
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TO ERR IS MACHINE: VULNERABILITY DETECTION
CHALLENGES LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present a challenging code reasoning task: vulnerability detection.
Large Language Models (LLMs) have shown promising results in natural-language
and math reasoning, but state-of-the-art (SOTA) models reported only 54.5%
Balanced Accuracy in our vulnerability detection evaluation, even those models
pre-trained on large amounts of source code. Our error analysis on LLM responses
shows that the models struggle to reason about the code semantics relevant to
identifying vulnerabilities, especially subtle semantic differences caused by small
textual changes. We explored prominent models and training settings to understand
their effects on vulnerability detection performance — including better prompts,
larger models, more pre-training data, and fine-tuning — but none led to significant
improvements. This raises the question of whether simply scaling training data and
model size will allow us to “solve” complex code reasoning tasks like vulnerability
detection, or if a fundamental shift in modeling and training techniques is required.
We also explored adding domain knowledge to prompts; although it helped certain
models understand some code semantics, vulnerability detection requires multi-
step reasoning, and these models still failed in steps, such as reasoning about
variable relations. Our results suggest that new models, new training methods, or
more execution-specific pretraining data may be needed to conquer vulnerability
detection. We speculate that auto-regressive pre-training on source code may not
effectively extract code semantics, especially on the current pretraining mixtures,
in which execution data is scarce. Success on vulnerability detection as a code
reasoning task can benefit many areas of software engineering such as debugging,
test input generation, and program repair. Our code and data are available at
https://figshare.com/s/78fe02e56e09ec49300b.

1 INTRODUCTION

Thousands of new software vulnerabilities are discovered each year, costing users and companies
millions of dollars (NIST, 2024a). This makes vulnerability detection critically important for software
security. Since Devign in 2019 Zhou et al. (2019), many deep learning approaches have been proposed
to predict the presence of vulnerabilities, but model performance has not breached 70% F1 score
on realistic datasets Chen et al. (2023). In this paper, we show that though existing LLMs achieve
impressive results on math, natural language, code reasoning and code generation tasks Talmor et al.
(2019); Cobbe et al. (2021); Gu et al. (2024); Chen et al. (2021) they struggle to detect vulnerabilities
(Section 2). We show that vulnerability detection is a complex code reasoning challenge, requiring
both multi-step analysis and an accurate understanding of code semantics. This paper makes the case
that vulnerability detection presents a compelling new target task for the ML community; solving it
could significantly impact related software engineering tasks, such as debugging, test input generation,
and program repair, thereby enhancing developer productivity. Furthermore, improving LLMs’ ability
to reason about code and identify vulnerabilities could potentially drive progress in broader reasoning
tasks.

As shown in Figure 1, to detect a vulnerability, a developer first needs to accurately locate the
statements relevant to a potential vulnerability. Second, a developer must understand the semantics
of those relevant statements, which requires domain knowledge, such as recognizing bounds/NULL
checks and understanding the effects of string, pointer, and arithmetic operations. Sometimes only a
single operator distinguishes vulnerable and non-vulnerable versions of code, and effective vulnera-

1

https://figshare.com/s/78fe02e56e09ec49300b

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 get_next_file(FILE *VFile, char *ptr) {
2 char *ret;
3 ret = fgets(ptr, PATH_MAX, VFile);
4 if (!ret)return NULL;
5
6 - if (ptr[strlen(ptr) - 1] == '\n')
7 - ptr[strlen(ptr) - 1] = '\0';
8 + size_t len = strlen (ptr);
9 + if (len > 0 && ptr[len - 1] == '\n')

10 + ptr[len - 1] = '\0';
11 return ret;
12 }

(A) Buffer Overflow (BOF). To detect this vulner-
ability in the vulnerable version, the model/devel-
oper takes several reasoning steps: (step 1) identify
the BOF-relevant statements, e.g., buffer allocation
in line 3 and access in line 6; (step 2) understand
that the allocated buffer may be empty depending
on user input and that strlen(ptr) returns 0
in line 6 if the buffer is empty; (step 3) connect the
facts, recognizing that if the buffer is empty, then
line 6 will access index -1, causing a BOF. In the
patched version, the model/developer should rec-
ognize in step (2) that line 9 checks the length of
the buffer before accessing it, and therefore, step 3
concludes that this vulnerability is not exploitable.

1 mrb_class_real(struct RClass* cl) {
2 if (cl == 0) return NULL;
3 cl->super = NULL;
4 // ...
5 while ((cl->tt == MRB_TT_SCLASS) || (cl->tt

== MRB_TT_ICLASS)↪→
6) {
7 cl = cl->super;
8 + if (cl == 0) return NULL;
9 }

10 return cl;
11 }

(B) Null-Pointer Dereference (NPD). To detect this vul-
nerability in the vulnerable version, the model/developer
takes several reasoning steps: (step 1) identify the rele-
vant statements, e.g. the assignments cl->super =
NULL in line 3 and cl = cl->super in line 7, and
dereference of cl in line 5; (step 2) understand that in
line 3, cl->super is set to NULL; (step 3) connect
the facts, recognizing that after assigning cl to NULL
in line 7, it will be dereferenced when the loop condition
is evaluated in line 5, causing a NPD. In the patched
version, the model/developer should recognize in step
(2) that line 8 checks if cl is NULL and returns safely,
thus there is no vulnerability.

FIGURE 1. Examples of vulnerability detection as a complex code reasoning task. Diffed lines (+/-)
show the lines changed to patch the vulnerability.

bility detection requires understanding these nuances of program semantics. Finally, the developer
must logically connect the individual facts about the statements to infer whether a vulnerability exists.
This last step requires reasoning about the ranges of values and the temporal relations of symbolic
variables, and then comparing them to the application’s security policy, which is often implicit.

