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1 EFFECTIVENESS OF FREQUENCY CLUES

We follow previous work to utilize frequency information to provide richer forgery clues. Currently,
we concatenate all 4 types of Haar wavelet coefficients and report results. Here we conduct ablation
study on different transformation methods (e.g., Discrete Cosine Transform and Discrete Fourier
Transform). Specifically, we replace the frequency domain module with the frequency domain op-
erator of the previous work while keeping the CRL unchanged. The superiority of wavelet of the
proposed method can be seen in Table 1.

Table 1: Comparison with methods leveraging different type of frequency clues. The proposed
method uses Wavelet transformation to extract frequency features. The FF++ (HQ (c23)) dataset is
used for training and testing.

ACC AUC

Discrete Cosine Transform 97.41 98.64
Discrete Fourier Transform 97.02 99.13
Haar Wavelet Transform 97.57 99.53

2 MORE RESULTS ON GENERALIZABILITY COMPARISONS

Here we demonstrate more cross-datasets evaluations based on more deepfake datasets including
CelebDF (Li et al., 2020b) and DeeperForensics-1.0 (DF1.0) (Jiang et al., 2020). To comprehen-
sively evaluate the generalizability of our method, we compared with several state-of-the-art meth-
ods including Xception (Rossler et al., 2019), Face X-ray (Li et al., 2020a), F3-Net (Qian et al.,
2020), and SLADD (Chen et al., 2022).

In these experiments, we train the compared models on each of the four methods in FaceForen-
sics++ (FF++) (Rossler et al., 2019), and evaluate it on the benchmark datasets including CelebDF
and DF1.0. This setting is rather challenging since the forgery clues in the test dataset are unseen
in the training dataset. Table 2 shows the results of comparisons of several approaches. Results
are reported using the Area Under Curve (AUC) metric. As can be seen, the proposed method out-
performs other models in the majority of situations and delivers the best overall performance. This
clearly demonstrates the method’s generalizability benefit.

Table 2: Comparisons of generalizability to SOTA methods in terms of AUC. Bold font denotes the
best results. The training dataset is shown in the first row of the table, and the equivalent test dataset
is shown in the second row. Among the compared models, the proposed method performs well.

DF F2F FS NT
CelebDF DF1.0 CelebDF DF1.0 CelebDF DF1.0 CelebDF DF1.0

Xception (Rossler et al., 2019) 68.10 61.70 59.80 74.50 60.10 60.50 62.50 83.80
Face X-ray (Li et al., 2020a) 55.40 66.80 68.40 76.60 69.70 79.50 70.30 86.60
F3-Net (Qian et al., 2020) 66.40 65.80 65.40 76.10 63.60 65.10 68.90 93.20
SLADD (Chen et al., 2022) 73.00 74.20 78.10 78.60 80.00 69.50 75.90 88.90
Ours 74.15 77.12 79.38 78.42 82.14 70.28 78.36 89.92
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3 COMPARISONS WITH MULTIPLE LOSS FUNCTIONS

To demonstrate the effectiveness of CRL, we conduct additional experiments on various losses, in-
cluding traditional softmax loss, Euclidean margin loss, SphereFace Liu et al. (2017), ArcFace Deng
et al. (2019), and Elasticface Boutros et al. (2022). As shown in Table 3, the proposed CRL achieves
the best results by forcing natural faces to be gathered and separated from manipulated faces, which
are distributed less compactly.

Table 3: Effectiveness of CRL. We report frame-level results on FF++ (HQ (c23)) dataset. Compared
to existing losses, the proposed CRL achieves the best results.

Loss function ACC AUC

Softmax loss 90.45 95.01
Euclidean margin loss 91.06 95.63
SphereFace Liu et al. (2017) 91.48 95.91
Arcface Deng et al. (2019) 92.32 97.85
Elasticface Boutros et al. (2022) 92.77 97.98
CRL 94.04 98.23
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