)−
√
ρ t̄r

(
ΣW>FK−1X>

)
√
n0n1

(A307)

GK
−1

5,3 = GK
−1

6,4 =
γ
√
ρ t̄r

(
Σ1/2W>K̂−1W

)
n1

(A308)

GK
−1

6,3 =
γ
√
ρ t̄r

(
ΣW>K̂−1W

)
n1

(A309)

GK
−1

3,4 = GK
−1

5,6 = −
√
ρ t̄r

(
FK−1X>W>

)
√
n0n1ψ

(A310)

GK
−1

4,4 = GK
−1

5,5 = 1−
√
ρ t̄r

(
Σ1/2W>FK−1X>

)
√
n0n1

(A311)

GK
−1

5,4 =
γ
√
ρ t̄r

(
K̂−1WW>

)
n1ψ

(A312)

GK
−1

3,5 = GK
−1

4,6 = −
√
ρ t̄r

(
Σ1/2XK−1X>

)
n0

(A313)

GK
−1

4,5 = −
√
ρ t̄r

(
ΣXK−1X>

)
n0

(A314)

GK
−1

3,6 = −
√
ρ t̄r

(
K−1X>X

)
n0φ

, (A315)

where GK
−1

:= id6 ⊗ t̄r [(QK
−1

)>]−1 ∈ M6(C) is a scalar 6 × 6 matrix whose i, j entry GK
−1

i,j

is the normalized trace of the (i, j)-block of the inverse of [QK
−1

]>, and we have defined K̂ =
1
n1
FF> + γIn1 .

We aim to compute the limiting values of these trace terms as n0, n1,m → ∞, as they will be
related to the error terms of interest. Both here and in the sequel, to ease the already cumbersome
presentation, we use G to denote the limiting values as well as the non-limiting values and we refrain
from explicitly denoting the limit operation itself, noting its existing can be inferred from context.

To proceed, recall that the asymptotic block-wise traces of the inverse of QK
−1

can be determined
from its operator-valued Stieltjes transform [45]. The simplest way to apply the results of [19, 45] is
to augment QK

−1

to form the the self-adjoint matrix Q̄K
−1

,

Q̄K
−1

=

(
0 [QK

−1

]
>

QK
−1

0

)
, (A316)

29



and observe that we can write Q̄K
−1

as,

Q̄K
−1

= Z̄ − Q̄K
−1

W,X,Θ − Q̄K
−1

Σ

=

(
0 Z>

Z 0

)
−

(
0 [QK

−1

W,X,Θ]
>

QK
−1

W,X,Θ 0

)
−

(
0 [QK

−1

Σ ]
>

QK
−1

Σ 0

)
,

(A317)

where Z = Im+4n0+n1
, and,

QK
−1

W,X,Θ =



0
√
η−ζΘ>
γ
√
n1

√
ρX>

γ
√
n0

0 0 0

−Θ
√
η−ζ√
n1

0 0 0 −
√
ρW√
n1

0

0 0 0 0 0 0

0 −W>√
n1

0 0 0 0

0 0 0 0 0 0
− X√

n0
0 0 0 0 0


(A318)

QK
−1

Σ =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −Σ1/2 0 0
0 0 0 0 0 0
0 0 0 0 0 −Σ1/2

0 0 0 0 0 0

 . (A319)

Note that we have separated the i.i.d. Gaussian matrices W,X,Θ from the constant terms and from
the Σ-dependent terms. Denote by ḠK

−1 ∈M12(C) the block matrix

ḠK
−1

=

(
0 [GK

−1

]
>

GK
−1

0

)
= id12 ⊗ t̄r

(
Q̄K

−1
)−1

, (A320)

and by ḠK
−1

Σ ∈M12(C) the operator-valued Stieltjes transform of Q̄K
−1

Σ . Using Eq. (A317) and the
definition of the operator-valued Stieltjes transform G

Q̄K
−1

W,X,Θ+Q̄K
−1

Σ
, we can write

ḠK
−1

= id12 ⊗ t̄r
(
Z̄ − Q̄K

−1

W,X,Θ − Q̄K
−1

Σ

)−1

= G
Q̄K
−1

W,X,Θ+Q̄K
−1

Σ
(Z̄) . (A321)

Thus using the subordinated form of the equations for addition of free variables (45; section 9.2 Thm.
11), and the defining equation for ḠK

−1

Σ , the operator-valued theory of free probability shows that
in the limit n0, n1,m → ∞, the Stieltjes transform ḠK

−1

satisfies the following 12 × 12 matrix
equation,

ḠK
−1

= ḠK
−1

Σ (Z̄ − R̄K
−1

W,X,Θ(ḠK
−1

))

= id⊗ t̄r
(
Z̄ − R̄K

−1

W,X,Θ(ḠK
−1

)− Q̄K
−1

Σ

)−1

,
(A322)

where R̄K
−1

W,X,Θ(ḠK
−1

) ∈M12(C) is the operator-valued R-transform of Q̄K
−1

W,X,Θ. Here the normal-
ized trace t̄r acts on the constituent blocks, and the identity operator id acts on the space of 12× 12

matrices. As described by [2, 3], since Q̄K
−1

W,X,Θ is a block matrix whose blocks are i.i.d. Gaussian

matrices (and their transposes), an explicit expression for R̄K
−1

W,X,Θ(ḠK
−1

) can be obtained through a
covariance map, denoted by η [19]. In particular, η : Md(C)→Md(C) is defined by,

[η(D)]ij =
∑
kl

σ(i, k; l, j)αkDkl , (A323)

where αk is dimensionality of the kth block and σ(i, k; l, k) denotes the covariance between the
entries of the blocks ij block of Q̄K

−1

W,X,Θ and entries of the kl block of Q̄K
−1

W,X,Θ. Here d = 12 is the
number of blocks. When the constituent blocks are i.i.d. Gaussian matrices and their transposes,
as is the case here, then R̄K

−1

W,X,Θ = η [45], and therefore the entries of R̄K
−1

W,X,Θ can be read off
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from Eq. (A316). To simplify the presentation, we only report the entries of R̄K
−1

W,X,Θ(GK
−1

) that

are nonzero, given the specific sparsity pattern of GK
−1

. The latter follows from Eq. (A322) in the
manner described in [45, 19]. Practically speaking, the sparsity pattern can be obtained by iterating
an Eq. (A322), starting with an ansatz sparsity pattern determined by Z̄, and stopping when the
iteration converges to a fixed sparsity pattern. In this case (and all cases that follow in the subsequent
sections), the number of necessary iterations is small and can be done explicitly. We omit the details
and instead simply report the following results for the nonzero entries:

R̄K
−1

W,X,Θ(ḠK
−1

) =

(
0 RK

−1

W,X,Θ(GK
−1

)>

RK
−1

W,X,Θ(GK
−1

) 0

)
, (A324)

where,

[RK
−1

W,X,Θ(GK
−1

)]
1,1

=
GK

−1

2,2 (ζ − η)−√ρGK−1

6,3

γ
(A325)

[RK
−1

W,X,Θ(GK
−1

)]
2,2

=
ψGK

−1

1,1 (ζ − η)

γφ
+
√
ρψGK

−1

4,5 (A326)

[RK
−1

W,X,Θ(GK
−1

)]
4,5

=
√
ρGK

−1

2,2 (A327)

[RK
−1

W,X,Θ(GK
−1

)]
6,3

= −
√
ρGK

−1

1,1

γφ
, (A328)

and the remaining entries of RK
−1

W,X,Θ(GK
−1

) are zero. Owing to the large degree of sparsity, the
matrix inverse in Eq. (A322) can be performed explicitly and yields relatively simple expressions that
depend on the entries of GK

−1

and the matrix Σ. For example, the (9, 6) entry of the self-consistent
equation reads,

GK
−1

3,6 =

[
id⊗ t̄r

(
Z̄ − R̄K

−1

W,X,Θ(ḠK
−1

)− Q̄K
−1

Σ

)−1
]

9,6

(A329)

= t̄r
[√

ρGK
−1

1,1

(
− ΣρGK

−1

1,1 GK
−1

2,2 − γφIn0

)−1
]

(A330)

n0→∞= Eµ
[ √

ρGK
−1

1,1

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
, (A331)

where to compute the asymptotic normalized trace we moved to an eigenbasis of Σ and recalled
the definition of the LJSD µ. The remaining entries of the Eq. (A322) can be obtained in a similar
manner and together yield the following set of coupled equations for the entries of GK