These steps are challenging for LLMs, both individually and in combination. We studied 14 SOTA
LLMs and 7 prompting methods on SVEN (He & Vechev, 2023), a high-quality, real-world dataset
consisting of 386 vulnerable functions and their corresponding fixed versions, covering 772 programs.
We found that all models and prompts performed close to random guessing (50-55% Balanced
Accuracy) (Section 2). Even GPT-4, a SOTA model, couldn’t distinguish vulnerable code from its
fixed version for 67.4% cases.

After manually analyzing 300 of the LLM responses (Section 3), we found errors occurring at all
three steps of the reasoning process. For instance, in step 1, localization, the models frequently
(50% of inspected functions) failed to recognize bounds or NULL checks, resulting in false positives.
Explicit marking of bounds checks is easily done by humans but seems to be difficult for LLMs to
recognize. In step 2, LLMs misinterpreted string, pointer, and integer operations in 10%, 6%, and
8% of functions, respectively. Understanding bounds/NULL checks and the operations requires a
precise understanding of code execution semantics, which LLMs generally struggle with Gu et al.
(2024); our results confirm this finding and further indicate which structures were most challenging.
We attribute the models’ lack of understanding of code semantics, even after using various prompting
methods, to two key factors: (1) the models may have limited exposure to execution data during
pre-training, which restricts their ability to learn semantics directly – although LLMs might acquire
some semantic understanding indirectly from simple executions aligned with code text, or developer’s
discussions about semantics; and (2) the current autoregressive pre-training methods face inherent
difficulty of learning execution semantics from code text alone. This is likely why we observe that
scaling up model size or dataset volume, and performing fine-tuning, did not significantly improve
performance (Sections 3.1 and 3.2); since the necessary data are not in the dataset, it is unlikely that
LLMs can learn this complex reasoning via scaling alone. Annotating code semantics in prompts
reduced some of these errors in certain models (Section 3.3), but determining vulnerabilities require

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a multi-step analysis. There are errors in other reasoning steps can further prevent the detection. We
show that in step 3, LLMs frequently failed at multi-step logical reasoning, leading to inconsistent or
non-sequential inferences in 9% of responses.

To the best of our knowledge, this paper is the first to utilize vulnerability detection to systematically
explore the capabilities of existing LLMs to reason about complex code properties. Ullah et al.
(2023) compared GPT-4’s responses with human-written vulnerability summaries using metrics like
BLEU, ROUGE, and GPT-4 evaluations, but did not delve into the specific failure modes which
occurred in responses. Yu et al. (2024); Nong et al. (2024) examined GPT-4 and GPT-3.5’s responses
about vulnerabilities but did not perform systematic studies on a set of models, and on the impact of
model sizes, training data, training methods, and adding domain knowledge. We classified the errors
based on the challenges of reasoning steps, resulting in categories which are more fine-grained and
actionable; we explored mitigating a specific type of error using a prototype with CoT-Annotations,
as discussed in Section 3.3.

In summary, we make the following contributions:

(1) We clarify vulnerability detection as a complex reasoning challenge;

(2) We demonstrate that current SOTA LLMs severely underperform in vulnerability detection,
achieving only 50-55% balanced accuracy at best;

(3) Through manual analysis of hundreds of LLM responses, we reveal that LLMs struggle with
all stages of reasoning, particularly in understanding semantics of statements involving bound-
s/NULL checks, string operations, and pointer handling, which contributes significantly to their poor
performance;

(4) We show that these reasoning failures and low performance cannot be easily mitigated by
increasing model size, improving training data, and applying fine-tuning, even when the model is
provided with domain-specific knowledge.

The fact that vulnerability detection exposes the limitations in current models’ abilities to reason about
vulnerabilities, coupled with the availability of well-defined vulnerability data, makes vulnerability
detection an ideal benchmark for evaluating and challenging LLM reasoning capabilities.

2 CAN LLMS EFFECTIVELY DETECT VULNERABILITIES?

Prompts: We used the baseline prompting methods including Basic (zero-shot) Fu et al. (2023) and
In-context (n-shot) Liu et al. (2023b); Zhou et al. (2024) prompts. We used a system prompt to set
the context and instructions including the vulnerability definition (MITRE, 2024) and the program
source code (see Section A for details).

We designed three additional prompting methods that leverage the metadata available in vulnerability
datasets to encourage reasoning and provide the domain knowledge to the model, namely: (1) In-
context examples from contrastive pairs (Contrastive), which uses pairs before and after a bug-fix
as in-context examples, with the goal of instructing the model the fine-grained differences which
caused the bug, (2) Chain-of-Thought from CVE descriptions (CoT-CVE), which uses CVE bug
reports (CVE, 2024) from the Big-Vul dataset (Fan et al., 2020), prompting the model to respond with
the explanations of vulnerability, and (3) Chain-of-Thought from static analysis (CoT-StaticAnalysis),
which adapts vulnerability proofs output by a static analyzer (Calcagno & Distefano, 2011) as
reasoning steps for the example response, conditioning the model to reason step-by-step. We obtained
the proofs from the D2A dataset Zheng et al. (2021) (see Section A for details).

Models: We evaluated 14 LLMs which are the SOTA in code generation, based on Zhao et al.
(2023); Liu et al. (2023a) and the HumanEval leaderboard (PapersWithCode, 2023) (as of March
2024). The models include LLAMA 2 (Touvron et al., 2023), Code LLAMA (Roziere et al., 2023),
StarCoder (Li et al., 2023b), StarChat (Tunstall et al., 2023), StarCoder2 (Lozhkov et al., 2024),
StarChat2 (HuggingFaceH4 Team, 2024), Mistral (Jiang et al., 2023), Mixtral (Jiang et al., 2024),
MagiCoder (Wei et al., 2023), Wizardcoder (Luo et al., 2023), DeepSeek-Coder(Guo et al., 2024),
GPT-3.5 (OpenAI, 2023), GPT-4 (OpenAI, 2024), and Gemini 1.0 Pro (Gemini Team, 2023). See
Section B for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prompt
Basic Random Embedding

Contrastive CoT-CVE CoT-StaticAnalysis Random-guess baseline

FIGURE 2. Vulnerability detection performance. Bar height shows the average performance of three
random seeds and error bars show standard deviations; stars () mark the best-performing prompt for
each model.

