
A Supplementary Materials

A.1 Cell Culture

Neural cells were cultured either from the cortices of E15.5 mouse embryos or differentiated from
human induced pluripotent stem cells via a dual SMAD inhibition (DSI) protocol or through a
lentivirus based NGN2 direct differentation protocols as previously described [13]. Cells were cul-
tured until plating. For primary mouse neurons this occurred at day-in-vitro (DIV) 0, for DSI cul-
tures this occurred at between DIV 30 - 33 depending culture development, for NGN2 cultures this
occured at DIV 3.

A.2 MEA Setup and Plating

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used and is a
high-resolution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8
mm2. The MaxOne system is based on complementary meta-oxide-semiconductor (CMOS) tech-
nology and allows recording from up to 1024 channels. MEAs were coated with either polyethylen-
imine (PEI) in borate buffer for primary culture cells or Poly-D-Lysine for cells from an iPSC
background before being coated with either 10 µg/ml mouse laminin or 10 µg/ml human 521
Laminin (Stemcell Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhe-
sion.Approximately 106 cells were plated on MEA after preparation as per [13]. Cells were allowed
approximately one hour to adhere to MEA surface before the well was flooded. The day after plat-
ing, cell culture media was changed for all culture types to BrainPhys™ Neuronal Medium (Stem-
cell Technologies Australia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin.
Cultures were maintained in a low O2 incubator kept at 5% CO2, 5% O2, 36°C and 80% relative
humidity. Every two days, half the media from each well was removed and replaced with free media.
Media changes always occurred after all recording sessions.

A.3 DishBrain platform and electrode configuration

The current DishBrain platform is configured as a low-latency, real-time MEA control system with
on-line spike detection and recording software. The DishBrain platform provides on-line spike de-
tection and recording configured as a low-latency, real-time MEA control. The DishBrain software
runs at 20 kHz and allows recording at an incredibly fine timescale. There is the option of recording
spikes in binary files, and regardless of recording, they are counted over a period of 10 milliseconds
(200 samples), at which point the game environment is provided with how many spikes are detected
in each electrode in each predefined motor region as described below. Based on which motor region
the spikes occurred in, they are interpreted as motor activity, moving the ‘paddle’ up or down in the
virtual space. As the ball moves around the play area at a fixed speed and bounces off the edge of
the play area and the paddle, the pong game is also updated at every 10ms interval. Once the ball
hits the edge of the play area behind the paddle, one rally of pong has come to an end. The game
environment will instead determine which type of feedback to apply at the end of the rally: random,
silent, or none. Feedback is also provided when the ball contacts the paddle under the standard
stimulus condition. A ‘stimulation sequencer’ module tracks the location of the ball relative to the
paddle during each rally and encodes it as stimulation to one of eight stimulation sites. Each time
a sample is received from the MEA, the stimulation sequencer is updated 20,000 times a second,
and after the previous lot of MEA commands has completed, it constructs a new sequence of MEA
commands based on the information it has been configured to transmit based on both place codes
and rate codes. The stimulations take the form of a short square bi-phasic pulse that is a positive
voltage, then a negative voltage. This pulse sequence is read and applied to the electrode by a Digital
to Analog Converter (or DAC) on the MEA. A real-time interactive version of the game visualiseris
available at https://spikestream.corticallabs.com/. Alternatively, cells could be recorded at ‘rest’ in
a gameplay environment where activity was recorded to move the paddle but no stimulation was
delivered, with corresponding outcomes still recorded. Using this spontaneous activity alone as a
baseline, the gameplay characteristics of a culture were determined. Low level code for interacting
with Maxwell API was written in C to minimize processing latencies-so packet processing latency
was typically <50 µs. High-level code was written in Python, including configuration setups and
general instructions for game settings. A 5 ms spike-to-stim latency was achieved, which was sub-

1

stantially due to MaxOne’s inflexible hardware buffering. Figure S1 illustrates a schematic view of
Software components and data flow in the DishBrain closed loop system.

a)

b)