−1

,

GK
−1

1,1 = − γ

−GK−1

2,2 (−ζ + η + ρ) + ρGK
−1

2,2 −
√
ρGK

−1

6,3 − γ
(A332)

GK
−1

2,2 =
γφ

ψGK
−1

1,1 (η − ζ)− γφ
(√
ρψGK

−1

4,5 − 1
) (A333)

GK
−1

3,6 = Eµ
[ √

ρGK
−1

1,1

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A334)

GK
−1

4,5 = Eµ
[ λ

√
ρGK

−1

1,1

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A335)

GK
−1

5,4 = Eµ
[
−

γ
√
ρφGK

−1

2,2

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A336)

GK
−1

6,3 = Eµ
[
−

γλ
√
ρφGK

−1

2,2

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A337)

GK
−1

3,4 = GK
−1

5,6 = Eµ
[ √

λρGK
−1

1,1 GK
−1

2,2

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A338)
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GK
−1

3,5 = GK
−1

4,6 = Eµ
[
−

GK
−1

1,1

√
λρ

λρGK
−1

1,1 GK
−1

2,2 + γφ

]
(A339)

GK
−1

4,3 = GK
−1

6,5 = Eµ
[
− γ

√
λφ

−λρGK−1

1,1 GK
−1

2,2 − γφ

]
(A340)

GK
−1

5,3 = GK
−1

6,4 = Eµ
[ γφGK

−1

2,2

√
λρ

λρGK
−1

1,1 GK
−1

2,2 + γφ

]
(A341)

GK
−1

3,3 = GK
−1

4,4 = GK
−1

5,5 = GK
−1

6,6 = Eµ
[ γφ

λρGK
−1

1,1 GK
−1

2,2 + γφ

]
, (A342)

where we have used the fact that, asymptotically, the normalized trace becomes equivalent to an ex-
pectation over µ. After eliminatingGK

−1

6,3 andGK
−1

4,5 from the first two equations, it is straightforward
to show that

τ ≡ t̄r(K−1) =
1

γ
GK

−1

1,1 =

√
(ψ − φ)2 + 4xψφγ/ρ+ ψ − φ

2ψγ
(A343)

τ̄ ≡ t̄r(K̂−1) =
1

γ
GK

−1

2,2 =
1

γ
+
ψ

φ

(
τ − 1

γ

)
(A344)

where τ̄ is the companion transform of τ , and where x satisfies the self-consistent equation,

x =
1− γτ
ω + I1,1

=
1−
√

(ψ−φ)2+4xψφγ/ρ+ψ−φ
2ψ

ω + I1,1
. (A345)

Here we used the two-index set of functionals of µ, Ia,b defined in Eq. (14).

Note that the product τ τ̄ is simply related to x,

x = γρτ τ̄ , (A346)

so that, given x, the equations for the remaining entries of GK
−1

completely decouple. In particular,

GK
−1

3,6 = −
√
ρτI0,1

φ
(A347)

GK
−1

4,5 = −
√
ρτI1,1

φ
(A348)

GK
−1

5,4 = γ
√
ρτ̄I0,1 (A349)

GK
−1

6,3 = γ
√
ρτ̄I1,1 (A350)

GK
−1

3,4 = GK
−1

5,6 = −
xI 1

2 ,1

φ
(A351)

GK
−1

3,5 = GK
−1

4,6 = −
√
ρτI 1

2 ,1

φ
(A352)

GK
−1

4,3 = GK
−1

6,5 = I 1
2 ,1

(A353)

GK
−1

5,3 = GK
−1

6,4 = γ
√
ρτ̄I 1

2 ,1
(A354)

GK
−1

3,3 = GK
−1

4,4 = GK
−1

5,5 = GK
−1

6,6 = I0,1 , (A355)

which will be important intermediate results for the subsequent sections.
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A9.6.2 E21

Define the block matrix QE21 as,

Q
E21 =



In0
0 −Σ1/2 0 0 0 0 0 0

− X>√
n0

Im 0 0 0 0 0 0 0

0 0 In0 −Σ∗ 0 0 0 0 0

0 0 0 In0
−W>√n1

0 0 0 0

0 0 0 0 In1
−Θ
√
η−ζ√
n1

−
√
ρW
√
n1

0 0

0 0 0 0
√
η−ζΘ>
γ
√
n1

Im 0 0
√
ρX>
γ
√
n0

0 0 0 0 0 0 In0
−Σ1/2 0

0 0 0 0 0 − X√
n0

0 In0
0

0 0 0 −Σ1/2 0 0 0 0 In0


. (A356)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GE21
1,1 = GE21

2,2 = GE21
3,3 = 1 (A357)

GE21
6,6 = GK

−1

1,1 (A358)

GE21
5,5 = GK

−1

2,2 (A359)

GE21
4,4 = GE21

7,7 = GE21
8,8 = GE21

9,9 = GK
−1

3,3 (A360)

GE21
7,8 = GE21

9,4 = GK
−1

3,4 (A361)

GE21
4,8 = GE21

9,7 = GK
−1

3,5 (A362)

GE21
9,8 = GK

−1

3,6 (A363)

GE21
4,9 = GE21

8,7 = GK
−1

4,3 (A364)

GE21
4,7 = GK

−1

4,5 (A365)

GE21
7,9 = GE21

8,4 = GK
−1

5,3 (A366)

GE21
7,4 = GK

−1

5,4 (A367)

GE21
8,9 = GK

−1

6,3 (A368)

GE21
3,1 = t̄r(Σ1/2) (A369)

GE21
7,3 =

γ
√
ρ t̄r

(
K̂−1WΣ∗W>

)
n1ψ

(A370)

GE21
7,1 = GE21

8,3 =
γ
√
ρ t̄r

(
Σ1/2W>K̂−1WΣ∗

)
n1

(A371)

GE21
9,3 = −

√
ρ t̄r

(
FK−1X>Σ∗W>

)
√
n0n1ψ

(A372)

GE21
8,1 =

γ
√
ρ t̄r

(
ΣW>K̂−1WΣ∗

)
n1

(A373)

GE21
9,1 = −

√
ρ t̄r

(
Σ1/2XF>K̂−1WΣ∗

)
√
n0n1

(A374)

GE21
6,2 =

γφ t̄r
(

Σ1/2XF>K̂−1WΣ∗
)

√
n0n1

(A375)

GE21
4,3 = t̄r(Σ∗)−

√
ρ t̄r

(
Σ1/2XF>K̂−1WΣ∗

)
√
n0n1

(A376)
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GE21
4,1 = t̄r(Σ1/2Σ∗)−

√
ρ t̄r

(
ΣXF>K̂−1WΣ∗

)
√
n0n1

, (A377)

where GE21
i,j denotes the normalized trace of the (i, j)-block of the inverse of

(
QE21

)>
. Comparing

to Eq. (A280), we see that the error term E21 is related to GE21
6,2 by

E21 = −
2
√
ρ

γφ
GE21

6,2 . (A378)

To compute the limiting values of these traces, we require the asymptotic block-wise traces of QE21 ,
which may be determined from the operator-valued Stieltjes transform. Proceeding as above, we first
augment QE21 to form the the self-adjoint matrix Q̄E21 ,

Q̄E21 =

(
0 [QE21 ]

>

QE21 0

)
. (A379)

and observe that we can write Q̄E21 as

Q̄E21 = Z̄ − Q̄E21

W,X,Θ − Q̄
E21

Σ

=

(
0 Z>

Z 0

)
−

(
0 [QE21

W,X,Θ]
>

QE21

W,X,Θ 0

)
−

(
0 [QE21

Σ ]
>

QE21

Σ 0

)
,

(A380)

where Z = I2m+6n0+n1 , and,

QE21

W,X,Θ =



0 0 0 0 0 0 0 0 0

− X>√
n0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 −W>√
n1

0 0 0 0

0 0 0 0 0 −Θ
√
η−ζ√
n1

−
√
ρW√
n1

0 0

0 0 0 0
√
η−ζΘ>
γ
√
n1

0 0 0
√
ρX>

γ
√
n0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 − X√

n0
0 0 0

0 0 0 0 0 0 0 0 0


(A381)

