
Supplementary material for the paper titled
“Reward-based Autonomous Online Learning
Framework for Resilient Cooperative Target

Monitoring using a Swarm of Robots”

Abstract

This document serves as supplementary material for the paper titled ‘Reward-
based Autonomous Online Learning Framework for Resilient Cooperative Target
Monitoring using a Swarm of Robots.’ This contains details about the control law,
parametric search space for parametric studies, baselines used for comparative
studies, some more MATLAB simulation results, and a description of the simu-
lation setup for the ROS-Gazebo simulations, along with the partial code for both
MATLAB and Python (ROS-Gazebo) simulations.

1 Control Law
Translational Control Law: For the ith robot, the translational control law consists of
two terms as given below

v̄t,i = v̄Rt,i +∆v̄t,i (1)

where v̄Rt,i is the ith robot’s reference command signal responsible for chasing the tar-
get, and ∆v̄t,i is the ith robot’s correction control signal responsible for avoiding col-
lisions with other robots.

Denote Rt,i ∈ R2×2 as the ith robot’s body-global rotation matrix at time t, defined

as Rt,i =

[
cosϕt,i − sinϕt,i

sinϕt,i cosϕt,i

]
, and R̂t,i =

[
cos ϕ̂Pi

t,i − sin ϕ̂Pi
t,i

sin ϕ̂Pi
t,i cos ϕ̂Pi

t,i

]
, where ϕ̂Pi

t,i is the

robot’s yaw angle estimate via its proprioception.
If the ith robot has detected the target (dt,i > 0) or one of its neighbors has detected

the target (dt,j > 0, j ∈ Ωt,i), the ith robot’s reference command signal v̄Rt,i is given as

v̄Rt,i = k1R̂
′
t,i

∆x̂i
t,B

||∆x̂i
t,B ||

(||∆x̂i
t,B || − dS) (2)

where (·)′ represents the transpose operation, || · || is the 2-norm or the Euclidean norm,
k1 > 0 is a control parameter. ∆x̂i

t,B := x̂i
t,B − x̂Pi

t,i, where x̂i
t,B is the target’s position

estimate given by robot i at time t, and x̂Pi
t,i is the ith robot’s position estimate given

1

by its proprioception at time t. dS > 0 (m) indicates the distance each robot should
maintain from the target while chasing it.

If the ith robot has not detected the target (dt,i = 0) and either none of its neighbors
have detected the target (dt,j = 0, ∀j ∈ Ωt,i) or it has no neighbors (nt,i = 0), then
the ith robot executes a search pattern inspired by the food foraging pattern used by
Oxyrrhis Marina. The robot first chooses a random direction to move towards. With
its longitudinal body axis aligned with that direction, it moves in that direction using
its longitudinal velocity control while doing a growing sinusoidal maneuver using its
lateral velocity control to cover more area as it moves. After Ts discrete-time steps, the
robot randomly chooses a new direction and repeats the process.

Further, we assume that each robot is equipped with a collision avoidance system,
which ensures that while chasing the target, robots do not collide. Considering eq.(1),
this behavior can be modeled by the correction control signal ∆v̄t,i for the ith robot by
using an inter-robot collision avoidance control law given as follows:

∆v̄t,i = −k2R
′
t,i

xt,pi
t
− xt,i

||xt,pi
t
− xt,i||2

(3)

where (·)′ represents the transpose operation, || · || is the 2-norm or the Euclidean norm,
k2 > 0 is a control parameter, pit ∈ [N] \ {i} is the index of the robot spatially nearest
to ith robot at time t, formally defined as pit := argminj∈[N]\{i} ||xt,j − xt,i||. Thus,
xt,pi

t
is the position vector of the robot spatially nearest to the ith robot at time t.