Figure S1: a, b) Schematics of software used for DishBrain. a) Software components and data flow in the
DishBrain closed loop system. Voltage samples flow from the MEA to the ‘Pong’ environment, and sensory
information flows from the ‘Pong’ environment back to the MEA, forming a closed loop. The blue rectangles
mark proprietary pieces of hardware from MaxWell, including the MEA well which may contain a live culture
of neurons. The green MXWServer is a piece of software provided by MaxWell which is used to configure
the MEA and Hub, using a private API directly over the network. The red rectangles mark components of
the ‘DishServer’ program, a high-performance program consisting of four components designed to run asyn-
chronously, despite being run on a single CPU thread. The ‘LAN Interface’ component stores network state, for
talking to the Hub, and produces arrays of voltage values for processing. Voltage values are passed to the ‘Spike
Detection’ component, which stores feedback values and spike counts, and passes recalibration commands back
to the LAN Interface. When the pong environment is ready to run, it updates the state of the paddle based on
the spike counts, updates the state of the ball based on its velocity and collision conditions, and reconfigures
the stimulation sequencer based on the relative position of the ball and current state of the game. The stim-
ulation sequencer stores and updates indices and countdowns relating to the stimulations it must produce and
converts these into commands each time the corresponding countdown reaches zero, which are finally passed
back to the LAN Interface, to send to the MEA system, closing the loop. The procedures associated with each
component are run one after the other in a simple loop control flow, but the ‘Pong’ environment only moves
forward every 200th update, short-circuiting otherwise. Additionally, up to three worker processes are launched
in parallel, depending on which parts of the system need to be recorded. They receive data from the main thread
via shared memory and write it to file, allowing the main thread to continue processing data without having to
hand control to the operating system and back again. b) Numeric operations in the real-time spike detection
component of the DishBrain closed loop system, including multiple IIR filters. Running a virtual environment
in a closed loop imposes strict performance requirements, and digital signal processing is the main bottleneck
of this system, with close to 42 MB of data to process every second. Simple sequences of IIR digital filters
is applied to incoming data, storing multiple arrays of 1024 feedback values in between each sample. First,
spikes on the incoming data are detected by applying a high pass filter to determine the deviation of the activity,
and comparing that to the MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass
filter is applied to the original data to determine whether the MEA hardware needs to be re-calibrated, affecting
future samples. This system was able to keep up with the incoming data on a single thread of an Intel Core
i7-8809G. Figures adapted from [13].

2

A.4 Deep Reinforcement Learning Algorithms

Deep Q Network (DQN): The utilized DQN algorithm begins by extracting spatiotemporal features
from inputs, such as the movement of the ball in game of ‘Pong’. Multiple fully connected layers are
used to process the final feature map, which implicitly encodes the effects of actions. As opposed
to traditional controllers that use fixed preprocessing steps, this method can adapt processing of the
state based on changes in the learning signal.

Algorithm 1 Deep Q Network (DQN) with Experience Replay
Require:
1: D: Replay memory with capacity N (Default: 10000)
2: ✓: Initial network parameters
3: ✓̃: Copy of ✓
4: Nb: Training batch size (Default: 5)
5: Ñ : Target network update frequency (Default: 10)
6: xt: Input matrix at time t
7: S: Number of seeds (Default: 40)
8: emax: Maximum number of episodes (Default: 70)
9: for seed 2 {1, · · · , S} do
10: for episode e 2 {1, · · · , emax} do
11: Set state s1 x1 and preprocess �1 = �(s1)
12: t = 1
13: while �t is non-terminal do
14: With probability ✏ select a random action at

15: otherwise select at = maxaQ
⇤(�(st), a; ✓)

16: Execute action at and observe reward rt and input xt+1

17: Set new state st+1 and preprocess �t+1 = �(st+1)
18: Store transition (�t, at, rt,�t+1) in D
19: Sample random minibatch of Nb transitions(�j , aj , rj ,�j+1) from D

20: Set yj =

(
rj for terminal �j+1

rj + �maxa0Q(�j+1, a
0; ✓) for non-terminal �j+1

21: Perform a gradient descent step on (yj �Q(�j , aj ; ✓))
2

22: Replace target parameters ✓̃ ✓ every Ñ steps
23: t = t + 1
24: end while
25: end for
26: end for