QE21

Σ =



0 0 −Σ1/2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −Σ∗ 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Σ1/2 0
0 0 0 0 0 0 0 0 0
0 0 0 −Σ1/2 0 0 0 0 0


. (A382)

The operator-valued Stieltjes transforms satisfy,

ḠE21 = ḠE21

Σ (Z̄ − R̄E21

W,X,Θ(ḠE21))

= id⊗ t̄r
(
Z̄ − R̄E21

W,X,Θ(ḠE21)− Q̄E21

Σ

)−1

,
(A383)

where R̄E21

W,X,Θ(ḠE21) is the operator-valued R-transform of Q̄E21

W,X,Θ. As discussed above, since
Q̄E21

W,X,Θ is a block matrix whose blocks are i.i.d. Gaussian matrices (and their transposes), an explicit
expression for R̄E21

W,X,Θ(ḠE21) can be obtained from the covariance map η, which can be read off from
Eq. (A379). As above, we use the specific sparsity pattern for GE21 that is induced by Eq. (A383), to
obtain,

R̄E21

W,X,Θ(ḠE21) =

(
0 RE21

W,X,Θ(GE21)>

RE21

W,X,Θ(GE21) 0

)
, (A384)
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where,

[RE21

W,X,Θ(GE21)]
2,6

= GE21
8,1 (A385)

[RE21

W,X,Θ(GE21)]
4,7

=
√
ρGE21

5,5 (A386)

[RE21

W,X,Θ(GE21)]
5,5

=
ψGE21

6,6 (ζ − η)

γφ
+
√
ρψGE21

4,7 (A387)

[RE21

W,X,Θ(GE21)]
6,6

=
GE21

5,5 (ζ − η)−√ρGE21
8,9

γ
(A388)

[RE21

W,X,Θ(GE21)]
8,1

=
GE21

2,6

φ
(A389)

[RE21

W,X,Θ(GE21)]
8,9

= −
√
ρGE21

6,6

γφ
, (A390)

and the remaining entries of RE21

W,X,Θ(GE21) are zero.

Owing to the large degree of sparsity, the matrix inverse in Eq. (A383) can be performed explicitly
and yields relatively simple expressions that depend on the entries of GE21 and the matrices Σ and
Σ∗. For example, the (13, 3) entry of the self-consistent equation reads,

GE21
4,3 =

[
id⊗ t̄r

(
Z̄ − R̄E21

W,X,Θ(ḠE21)− Q̄E21

Σ

)−1
]

13,3

(A391)

= t̄r
[
Σ∗
(
In0

+
ρ

γφ
GE21

5,5 G
E21
6,6 Σ

)−1 ]
(A392)

n0→∞= Eµ
[ r

1 + ρ
γφλG

E21
5,5 G

E21
6,6

]
(A393)

= Eµ
[ r

1 + ρ
γφλG

K−1

1,1 GK
−1

2,2

]
(A394)

= φEµ
[ r

φ+ xλ

]
(A395)

= I∗1,1 . (A396)

To obtain Eq. (A393), we computed the asymptotic normalized trace by moving to an eigenbasis
of Σ and recalling the definition of the LJSD µ. We also used Eqs. (A359) and (A358) to obtain
Eq. (A394) and Eqs. (A343), (A344), and (A346) to obtain Eq. (A395). The final line follows from
the definition of I∗ in Eq. (14). The remaining nonzero entries of Eq. (A383) can be obtained in a
similar manner and together yield the following set of coupled equations for the entries of GE21 ,

GE21
3,1 =

I 1
2 ,0

φ
(A397)

GE21
4,1 = I∗3

2 ,1
(A398)

GE21
4,3 = I∗1,1 (A399)

GE21
6,2 = γτGE21

8,1 (A400)

GE21
7,3 = γ

√
ρτ̄I∗1,1 (A401)

GE21
8,1 = γ

√
ρτ̄I∗2,1 (A402)

GE21
9,1 = −

xI∗2,1
φ

(A403)

GE21
9,3 = −

xI∗3
2 ,1

φ
(A404)

GE21
7,1 = GE21

8,3 = γ
√
ρτ̄I∗3

2 ,1
(A405)
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GE21
1,1 = GE21

2,2 = GE21
3,3 = 1 , (A406)

where we have again used the definition of the LJSD µ, the relations in Eqs. (A357)-(A377), as
well as the results in Sec. A9.6.1 to simplify the expressions. Note that in these equations and the
above example for the (13, 3) entry, we have leveraged the simple manner in which Σ∗ enters in
Eqs. (A357)-(A377), namely linearly in the numerator, to simplify the dependence on Σ and Σ∗. In
particular, by rewriting the arguments of the trace terms in an eigenbasis of Σ, the only dependence
on Σ and Σ∗ that remains is through the training eigenvalues λ and the overlap coefficients r. As
such, the t̄r in (Eq. (A383)) can be written as an expectation over the LJSD µ in the limit, which
leads to significant simplification through the introduction of the two-index set of functions of µ, I∗a,b,
defined in Eq. (14).

It is straightforward algebra to solve these equations for the undetermined entries of GE21 and thereby
obtain the following expression for E21,

E21 = −2
x

φ
I∗2,1 . (A407)

A9.6.3 E31

Define the block matrix QE31 ≡ [QE31
1 QE31

2 ] by,

QE31
1 =



Im
√
η−ζΘ>
γ
√
n1

√
ρX>

γ
√
n0

0 0 0

−Θ
√
η−ζ√
n1

In1
0 0 −

√
ρW√
n1

0

0 0 In0
−Σ1/2 0 0

0 −W>√
n1

0 In0
0 0

0 0 0 0 In0
−Σ1/2

− X√
n0

0 0 0 0 In0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, (A408)

and,

QE31
2 =



√
η−ζΘ>(ζ−η)
γ
√
n1

√
ρX>(ζ−η)

γ
√
n0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 n1Σ∗ρ
n0
√
ρ 0 0 0

0 0 0 0 0 0

In1 0 0 −Θ
√
η−ζ√
n1

−
√
ρW√
n1

0

0 In0 −Σ1/2 0 0 0

−W>√
n1

0 In0 0 0 0
√
η−ζΘ>
γ
√
n1

√
ρX>

γ
√
n0

0 Im 0 0

0 0 0 0 In0 −Σ1/2

0 0 0 − X√
n0

0 In0



. (A409)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GE31
1,1 = GE31

10,10 = GK
−1

1,1 (A410)

GE31
2,2 = GE31

7,7 = GK
−1

2,2 (A411)

GE31
3,3 = GE31

6,6 = GE31
8,8 = GE31

12,12 = GE31
4,4 = GE31

5,5 = GE31
9,9 = GE31

11,11 = GK
−1

3,3 (A412)

GE31
3,4 = GE31

5,6 = GE31
8,9 = GE31

11,12 = GK
−1

3,4 (A413)
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GE31
3,5 = GE31

4,6 = GE31
8,11 = GE31

9,12 = GK
−1

3,5 (A414)

GE31
3,6 = GE31

8,12 = GK
−1

3,6 (A415)

GE31
4,3 = GE31

6,5 = GE31
9,8 = GE31

12,11 = GK
−1

4,3 (A416)

GE31
4,5 = GE31

9,11 = GK
−1

4,5 (A417)

GE31
5,3 = GE31

6,4 = GE31
11,8 = GE31

12,9 = GK
−1

5,3 (A418)

GE31
5,4 = GE31

11,9 = GK
−1

5,4 (A419)

GE31
6,3 = GE31

12,8 = GK
−1

6,3 (A420)

GE31
10,1 =

γφ

ψσ2
ε

E31 , (A421)

where GE31
i,j denotes the normalized trace of the (i, j)-block of the inverse of

(
QE31

)>
. For brevity,

we have suppressed the expressions for the other non-zero blocks.

