
A Figures

✔

✔

Sim Demo Cartesian Space

✔

Real Test Cartesian Space

Action State Embedding (ASE) Space
Row Making Task, Place Action, Yellow Block in Real Gripper

✔

Small Embedding
Distance

Large Embedding
Distance

2b. Rematch
in Cartesian
Demo Space
Large Cycle
Consistency

Distance (CCD)
to Target,

Bad Rematch
Reject Action

Small Embedding
Distance

3. Reject
Candidate

Action
✔

✔

2b. Rematch
in Cartesian
Demo Space
Small Cycle
Consistency

Distance (CCD)
to Target

Good Rematch!
Take This Action

3. Execute
Place Action

DenseNet FCN
Embed Function

DenseNet FCN
Embed Function

Target
Demo
Action

2a. Match in ASE Space

1. Embed
Test

1. Embed
Demo

Figure 5: Illustration of the three phases of See-Spot-Run (SSR, Sec. B.3, Fig. 2, Alg. 1) execution,
as well as a depiction of the best Policy-Demonstration pair succeeding at placing a real yellow block
to create a row. The physical cartesian distance from the original target demo action to the rematch of
the test ASE in the demo scene (arrow) is the Cycle Consistency Distance. The closer the rematch
is to the target, the better. Typically, the demo and real scenes will have identical task progress
measurements, but variable physical positions of objects. The green and blue arrows follow SSR
as it considers, selects, and successfully executes placing the yellow block at the end of the row.
The yellow and pink arrows show another possible action which is ultimately rejected due to a large
Cycle Consistency Distance.

$YJ��$FURVV�6LP�7DVNV��+LJKHU�LV�%HWWHU7UDQVSRUWHU�
1HWV

/��(PE��'LVW�

665�&\FOH�
&RQVLVWHQF\

��� ��� ���

6XFFHVVIXO�7ULDOV (IILFLHQF\ 7DVN�3URJUHVV 5HFRYHULHV

Figure 6: Summary comparison of algorithm performance (Table 2) over all four folds of cross
validation of simulation tasks on the evaluation metrics (Sec. C.2). “Efficiency” refers to Action
Efficiency.

12

B Methods — Restated in Imperative Form

In this work, we develop a few-shot Reinforcement Learning Before Demonstration (RLBD)
method, detailed in Fig. 1, that leverages a set of SPOT-Q trained RL policies to complete a novel
task with no task-specific training and just a few demonstrations. Our RLBD implementation, See-
SPOT-Run (SSR, detailed in Fig. 2), identifies the Policy-Demonstration Pair (PDP) that is most
relevant to the test task and state and then selects an action using this PDP to advance task progress.
We will first summarize RLBD, then elaborate SSR and its key components.

B.1 Reinforcement Learning Before Demonstration (RLBD)

RLBD (Fig. 1) has three steps:

Step I. Before Demonstration is to pretrain task-specific RL policies ⇡m, on M known tasks. We
then strip the final linear layer from the model for each policy ⇧ : {⇡1...⇡M} to create Embedding
Functions E : {E1...EM} (Fig. 2, Sec. B.2).

Step II. Collect Demonstrations of Test Task (Fig 1, 2) is to gather and save N varied demonstra-
tions D : {D1, ..., DN} for the novel task. Multiple demonstrations can show varying approaches
to completing a task, e.g. vertical squares (Fig. 1) might be constructed row first or stack first.

Step III. Test Time is to observe the test state and select an action at for the robot to execute, as it
attempts to complete the demonstrated test task. A test time policy attempts to solve the imitation
problem: approximating an unknown optimal live test task action a

⇤
t which would complete the next

step of the novel demonstration task by finding the most relevant action in the test scene.

We will describe the to use of Embedding Functions to create ASEs in Sec. B.2, then our solution
to imitation, the See Spot Run Framework (SSR) in Sec. B.3.