SVEN HumanEval CruxEval GSM8k CSQA

Model (params) Vuln. detection Code gen. Code execution Math NL reasoning

StarChat 50.9 - - - -
LLAMA 2 (34b) 51.2 22.6 - 42.2 -
StarCoder (15.5b) 52.2 45.8 34.2 - -
Mistral (7b) 51.4 30.5 34.3 36.5 62.5
Mixtral (8x7b) 51.9 40.2 40.5 58.4 86.7
Code LLAMA (34b) 52.6 48.8 42.4 - -
WizardCoder (33b) 52.4 59.8 43.4 - -
MagiCoder (7b) 50.9 70.7 44.4 - -
StarCoder2 (16b) 54.5 46.3 47.1 - -
GPT-3.5-turbo 51.8 64.9 49.4 57.1 85.5
DeepSeek (33b) 52.1 69.2 49.9 - -
GPT-4-turbo 52.9 87.1 68.7 87.1 95.3
Gemini 1.0 Pro 52.1 67.7 - 86.5 84.7
StarChat2 53.6 71.3 - - -

TABLE 1. Performance on vulnerability detection vs. NL/math reasoning, code generation, and code
execution. Sources for code, math, and NL reasoning performance are cited in Section C.

Benchmark and Metrics: We used the SVEN dataset (He & Vechev, 2023), which contains 772
vulnerable and fixed functions from real-world C/C++ projects (average length = 168 lines). Existing
vulnerability datasets like PrimeVul (Ding et al., 2025) are useful for fine-tuning but suffer from
label noise, reducing the reliability of evaluations; in contrast, SVEN aggregates and manually
vets vulnerabilities from multiple benchmarks, with 94% reported label accuracy (Ding et al.,
2025). Because the commonly used F1 score can bias towards models which predict vulnerable
more often (Zhou et al., 2024), we used Balanced Accuracy (Brodersen et al., 2010) (defined as
(correctvul

examplesvul
+ correctnvul

examplesnvul
)/2) to evaluate the models.

Results: Figure 2 shows the performance of the baseline methods and our proposed prompts.
While our new prompts slightly improved the best-case performance for 11 out of 14 models, with
Contrastive prompts enhancing 8 out of 14, none of the models or prompts exceeded the random-
guessing baseline (Balanced Accuracy = 50) by more than 5% Balanced Accuracy. In doubt of
whether the complexity of the real-world code is the main challenging factor, we studied simple code
examples (25 lines per function on average) from the CWE and SARD databases (MITRE, 2024;
NIST, 2024b) and found that the models still did not predict simple functions correctly, reporting
42-67% Balanced Accuracy across all the models (see Section D). Table 1 compares the models’
vulnerability detection performance with their performance in other domains. While new models
have made steady advances in code generation Chen et al. (2021), code execution Gu et al. (2024), NL
reasoning Talmor et al. (2019), and math reasoning Cobbe et al. (2021), their vulnerability detection
performance has not increased in step, remaining close to the random-guess baseline. This result

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

implied that the until-now successful strategies of scaling model size and training data have not yet
proven to be sufficient to solve vulnerability detection; to further confirm this, we investigated further
in Sections 3.1 and 3.2.

TABLE 2. Models’ abilities to distinguish pairs of vulnerable and non-vulnerable examples. Cell
values display the number and percentage of pairs in each category.

Distinguished
Model Can’t Distinguish Both Correct Both Wrong

StarChat 86.1% 7.9% 6.1%
DeepSeek 82.5% 6.3% 11.2%
StarCoder 82.1% 12.5% 5.4%
GPT-3.5-turbo 80.9% 11.3% 7.8%
LLAMA 2 76.5% 15.6% 8.0%
MagiCoder 75.2% 11.9% 12.9%
Mixtral 67.8% 18.3% 13.9%
GPT-4-turbo 67.4% 18.9% 13.7%
Gemini 64.4% 19.1% 16.5%
Mistral 61.8% 20.6% 17.6%
StarChat2 61.4% 21.0% 17.6%
StarCoder2 57.5% 19.0% 23.5%
Code LLAMA 57.3% 22.3% 20.4%
WizardCoder 55.0% 23.8% 21.1%

Average 69.7% 16.3% 14.0%

Table 2 presents our results on the models’ capabilities of distinguishing pairs of vulnerable code and
its fixed version. In the table, under Column Can’t Distinguish, we show that, on average across all
the models, 69.7% of pairs could not be distinguished, indicating that the models do not understand
the nuanced semantics of the vulnerability. Some models/prompts were better than average, but at
best, 55.0% of pairs could not be distinguished. The Both Correct and Both Wrong columns indicate
that the models predicted both versions correctly in some instances (16.3% of pairs), but there were
also cases (14.0% of pairs) where the models predicted both versions incorrectly.

3 WHY DO LLMS FAIL TO REASON ABOUT VULNERABILITIES?

We manually inspected 300 vulnerable predictions (covering 100 programs) from 14 models, re-
garding the vulnerability reasoning steps, including locating and understanding the semantics of
statements related to vulnerability decisions, as well as the logical reasoning that can integrate variable
values and relations, and compare them with the security policy. To reduce subjectivity, our manual
inspection used independent ratings from three authors, following Islam et al. (2019), and adopted
best practices for inductive coding (Saldaña, 2021). See Section F.3 for the details of our protocol.

Does the response contain an error?
No Yes

FIGURE 3. Error categories observed in responses from all LLMs. Bar width shows the number of
responses that contained the category of error. One response can contain more than one type of error.

Figure 3 summarizes the errors. The results show that LLMs had some successes in reasoning, with
44% of responses containing no observed errors; however, still more than half of the responses

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

TABLE 3. Error analysis from 300 responses covering 100 programs. We analyzed the errors manually
using the rubric and inter-rater agreement procedure detailed in Section F.