To compute the limiting values of these traces, we require the asymptotic block-wise traces of QE31 ,
which may be determined from the operator-valued Stieltjes transform. Proceeding as above, we first
augment QE31 to form the the self-adjoint matrix Q̄E31 ,

Q̄E31 =

(
0 [QE31 ]

>

QE31 0

)
. (A422)

and observe that we can write Q̄E31 as,

Q̄E31 = Z̄ − Q̄E31

W,X,Θ − Q̄
E31

Σ

=

(
0 Z>

Z 0

)
−

(
0 [QE31

W,X,Θ]
>

QE31

W,X,Θ 0

)
−

(
0 [QE31

Σ ]
>

QE31

Σ 0

)
,

(A423)

where Z = I2m+8n0+2n1
, QE31

W,X,Θ ≡ [[QE31

W,X,Θ]1 [QE31

W,X,Θ]2] and,

[QE31

W,X,Θ]
1

=



0
√
η−ζΘ>
γ
√
n1

√
ρX>
γ
√
n0

0 0 0

−Θ
√
η−ζ√
n1

0 0 0 −
√
ρW
√
n1

0

0 0 0 0 0 0

0 −W>√n1
0 0 0 0

0 0 0 0 0 0
− X√

n0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(A424)

[QE31

W,X,Θ]
2

=



√
η−ζΘ>(ζ−η)

γ
√
n1

√
ρX>(ζ−η)

γ
√
n0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −Θ
√
η−ζ√
n1

−
√
ρW
√
n1

0

0 0 0 0 0 0

−W>√n1
0 0 0 0 0

√
η−ζΘ>
γ
√
n1

√
ρX>
γ
√
n0

0 0 0 0

0 0 0 0 0 0
0 0 0 − X√

n0
0 0


(A425)
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QE31

Σ =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −Σ1/2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −Σ1/2 0 0
n1Σ∗ρ
n0
√
ρ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −Σ1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −Σ1/2

0 0 0 0 0 0 0 0 0 0 0 0


.(A426)

The operator-valued Stieltjes transforms satisfy,

ḠE31 = ḠE31

Σ (Z̄ − R̄E31

W,X,Θ(ḠE31))

= id⊗ t̄r
(
Z̄ − R̄E31

W,X,Θ(ḠE31)− Q̄E31

Σ

)−1

,
(A427)

where R̄E31

W,X,Θ(ḠE31) is the operator-valued R-transform of Q̄E31

W,X,Θ. As discussed above, since
Q̄E31

W,X,Θ is a block matrix whose blocks are i.i.d. Gaussian matrices (and their transposes), an explicit
expression for R̄E31

W,X,Θ(ḠE31) can be obtained from the covariance map η, which can be read off from
Eq. (A422). As above, we use the specific sparsity pattern for GE31 that is induced by Eq. (A427), to
obtain,

R̄E31

W,X,Θ(ḠE31) =

(
0 RE31

W,X,Θ(GE31)>

RE31

W,X,Θ(GE31) 0

)
, (A428)

where,

[RE31

W,X,Θ(GE31)]
1,1

=
GE31

2,2 (ζ − η)

γ
−
√
ρGE31

6,3

γ
+

√
ρGE31

6,8 (η − ζ)

γ

+
GE31

2,7 (ζ − η) (ζ − η)

γ
(A429)

[RE31

W,X,Θ(GE31)]
1,10

=
GE31

7,2 (ζ − η)

γ
−
√
ρGE31

12,3

γ
+

√
ρGE31

12,8 (η − ζ)

γ

+
GE31

7,7 (ζ − η) (ζ − η)

γ
(A430)

[RE31

W,X,Θ(GE31)]
2,2

=
ψGE31

1,1 (ζ − η)

γφ
+
√
ρψGE31

4,5 (A431)

[RE31

W,X,Θ(GE31)]
2,7

=
ψGE31

10,1(ζ − η)

γφ
+
√
ρψGE31

9,5 +
ψGE31

1,1 (ζ − η) (ζ − η)

γφ
(A432)

[RE31

W,X,Θ(GE31)]
4,5

=
√
ρGE31

2,2 (A433)

[RE31

W,X,Θ(GE31)]
4,11

=
√
ρGE31

7,2 (A434)

[RE31

W,X,Θ(GE31)]
6,3

= −
√
ρGE31

1,1

γφ
(A435)

[RE31

W,X,Θ(GE31)]
6,8

=

√
ρGE31

1,1 (η − ζ)

γφ
−
√
ρGE31

10,1

γφ
(A436)

[RE31

W,X,Θ(GE31)]
7,2

=
ψGE31

1,10(ζ − η)

γφ
+
√
ρψGE31

4,11 (A437)

[RE31

W,X,Θ(GE31)]
7,7

=
ψGE31

10,10(ζ − η)

γφ
+
√
ρψGE31

9,11 +
ψGE31

1,10(ζ − η) (ζ − η)

γφ
(A438)

[RE31

W,X,Θ(GE31)]
9,5

=
√
ρGE31

2,7 (A439)

[RE31

W,X,Θ(GE31)]
9,11

=
√
ρGE31

7,7 (A440)
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[RE31

W,X,Θ(GE31)]
10,1

=
GE31

2,7 (ζ − η)

γ
−
√
ρGE31

6,8

γ
(A441)

[RE31

W,X,Θ(GE31)]
10,10

=
GE31

7,7 (ζ − η)

γ
−
√
ρGE31

12,8

γ
(A442)

[RE31

W,X,Θ(GE31)]
12,3

= −
√
ρGE31

1,10

γφ
(A443)

[RE31

W,X,Θ(GE31)]
12,8

=

√
ρGE31

1,10 (η − ζ)

γφ
−
√
ρGE31

10,10

γφ
, (A444)

and the remaining entries of RE31

W,X,Θ(GE31) are zero. Similarly, following the example from GE21

above, plugging these expressions into Eq. (A427) and explicitly performing the block-matrix inverse
yields the following set of coupled equations,

GE31
7,2 = γ2√ρτ̄2ψGE31

9,5 +
γτ̄2ψGE31

10,1(ζ − η)

φ
+
γ2τ τ̄2ψ(ζ − η) (ζ − η)

φ
(A445)

GE31
8,6 =

ρτψφI0,2 (η − ζ)− x2I∗2,2ρ√
ρψφ

−
√
ρGE31

10,1I0,2

γ
+
ρ3/2τ2GE31

7,2 I1,2

φ
(A446)

GE31
9,5 =

ρτI1,2 (η − ζ)− φI∗1,2ρ
ψ√

ρ
−
√
ρGE31

10,1I1,2

γ
+
ρ3/2τ2GE31

7,2 I2,2

φ
(A447)

GE31
10,1 = γτ2GE31

7,2 (ζ − η)− γ√ρτ2GE31
12,3 + γτ (γτ − 1) (ζ − η) (A448)

GE31
11,4 = −

γ2√ρτ̄2
(
φI∗1,2ρ+ ρτψI1,2 (ζ − η)

)
ψ

+
√
ρφGE31

7,2 I0,2 − γρ3/2τ̄2GE31
10,1I1,2 (A449)

GE31
12,3 = −

γ2√ρτ̄2
(
φI∗2,2ρ+ ρτψI2,2 (ζ − η)

)
ψ

+
√
ρφGE31

7,2 I1,2 − γρ3/2τ̄2GE31
10,1I2,2 (A450)

GE31
8,3 = GE31

12,6 =
γ2ρτ τ̄2I∗2,2ρ

ψ
− ρτGE31

7,2 I1,2 − ρτ̄GE31
10,1I1,2 + xI1,2 (η − ζ) (A451)

GE31
8,4 = GE31

11,6 =
γ2ρτ τ̄2I∗3

2 ,2
ρ

ψ
− ρτGE31

7,2 I 1
2 ,2
− ρτ̄GE31

10,1I 1
2 ,2

+ xI 1
2 ,2

(η − ζ) (A452)

GE31
8,5 = GE31

9,6 =

x
ψI
∗
3
2 ,2
ρ+ ρτI 1

2 ,2
(η − ζ)

√
ρ

−
√
ρGE31

10,1I 1
2 ,2

γ
+
ρ3/2τ2GE31

7,2 I 3
2 ,2

φ
(A453)

GE31
9,3 = GE31

12,5 = −
γτ̄φI∗3

2 ,2
ρ

ψ
− ρτGE31

7,2 I 3
2 ,2
− ρτ̄GE31

10,1I 3
2 ,2

+ xI 3
2 ,2

(η − ζ) (A454)

GE31
9,4 = GE31

11,5 = −
γτ̄φI∗1,2ρ

ψ
− ρτGE31

7,2 I1,2 − ρτ̄GE31
10,1I1,2 + xI1,2 (η − ζ) (A455)

GE31
11,3 = GE31

12,4 = −
γ2√ρτ̄2

(
φI∗3

2 ,2
ρ+ ρτψI 3

2 ,2
(ζ − η)