B.2 Generating Action-State Embeddings (ASEs)

Each of the M tasks has an RL policy ⇡m : m = 1...M ; we strip off the last linear layer of
each policy to obtain as many Embedding Functions Em(st) ! Hm, where the output of each
embedding function is a set of Action-State Embeddings (ASEs) Hm, composed of one ASE
hm,a (a vector) for each action space coordinate a 2 A. Recall that Q functions are defined
va = Q(st, at); we reframe this as VA = Q(st), where VA contains scores for every action; thus,
⇡m(st) = argmaxa2A Qm(st)[a] = argmaxa2A Em(st)[a]·wm, where wm is a linear projection
(dense layer) that maps an ASE to a scalar Q-value qm,a such that qm,a = hm,a · wm.

Our imitation methods also use information from a Demonstration Dn : ((s1, ad,1)...(sT , ad,T)), i.e.
a sequence of State-Action pairs which maximize R at each time step t 2 T . We note that, because
each Target Demonstration Action ad is optimal, demonstrations satisfy the property that they have
monotonically increasing progress; in what follows we write Dn(p) to denote the state-action pair at
progress p. We now define a Policy Demonstration Pair (PDP) PDPm,n = (Em, Dn) where Dn

is the n
th demonstration. Given M pre-trained tasks and N demonstrations, there are thus M⇥N

PDPs.

B.3 Test-Time See-Spot-Run Policy

Our test-time SSR Policy, ⇡ssr, imitates demonstrations to select an action a
ssr
t by comparing and

scoring the similarity between demo ASEs and test scene ASEs, as per Fig. 2 and Alg. 1. ⇡ssr has
three phases: (1) Embed, (2) Correspond consisting of (2a) Match with the L2 Consistency Distance
(L2CD), (2b) Verify (rematch) with the Cycle Consistency Distance (CCD), then (3) Select Best
Policy Demonstration Pair (PDP) and Act.

In phase 1, Embed, referring to Alg. 1, lines 6-8, we evaluate each of the M embedding functions
Em on the the single test state st (line 6) and on the N demonstrations that correspond to the current
discretized task progress pt (line 8). This yields M test ASEs Hl, each associated with N PDPs;
and M ⇥N demo ASEs Hd, each associated with exactly one PDP.

In phase 2, Correspond, referring to Alg. 1 line 9, and all of Alg. 2,

13

Algorithm 1 Test-time See-SPOT-Run Policy ⇡ssr

1: Input Embed Functions E1..M , Demos D1..N

2: while TASK INCOMPLETE() do
3: st, pt OBSERVE() . Get state, progress
4: A, C {}, {} . Action index, CCD container
5: for m 2M , n 2 N do . Visit each PDP
6: Hl Em(st) . Get live test ASEs
7: sd, ad D[n, pt] . Get demo state, action
8: Hd Em(sd) . Get demo ASEs
9: A[m,n], C[m,n] fcorr(Hd, ad, Hl)

10: end for
11: a

ssr
t A[argminm,n(C)] . min dist. action

12: ACT(assr
t) . Run the agent

13: end while

Algorithm 2 fcorr Correspondence
1: Input Demo ASEs Hd, Action ad,

Live test ASEs Hl, Mode bL2 0
2: hd Hd[ad]. Get Target Demo ASE
3: . Find test action, L2 match metric
4: al argmina2A ||hd �Hl[a]||2
5: �L2CD ||hd �Hl[al]||2
6: if bL2 then
7: return al,�L2CD
8: hl Hl[al] . Get candidate test ASE
9: . Find action and dist. to demo action

10: arematch argmina2A ||Hd[a]� hl||2
11: �CCD ||ad � arematch||2
12: return al,�CCD . action, CCD

Stack of 2

Lone Block

Target Demo
Place Action

Demo State Live Test State
Stack of 2

Lone
Blocks

...