Advantage Actor-Critic (A2C): In an A2C model, the total reward itself could be represented as a
value of the state plus the advantage of the action. The value of each policy is learned while follow-
ing it. The policy gradient can be calculated by knowing the value for any state. The policy network
is then updated such that the probability of actions with a higher advantage values is increased. Here,
the policy network (which returns a probability distribution of actions) is called the actor, as it tells
the agents what to do. Critic is another network which enables the evaluation of the actions to decide
whether they were good or not. In this case, policy and value are implemented as separate heads of
the network, which transform the output from the common body into either probability distributions
or single numbers representing the state’s value. Thus, low-level features can be shared between the
two networks.

Proximal Policy Optimization (PPO): PPO models are a family of policy gradient methods for
reinforcement learning. The PPO method uses a slightly different training procedure: An extended
set of samples is taken from the environment, and then the advantage is estimated for the whole set
or sequence of samples before several epochs of training are performed To estimate policy gradients,
instead of using the gradient of action probabilities, the PPO method uses a different objective: the
ratio between the new and the old policy scaled by the advantages.

3

Algorithm 2 Advantage Actor-Critic (A2C)
Require:
1: ✓v : Initial parameter vector for the value net (critic)
2: ✓⇡ : Initial parameter vector for the policy net (actor)
3: N : Number of consecutive steps to play current policy in the environment (Default: 5)
4: xt: Input matrix at time t
5: S: Number of seeds (Default: 40)
6: emax: Maximum number of episodes (Default: 70)
7: for seed 2 {1, · · · , S} do
8: t = 1
9: e = 1
10: repeat
11: @✓⇡ 0 and @✓v 0
12: tstart = t
13: Set state st xt and preprocess �t = �(st)
14: repeat
15: Select at according to ⇡(at|�t; ✓)
16: Execute action at and observe reward rt and input xt+1

17: Set new state st+1 and preprocess �t+1 = �(st+1)
18: t t + 1
19: until �t is terminal or t� tstart = N

20: R =

(
0 for terminal �t

V (�t; ✓v) for non-terminal �t

21: for i 2 {t� 1, · · · , tstart} do
22: R ri + �R
23: Accumulate the policy gradients: @✓⇡ @✓⇡ +r✓ log ⇡(ai|�i; ✓)

�
R� V (�i, ✓v)

�

24: Accumulate the value gradients: @✓v @✓v +
@
�
R�V (�i,✓v)

�2
@✓v

25: end for
26: Update ✓⇡ and ✓v using @✓⇡ and @✓v , respectively.
27: if �t is terminal then
28: e e + 1
29: end if
30: until e > emax

31: end for

Algorithm 3 Proximal Policy Optimization (PPO)
Require:
1: ✓0: Initial policy parameter vector
2: ✏: Clipping threshold (Default: 0.2)
3: N : Number of consecutive steps to play current policy in the environment (Default: 5)
4: xt: Input matrix at time t
5: S: Number of seeds (Default: 40)
6: emax: Maximum number of episodes (Default: 70)
7: for seed 2 {1, · · · , S} do
8: t = 1
9: e = 1
10: repeat
11: tstart = t
12: Set state st xt and preprocess �t = �(st)
13: repeat
14: Select at according to ⇡(at|�t; ✓)
15: Execute action at and observe reward rt and input xt+1

16: Set new state st+1 and preprocess �t+1 = �(st+1)
17: t t + 1
18: until �t is terminal or t� tstart = N
19: Collect set of partial trajectories D on current policy ⇡
20: Estimate Advantages Â⇡

t = �t + (��)�t+1 + · · · + (��)N�t�1�N�1, where �t = rt + �V (�t+1)� V (�t)

21: ✓ argmax✓L
CLIP
✓ (✓)

22: where LCLIP
✓ (✓) = E⌧⇠⇡

PT
t=0

⇥
min(rt(✓)Â

⇡
t , clip(rt(✓), 1� ✏, 1 + ✏)Â⇡

t)
⇤�

23: if �t is terminal then
24: e e + 1
25: end if
26: until e > emax

27: end for

4