)
ψ

+
√
ρφGE31

7,2 I 1
2 ,2

− γρ3/2τ̄2GE31
10,1I 3

2 ,2
, (A456)

Here we have used the definition of the LJSD µ, the relations in Eqs. (A410)-(A421), the definition of
I∗a,b, and the results in Sec. A9.6.1 to simplify the expressions. It is straightforward algebra to solve
these equations for the undetermined entries of GE31 and thereby obtain the following expression for
E31,

E31 = σ2
ε

(η − ζ)A31 + ρB31

D31
, (A457)

where,

A31 = ρ2τψx2I2,2 (−γτψ + ψ + φ) + 2ρτψ2x2φ(η − ζ)I1,2 + ρ2τψ2x2φ2I2
1,2 (A458)

+τψ
(
x2ψ(ζ − η)2 − ρ2 (φ− γτφ)

)
− ρ2τψ2x4I2

2,2
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B31 = ρψx4φI∗2,2I2,2 − ρψx2φ3I∗1,2I1,2 + ψx2φ2I∗1,2(ζ − η)− ρx2φ2I∗2,2 (A459)

D31 = −ρ2ψx4φI2
2,2 + 2ρψx2φ2I1,2(η − ζ) + ρ2ψx2φ3I2

1,2 + ρ2x2φI2,2(ψ + φ)

+φ
(
x2ψ(ζ − η)2 − ρ2φ

)
. (A460)

Further simplifications are possible using the raising and lowering identities in Eq. (A5), as well as
the results in Sec. A9.6.1, to obtain,

E31 = σ2
ε

τ τ̄x
(
ρψφ (φI1,2 + ω)(ω + I∗1,1) + x

τ I
∗
2,2

)
τ + τ̄x(ω + φI1,2)− τx2 ψ

φI2,2

(A461)

= −σ2
ε

∂x

∂γ

(
ρ
ψ

φ
(φI1,2 + ω)(ω + I∗1,1) +

x

τ
I∗2,2

)
, (A462)

where we have used,
∂x

∂γ
= − x

γ + ργ(ψφ τ + τ̄)(ω + φI1,2)
, (A463)

which follows from Eq. (A345) via implicit differentiation.

A9.6.4 E32

Define the block matrix QE32 ≡ [QE32
1 QE32

2 ] by,

Q
E32
1 =



Im
√
η−ζΘ>
γ
√
n1

√
ρX>
γ
√
n0

0 0 0
√
η−ζΘ>(ζ−η)

γ
√
n1

−Θ
√
η−ζ√
n1

In1 0 0 −
√
ρW
√
n1

0 0

0 0 In0
−Σ1/2 0 0 0

0 −W>√n1
0 In0

0 0 0

0 0 0 0 In0 −Σ1/2 0
− X√

n0
0 0 0 0 In0 0

0 0 0 0 0 0 In1

0 0 0 0 0 0 −W>√n1

0 0 0 0 0 0
√
η−ζΘ>
γ
√
n1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −W>√n1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



, (A464)

and,

Q
E32
2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Σ1/2 (η − ζ) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

n1Σ∗ρ
n0
√
ρ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −Θ
√
η−ζ√
n1

−
√
ρW
√
n1

0 0 0 0 0

In0
0 0 0 0 0 0 0

0 Im 0 0
√
ρX>
γ
√
n0

0 0 0

0 0 In0
−Σ1/2 0 0 0 0

0 − X√
n0

0 In0
0 0 0 0

0 0 0 0 In0
−Σ1/2 0 0

0 0 0 0 0 In0
Σ1/2
√
ρ 0

0 0 0 0 0 0 In0
− X√

n0
0 0 0 0 0 0 0 Im



. (A465)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GE32
8,8 = GE32

14,14 = GE32
15,15 = 1 (A466)

GE32
1,1 = GE32

9,9 = GK
−1

1,1 (A467)

GE32
2,2 = GE32

7,7 = GK
−1

2,2 (A468)

GE32
3,3 = GE32

6,6 = GE32
11,11 = GE32

12,12 = GE32
4,4 = GE32

5,5 = GE32
10,10 = GE32

13,13 = GK
−1

3,3 (A469)
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GE32
3,4 = GE32

5,6 = GE32
10,11 = GE32

12,8 = GE32
12,13 = GK

−1

3,4 (A470)

GE32
3,5 = GE32

4,6 = GE32
12,10 = GE32

13,11 = GK
−1

3,5 (A471)

GE32
3,6 = GE32

12,11 = GK
−1

3,6 (A472)

GE32
4,3 = GE32

6,5 = GE32
11,10 = GE32

13,12 = GK
−1

4,3 (A473)

GE32
4,5 = GE32

13,10 = GK
−1

4,5 (A474)

GE32
5,3 = GE32

6,4 = GE32
10,12 = GE32

11,8 = GE32
11,13 = GK

−1

5,3 (A475)

GE32
5,4 = GE32

10,8 = GE32
10,13 = GK

−1

5,4 (A476)

GE32
6,3 = GE32

11,12 = GK
−1

6,3 (A477)

GE32
15,1 =

φ

ψ
E32 , (A478)

where GE32
i,j denotes the normalized trace of the (i, j)-block of the inverse of

(
QE32

)>
. For brevity,

we have suppressed the expressions for the other non-zero blocks.

To compute the limiting values of these traces, we require the asymptotic block-wise traces of QE32 ,
which may be determined from the operator-valued Stieltjes transform. To proceed, we first augment
QE32 to form the the self-adjoint matrix Q̄E32 ,

Q̄E32 =

(
0 [QE32 ]

>

QE32 0

)
. (A479)

and observe that we can write Q̄E32 as,

Q̄E32 = Z̄ − Q̄E32

W,X,Θ − Q̄
E32

Σ

=

(
0 Z>

Z 0

)
−

(
0 [QE32

W,X,Θ]
>

QE32

W,X,Θ 0

)
−

(
0 [QE32

Σ ]
>

QE32

Σ 0

)
,

(A480)

where Z = I3m+10n0+2n1 , QE32

W,X,Θ ≡ [[QE32

W,X,Θ]1 [QE32

W,X,Θ]2] and,

[QE32

W,X,Θ]
1

=



0
√
η−ζΘ>
γ
√
n1

√
ρX>
γ
√
n0

0 0 0
√
η−ζΘ>(ζ−η)

γ
√
n1

−Θ
√
η−ζ√
n1

0 0 0 −
√
ρW
√
n1

0 0

0 0 0 0 0 0 0

0 −W>√n1
0 0 0 0 0

0 0 0 0 0 0 0
− X√

n0
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −W>√n1

0 0 0 0 0 0
√
η−ζΘ>
γ
√
n1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −W>√n1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



(A481)

[QE32

W,X,Θ]
2

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 −Θ
√
η−ζ√
n1

−
√
ρW
√
n1

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0
√
ρX>
γ
√
n0

0 0 0

0 0 0 0 0 0 0 0
0 − X√

n0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − X√

n0
0 0 0 0 0 0 0 0


(A482)
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QE32

Σ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −Σ1/2 0 0 0 Σ1/2 (η − ζ) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −Σ1/2 0
n1Σ∗ρ
n0
√
ρ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −Σ1/2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −Σ1/2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Σ1/2
√
ρ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

(A483)

The operator-valued Stieltjes transforms satisfy,

ḠE32 = ḠE32

Σ (Z̄ − R̄E32

W,X,Θ(ḠE32))

= id⊗ t̄r
(
Z̄ − R̄E32

W,X,Θ(ḠE32)− Q̄E32

Σ

)−1

,
(A484)

where R̄E32

W,X,Θ(ḠE32) is the operator-valued R-transform of Q̄E32

W,X,Θ. As discussed above, since
Q̄E32

W,X,Θ is a block matrix whose blocks are i.i.d. Gaussian matrices (and their transposes), an explicit
expression for R̄E32

W,X,Θ(ḠE32) can be obtained from the covariance map η, which can be read off from
Eq. (A479). As above, we use the specific sparsity pattern for GE32 that is induced by Eq. (A484), to
obtain,

R̄E32

W,X,Θ(ḠE32) =

(
0 RE32

W,X,Θ(GE32)>

RE32

W,X,Θ(GE32) 0

)
, (A485)

where,

[RE32

W,X,Θ(GE32)]
1,1

=
GE32

2,2 (ζ − η)