Cycle
Consistency
Distance

Test ASEsDemo ASEs

Test ASEsDemo ASEs

High Cycle Consistency Distance

High Cycle Consistency Distance

Cycle
Consistency
Distance

Cycle
Consistency
Distance

Test ASEsDemo ASEs

Low Cycle Consistency Distance

Embedding
Function E1

Embedding
Function E1

Embedding
Function E2

Embedding
Function E2

Embedding
Function EM

Embedding
Function EM

ASE Match
Distance Heatmap

After Successful
Place Action

Candidate Test Action

Stack
of 3

Execute Candidate
Test Action from

Best PDP — Lowest
Cycle Consistency
Distance to Target

Candidate Test Action

Candidate Test Action

Stacking Task
Place Action

Blue Block in Gripper

Best Policy-Demonstration Pair (PDP)

Figure 7: An illustration of cycle consistency
correspondence for 3 policy-demonstration pairs
(each row is a pair) as See-Spot-Run (SSR, Fig.
2, Alg. 1) chooses to place a hidden blue block
already in the gripper onto the blue block visible
in the test state image.

we use Target Demo Actions ad to approximate
an ideal test action a

⇤
t by evaluating a corre-

spondence function fcorr once for each PDP,
with two purposes: (2a) to identify each Can-
didate Test Action (CTA) al in the live scene
that most closely matches the Target Demo Ac-
tion ad, and (2b) to find the relevance metric �
of said PDP to the test scenario, a proxy mea-
surement for the distance between a

⇤
t and al.

The call to fcorr in Alg. 1 line 9 made for
each PDP {Em, Dn} selects the Target Demo
Action ad’s best-match test action al and stores
it in AM⇥N [m,n], then finds a task relevance
distance � between action coordinates al and
the PDP’s target demo action ad and stores it
in CM⇥N [m,n]. We introduce two approaches
to computing �: our baseline L2 Consistency
Distance (L2CD) and our Cycle Consistency
Distance (CCD), which we compare in Sec. 5.
The key to their design is that they leverage
each Target Demo Action ad (Fig. 3)’s physical
cartesian coordinate in the demo scene, which
is part of the action space with the same dimen-
sions as the Demo ASE Hd, and thus Hd[ad]!
hd, i.e. a target demo action corresponds to ex-
actly one Target Demo ASE hd.

In phase 2a we find the L2 Consistency Dis-
tance (L2CD), referring to Alg. 2, lines 4-7, defined as the Euclidean distance between the Target
Demo ASE hd and its nearest neighbor out of all the test ASEs Hl. L2CD assumes that a CTA al is
best represented by the closest match in ASE space to the Target Demo Action ad embedding in Hl,
where a lower L2CD is better, indicating that al is more relevant to the ideal action a

⇤
t .

While L2CD compares hd and Hl, other demo ASEs in Hd might contain information indicating
al is not related to a

⇤
t , so in phase 2b we find the Cycle Consistency Distance (CCD), referring to

Fig. 3 and Alg. 2, lines 8-11. Starting with CTA al from the L2CD phase 2a, CCD verifies if al
is a spurious match by comparing the euclidean distance between the test scene ASE hl Hl[al]
(Alg. 2 line 8) and demo scene ASEs Hd to find the closest rematch coordinate arematch (Alg. 2 line
10). Measuring the physical Cartesian distance in the demo space between the Target Demo Action
ad and arematch (Alg. 2 line 11) gives us �CCD, where a lower CCD is better, indicating that al is
more relevant to the ideal action a

⇤
t . The underlying reasoning is that if a rematch is a large physical

distance from ad in the demo scene, the CTA al represents a poor fit for the novel demo task. Once

14

all calls to fcorr in Alg 1 have filled the action and correspondence containers A and C, we proceed
to phase 3.

Finally, in phase 3, Select Best PDP and Act, referring to Alg. 1, lines 11-12, we select the PDP
with the minimal match distance, m̂, n̂ = argmin CM⇥N , then execute the final corresponding
matched action a

ssr
t = A[m̂, n̂]. The purpose of selecting the PDP is to compare fcorr distances �l

across all PDPs to select the most relevant policy with the best final action for the novel task, and
then act, so that the agent carries assr

t out.

This completes our definition of the SSR policy a
ssr
t = ⇡ssr(st). Every time an action a

ssr
t completes

we collect a new observation st+1, running ⇡ssr repeatedly until P(sT) = pmax, indicating that the
task is complete. We evaluate See-SPOT-Run with L2CD and CCD, as well as prior work, with
few-shot experiments in Sec. 5. We will also discuss how RLBD and the SSR Framework with
CCD surpasses the other methods.

