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We organize our supplementary material as follows.

• In Section A, we describe the architecture specifications of LITv2.

• In Section B, we provide the derivation for the computational cost of HiLo attention.

• In Section C, we study the effect of window size based on CIFAR-100.

• In Section D, we provide additional study on the Lo-Fi branch where we directly compute
the queries from pooled feature maps.

• In Section E, we describe more details of the throughput benchmark for more attention
mechanisms on CPUs and GPUs.

• In Section F, we provide more visualisation examples for spectrum analysis of HiLo atten-
tion.

Table I: Architecture specifications of LITv2. P denotes the patch size in the patch embedding layer
and C is the channel dimension. H is the number of self-attention heads. α and s are the split ratio
and window size in HiLo, respectively. E is the expansion ratio in the FFN layer. “DTM” refers
to the deformable token merging module in LITv1. We use “ConvFFN Block” to differentiate our
modified FFNs in the early stages from the previous MLP Blocks in LITv1 [8].

Stage Output Size Layer Name LITv2-S LITv2-M LITv2-B

Stage 1 H
4 × W

4

Patch Embedding
P1 = 4
C1 = 96

P1 = 4
C1 = 96

P1 = 4
C1 = 128

ConvFFN Block
[
E1 = 4

]
× 2

[
E1 = 4

]
× 2

[
E1 = 4

]
× 2

Stage 2 H
8 × W

8

DTM
P2 = 2

C2 = 192
P2 = 2

C2 = 192
P2 = 2

C2 = 256
ConvFFN Block

[
E2 = 4

]
× 2

[
E2 = 4

]
× 2

[
E2 = 4

]
× 2

Stage 3 H
16 × W

16

DTM
P3 = 2

C3 = 384
P3 = 2

C3 = 384
P3 = 2

C3 = 512

Transformer Block


α3 = 0.9

s3 = 2

H3 = 12

E3 = 4

× 6


α3 = 0.9

s3 = 2

H3 = 12

E3 = 4

× 18


α3 = 0.9

s3 = 2

H3 = 16

E3 = 4

× 18

Stage 4 H
32 × W

32

DTM
P4 = 2

C4 = 768
P4 = 2

C4 = 768
P4 = 2

C4 = 1024

Transformer Block


α4 = 1.0

s4 = 1

H4 = 24

E4 = 4

× 2


α4 = 1.0

s4 = 1

H4 = 24

E4 = 4

× 2


α4 = 1.0

s4 = 1

H4 = 32

E4 = 4

× 2
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Figure I: Framework of LITv2. Ci and Li refer to the number of hidden dimensions and the number
of blocks at the i-th stage. “ConvFFN” denotes our modified FFN layer where we adopt one layer of
depthwise convolution in the FFN.

A Architecture Specifications of LITv2

The overall framework of LITv2 is depicted in Figure I. We also provide detailed architecture
specifications of LITv2 in Table I. In general, we set the same network depth and width as LITv1. It
is worth noting that recent works [12, 7, 3, 15, 13] usually adopt standard MSAs at the last stage,
including LITv1. Following common practice, we set α = 1.0 and s = 1 at the last stage to make
HiLo behave as a standard MSA. LITv2 also excludes MSAs in the first two stages due to the tiny
receptive field of attention heads, as visualized in Figure 3 of LITv1 [8].

B Computational Cost of HiLo Attention

Let N and D be the number of tokens and the number of hidden dimensions in an HiLo attention
layer. We denote s as the window size. For simplicity, we assume Hi-Fi and Lo-Fi have an equal
number of heads and the feature map has equal width and height. Then, the computational cost of
each attention comes from three parts: 1) The projections of Q, K, V matrices. 2) The attention
computation and weighted-sum of values. 3) The final linear projection of the weighted-sum values.
For Hi-Fi, the computational cost for each part is

N ×D × D

2
× 3 =

3

2
ND2, (1)

s2 × s2 × D

2
× N

s2
× 2 = s2ND, (2)

N × D

2
× D

2
=

1

4
ND2, (3)

respectively. Overall, this gives rise to a total computational cost of 7
4ND2 + s2ND for Hi-Fi. Next,

the computational cost for each part in Lo-Fi is

N ×D × D

2
+

N

s2
×D × D

2
× 2 = (

1

2
+

1

s2
)ND2, (4)

N × N

s2
× D

2
× 2 =

N2

s2
D, (5)

N × D

2
× D

2
=

1

4
ND2, (6)

respectively. Thus, the total computational cost of Lo-Fi is ( 34 + 1
s2 )ND2 + 1

s2N
2D.
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Table II: Effect of window size based on LITv2-S. We report the Top-1 accuracy on CIFAR-100.

Window Size
Params

(M)
FLOPs

(G)
Throughput

(imgs/s)
Train Memory

(GB)
Test Memory

(GB)
Top-1
(%)

2 27 3.7 1,476 5.1 1.2 85.1
3 27 3.7 1,437 5.1 1.2 84.6
4 27 3.8 1,417 5.1 1.2 84.4
5 27 3.7 1,434 5.1 1.2 84.6
6 27 3.9 1,413 5.2 1.2 84.8
7 27 3.6 1,442 4.9 1.2 84.8

Table III: Effect of directly computing queries from the pooled feature maps. We report the Top-1
accuracy on ImageNet-1K.