Reasoning step Error Count

(1,2) Localizing and understanding
statements related to vulnerability

Misunderstood Bounds/NULL check 80/159 (50%)
Misunderstood string operation 3/29 (10%)
Misunderstood arithmetic operation 8/96 (8%)
Misunderstood pointer operation 9/147 (6%)
Misunderstood alloc/free operation 4/81 (5%)
Misunderstood index operation 1/60 (2%)
Misunderstood execution order 11
Improper assumption 8
Misunderstood syntax 6

Total 125

(3) Logical reasoning Faulty implication (⇒) 14
Inconsistent (⊥) 14

Total 28

Cross-cutting errors Hallucination 15
Memorization 11
Repetition 5

Total 31

contained an error in at least one step. LLMs made errors on localizing and understanding individual
statements for 43% examples; this causes them to make faulty inferences about the effects of the
code and flag potential vulnerabilities in safe code. LLMs also made cross-cutting errors such as
hallucination and repetition 10% of the time and made incorrect logical inferences 9% of the time.

The LLMs frequently made errors related to several specific code structures, shown in Table 3.
For example, out of 159 responses explaining bounds/NULL checks, 80 (50%) were incorrect.
The semantics of bounds/NULL checks are critically important for determining whether several
pertinent vulnerabilities exist, including buffer overflow, null-pointer dereference, and use after free.
Such checks often follow predictable code patterns and thus are relatively simple for developers
and static analysis tools to identify — we used static analysis to recognize them in Section 3.3 —
however, the LLMs often failed to recognize these patterns. In addition, the models face challenges
of understanding the semantics of operations; for example, the models incorrectly interpreted 10%
string operations and 8% of arithmetic operations, which are necessary for reasoning about buffer
overflow and integer overflow vulnerabilities.

FIGURE 4. Missed Bounds/NULL check.

In Figure 4, StarChat reported that there is an unchecked null-pointer dereference at line 5 (p-
>lineinfo[oldpc]). However, it overlooked the safety check at line 2, where null values for
p->lineinfo are handled safely. Figure 5 provides an example of a Misunderstood arithmetic
operation error. GPT-4 correctly identified the bounds-check at line 6, which had been added by
developers to prevent overflows (MITRE, 2024). However, the LLM failed to reason about the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

FIGURE 5. Misunderstood arithmetic operation.

calculation of the argument value to AllocChunk at line 9. Given the upper bound of 0x7fff
for nSamples+1 and nPatches+1, even the maximum values would not cause an overflow in an
unsigned integer (0x7fff ∗ 0x7fff ∗ 8 = 0xfff80008), so the LLM’s alert is a false positive.

As a follow-up to the error analysis, we conducted a form of natural experiment Wikipedia (2024)
to compare various LLMs and assess whether prominent training strategies improved vulnerability
performance. This study design enabled us to evaluate each training strategy independently while
controlling other variables. We compared models of different sizes (Section 3.1) and models trained
with varying data and training methods, including increased training data volume, code vs. NL
training data, instruction fine-tuning, and adapter fine-tuning (Section 3.2). We also investigated the
use of external tools (Section 3.3) to add domain knowledge targeting the types of reasoning errors
we found in Table 3.

3.1 DOES MODEL SIZE MATTER?

Model class
Mistral DeepSeek-Coder
Code LLAMA LLAMA 2

Regression

FIGURE 6. Larger models did not improve on
vulnerability detection.

We evaluated several models which released different
sizes: LLAMA 2 (7b, 13b), Code LLAMA (7b, 13b,
34b), Mistral 7b vs. Mixtral 8x7b, and DeepSeek-
Coder (1.3b, 6.7b, and 33b). Figure 6 shows that
model performance did not significaly improve by
scaling up the model size, and we found that there
was no statistical correlation between model size and
performance (R2 = 0.02, p = 0.72). We manu-
ally analyzed the responses using the methodology
in Section 3 and found that all models had error rates
similar to those shown in Figure 3, although larger
models were better at following in-context prompts.
For example, Code LLAMA 7b, often analyzed the in-
context examples instead of the queried example; this
error happened less frequently with Code LLAMA
13b, and not at all with Code LLAMA 34b. This
aligns with previous results (Wei et al., 2022a) show-
ing that in-context learning is an emergent property
of larger models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 DO MODEL TRAINING DATA & METHODS MATTER?

Dataset Training method

Less data General-purpose Base Prompting
More data Code Instruct Fine-Tuning

(A) Data vol.&modality. (B) Instruction fine-tuning. (C) Adapter fine-
tuning.

FIGURE 7. Expanding the training dataset and incorporating fine-tuning had minimal impact on
vulnerability detection capability.

Figure 7a (top), General-purpose vs. code training data: Models trained mainly on natural
language may lack the knowledge of code seen in models which have been fine-tuned on code.
This raises the question: do models specialized for code outperform general-purpose models? To
explore this, we compared LLAMA 2, designed as a general-purpose chat assistant (Touvron et al.,
2023), against Code LLAMA, which was initialized from the base weights of LLAMA 2 and further
fine-tuned on code (Roziere et al., 2023). Figure 7a (top) shows that code-specialized training did not
substantially improve Code LLAMA’s vulnerability detection capability.

Figure 7a (bottom), Training on more data: HuggingFace’s Bigcode team released StarCoder
and its updated version, StarCoder2, with the primary difference being that StarCoder2 trained on
more than twice as much code (Lozhkov et al., 2024). This setup provides a relatively controlled
environment to assess the impact of this additional training data. Figure 7a (bottom) indicates that
scaling up the dataset resulted slightly improved StarCoder2’s vulnerability detection capability, but
yielded only a 4% improvement.