C Experiments — Restated in With Additional Details

Here we retrace much of the information from Sec. 5, with additional details. We will cover the
robot implementation details; our evaluation metrics, which include two additional task progress
efficiency metrics; an extended discussion of the simulation experiments, with a per-task breakdown;
and finally we note that we have encountered restrictions due to the COVID-19 pandemic.

C.1 Robot Implementation Details

Our workspace, commands and action space are as defined in “Good Robot!” [4]. We consider a
robot that is able to move to specific arm pose and gripper state given an action coordinate in our
action space A (action type k 2 (grasp, place), x, y, and gripper rotation ✓), and employ a tradi-
tional trajectory planner to compute robot arm trajectories for each action. The state s is captured
with a fixed RGB-D camera which we project so that the z-axis of the camera is perpendicular to
the workspace, with color heightmaps as shown in Fig. 2. We also provide depth heightmaps as
a distance from the surface in meters, as pictured in “Good Robot!” [4], except, instead of repeat-
ing the most recent depth heightmap on each channel, we pack the depth heightmap from the three
most recent timesteps into the input depth image’s three channels. Each pixel in a state heightmap
s represents a 4 mm2 area, and each discrete gripper rotation b 2 [0, 16) represents a rotation of b⇡

4
radians.

In our RLBD experiments, progress for each task is determined by an observer as referred to in
Alg. 1. In simulation, a scripted observer computes task progress using the known positions and
orientations of blocks. In real experiments, a scripted observer can use depth measurements to
compute task progress. Progress can also optionally be provided via a user interface. For step
I. Before Demonstration, we perform a run of SPOT-Q training from “Good Robot!” [4] for 40k
actions for each known task (row, stack, unstack, vertical square), shown in Fig. 1. We leave one
resulting model out for each fold of cross validation. To generate each demonstration for Step II.
Collect Demonstrations of Test Task, a human manually clicks once on each simulated image state si
to define exact action ai that leads to progress for untrained test task T . The user repeats this process
for each step of a multi-step task (in our case 4 to 6 total actions) to generate a demonstration Dn

(Sec. B.2), with task progress pt = Pt(st) discretized s.t. pt 2 N[0...4] (Sec. 3). See-SPOT-Run is
agnostic to the total number of demonstrations N . With these details in place, we will next discuss
our evaluation metrics.

C.2 Evaluation Metrics

Our extended set of metrics are as defined in Sec 5.1 with two added efficiency metrics. Performance
metrics fall under four categories, including: four test metrics, two cost measures, two compute
efficiency metrics, and two sample efficiency metrics. We describe each category and metric below.

Test Metrics evaluate how effectively the robot completes the test tasks, and higher is better: (1)
Trial Success Rate (Trials) is the percentage of multi-step tasks completed 100% successfully, and
in many applications completing a task is prerequisite to moving on to the next task. (2) Action
Efficiency (Eff.) is the ideal

actual number of actions per trial, and more efficient models will complete

15

tasks in fewer actions. Our ideal is 6 actions for all tasks except for rows, which is 4 actions. (3)
Progress (Prog.) is each trial’s maximum proportional progress towards completing a task averaged
over all trials. For instance, a stacking test trial in which the agent completed a stack of 3 blocks
but could not complete the task is assigned a progress of 75%. Tasks that aren’t completed 100%
might be very close, so progress measures valuable capabilities that could otherwise go unnoticed
when only considering the trial success rate. (4) Recoveries (Recov.) is the percentage of trials in
which there was a mistake such as a progress reversal that the agent was able to complete with a
trial success, i.e. trial successes containing progress reversal

trials containing progress reversal . Better recovery rates mean tasks are more likely
to be completed if the robot makes a mistake or if an outside actor interferes with the scene.