γ
−
√
ρGE32

6,3

γ
+
GE32

2,7 (ζ − η) (ζ − η)

γ
(A486)

[RE32

W,X,Θ(GE32)]
1,9

=
GE32

7,2 (ζ − η)

γ
−
√
ρGE32

11,3

γ
+
GE32

7,7 (ζ − η) (ζ − η)

γ
(A487)

[RE32

W,X,Θ(GE32)]
1,15

= −
√
ρGE32

14,3

γ
(A488)

[RE32

W,X,Θ(GE32)]
2,2

=
ψGE32

1,1 (ζ − η)

γφ
+
√
ρψGE32

4,5 (A489)

[RE32

W,X,Θ(GE32)]
2,7

=
ψGE32

9,1 (ζ − η)

γφ
+
√
ρψGE32

8,5 +
√
ρψGE32

13,5

+
ψGE32

1,1 (ζ − η) (ζ − η)

γφ
(A490)

[RE32

W,X,Θ(GE32)]
4,5

=
√
ρGE32

2,2 (A491)

[RE32

W,X,Θ(GE32)]
4,10

=
√
ρGE32

7,2 (A492)

[RE32

W,X,Θ(GE32)]
6,3

= −
√
ρGE32

1,1

γφ
(A493)

[RE32

W,X,Θ(GE32)]
6,12

= −
√
ρGE32

9,1

γφ
(A494)

[RE32

W,X,Θ(GE32)]
7,2

=
ψGE32

1,9 (ζ − η)

γφ
+
√
ρψGE32

4,10 (A495)

[RE32

W,X,Θ(GE32)]
7,7

=
ψGE32

9,9 (ζ − η)

γφ
+
√
ρψGE32

8,10 +
√
ρψGE32

13,10
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+
ψGE32

1,9 (ζ − η) (ζ − η)

γφ
(A496)

[RE32

W,X,Θ(GE32)]
8,5

=
√
ρGE32

2,7 (A497)

[RE32

W,X,Θ(GE32)]
8,10

=
√
ρGE32

7,7 (A498)

[RE32

W,X,Θ(GE32)]
9,1

=
GE32

2,7 (ζ − η)

γ
−
√
ρGE32

6,12

γ
(A499)

[RE32

W,X,Θ(GE32)]
9,9

=
GE32

7,7 (ζ − η)

γ
−
√
ρGE32

11,12

γ
(A500)

[RE32

W,X,Θ(GE32)]
9,15

= −
√
ρGE32

14,12

γ
(A501)

[RE32

W,X,Θ(GE32)]
11,3

= −
√
ρGE32

1,9

γφ
(A502)

[RE32

W,X,Θ(GE32)]
11,12

= −
√
ρGE32

9,9

γφ
(A503)

[RE32

W,X,Θ(GE32)]
13,5

=
√
ρGE32

2,7 (A504)

[RE32

W,X,Θ(GE32)]
13,10

=
√
ρGE32

7,7 (A505)

[RE32

W,X,Θ(GE32)]
14,3

= −
√
ρGE32

1,15

γφ
(A506)

[RE32

W,X,Θ(GE32)]
14,12

= −
√
ρGE32

9,15

γφ
, (A507)

and the remaining entries of RE32

W,X,Θ(GE32) are zero. Similarly, following the example from GE21

above, plugging these expressions into Eq. (A484) and explicitly performing the block-matrix inverse
yields the following set of coupled equations,

GE32
7,2 = γ2√ρτ̄2ψGE32

8,5 + γ2√ρτ̄2ψGE32
13,5 +

γτ̄2ψGE32
9,1 (ζ − η)

φ

+
γ2τ τ̄2ψ(ζ − η) (ζ − η)

φ
(A508)

GE32
8,3 = I 1

2 ,1
(ζ − η)−

γτ̄I∗3
2 ,1
ρ

ψ
(A509)

GE32
8,4 = γ(−τ̄)

(I∗1,1ρ
ψ

+
ρτI1,1 (ζ − η)

φ

)
(A510)

GE32
8,5 =

ρτψI1,1 (η − ζ)− φI∗1,1ρ√
ρψφ

(A511)

GE32
8,6 =

√
ρτ
(
γτ̄I∗3

2 ,1
ρ+ ψI 1

2 ,1
(η − ζ)

)
ψφ

(A512)

GE32
9,1 = γτ2GE32

7,2 (ζ − η)− γ√ρτ2GE32
11,3 + γ2τ2τ̄(ζ − η) (ζ − η) (A513)

GE32
10,3 = −

γ
√
ρτ̄φ

(
γτ̄I∗3

2 ,2
ρ+ ψI 1

2 ,2
(η − ζ)

)
ψ

+
√
ρφGE32

7,2 I 1
2 ,2

− γρ3/2τ̄2GE32
9,1 I 3

2 ,2
(A514)

GE32
10,4 = −

γ2√ρτ̄2
(
φI∗1,2ρ+ ρτψI1,2 (ζ − η)

)
ψ

+
√
ρφGE32

7,2 I0,2

− γρ3/2τ̄2GE32
9,1 I1,2 (A515)
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GE32
10,5 = −

γτ̄φI∗1,2ρ
ψ

− ρτGE32
7,2 I1,2 − ρτ̄GE32

9,1 I1,2 + xI1,2 (η − ζ) (A516)

GE32
10,6 =

γ2ρτ τ̄2I∗3
2 ,2
ρ

ψ
− ρτGE32

7,2 I 1
2 ,2
− ρτ̄GE32

9,1 I 1
2 ,2

+ xI 1
2 ,2

(η − ζ) (A517)

GE32
11,3 = −

γ
√
ρτ̄φ

(
γτ̄I∗2,2ρ+ ψI1,2 (η − ζ)

)
ψ

+
√
ρφGE32

7,2 I1,2 − γρ3/2τ̄2GE32
9,1 I2,2 (A518)

GE32
11,4 = −

γ2√ρτ̄2
(
φI∗3

2 ,2
ρ+ ρτψI 3

2 ,2
(ζ − η)

)
ψ

+
√
ρφGE32

7,2 I 1
2 ,2

− γρ3/2τ̄2GE32
9,1 I 3

2 ,2
(A519)

GE32
11,5 = −

γτ̄φI∗3
2 ,2
ρ

ψ
− ρτGE32

7,2 I 3
2 ,2
− ρτ̄GE32

9,1 I 3
2 ,2

+ xI 3
2 ,2

(η − ζ) (A520)

GE32
12,4 =

γ2ρτ τ̄2I∗3
2 ,2
ρ

ψ
− ρτGE32

7,2 I 1
2 ,2
− ρτ̄GE32

9,1 I 1
2 ,2

+
x2I 3

2 ,2
(ζ − η)

φ
(A521)

GE32
12,5 =

xI∗3
2
,2
ρ

ψ +
γρ2τ2τ̄I 3

2
,2

(ζ−η)

φ√
ρ

−
√
ρGE32

9,1 I 1
2 ,2

γ
+
ρ3/2τ2GE32

7,2 I 3
2 ,2

φ
(A522)

GE32
12,6 =

γρ2τ2τ̄ψI1,2 (ζ − η)− x2I∗2,2ρ√
ρψφ

−
√
ρGE32

9,1 I0,2

γ
+
ρ3/2τ2GE32

7,2 I1,2

φ
(A523)

GE32
13,3 =

γ2ρτ τ̄2I∗5
2 ,2
ρ

ψ
− ρτGE32

7,2 I 3
2 ,2
− ρτ̄GE32

9,1 I 3
2 ,2

+ xI 3
2 ,2

(η − ζ) (A524)

GE32
13,4 =

γ2ρτ τ̄2I∗2,2ρ
ψ

− ρτGE32
7,2 I1,2 − ρτ̄GE32

9,1 I1,2 +
x2I2,2 (ζ − η)

φ
(A525)

GE32
13,5 =

xI∗2,2ρ
ψ +

γρ2τ2τ̄I2,2(ζ−η)
φ√

ρ
−
√
ρGE32

9,1 I1,2

γ
+
ρ3/2τ2GE32

7,2 I2,2

φ
(A526)

GE32
13,6 =

γρ2τ2τ̄ψI 3
2 ,2

(ζ − η)− x2I∗5
2 ,2
ρ

√
ρψφ

−
√
ρGE32

9,1 I 1
2 ,2

γ
+
ρ3/2τ2GE32

7,2 I 3
2 ,2

φ
(A527)