Figure 7b, Instruction fine-tuning : Instruction fine-tuning can improve the truthfulness and
relevance of responses (Ouyang et al., 2022), as well as performance and generalization (Chung et al.,
2024). This leads us to ask: do instructed models perform better than their base counterparts? We com-
pared the base versions of DeepSeek Coder, StarCoder2, and Code LLAMA against their instruction
fine-tuned counterparts, namely WizardCoder, StarChat2, and Code LLAMA-Instruct/MagiCoder
respectively, and found no substantial difference in performance (Figure 7b), indicating that instruc-
tion fine-tuning did not improve vulnerability detection performance, even though our vulnerability
detection prompts are tailored for instruction-tuned models.

Figure 7c, Adapter fine-tuning: We fine-tuned the StarCoder2 7b model using the vulnerability
dataset PrimeVul Ding et al. (2025) (the cleanest supervised dataset large enough for fine-tuning) and
compared it with the base 7b model using the Basic prompt on SVEN. We evaluated the models on
balanced and imbalanced label distributions, following Chakraborty et al. (2022). Figure 7c shows
that finetuning did not substantially improve the model’s performance in either case; the fine-tuned
model performed worse on balanced data and only 1.2% better on imbalanced data.

3.3 DOES ADDITIONAL DOMAIN KNOWLEDGE HELP?

Table 3 indicates that one of the important challenges that prevented LLMs from detecting vulnerabil-
ities is their incapability of understanding bounds/NULL checks and pointer operations. Thus, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CoT-Annotations prompt for the source code in Figure 1b

Code Explanation: The pointer cl is passed as parameters in this function, which could be null. In line
cl->super = NULL, the pointer cl->super is assigned to NULL. In line while ((cl->tt
== MRB TT SCLASS)..., the pointer cl is dereferenced. The function has a NULL check in line
if (cl == 0) return NULL; for the pointer cl.
Instructions: For the Query Example only, think step-by-step using these steps, then give an answer
based on the Code Explanation. Assume pointers which are passed in will not cause a null-pointer
dereference.
1. identify which locations pointers are likely to be null.
2. identify which of these are dereferenced.
3. identify which of these dereferences of potentially-null pointers are checked and handled. Filter
these out.
4. if any unchecked dereferences remain, then the function is vulnerable. Otherwise, the function is not
vulnerable.

Example response

Reasoning: The function dereferences the pointer cl without checking if it is NULL. cl may be
assigned to NULL in the line cl = cl->super. If cl is NULL, the function will crash when it
tries to access the field cl->tt in the loop condition.
Answer: Yes, the function is buggy.

FIGURE 8. Example CoT-Annotations using the NPD vulnerability from Figure 1b. CoT-Annotations
uses static analysis to annotate null assignments, parameters, dereferences, and null-checks (top) and
provides reasoning example responses to encourage reasoning (bottom).

developed Chain-of-Thought with Annotations (CoT-Annotations), shown in Figure 8. We introduced
an external static analysis tool which annotates the code to highlight possible NULL assignments to
pointers, NULL checks, on pointers, and dereferences of pointers. These annotations provide the
exact information that defines the vulnerability and that a domain expert would use to identify NULL-
pointer dereference vulnerabilities. We integrated such knowledge into the prompt and evaluated
performance on detecting Null-Pointer Dereference (NPD) vulnerabilities for the models we studied
above, as a case study. As a quality measure, we manually verified the static analysis output and
excluded incorrect annotations caused by heuristic errors.

Prompt
Without additional knowledge With additional knowledge

(A) Reasoning errors related to bounds/NULL checks. (B) Vulnerability detection performance.

FIGURE 9. Domain knowledge is helpful for one step but not much for overall performance. Some
models, e.g., CodeLLAMA, respond to domain knowledge better: case study on NPD vulnerabilities.

By analyzing a sample of 198 responses1 with/without annotations, we observed that CoT-Annotations
reduced the errors of bounds/NULL checks recognition by 15-70% for Code LLAMA, MagiCoder,

1This sample represents the intersection of vulnerable responses across all six models, with a maximum of 25
responses per model. We used the error categories established in Section 3, with each rater analyzing one-third
of the responses (each response was reviewed by a single rater due to time constraints).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and Mistral, shown in Figure 9a; however, these models still missed 23-67% of bounds checks. We
also observed that the improvement of understanding bounds/NULL checks did not significantly
improve the models’ performance (see Figure 9b). We speculate that this is because there are other
blocking issues such as logical reasoning about relations of variables.

4 RELATED WORK

Recent studies have initiated investigation into the usage of LLMs for vulnerability detection, using
zero-shot prompting Purba et al. (2023); Fu et al. (2023), in-context learning Gao et al. (2023); Liu
et al. (2023b); Chan et al. (2023), and fine-tuning Shestov et al. (2024); Yusuf & Jiang (2024); Yang
et al. (2024). Several papers have utilized chain-of-thoughts (CoT), such as “Let’s think step-by-
step” Li et al. (2023a); Feng & Chen (2024); Sun et al. (2024), multi-step prompts Ullah et al. (2023);
Yu et al. (2024), and generic information such as CFG, DFG, PDG, and API calls Zhang et al. (2023);
Nong et al. (2024); Khare et al. (2023); Ullah et al. (2023). In this work, we studied the most common
prompting methods and proposed four novel prompt approaches tailored for vulnerability detection,
integrating information from bug-fix commits (contrastive pairs), CVE descriptions (CoT-CVE),
static analysis reports (CoT-StaticAnalysis), and domain knowledge annotations (CoT-Annotations).
We further studied the LLMs’ capabilities to distinguish buggy and patched versions of code and
studied the reasoning errors in their responses.

Several recent papers have analyzed errors in LLM-generated vulnerability detection responses. Ullah
et al. (2023) used BLEU, ROUGE, and GPT-4 to automatically compare GPT-4’s reasoning summaries
with human-generated ones. Yu et al. (2024); Nong et al. (2024) examined 82-100 responses from
GPT-4 and GPT-3.5, supporting our findings that the models struggled with correctness, logic and
consistency in general. However, existing studies do not match the depth and breadth of ours. Our
error classifications provide more actionable and detailed categories, enabling us to identify specific
code structures and LLM weaknesses (see Table 3). Additionally, we analyzed factors such as model
size, training data, and training strategies, providing cause for concern about future improvements
from model scaling. To our knowledge, our study is the most comprehensive manual analysis of
LLMs for vulnerability detection, including 14 models and manually analyzing 300 LLM responses
with a rigorous multi-rater agreement protocol.