Cost Metrics delineate resources spent, and lower is better: (5) Train Steps is the number of neural
network batch steps performed prior to executing on a novel test task. Each individual experiment
is run on one NVIDIA GeForce RTX 2080Ti GPU. (6) Annotated Actions (Ann. Actions) is the
number of robot actions at that have been annotated by either a human or scripted observer. This
metric is associated with (a) high cost human time required to write observer scripts or perform
annotations [43, 44] and (b) with computer simulation or real robot execution time.

Compute Efficiency Metrics evaluate test metric benefits with respect to the cost measures when
completing a novel, previously unseen task. Higher is better. We add one to the train steps denom-
inator to prevent dividing by 0 with SSR: (7) Trial Success Compute Efficiency Trials

Train Steps+1 is the
amortized percentage of trials that can be completed for every training batch step. (8) Progress
Compute Efficiency Prog.

Train Steps+1 is the amortized percentage of proportional trial progress that can
be completed for every training batch step.

Sample Efficiency Metrics measure test metric performance gains amortized over the annotated
actions that need to be collected on the test task. Higher is better: (9) Trial Success per Annotated
Action Trials

Ann. Actions measures the increase in percentage of trials that can be completed amortized
over annotated actions on a test task. (10) Progress per Annotated Action Prog.

Ann. Actions measures
the increase in the average proportion of task steps that can be completed amortized over annotated
actions on a test task.

Altogether, our metrics quantify the broad improvements in task performance and reductions in
the resources necessary to perform novel tasks. Most importantly, we consider critical efficiency
measures that have not previously been evaluated in the baselines that we compare to, which helps
to motivate the broad range of useful applications for both RLBD and SSR.

C.3 Simulation Experiments

Here we cover the fine points of our main Simulation Experiments Section 5.2. We pretrain RL
policies for four tasks: stacking, row-making, unstacking, and 2x2 vertical square (see Fig. 1). For
our experiments we collect two different demonstrations of each task, the minimum necessary to
demonstrate robustness to diverging states and demonstrations, e.g. making a vertical square both
rows first and stacks first4. We then evaluate the methods specified in Section 4 by conducting four
fold cross validation ‘Leave-One-Out’ experiments. Namely, for each task, we use the remaining
three models as the policies, e.g. row, unstack, and vertical square policies for stack evaluation, from
which we generate ASEs for our See-SPOT-Run approach, as shown in Fig. 1.

Our TransporterNet [29] baseline is run in their ravens framework with no rotation limitations;
however they assume high friction (bullet sim friction 1.0 vs our value of 0.5), and use a suction cup
gripper with perfect point-to-point grasp place capabilities. To provide a fair comparison we adjust
the amount of object slippage they permit from 1.5 cm to 1 cm, which is based on the distance
a block can shift with our Robotiq 2f-85 gripper, and eliminate their object rotation restriction by
increasing their limit from 30�to 180�. The key results of our simulation experiments from Sec 5
and Tab. 1, are also outlined in Tab. 4, with the addition of our extended efficiency metrics.

The “Good Robot!” [4] metrics in Tab. 1 and 4 are present to accentuate the efficiency improvements
we discuss and to provide a test metric ceiling. The performance of “Good Robot!” [4] on the test
metrics is not a basis for comparison to the other methods because the policies are trained from

4Actions taken based on different demonstrations can be seen in our supplementary video, where both
stack-first and row-first vertical square task progress is visible on the real robot.

16

scratch on the test task; the models would reliably fail if scored on a novel test task since there is
no demonstration mechanism. Such an experiment is out of scope since it would not be informative
about the underlying methods.