GE32
13,8 = −xI1,1

φ
(A528)

GE32
14,3 =

xψI2,2 (ζ − η)− γ2ρτ τ̄2I∗3,2ρ√
ρψ

+
√
ρτGE32

7,2 I2,2 +
√
ρτ̄GE32

9,1 I2,2 (A529)

GE32
14,4 =

x2ψI 5
2 ,2

(η − ζ)− γ2ρτ τ̄2φI∗5
2 ,2
ρ

√
ρψφ

+
√
ρτGE32

7,2 I 3
2 ,2

+
√
ρτ̄GE32

9,1 I 3
2 ,2

(A530)

GE32
14,5 = −

xI∗5
2 ,2
ρ

ρψ
+
GE32

9,1 I 3
2 ,2

γ
−
ρτ2GE32

7,2 I 5
2 ,2

φ
+
γρτ2τ̄I 5

2 ,2
(η − ζ)

φ
(A531)

GE32
14,6 =

x2I∗3,2ρ
ψ + γρ2τ2τ̄I2,2 (η − ζ)

ρφ
+
GE32

9,1 I1,2

γ
−
ρτ2GE32

7,2 I2,2

φ
(A532)

GE32
14,8 =

xI 3
2 ,1√
ρφ

(A533)

GE32
14,10 =

τI 3
2 ,1

φ
(A534)

GE32
14,11 =

τI1,1

φ
(A535)
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GE32
14,12 = −I1,1√

ρ
(A536)

GE32
14,13 = −

I 1
2 ,1√
ρ

(A537)

GE32
15,1 = GE32

14,12

(√
ρτ2GE32

7,2 (η − ζ) + ρτ2GE32
11,3 + γ

√
ρτ2(−τ̄)(ζ − η) (ζ − η)

)
−√ρτGE32

14,3 (A538)

GE32
15,9 = −√ρτGE32

14,12 (A539)

GE32
11,6 = GE32

12,3 =
γ2ρτ τ̄2I∗2,2ρ

ψ
− ρτGE32

7,2 I1,2 − ρτ̄GE32
9,1 I1,2 + xI1,2 (η − ζ) (A540)

GE32
8,8 = GE32

14,14 = GE32
15,15 = 1 , (A541)

Here we have used the definition of the LJSD µ, the relations in Eqs. (A466)-(A478), the definition of
I∗a,b, and the results in Sec. A9.6.1 to simplify the expressions. It is straightforward algebra to solve
these equations for the undetermined entries of GE32 and thereby obtain the following expression for
E32,

E32 =
(η − ζ)A32 + ρB32

D32
, (A542)

where,

A32 = −ρ3τψ2x4I1,1I2
2,2 + ρ2τψx3I2

2,2(ρφ+ xψ(ζ − η))− ρ3τψ2x3φI1,1I1,2I2,2

+ ρ2τψ2x2I2
1,1(η − ζ) + ρ2τψ2x2I1,1I2,2(ρ+ x(ζ − η))

+ ρ2τψx2φI1,2I2,2(ρφ+ xψ(ζ − η)) + ρ3τψ2x2φI2
1,1I1,2

− ρ2τψxφI1,1I1,2(ρφ+ xψ(ζ − η)) + ρτψxI1,1(ζ − η)(ρφ+ xψ(ζ − η))

− ρτψxI2,2(ρ+ x(ζ − η))(ρφ+ xψ(ζ − η)) (A543)

B32 = −ρ2ψx6I∗3,2I2
2,2 − 2ρ2ψx5φI∗2,2I2

2,2 + 2ρψx4φI∗3,2I1,2(η − ζ) + ρ2ψx4φ2I∗3,2I2
1,2

− 2ρ2ψx4φ2I∗2,2I1,2I2,2 + ρ2ψx4φI∗1,1I2
2,2 + ρ2x4I∗3,2I2,2(ψ + φ)

+ ρ2ψx4φI∗3,2I1,1I2,2 + ρx3φI∗2,2I2,2(ρ(ψ + φ) + 2xψ(ζ − η))

+ ρ2ψx3φ2I∗2,2I1,1I1,2 + ρ2ψx3φ2I∗1,1I1,2I2,2 + ρψx2φI∗1,1I1,1(ζ − η)

− ρx2φI∗2,2I1,1(ρφ+ xψ(ζ − η))− ρψx2φI∗1,1I2,2(ρ+ x(ζ − η))

− ρ2ψx2φ2I∗1,1I1,1I1,2 + I∗3,2
(
x4ψ(ζ − η)2 − ρ2x2φ

)
(A544)

D32 = −ρ3ψx4φI2
2,2 + 2ρ2ψx2φ2I1,2(η − ζ) + ρ3ψx2φ3I2

1,2 + ρ3x2φI2,2(ψ + φ)

+ ρφ
(
x2ψ(ζ − η)2 − ρ2φ

)
. (A545)

Further simplifications are possible using the raising and lowering identities in Eq. (A5), as well as
the results in Sec. A9.6.1, to obtain,

E32 = −∂x
∂γ

(
(φI1,2 + ω)

(I∗1,1
τ

+
ψρ

φ
I1,1(ω + I∗1,1)

)
+
ωψx

φτ̄
I2,2 +

φ

xτ̄
I∗1,2 −

ωx

τ
I∗2,2

)
,

(A546)

where

∂x

∂γ
= − x

γ + ργ(τψ/φ+ τ̄)(ω + φI1,2)
. (A547)
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A9.6.5 E4

Define the block matrix QE4 ≡ [QE4
1 QE4

2 ] by,

QE4
1 =



Im
√
η−ζΘ>22

γ
√
n1

0 0
√
ρX>2
γ
√
n0

0 0

−Θ22

√
η−ζ√
n1

In1
−
√
ρW2√
n1

0 0 0 0

0 0 In0
−Σ1/2 0 0 0

− X2√
n0

0 0 In0
0 0 0

0 0 0 0 In0
−Σ1/2 0

0 −W>2√
n1

0 0 0 In0

Σ1/2
√
ρ

0 0 0 0 0 0 In0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −Σ1/2

0 0 0 0 0 0 0
0 0 0 0 0 0 0



, (A548)

and,

QE4
2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− X1√
n0

0 0 0 0 0 0

Im
√
η−ζΘ>11

γ
√
n1

√
ρX>1
γ
√
n0

0 0 0 0

−Θ11

√
η−ζ√
n1

In1 0 0 −
√
ρW1√
n1

0 0

0 0 In0
−Σ1/2 0 0 0

0 −W>1√
n1

0 In0
0 0 0

0 0 0 0 In0

Σ∗√
ρ 0

0 0 0 0 0 In0 −W>2√
n1

0 0 0 0 0 0 In1



. (A549)

Then block matrix inversion (i.e. repeated applications of the Schur complement formula) shows that,

GE4
13,13 = GE4

14,14 = 1 (A550)

GE4
1,1 = GE4

8,8 = GK
−1

1,1 (A551)

GE4
2,2 = GE4

9,9 = GK
−1

2,2 (A552)

GE4
3,3 = GE4

6,6 = GE4
11,11 = GE4

12,12 = GE4
4,4 = GE4

5,5 = GE4
7,7 = GE4

10,10 = GK
−1

3,3 (A553)

GE4
3,4 = GE4

5,6 = GE4
10,11 = GE4

12,7 = GK
−1

3,4 (A554)

GE4
5,3 = GE4

6,4 = GE4
10,12 = GE4

11,7 = GK
−1

3,5 (A555)

GE4
5,4 = GE4

10,7 = GK
−1

3,6 (A556)

GE4
4,3 = GE4

6,5 = GE4
7,12 = GE4

11,10 = GK
−1

4,3 (A557)

GE4
6,3 = GE4

11,12 = GK
−1

4,5 (A558)

GE4
3,5 = GE4

4,6 = GE4
7,11 = GE4

12,10 = GK
−1

5,3 (A559)

GE4
3,6 = GE4

12,11 = GK
−1

5,4 (A560)
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GE4
4,5 = GE4

7,10 = GK
−1

6,3 (A561)

GE4
14,2 =

ψ

ρ
E4 , (A562)

where GE4
i,j denotes the normalized trace of the (i, j)-block of the inverse of

(
QE4

)>
. For brevity,

we have suppressed the expressions for the other non-zero blocks.

