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360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming

Supplementary Material

1. Training details

Baseline and datasets. Given that 3D-GS [3] only pro-
cesses perspective images, we split each training panorama
into eight perspective images. As suggested by Tancik et
al. [5], we assume a camera field of view of 120 degrees
and capture perspective images horizontally at the elevation
angles of [—45°,0°,45°] with this camera. For testing, 3D-
GS generated eight images from test viewpoints and com-
bined them to form panoramas. As MipNeRF-360 [1] cur-
rently leads in NeRF rendering quality for perspective im-
ages, we trained it with perspective images and evaluated
it on panoramas. We adapted INGP [4], a recent real-time
rendering NeRF, for panoramic input following Huang et
al. [2], to reduce the time for rendering panoramas. We
train MipNeRF-360 for 250k iterations using the official
code, which takes approximately 12 hours. INGP runs for
30 epochs, taking about 12 minutes per scene. Both 3D-GS
and 360-GS are trained for 7k iterations with default param-
eters in the official code of 3D-GS. All our experiments are
conducted on a single GPU Nvidia RTX 3090.

Parameters in the loss function. For 4-view inputs, we set
A1, A2, and A3 in Eq. 11 as 0.8, 0.2, and 0.1 respectively. For
32-view inputs. Ag is set to 0.01 to better fit the sufficient
inputs.

2. More results

We provide more results in Fig. 2 and Fig.3, which supple-
ments Fig. 7 and Fig. 8 in the main paper.

3. Discussion

Robustness to the number of training images. In Fig. 1, we
present the variation curve of quantitative results for two
scenes under different numbers of training views. With an
increasing number of training views, all method exhibits
gradual performance improvement, converging to optimal
points. Nevertheless, 3D-GS and INGP struggle to han-
dle inadequate training views, leading to diminished perfor-
mance with 4-view and 8-view inputs. Our method demon-
strates robustness against the number of training views.
This can be attributed to the effectiveness of room layout
priors, which provide valuable information when inputs are
sparse. Additionally, our method consistently outperforms
others across the majority of configurations.

Limitation. Despite achieving state-of-the-art performance
in panoramic rendering, our method has some limitations.
We rely on off-the-shelf networks to obtain layouts and
depth priors, which may not yield accurate priors for com-

26.0 0.6

24.0
% 22.0
©20.0
18.0
16.0
14.0 -

4 8 1216 20 24 28 32
Number of training views

05
204
=

=03
02
0.1

4 8 1216 20 24 28 32
Number of training views

4 8 1216 20 24 28 32
Number of training views
(a) PSNRT

(b) SSIM? (c) LPIPS|

0.6
0.5

£ 04
e

1 &
. =03 \
- @l o2
-
= 0.1

0.5
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Number of training views Number of training views

16 // - o

4 8 12 16 20 24 28 32
Number of training views

Figure 1. Impact of varying training views. We report results
for two scenes, with each row corresponding to the results for one
scene. Our method is robust to varying training views and achieves
superior quantitative results.

plex scenes. This concern could be partially mitigated with
a more powerful network or the use of a depth camera. An-
other limitation is that our initialization point cloud occu-
pies more on-disk space, as it is sampled from the dense
planes of room layouts. Balancing storage costs and ren-
dering quality may require a meticulously crafted sampling
strategy.
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Figure 3. Qualitative comparison of our methods and some SOTA methods with 4-view inputs.
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