Heading Control Law: If the ith robot has detected the target (dt,i > 0) or one of
its neighbors has detected the target (dt,j > 0, j ∈ Ωt,i), then the robot is required to
yaw in such a way that its heading direction should point towards its estimate of the
target’s position x̂i

t,B . The angle between ∆x̂i
t,B and the ith robot’s heading direction

ht,i =
[
cosϕt,i sinϕt,i

]′
, with respect to the ∆x̂i

t,B direction, can be obtained as
∆ϕi

t,err = atan2
(
ht,i ×∆x̂i

t,B , ht,i ·∆x̂i
t,B

)
, where the first argument involves a

cross-product and the second argument involves dot-product. As per the heading angle
requirement, ith robot’s yaw control law can be given as

w̄t,i = k3∆ϕi
t,err (4)

where k3 > 0 is a control parameter.
If the ith robot has not detected the target (dt,i = 0) and either none of its neighbors

have detected the target (dt,j = 0, ∀j ∈ Ωt,i) or it has no neighbors (nt,i = 0), then
the ith robot executes a search pattern inspired by the food foraging pattern used by
Oxyrrhis Marina, where the robot chooses a random direction to move towards, such
that its heading direction aligns with that randomly chosen direction. After Ts discrete-
time steps, the robot randomly chooses a new direction and repeats the process.

2

2 Baselines

2.1 Averaging-Consensus based Fusion (ACF)
Local estimation phase: if the target is detected by ith robot’s exteroception, i.e.,
dt,i > 0, then

x̂Ii
t,B = 0.5x̂Si

t,B + 0.5x̂i
t−1,B (5)

otherwise, if the target is undetected by ith robot’s exteroception, i.e., dt,i = 0, then

x̂Ii
t,B = x̂i

t−1,B (6)

Communication phase: The ith robot broadcasts the information {t, i, dt,i, x̂Ii
t,B}

and receives the information {t, j, dt,j , x̂
Ij
t,B} from its communicating neighbors j ∈

Ωt,i.
Social estimation phase: With nt,i = |Ωt,i|, we have

x̂i
t,B =

1

nt,i + 1

∑
∀j∈Λt,i

x̂
Ij
t,B (7)

2.2 Kalman-Consensus based Fusion (KCF)
Consider the covariance of x̂Ii

t,B and x̂i
t−1,B as CIi

t,B and Ci
t−1,B , respectively. Consider

CSi

t,B as the covariance for x̂Si

t,B .
Local estimation phase: if the target is detected by ith robot’s exteroception, i.e.,

dt,i > 0, then

(CIi
t,B)

−1 =
1

2

(
(Ci

t−1,B)
−1 + (CSi

t,B)
−1

)
(8)

x̂Ii
t,B =

(
(Ci

t−1,B)
−1 + (CSi

t,B)
−1

)−1 (
(CSi

t,B)
−1x̂Si

t,B + (Ci
t−1,B)

−1x̂i
t−1,B

)
(9)

otherwise, if the target is undetected by ith robot’s exteroception, i.e., dt,i = 0, then

CIi
t,B = Ci

t−1,B (10)

x̂Ii
t,B = x̂i

t−1,B (11)

Communication phase: The ith robot broadcasts the information {t, i, dt,i, x̂Ii
t,B , C

Ii
t,B}

and receives the information {t, j, dt,j , x̂
Ij
t,B , C

Ij
t,B} from its communicating neighbors

j ∈ Ωt,i.
Social estimation phase: With nt,i = |Ωt,i|, we have

(Ci
t,B)

−1 =
1

nt,i + 1

∑
∀j∈Λt,i

(C
Ij
t,B)

−1 (12)

x̂i
t,B =

 ∑
∀j∈Λt,i

(C
Ij
t,B)

−1

−1 ∑
∀j∈Λt,i

(C
Ij
t,B)

−1x̂
Ij
t,B (13)

3

3 MATLAB simulation details and results
The proposed AOL framework is evaluated using a simulation setup involving N =
5, 10, 20, 30 robots executing the cooperative target monitoring task discussed in the
problem formulation. The communication range Rcomm. and the communication link
drop probability pld are set to be 30 m and 0.1, respectively, with the limit on the
number of communication neighbors as nl = 3. The exteroceptive sensor model’s
constraints are set as RFOV = 15 m, θFOV = 160 degrees, with the target visual loss
probability as pvl = 0.1. The parameters for the detection confidence model are set as
ro = 10 m, and bo = 0.1.

The simulation results are averaged over 100 simulation runs. Each run involves a
time horizon of T = 600 discrete time steps, with a sampling period of ∆T = 0.1 sec.
The robots follow the control law described in the problem formulation while trying
to maintain a safe distance of dS = 8 m from the target. The target randomly changes
its velocity and yaw rate after every 5 seconds. The robots and the target always stay
inside a square region of side length 200 m by overriding their control laws to get away
from the region boundary. At the start of each simulation run, the robots are always
spawned near the center of the square region, whereas the target is spawned randomly
but sufficiently near to the robots so that at least one of the robots is likely to detect it
at the start of the run. This is done since the main focus of this paper is not the target
search but target detection, tracking, and monitoring.