5 CONCLUSION

In this paper, we have show that vulnerability detection is complex, multistage reasoning task that
current LLMs struggle to solve. We conducted a thorough study to show that the SOTA models and
prompts performed only slightly better than random guessing. None of the model advancements
we explored led to significant improvements, including increasing model size, expanding training
data, and instruction/adapter fine-tuning. The models particularly struggled to distinguish between
vulnerable and fixed versions of code, where small textual differences cause large changes in
semantics. We demonstrated that external tools and domain knowledge helped somewhat with
single-step reasoning, but did not significantly improve the models’ performance, which depends on
accurate multi-step reasoning. Our findings bring concerns about further research in this area, raising
the question of whether auto-regressively pre-trained LLMs are a good fit for tasks which require
deep understanding of code semantics. We suggest that a fundamental shift in modeling and training
methods may be necessary in order to overcome the reasoning failures of current LLMs. We believe
that solving code reasoning in vulnerability detection could help address many other challenging tasks
in software engineering, such as debugging, code execution prediction, test input generation, and
program repair. Reasoning-based models fine-tuned for inherent chain-of-thought, such as OpenAI
o1 (OpenAI, 2024) and DeepSeek R1 (DeepSeek, 2024), offer a promising approach to this challenge.
Furthermore, frequent localization/understanding errors, such as missing bounds/NULL checks in
50% of cases, demonstrate the need for additional context or scaffolding, as demonstrated by our
CoT-Annotations prototype Section 3.3. We hope that our paper laid out some key insights and
motivation for the machine learning community to solve this important challenge.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Our code and data, including the materials and tool used for error analysis, are available at this
link: https://figshare.com/s/78fe02e56e09ec49300b. To encourage replication and
transparency, we include several appendices detailing our prompts (Section A), the model ID’s
we used (Section B), the NL/math/coding benchmarks we cited (Section C), and our manual error
analysis methodology (Section F).

REFERENCES

Anonymous. Data package, 2024. https://figshare.com/s/78fe02e56e09ec49300b.

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M. Buhmann. The
Balanced Accuracy and Its Posterior Distribution. In ICPR, 2010.

Tom Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners. NeurIPS,
2020.

Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory safety of c
programs. In NASA Formal Methods Symposium, pp. 459–465. Springer, 2011.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. Deep learning based vulnerability detection: Are
we there yet? IEEE Transactions on Software Engineering, 48(09):3280–3296, sep 2022. ISSN
1939-3520. doi: 10.1109/TSE.2021.3087402.

Aaron Chan, Anant Kharkar, and Roshanak Zilouchian others Moghaddam. Transformer-based
vulnerability detection in code at edittime: Zero-shot, few-shot, or fine-tuning? arXiv:2306.01754,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on code.
arXiv:2107.03374, 2021.

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun Chen, and David Wagner. Diversevul: A
new vulnerable source code dataset for deep learning based vulnerability detection. In Pro-
ceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses,
RAID ’23, pp. 654–668, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400707650. doi: 10.1145/3607199.3607242. URL https://doi.org/10.1145/
3607199.3607242.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

The MITRE Corporation. CVE-2017-9211, 2024. URL https://nvd.nist.gov/vuln/
detail/CVE-2017-9211.

Roland Croft, M Ali Babar, and M Mehdi Kholoosi. Data quality for software vulnerability datasets.
In ICSE, 2023.

CVE. CVE Website. https://www.cve.org/, 2024.

DeepSeek. DeepSeek-R1-Lite-Preview is now live: unleashing supercharged reasoning power!
https://api-docs.deepseek.com/news/news1120, 2024.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language
models: How far are we? In ICSE, 2025.

11

https://figshare.com/s/78fe02e56e09ec49300b
https://figshare.com/s/78fe02e56e09ec49300b
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://nvd.nist.gov/vuln/detail/CVE-2017-9211
https://nvd.nist.gov/vuln/detail/CVE-2017-9211
https://www.cve.org/
https://api-docs.deepseek.com/news/news1120

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Facebook. Infer Static Analyzer, 2024. URL https://fbinfer.com/.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. A C/C++ Code Vulnerability Dataset with
Code Changes and CVE Summaries. In MSR, 2020.

Sidong Feng and Chunyang Chen. Prompting is all you need: Automated android bug replay with
large language models. In ICSE, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, et al. CodeBERT: A pre-trained model for programming and
natural languages. arXiv:2002.08155, 2020.

Joseph L. Fleiss. Measuring nominal scale agreement among many raters. Psychological Bulletin,
1971.

Michael Fu, Chakkrit Tantithamthavorn, Van Nguyen, and Trung Le. ChatGPT for vulnerability
detection, classification, and repair: How far are we? arXiv:2310.09810, 2023.

Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. How far have we gone in
vulnerability detection using large language models, 2023.

Gemini Team. Gemini: A family of highly capable multimodal models. arXiv:2312.11805, 2023.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution, 2024. URL
https://arxiv.org/abs/2401.03065.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
testing. In CCS, 2023.

HuggingFaceH4 Team. HuggingFaceH4/starchat2-15b-v0.1. https://huggingface.co/
HuggingFaceH4/starchat2-15b-v0.1, 2024.

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep
learning bug characteristics. In ESEC/FSE, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, et al. Mistral 7b. arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, et al. Mixtral of experts. arXiv:2401.04088,
2024.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik.
Understanding the effectiveness of large language models in detecting security vulnerabilities.
arXiv:2311.16169, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. NeurIPS, 2020.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. The hitchhiker’s guide to program analysis: A
journey with large language models. arXiv:2308.00245, 2023a.