To compute the limiting values of these traces, we require the asymptotic block-wise traces of QE4 ,
which may be determined from the operator-valued Stieltjes transform. To proceed, we first augment
QE4 to form the the self-adjoint matrix Q̄E4 ,

Q̄E4 =

(
0 [QE4 ]

>

QE4 0

)
. (A563)

and observe that we can write Q̄E4 as,

Q̄E4 = Z̄ − Q̄E4

W,X,Θ − Q̄
E4

Σ

=

(
0 Z>

Z 0

)
−

(
0 [QE4

W,X,Θ]
>

QE4

W,X,Θ 0

)
−

(
0 [QE4

Σ ]
>

QE4

Σ 0

)
,

(A564)

where Z = I2m+9n0+3n1
, QE4

W,X,Θ ≡ [[QE4

W,X,Θ]1 [QE4

W,X,Θ]2] and,

[QE4

W,X,Θ]
1

=



Im

√
η−ζΘ>22
γ
√
n1

0 0
√
ρX>2
γ
√
n0

0 0

−Θ22
√
η−ζ√
n1

In1
−
√
ρW2√
n1

0 0 0 0

0 0 In0
0 0 0 0

− X2√
n0

0 0 In0
0 0 0

0 0 0 0 In0
0 0

0 −W
>
2√
n1

0 0 0 In0 0

0 0 0 0 0 0 In0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A565)

[QE4

W,X,Θ]
2

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− X1√
n0

0 0 0 0 0 0

Im

√
η−ζΘ>11
γ
√
n1

√
ρX>1
γ
√
n0

0 0 0 0

−Θ11
√
η−ζ√
n1

In1 0 0 −
√
ρW1√
n1

0 0

0 0 In0
0 0 0 0

0 −W
>
1√
n1

0 In0
0 0 0

0 0 0 0 In0 0 0

0 0 0 0 0 In0
−W

>
2√
n1

0 0 0 0 0 0 In1



(A566)

QE4

Σ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −Σ1/2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −Σ1/2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Σ1/2
√
ρ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −Σ1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −Σ1/2 0 0 0 0 0 Σ∗√
ρ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

(A567)
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The operator-valued Stieltjes transforms satisfy,

ḠE4 = ḠE4

Σ (Z̄ − R̄E4

W,X,Θ(ḠE4))

= id⊗ t̄r
(
Z̄ − R̄E4

W,X,Θ(ḠE4)− Q̄E4

Σ

)−1

,
(A568)

where R̄E4

W,X,Θ(ḠE4) is the operator-valued R-transform of Q̄E4

W,X,Θ. As discussed above, since
Q̄E4

W,X,Θ is a block matrix whose blocks are i.i.d. Gaussian matrices (and their transposes), an explicit
expression for R̄E4

W,X,Θ(ḠE4) can be obtained from the covariance map η, which can be read off from
Eq. (A563). As above, we use the specific sparsity pattern for GE4 that is induced by Eq. (A568), to
obtain,

R̄E4

W,X,Θ(ḠE4) =

(
0 RE4

W,X,Θ(GE4)>

RE4

W,X,Θ(GE4) 0

)
, (A569)

where,

[RE4

W,X,Θ(GE4)]
1,1

=
GE4

2,2(ζ − η)

γ
−
√
ρGE4

4,5

γ
(A570)

[RE4

W,X,Θ(GE4)]
2,2

=
ψGE4

1,1(ζ − η)

γφ
+
√
ρψGE4

6,3 (A571)

[RE4

W,X,Θ(GE4)]
2,14

=
√
ρψGE4

13,3 (A572)

[RE4

W,X,Θ(GE4)]
4,5

= −
√
ρGE4

1,1

γφ
(A573)

[RE4

W,X,Θ(GE4)]
6,3

=
√
ρGE4

2,2 (A574)

[RE4

W,X,Θ(GE4)]
7,10

= −
√
ρGE4

8,8

γφ
(A575)

[RE4

W,X,Θ(GE4)]
8,8

=
GE4

9,9(ζ − η)

γ
−
√
ρGE4

7,10

γ
(A576)

[RE4

W,X,Θ(GE4)]
9,9

=
ψGE4

8,8(ζ − η)

γφ
+
√
ρψGE4

11,12 (A577)

[RE4

W,X,Θ(GE4)]
11,12

=
√
ρGE4

9,9 (A578)

[RE4

W,X,Θ(GE4)]
13,3

=
√
ρGE4

2,14 , (A579)

and the remaining entries of RE4

W,X,Θ(GE4) are zero. Similarly, following the example from GE21

above, plugging these expressions into Eq. (A568) and explicitly performing the block-matrix inverse
yields the following set of coupled equations,

GE4
7,5 = −φI1,2√

ρ
(A580)

GE4
7,6 = −

φI 1
2 ,2√
ρ

(A581)

GE4
10,4 = −

√
ρτ2I1,2

φ
(A582)

GE4
10,6 = τI 1

2 ,2
(A583)

GE4
11,3 = −

√
ρτ2I2,2

φ
(A584)

GE4
12,3 = −γρτ

2τ̄I2,2

φ
(A585)

GE4
12,4 = −

γρτ2τ̄I 3
2 ,2

φ
(A586)
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GE4
12,5 =

xI 3
2 ,2√
ρ

(A587)

GE4
12,6 =

xI1,2√
ρ

(A588)

GE4
13,3 =

γ
√
ρτ2τ̄I∗3,2
φ

(A589)

GE4
13,4 =

γ
√
ρτ2τ̄I∗5

2 ,2

φ
(A590)

GE4
13,5 = −

xI∗5
2 ,2

ρ
(A591)

GE4
13,6 = −

xI∗2,2
ρ

(A592)

GE4
13,7 =

xI∗3
2 ,1√
ρφ

(A593)

GE4
13,10 = γ(−τ̄)I∗3

2 ,1
(A594)

GE4
13,11 = γ(−τ̄)I∗1,1 (A595)

GE4
13,12 = −

I∗1,1√
ρ

(A596)

GE4
14,2 = γ

√
ρτ̄ψGE4

13,3 (A597)

GE4
7,3 = GE4

11,5 = τI 3
2 ,2

(A598)

GE4
10,3 = GE4

11,4 = −
√
ρτ2I 3

2 ,2

φ
(A599)

GE4
13,13 = GE4

14,14 = 1 (A600)

GE4
7,4 = GE4

10,5 = GE4
11,6 = τI1,2 , (A601)

Here we have used the definition of the LJSD µ, the relations in Eqs. (A550)-(A562), the definition of
I∗a,b, and the results in Sec. A9.6.1, to simplify the expressions. It is straightforward algebra to solve
these equations for the undetermined entries of GE4 and thereby obtain the following expression for
E4,

E4 =
x2

φ
I∗3,2 . (A602)

A9.6.6 Results for total error, bias, and variance

General expressions for the total error, bias and variance in terms of E21, E31, E32, E4 can be found
in Sec. A9.5. Combining the results from Sec. A9.5 and Eqs. (A407), (A461) and (A546) yields
expressions for the bias and total error. Using Eµ = Bµ + Vµ, these results also determine the
variance. Putting all the pieces together we find,

Bµ = φI∗1,2 (A603)

Vµ = −ρψ
φ

∂x

∂γ

(
I1,1(ω + φI1,2)(ω + I∗1,1) +

φ2

ψ
γτ̄I1,2I∗2,2 + γτI2,2(ω + φI∗1,2)

+ σ2
ε

(
(ω + φI1,2)(ω + I∗1,1) +

φ

ψ
γτ̄I∗2,2

))
(A604)

(A605)

where x is the unique positive real root of x = 1−γτ
ω+I1,1

, as in Eq. (A345). The derivative ∂x
∂γ follows

from implicit differentiation and was given in Eq. (A463),
∂x

∂γ
= − x

γ + ργ(τψ/φ+ τ̄)(ω + φI1,2)
. (A606)
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The asymptotic trace objects τ and τ̄ were defined in Eq. (A343) and Eq. (A344) and are given by,

τ =

√
(ψ − φ)2 + 4xψφγ/ρ+ ψ − φ

2ψγ
and τ̄ =

1

γ
+
ψ

φ

(
τ − 1

γ

)
. (A607)

All together, these results prove Thm. 5.1.
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