For all three AOL variants, a simulation-based parametric study is carried out to
find a suitable set of parameters that result in desirable performance. The paramet-
ric search is done over the following set of parameters: Tp = [5, 10, 15, 20, 25], ηw =
[5, 10, 15, 20], ηα = [0.01, 0.1, 1, 5, 10], ea1 = [5, 10, 20, 30], ea2 = [0.01, 0.1, 1, 5, 10],
ew1 = [5, 10, 20, 30], ew2 = [0.01, 0.1, 1, 5, 10], pmag = [0.01, 0.1, 1, 5, 10]. Based on
the parametric study, the parameters for AOL-ver1 are set as Do = 15 m, Tp = 15,
ηw = 15, and ηα = 0.01; that of AOL-ver.2 are set as Tp = 15, ηw = 15, ea1 = 10,
ea2 = 0.1, and pmag = 0.1; that of AOL-ver.3 are set as Tp = 15, ew1 = 1,
ew2 = 0.01, ea1 = 20, ea2 = 5, and pmag = 0.1. Further, the three variants of AOL
are compared with two baselines – Average-Consensus Fusion (ACF) and Kalman-
Consensus Fusion (KCF).

Figures 1, 2, 3, and 4 show results for no sensor failure scenario. Whereas figures
5, 6, 7, and 8 show results for only exteroception failure (in 50% robot population)
scenario. Note that these scenarios also have uncertainty in the form of communication
link drop probability pld = 0.1 and target visual loss probability pvl = 0.1.

4

1 2 3 4 5 6

0

100

200

300

1 2 3 4 5 6

100

200

300

400

Figure 1: Comparison results – no sensor failures; 100 sim. runs for each method,
N = 5

5

1 2 3 4 5 6

0

50

100

150

200

250

1 2 3 4 5 6

100

200

300

400

Figure 2: Comparison results – no sensor failures; 100 sim. runs for each method,
N = 10

6

1 2 3 4 5 6

0

50

100

150

200

1 2 3 4 5 6

100

200

300

400

Figure 3: Comparison results – no sensor failures; 100 sim. runs for each method,
N = 20

7

1 2 3 4 5 6

0

50

100

150

200

1 2 3 4 5 6

100

200

300

Figure 4: Comparison results – no sensor failures; 100 sim. runs for each method,
N = 30

8

1 2 3 4 5 6

0

100

200

300

1 2 3 4 5 6

100

200

300

400

Figure 5: Comparison results – exteroceptive sensor failures in 50% of the total no. of
robots; 100 sim. runs for each method, N = 5

9

1 2 3 4 5 6

0

50

100

150

200

250

1 2 3 4 5 6

100

200

300

400

Figure 6: Comparison results – exteroceptive sensor failures in 50% of the total no. of
robots; 100 sim. runs for each method, N = 10

10

1 2 3 4 5 6

0

50

100

150

200

1 2 3 4 5 6

100

200

300

400

Figure 7: Comparison results – exteroceptive sensor failures in 50% of the total no. of
robots; 100 sim. runs for each method, N = 20

11

1 2 3 4 5 6

0

50

100

150

1 2 3 4 5 6

50

100

150

200

250

300

350

Figure 8: Comparison results – exteroceptive sensor failures in 50% of the total no. of
robots; 100 sim. runs for each method, N = 30

12

4 ROS-Gazebo setup
In order to test the AOL framework on robots, we used a multi-robot setup in the
Gazebo simulator as seen in Fig. 9. The simulation setup contains 1 Botsync’s Coper-
nicus (Target) and 6 Botsync’s Voltas (Swarm Robots). Each Volta has a 2D lidar and
Intel RealSense camera onboard. Copernicus consists of just 2D Lidar and is teleoper-
ated in the simulation. Each Volta is running custom-trained YOLOv5 for detecting the
Copernicus. Using a custom message the robots communicate the required parameters
between themselves. The confidence score of YOLOv5 is passed to the AOL fusion
layer and to further test the robustness of the AOL framework an additional bias de-
pendent upon the confidence score is added to the detected target location.