Raymond Li, Loubna Ben Allal, Yangtian Zi, et al. Starcoder: may the source be with you!
arXiv:2305.06161, 2023b.

Xiao Liu, Hao Yu, Hanchen Zhang, et al. Agentbench: Evaluating llms as agents. arXiv:2308.03688,
2023a.

Zhihong Liu, Qing Liao, Wenchao Gu, and Cuiyun Gao. Software vulnerability detection with GPT
and in-context learning. In IEEE DSC, 2023b.

12

https://fbinfer.com/
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.14196
https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1
https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024. URL https://arxiv.org/abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering code large language models with
evol-instruct. arXiv:2306.08568, 2023.

MITRE. CVE-2018-16435, 2024. URL https://nvd.nist.gov/vuln/detail/
CVE-2018-16435.

MITRE. CWE - Common Weakness Enumeration. https://cwe.mitre.org/index.html,
2024.

NIST. NVD - NVD Dashboard. https://nvd.nist.gov/general/nvd-dashboard,
2024a.

NIST. NIST Software Assurance Reference Dataset. https://samate.nist.gov/SARD/,
2024b.

Yu Nong, Mohammed Aldeen, Long Cheng, Hongxin Hu, Feng Chen, and Haipeng Cai. Chain-of-
Thought prompting of large language models for discovering and fixing software vulnerabilities.
arXiv:2402.17230, 2024.

OpenAI. gpt-3.5-turbo-0613 announcement, June 2023. URL https://community.openai.
com/t/gpt-3-5-turbo-0613-function-calling-16k-context-window-and-lower-prices/
263263.

OpenAI. GPT-4 technical report, 2024.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

PapersWithCode. HumanEval Benchmark, 2023. URL https://paperswithcode.com/
sota/code-generation-on-humaneval. [Accessed 27-10-2023].

M. Purba, A. Ghosh, B. J. Radford, and B. Chu. Software vulnerability detection using large language
models. In ISSREW, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, et al. Code Llama: Open foundation models for
code. arXiv:2308.12950, 2023.

Johnny Saldaña. The coding manual for qualitative researchers. 2021.

Alexey Shestov, Anton Cheshkov, Rodion Levichev, et al. Finetuning large language models for
vulnerability detection. arXiv:2401.17010, 2024.

13

https://arxiv.org/abs/2402.19173
https://nvd.nist.gov/vuln/detail/CVE-2018-16435
https://nvd.nist.gov/vuln/detail/CVE-2018-16435
https://cwe.mitre.org/index.html
https://nvd.nist.gov/general/nvd-dashboard
https://samate.nist.gov/SARD/
https://community.openai.com/t/gpt-3-5-turbo-0613-function-calling-16k-context-window-and-lower-prices/263263
https://community.openai.com/t/gpt-3-5-turbo-0613-function-calling-16k-context-window-and-lower-prices/263263
https://community.openai.com/t/gpt-3-5-turbo-0613-function-calling-16k-context-window-and-lower-prices/263263
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://paperswithcode.com/sota/code-generation-on-humaneval
https://paperswithcode.com/sota/code-generation-on-humaneval

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuqiang Sun, Daoyuan Wu, Yue Xue, et al. GPTScan: Detecting logic vulnerabilities in smart
contracts by combining gpt with program analysis. In ICSE, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Hugo Touvron, Louis Martin, Kevin Stone, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv:2307.09288, 2023.

Lewis Tunstall, Nathan Lambert, Nazneen Rajani, et al. Creating a coding assistant with starcoder.
Hugging Face Blog, 2023. URL https://huggingface.co/blog/starchat.

Saad Ullah, Mingji Han, Saurabh Pujar, Hammond Pearce, Ayse Coskun, and Gianluca Stringh-
ini. Can large language models identify and reason about security vulnerabilities? not yet.
arXiv:2312.12575, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022a.
URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-Thought prompting elicits reasoning in
large language models. NeurIPS, 2022b.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023.

Wikipedia. Natural experiment. http://en.wikipedia.org/w/index.php?title=
Natural%20experiment&oldid=1235833118, 2024. [Online; accessed 20-September-
2024].

Sang Michael Xie and Sewon Min. How does in-context learning work? A framework for under-
standing the differences from traditional supervised learning. https://ai.stanford.edu/
blog/understanding-incontext/, 2022.

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large language models
for test-free fault localization. In ICSE, 2024.

Jiaxin Yu, Peng Liang, Yujia Fu, et al. Security Code Review by LLMs: A Deep Dive into Responses,
2024.

Imam Nur Bani Yusuf and Lingxiao Jiang. Your instructions are not always helpful: Assessing the
efficacy of instruction fine-tuning for software vulnerability detection. arXiv:2401.07466, 2024.

Chenyuan Zhang, Hao Liu, Jiutian Zeng, et al. Prompt-enhanced software vulnerability detection
using chatgpt. arXiv:2308.12697, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, et al. A survey of large language models. arXiv:2303.18223,
2023.

Yunhui Zheng, Saurabh Pujar, Burn Lewis, et al. D2A: A dataset built for ai-based vulnerability
detection methods using differential analysis. In ICSE-SEIP, 2021.

Xin Zhou, Ting Zhang, and David Lo. Large language model for vulnerability detection: Emerging
results and future directions. In Proceedings of the 2024 ACM/IEEE 44th International Conference
on Software Engineering: New Ideas and Emerging Results, pp. 47–51, 2024.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

14

https://aclanthology.org/N19-1421
https://huggingface.co/blog/starchat
https://arxiv.org/abs/2206.07682
http://en.wikipedia.org/w/index.php?title=Natural%20experiment&oldid=1235833118
http://en.wikipedia.org/w/index.php?title=Natural%20experiment&oldid=1235833118
https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

APPENDIX A VULNERABILITY DETECTION PROMPTS

We explored several prompt designs, guided by model performance on a small dev set or the entire
SVEN dataset.