Simulation Task Average Test Metrics Costs Compute Efficiency Sample Efficiency
Trials Action

Efficiency Prog. Recov. Train
Steps

Annotated
Actions

Trials
Train Steps+1

Prog.
Train Steps+1

Trials
Ann. Actions

Prog.
Ann. Actions

TransporterNet [29] 30% 35% 50±3% 8% 40k 12 0.00075% 0.0013% 2.5% 4%
L2 Consistency Dist. 13% 30% 67±1% 5% 0 12 13% 67% 1.1% 6%
See-Spot-Run (ours) 36% 41% 79±1% 19% 0 12 36% 79% 3.0% 7%
“Good Robot” [4] * 91%* 57%* 96±1%* 90%* 120k 40k 0.00076% 0.0008% 0.0023% 0.0024%

Table 4: Simulation task performance on the metrics detailed in Sec. C.2, averaged over all four
folds of leave-one-model-out cross-validation. “Average Test Metrics” averages Table 2 values.
Bold indicates the best performing model. Higher is better for all metrics except costs. The progress
range, e.g. in 50±3%, the 3 is standard error. * Starred methods address the simpler problems de-
scribed in Sec. 2, so comparisons should carefully consider this context. TransporterNets [29] trains
on robot demos for each novel task with no task-to-task transfer. SPOT-Q [4], the SSR pretraining
step, tests on the train task, provides a cost and efficiency baseline plus a test metrics ceiling.

As described in Sec. 5.2, our See-Spot-Run with Cycle Consistency (labeled See-Spot-Run in Tab.
4, and SSR CCD in Tab. 1) significantly outperforms both comparable methods on the overall test
metrics, with 36% of trials completed, 79% average progress, 41% action efficiency, and a 29%
recovery rate; L2CD gets 13%, 67%, 30%, and 5%, respectively, which demonstrates the benefits of
the rematch verify Cycle Consistency step in Alg. 2; and TransporterNet gets 30%, 50%, 35%, and
8%, respectively, which shows the overall improvements in performance compared to similar prior
work for few shot tasks.

Table 4 provides additional performance metrics about the three methods we evaluate in simulation.
The relative progress efficiency improvement of SSR with CCD over TransporterNet [29] is even
larger than for trial efficiency. SSR has a 75% improvement in progress per annotated action and
over TransporterNet, and a 61,000x improvement in progress per train step. Comparing SSR with
CCD vs. L2CD, at 79% vs. 67% progress per train step and 7% vs. 6% progress per annotated
action, respectively, shows CCD continues to outperform L2CD on the progress efficiency metrics.

The rate of recovery in trials with a progress reversal is a notable aspect across all trials, as our 19%
recovery rate for SSR with CCD is substantially better than the 8% recovery rate for TransporterNet.
This might be attributable to the strengths of SSR over pure imitation learning methods, where our
pretraining of RL models explicitly incorporates failures and exploration data into ASEs. See-
Spot-Run models may recover where the TransporterNet models cannot because the former can
recognize the scene after making an error in action choice, while the latter enters an unseen domain.
Comparing the recovery rates of SSR with CCD at 19% vs L2CD at 5% shows the value of evaluating
not just the test scene ASEs, but also the demo scene data contained in Demo ASEs.

This completes our examination of the summary results. Next, we will discuss the task-specific
breakdown of the simulation experiments found in Sec. 5, Table 2:

Sim Stack: SSR (Ours), L2CD, and TransporterNet complete 24%, 0%, and 12% of trials, respec-
tively, while the average trial progress is 75%, 51%, and 51%, respectively. The rate of successful
recoveries is 24%, 0%, and 12% for SSR, L2CD and TransporterNet, respectively. SSR is substan-
tially better at stacking compared to both baselines with respect to each of these metrics.

Sim Unstack: Our SSR with cycle consistency completes 66% of trials, compared to 38% for L2CD
and 86% for TransporterNet. While unstacking is the easiest task, it is also particularly informative
because it requires extracting and acting on behaviors which are explicitly low scoring actions in
the trained stacking model. This means SSR correctly avoids choosing stacking actions associated
with a high Q-Value. This is also the only case where TransporterNet outperforms SSR, which is
due to its propensity to match a base object with its point-to-point “transport” design, but the row
task will illustrate the shortcomings that are a tradeoff of their approach. Progress is significant for
SSR, L2CD, and TransporterNet with 82%, 76%, and 94%, respectively. Unstacking has no notion
of recovery since knocking the stack over would make this a single step task, and thus toppling the
stack is a failure. An example of a relevant application is unstacking fragile pallets in a warehouse.