Figure 9: Simulation Setup

Overall architecture can be seen in the Fig. 10. The multi volta.launch node spawns
a swarm of Voltas and Copernicus in the Gazebo with the relevant sensor suite. The
robot controller.py runs for individual Voltas and is responsible for controlling the lin-
ear and angular velocity of the robot depending upon the obstacles and the target loca-
tion to be reached. The aol framework.py determines the target location using its own
prediction and the neighbor’s predicted target location.

The received depth image from the RealSense camera can be seen in Fig. 11. In
order to find the location of the target (i.e. Copernicus Robot) YOLOv5 is used along
with LiDAR. A custom YOLOv5 model was trained on Copernicus and Volta robot
images. Subsequently, the trained YOLOv5 model’s score and bounding box were in-
tegrated with data coming from LiDAR and the estimate was provided to the AOL
framework. The bias in the estimate is proportional to e1−detection score − 1. The Out-
put from YOLOv5 can be seen in the Fig. 13. For the LiDAR data, K-Means clustering
can be used to detect the object and fusing this data with the camera can be used to

13

Figure 10: Architecture diagram of the simulation

detect the location of the known target. Within AOL framework, the model’s detection
outputs, including bounding box coordinates and confidence scores, are processed to
provide the best estimate of the target robot.

14

Figure 11: Visualization of the environment using the camera-based exteroception
present on Volta

Figure 12: Demonstration of K-Means clustering for finding objects using LiDAR data

15

Figure 13: Detection output of YOLOv5

16

5 AOL Code
Partial code for both MATLAB and Python (ROS-Gazebo) simulations is presented in
this section. The full code will be released after the paper’s acceptance.

5.1 MATLAB Code

function [xhatI_Tgt_i, alpha_i] =
AOL_FusionLayer1(xhatS_Tgt_i, xhat_Tgt_i_prev,
alpha_hat_i, alphapr_hat_i, det_Tgt_i, det_Tgt_neigh)

det_i_lg = double(det_Tgt_i > 0);

if det_Tgt_i > 0 % tgt detected
alpha_i = (alpha_hat_i)/(alpha_hat_i + alphapr_hat_i);

else % tgt undetected
alpha_i = 0;

end

xhatI_Tgt_i = alpha_i.*xhatS_Tgt_i +
(1-alpha_i).*xhat_Tgt_i_prev;

end

function [xhat_Tgt_i, wii] = AOL_FusionLayer2(xhatI_Tgt_i,
xhatI_Tgt_j, what_i, what_j)

wii = what_i./(what_i + sum(what_j));
wij = what_j./(what_i + sum(what_j));

xhat_Tgt_i = wii.*xhatI_Tgt_i + sum(wij.*xhatI_Tgt_j,2);

end

function [alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt] =
AOL_LearningPhaseC(t,Tp,eta_alp, eta_w, det_Tgt_i,
xhatI_Tgt_j, xhatI_Tgt_i, xhatS_Tgt_i, xhat_Tgt_i_prev,
xhat_Tgt_j_prev, what_j, what_i, alpha_hat_i,
alphapr_hat_i)

whatij = [what_j what_i];
xhatI_Tgt_ij = [xhatI_Tgt_j xhatI_Tgt_i];
xhat_Tgt_ij = [xhat_Tgt_j_prev xhat_Tgt_i_prev];
[wmax,IDstar] = max(whatij);

xhat_star = xhatI_Tgt_ij(:,IDstar);

17

if ceil(t/Tp) == floor(t/Tp)
what_i = 1;
alpha_hat_i = 1;
alphapr_hat_i = 1;

end

alpha_hat_i_nxt =
alpha_hat_i*exp(-eta_alp*min(norm(xhatS_Tgt_i -
xhat_star)/15,1));

alphapr_hat_i_nxt =
alphapr_hat_i*exp(-eta_alp*min(norm(xhat_Tgt_i_prev -
xhat_star)/15,1));

det_Tgt_i_lgcl = det_Tgt_i;
what_i_nxt = what_i*exp(-eta_w*(1-det_Tgt_i_lgcl));
end

function [alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt] =
AOL_LearningPhase1P(t,Tp, eta_w, det_Tgt_i, what_i,
alpha_hat_i, alphapr_hat_i, alpha_i, del_alpha_i,
del_detTgt_i, p_mag, e_a1, e_a2)

if t == 1
e_pa1 = randi([0 1])*p_mag;
e_pa2 = p_mag - e_pa1;