Model Params (M) FLOPs (G) Throughput (imgs/s) Top-1 (%)
LITv2-S 28 3.7 1,471 82.0
LITv2-S w/ pooled queries 28 3.5 1,084 81.9

C Effect of Window Size

Based on LITv2-S, we study the effect of window size in HiLo by experimenting on CIFAR-100. As
shown in Table II, the window size does not affect the model parameters since the parameters of HiLo
do not depend on it. Moreover, as both Hi-Fi and Lo-Fi are comparably efficient under the small
resolution of image classification (i.e., 224×224), all settings have the comparable FLOPs, speed and
memory footprint, where the difference is mainly due to the extra cost from padding on feature maps
for window partition [7]. Overall, we find the window size of 2 performs the best, which therefore
serves as our default setting in LITv2 for image classification. Also note that as discussed in the main
manuscript, a slightly larger window size (e.g., 4) can help LITv2 achieve better efficiency on larger
resolutions with a slightly performance drop.

D Additional Study on the Lo-Fi Branch

In the proposed HiLo attention, the Lo-Fi branch computes queries from the original input feature
maps. An alternative approach is to directly compute the queries from the average-pooled feature
maps. However, in self-attention, the number of queries determines the spatial size of the output
feature maps. When computing the queries from pooled feature maps, the spatial size of the output
feature maps is inconsistent with that of the original input. One solution is to use interpolation (e.g.
bilinear) and concatenate the interpolated feature maps with the outputs from Hi-Fi. However, as
shown in Table III, this approach (denoted as "pooled queries") brings inferior performance and
much slower throughput than our proposed design. Note that although computing queries from
pooled feature maps can slightly achieve a lower theoretical model complexity, frequently applying
interpolation on GPUs results in a high memory access cost (MAC). Therefore, it instead slows down
the inference speed on GPUs.

E Details of Throughput Benchmark for Different Attention Mechanisms

To evaluate the inference speed of HiLo on CPUs and GPUs, we benchmark the throughput based
on a single attention layer and the standard settings of training ViT-B [5] on ImageNet. Specifically,
under the input resolution of 224×224, attention layers in ViT-B need to handle 14×14 (1/16 scale)
feature maps, where each attention layer has 12 heads and each head has 64 dimensions. For a
fair comparison, we adopt the aforementioned configurations for all compared methods by default.
Besides, since different methods have distinct hyperparameters, we adopt their default settings for
dealing with 1/16 scale feature maps. For example, HiLo adopts a window size of 2 and alpha of 0.9
when processing 1/16 scale feature maps. In Table IV, we report more benchmark results. Overall,
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Table IV: Throughput benchmark for different attention mechanisms based on a single attention
layer. We report the throughput on both CPU (Intel® Core™ i9-10900X CPU @ 3.70GHz) and GPU
(NVIDIA GeForce RTX 3090).

Name Params (M) FLOPs (M) CPU (imgs/s) GPU (imgs/s)
MSA [5] 2.36 521.4 505 4,403
Cross Window [4] 2.37 493.3 325 4,334
DAT [14] 2.38 528.7 223 3,074
Performer [2] 2.36 617.2 181 3,180
Linformer [11] 2.46 616.6 518 4,578
SRA [12] 4.72 419.6 710 4,810
Local Window [7] 2.36 477.2 631 4,537
Shifted Window [7] 2.36 477.2 374 4,351
Focal [15] 2.44 526.9 146 2,842
XCA [1] 2.36 481.7 583 4,659
QuadTree [10] 5.33 613.3 72 3,978
VAN [6] 1.83 358.0 59 4,213
HorNet [9] 2.23 436.5 132 3,996
HiLo 2.20 298.3 1,029 5,104

we show that under a similar amount of parameters, a single layer of HiLo uses less FLOPs than
compared methods, meanwhile it is faster on both CPUs and GPUs.

F More Visualisations on Spectrum Analysis

In Figure II and Figure III, we provide frequency magnitude visualisations for Hi-Fi and Lo-Fi
attention outputs, respectively. Clearly, the results indicate that Hi-Fi captures more high frequencies
in LITv2 while Lo-Fi mainly focuses on low frequencies. We also provide the PyTorch-style code in
Algorithm 1 to explain our visualisation.

Algorithm 1 PyTorch-style Code for Visualising Frequency Magnitude.

import matplotlib.pyplot as plt
import torch

def visualize_freq(x):
’’’
x : The output feature maps from either Hi-Fi or Lo-Fi attention.

Tensor shape: (batch_size, hidden_dim, height, width)
’’’
fft_output = torch.fft.fft2(x.float())
freq_img = torch.log(torch.abs(torch.fft.fftshift(fft_output)))
num_plots = 8

# average over samples
freq_img_mean = freq_img.mean(dim=0).cpu()
fig, axis = plt.subplots(1, num_plots, figsize=(num_plots * 4, 4))

for i in range(num_plots):
axis[i].imshow(freq_img_mean[i, ...].numpy())
axis[i].axes.xaxis.set_visible(False)
axis[i].axes.yaxis.set_visible(False)

plt.axis(’off’)
plt.tight_layout()
plt.show()
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Figure II: Frequency magnitude (14×14) from 8 output channels of Hi-Fi in LITv2-S. The magnitude
is averaged over 100 samples.
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Figure III: Frequency magnitude (14×14) from 8 output channels of Lo-Fi in LITv2-S. The magnitude
is averaged over 100 samples.
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