17

Sim Row: Our SSR with cycle consistency completes 30% of trials, L2CD models complete 6% of
trials, and TransporterNet completes 2% of trials; with respective progress rates of 81%, 73%, and
24%; and recovery rates of 28%, 7%, and 2%. Here, TransporterNets rarely manages to place the
fourth block. This case highlights TransporterNet’s propensity to match specific locations anchored
by an object, a design component which fails when actions must occur where no such object exists.
By contrast, SSR is very consistent wherever place actions should occur relative to existing objects.

Sim Square: SSR with cycle consistency completes 24% of trials, L2CD distance completes 8% of
trials, and TransporterNet completes 20% of trials; with respective progress rates of 79%, 67%, and
32%; and recovery rates of 14%, 7% and 9%. SSR is again the strongest on these metrics, and the
difference can in part be attributed to TransporterNets’ propensity for matching anchored locations.

This concludes our extended simulation results. Our final note regards COVID-19 restrictions.

C.4 Real Robot Experiments

We transfer SSR to a real robot using our models pretrained in simulation from Section 5.2 with
results in Tab. 3. All other aspects of the method remain the same except task progress is recorded
by a different observer, since in simulation we read internal simulator states. TransporterNets is not
designed for sim to real transfer, and is thus not included here.

In real experiments SSR has an average of 40% of trials complete, 42% action efficiency, 84%
progress, and 35% rate of recoveries; which is very similar to our results in simulation at to 36%,
41%, 79%, and 29%, respectively. For reference, “Good Robot” completed 100% of trials after 20k
RL training actions and 60k training steps for both stacks and rows; but they should not be compared
directly to SSR since it trains with the aid of a task specific reward function, it is scored on the train
task, and it is neither designed for nor capable of completing new test tasks on its own. We examine
a per-task breakdown of real SSR performance metrics below.

Real Task Trials Action
Efficiency Prog. Recov.

Stack 30% 25% 80±5% 22%
Unstack 90% 86% 97±3% –
Row 30% 28% 77±7% 66%
Square 10% 27% 75±4% 10%

Average 40% 42% 82±3% 33%

Table 5: Real See-SPOT-Run framework with
Cycle Consistency, SSR CCD Eq. 8, performance
on Sim-To-Real transfer to novel tasks from sim-
ulated demos during leave-one-model-out cross-
validation. Bold entries are for ease of reading
and progress range (±) is standard error.

Real Stack: The SSR real stacking model com-
pletes 30% of trials and makes 80% progress
which is slightly better than the 24% of tri-
als and 75% progress of SSR in simulation.
For efficiency, the SSR Trials

Ann. Actions of 2.5%
and Trials

Train Steps+1 of 30% is a striking 500x and
18,000x better than “Good Robot” real stack
trials at 0.005% and 0.0017%, respectively.

Real Unstack: The real unstacking model is
the best performing model by far, completing
90% of trials successfully, with 86% efficiency,
a value exceeding the 66% trial success rate of
simulated unstacking. The reason for this dif-
ference is because the simulated fully actuated
gripper can forcefully press blocks off-center in the vertical z direction upon closing, toppling the
tower, while the real underactuated gripper tip physically flexes up to several centimeters out of the
way, so the stack typically remains standing.

Real Row: The real row making SSR model performs similarly to simulation with an equal 30%
trial success; 77% progress, a 4% drop; 28% action efficiency, a 10% drop. For efficiency, as with
stacks, the SSR Trials

Ann. Actions of 2.5% and Trials
Train Steps+1 of 30% is a striking 500x and 18,000x better than

“Good Robot” real row trials at 0.005% and 0.0017%, respectively.

Real Vertical Square: The vertical square task proved to be the most challenging with just 10% of
trials completed. In the real trials it is able to complete the first 3 steps reliably, but struggles with
the fourth step to complete the square, which is evident in the average progress of 75%.

D COVID-19 Restrictions

Some aspects of our experiments were limited by restricted access to the physical robot and the
computer hardware due to the ongoing COVID-19 pandemic.

18