else
e_pa1 = 0;
e_pa2 = 0;

end

if ceil(t/Tp) == floor(t/Tp)
what_i = 1;
alpha_hat_i = 1;
alphapr_hat_i = 1;
e_pa1 = randi([0 1])*p_mag;
e_pa2 = p_mag - e_pa1;

end

det_Tgt_i_lgcl = det_Tgt_i;
what_i_nxt = what_i*exp(-eta_w*(1-det_Tgt_i_lgcl));

alpha_hat_i_nxt =
alpha_hat_i*exp(e_a1*del_alpha_i*del_detTgt_i +
e_pa1*(1-det_Tgt_i) + e_a2*alpha_i*det_Tgt_i);

alphapr_hat_i_nxt =
alphapr_hat_i*exp(-e_a1*del_alpha_i*del_detTgt_i +
e_pa2*(1-det_Tgt_i) + e_a2*(1-alpha_i)*det_Tgt_i);

end

18

function [alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt] =
AOL_LearningPhase2P(t,Tp, det_Tgt_i, what_i,
alpha_hat_i, alphapr_hat_i, alpha_i, w_ii, del_alpha_i,
del_w_ii, del_detTgt_i, p_mag, e_a1, e_a2, e_w1, e_w2)

if t == 1
e_pa1 = randi([0 1])*p_mag;
e_pa2 = p_mag - e_pa1;
e_pw = rand*p_mag;

else
e_pa1 = 0;
e_pa2 = 0;
e_pw = 0;

end

if ceil(t/Tp) == floor(t/Tp)
what_i = 1;
alpha_hat_i = 1;
alphapr_hat_i = 1;
e_pa1 = randi([0 1])*p_mag;
e_pa2 = p_mag - e_pa1;
e_pw = rand*p_mag;

end

alpha_hat_i_nxt =
alpha_hat_i*exp(e_a1*del_alpha_i*del_detTgt_i +
e_pa1*(1-det_Tgt_i) + e_a2*alpha_i*det_Tgt_i);

alphapr_hat_i_nxt =
alphapr_hat_i*exp(-e_a1*del_alpha_i*del_detTgt_i +
e_pa2*(1-det_Tgt_i) + e_a2*(1-alpha_i)*det_Tgt_i);

what_i_nxt = what_i*exp(e_w1*del_w_ii*del_detTgt_i +
e_pw*(1-det_Tgt_i) + e_w2*w_ii*det_Tgt_i);

end

5.2 Python Code

def AOLfusionLayer1(xhatS_Tgt_i, xhat_Tgt_i_prev,
alpha_hat_i, alphapr_hat_i, det_Tgt_i):
if det_Tgt_i > 0.0: # tgt detected

alpha_i = (alpha_hat_i)/(alpha_hat_i + alphapr_hat_i)
else: # tgt undetected

alpha_i = 0.0

xhatI_Tgt_i = alpha_i*numpy.array(xhatS_Tgt_i) +
(1-alpha_i)*numpy.array(xhat_Tgt_i_prev)

19

return xhatI_Tgt_i, alpha_i

def AOLfusionLayer2(xhatI_Tgt_i, xhatI_Tgt_ij, what_ii,
what_ij):
wii = what_ii/(what_ii + sum(what_ij))
j = 0
wij = numpy.zeros(shape=(len(what_ij),1))
for whatij in what_ij:

wij[j][:] = whatij/(what_ii + sum(what_ij))
j = j + 1

xhat_Tgt_i = wii*xhatI_Tgt_i +
sum(numpy.multiply(numpy.array(wij),numpy.array(xhatI_Tgt_ij)))

return xhat_Tgt_i.tolist(), wii

def LearningPhaseAOL_C(t_count, det_Tgt_i, xhatI_Tgt_ij,
xhatI_Tgt_i, xhatS_Tgt_i, xhat_Tgt_i_prev,
xhat_Tgt_j_prev, what_ij, what_i, alpha_hat_i,
alphapr_hat_i):
Tp = 15.0
eta_a = 0.01
eta_w = 15.0

whatij = numpy.append(what_ij, what_i)
xhat_Tgt_i_prev = numpy.array([xhat_Tgt_i_prev])
xhat_Tgt_ij_p = numpy.concatenate((xhat_Tgt_j_prev,

xhat_Tgt_i_prev), axis=0)
print("Check me",xhat_Tgt_ij_p)
wmax = max(whatij)
ID_star = numpy.array(whatij).argmax()
xhat_star = xhat_Tgt_ij_p[ID_star][:]
print(xhat_star, ID_star)

if math.ceil(t_count/Tp) == math.floor(t_count/Tp):
what_i = 1.0
alpha_hat_i = 1.0
alphapr_hat_i = 1.0
print("RESET DONE")

lss_alpha = min(vec_dist(xhatS_Tgt_i,xhat_star)/15.0,1.0)
lss_alphapr =

min(vec_dist(xhat_Tgt_i_prev[0],xhat_star)/15.0,1.0)

alpha_hat_i_nxt = alpha_hat_i*math.exp(-eta_a*lss_alpha)
alphapr_hat_i_nxt =

alphapr_hat_i*math.exp(-eta_a*lss_alphapr)
what_i_nxt = what_i*math.exp(-eta_w*(1-det_Tgt_i))

return alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt

20

def LearningPhaseAOL_1P(t_count, det_Tgt_i, what_i,
alpha_hat_i, alphapr_hat_i, del_alpha_i, del_detTgt_i,
alpha_i):
Tp = 15.0

eta_w = 15.0
e_a1 = 10.0
e_a2 = 5.0
p_mag = 0.1

if math.ceil(t_count/Tp) == math.floor(t_count/Tp):
what_i = 1.0
alpha_hat_i = 1.0
alphapr_hat_i = 1.0
print("RESET DONE")

if t_count == 0:
e_pa1 = random.choice([0, 1])*p_mag
e_pa2 = p_mag - e_pa1

else:
e_pa1 = 0
e_pa2 = 0

alpha_hat_i_nxt =
alpha_hat_i*math.exp(e_a1*del_alpha_i*del_detTgt_i +
e_pa1*(1-det_Tgt_i) + e_a2*alpha_i*det_Tgt_i)

alphapr_hat_i_nxt =
alphapr_hat_i*math.exp(-e_a1*del_alpha_i*del_detTgt_i
+ e_pa2*(1-det_Tgt_i) + e_a2*(1-alpha_i)*det_Tgt_i)

what_i_nxt = what_i*math.exp(-eta_w*(1-det_Tgt_i))

return alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt

def LearningPhaseAOL_2P(t_count, det_Tgt_i, what_i,
alpha_hat_i, alphapr_hat_i, del_alpha_i, del_detTgt_i,
alpha_i, del_w_ii, w_ii):
Tp = 15.0

e_w1 = 8
e_w2 = 0

e_a1 = 10.0
e_a2 = 5.0

p_mag = 0.1

if math.ceil(t_count/Tp) == math.floor(t_count/Tp):

21

what_i = 1.0
alpha_hat_i = 1.0
alphapr_hat_i = 1.0
e_pw = random.uniform(0,1)*p_mag

if t_count == 0:
e_pa1 = random.randint([0, 1])*p_mag
e_pa2 = p_mag - e_pa1
e_pw = random.uniform(0,1)*p_mag

else:
e_pa1 = 0.0
e_pa2 = 0.0
e_pw = 0.0

alpha_hat_i_nxt =
alpha_hat_i*math.exp(e_a1*del_alpha_i*del_detTgt_i +
e_pa1*(1-det_Tgt_i) + e_a2*alpha_i*det_Tgt_i)

alphapr_hat_i_nxt =
alphapr_hat_i*math.exp(-e_a1*del_alpha_i*del_detTgt_i
+ e_pa2*(1-det_Tgt_i) + e_a2*(1-alpha_i)*det_Tgt_i)

what_i_nxt = what_i*math.exp(e_w1*del_w_ii*del_detTgt_i
+ e_pw*(1-det_Tgt_i) + e_w2*w_ii*det_Tgt_i)

return alpha_hat_i_nxt, alphapr_hat_i_nxt, what_i_nxt

def vec_dist(vec1,vec2):
dist =

math.sqrt(pow(vec1[0]-vec2[0],2)+pow(vec1[1]-vec2[1],2))
return dist

22

	Control Law
	Baselines
	Averaging-Consensus based Fusion (ACF)
	Kalman-Consensus based Fusion (KCF)

	MATLAB simulation details and results
	ROS-Gazebo setup
	AOL Code
	MATLAB Code
	Python Code