Basic (zero-shot) prompting (Fu et al., 2023): We first designed a system prompt to set the context:
“I want you to act as a vulnerability detection system”, along with natural-language instructions: (1)
Basic query: “Is the following function buggy? Please answer Yes or No.” (We also tried “Is the
following function vulnerable?”; however, our pilot study shows that it did not perform as well.) (2)
CWE list: This prompt starts with “Does the following function contain one of the following bug
types?”, followed by a fixed list of bug types, e.g., “CWE-190: Integer Overflow”; (3) Q/A: Begin the
query with “Question:” and begin the model’s response with “Answer:”. This conditions the model
to respond in a question-answering mode.

In-context (n-shot) prompting(Liu et al., 2023b; Zhou et al., 2024): In this prompt, we provide
examples of inputs and responses for in-context learning (Brown et al., 2020). The in-context
examples condition the model to reply in the same format as the example responses (Xie & Min,
2022). The selection of in-context examples can impact the performance. We studied three settings:
(1) randomly selecting examples, (2) using retrieval-augmented generation (RAG, Lewis et al. (2020))
to retrieve the examples that had similar CodeBERT (Feng et al., 2020) embeddings to the query
example, and (3) selecting examples from contrastive pairs (see below for details). We explored
several options for formatting in-context examples, such as appending all the examples in one chat-
assistant message versus using separate messages (one message performed best) and varying the
number of examples from 1 to 10 (6 performed best).

In-context prompting based on contrastive pairs: We formed contrasting pairs of in-context
examples by providing the vulnerable version of the code (before the bug-fixing commit) and the
fixed version (after the commit) as in-context examples in the same prompt. Since these two versions
of the source code differ primarily in the portion related to the bug-fix, our intention is that this
prompt template would highlight the cause of the bug and instruct the model to learn that the small
differences in code can lead to different labels.

In-context prompting based on CoT from CVE descriptions: We designed “chain-of-thought”
prompts by providing intermediate reasoning steps which lead to the answer, inspired by Wei et al.
(2022b). We use in-context examples from the Big-Vul dataset (Fan et al., 2020), which includes the
CVE bug reports. For vulnerable examples, we used the default in-context query and provide the
chain-of-thought response. To produce such response, we adapt the descriptions in these bug reports
to describe how the bug manifests. For example, CVE-2017-9211 Corporation (2024) describes the
vulnerability, including the symptoms, attack surface, and variable involved:

The crypto skcipher init tfm function in crypto/skcipher.c in the Linux
kernel through 4.11.2 relies on a setkey function that lacks a key-size
check, which allows local users to cause a denial of service (NULL
pointer dereference) via a crafted application.

We use this description as the CoT response and append “Therefore, the example is buggy” to
complete the example response. For non-vulnerable examples, we provide the default in-context
example query/response.
To ensure high-quality examples in spite of label noise Croft et al. (2023), we removed duplicate
examples, excluded examples with overly long or short source code (50-750 tokens), and retained
only those examples tied to vulnerabilities (i.e., bug reports) of the same types in SVEN.

In-context prompting based on CoT from static analysis: We also used the output buggy paths
reported by the Infer (Calcagno & Distefano, 2011) static analysis tool to prepare the chains of thought
prompt. Infer reports a single bug-triggering path for each example. The buggy path consists of a
list of statements that can lead to the bug. We use in-context examples from the D2A dataset Zheng
et al. (2021), which lists buggy paths from the Infer static analyzer Facebook (2024) for several
open-source C++ projects. We convert the buggy paths to natural language descriptions and use them
as the response. This is an example CoT response for a buffer overflow vulnerability:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. A buffer buf of size 10 is allocated at line 1.
2. An index i is initialized to a value in the range [0, 100] at line 2.
3. The index i is used to access buf at line 3. This may exceed the
bounds of buf.

We append “Therefore, the example is buggy” to complete the example response. For non-vulnerable
examples, we provide the default response.
To ensure high-quality examples in spite of label noise Croft et al. (2023), we removed duplicate
examples, excluded examples with overly long or short source code (50-750 tokens), and selected
examples with complete vulnerability proofs within the vulnerable function and removed those with
incomplete reports.
The key difference between our CoT-Annotation prompt Section 3.3 and the CoT-StaticAnalysis
prompt is that the former uses lightweight, custom-built static analysis to provide targeted information
about specific vulnerability semantics, such as bounds and NULL checks—areas where LLMs
struggle, as shown in Section 3. The latter relies on a heavyweight, off-the-shelf commercial static
analyzer (Infer) to supply proofs for the vulnerabilities it is designed to handle, but cannot provide
customized information.

APPENDIX B MODELS

We used the model sizes shown in Table 4 and the text generation parameters shown in Table 5 for
our experiments. The model IDs are documented in our data package.

TABLE 4. 14 models we studied.

Model Parameters Context Length

GPT-4 OpenAI (2024) - 128k
Gemini 1.0 Pro Gemini Team (2023) - 32k
GPT-3.5 OpenAI (2023) - 4k
Mixtral-MoE Jiang et al. (2024) 45B 8k∼128k
Code LLAMA Roziere et al. (2023) 7B, 13B, 34B 16k∼100k
LLAMA 2 Touvron et al. (2023) 7B, 13B 4k
WizardCoder Luo et al. (2023) 33B 2k
DeepSeek-Coder Touvron et al. (2023) 1.3B, 6.7B, 33B 4k
StarChat2 HuggingFaceH4 Team (2024) 15.5B 16k
StarCoder2 HuggingFaceH4 Team (2024) 15.5B 16k
StarChat Tunstall et al. (2023) 15.5B 8k
StarCoder Li et al. (2023b) 15.5B 8k
MagiCoder Wei et al. (2023) 7B 16k∼100k
Mistral Jiang et al. (2023) 7B 8k∼128k

APPENDIX C BENCHMARKS FOR OTHER DOMAINS

We gathered the benchmark performance results for Table 1 from public benchmarks and from the
papers associated with each model:

• CruXeval: https://crux-eval.github.io/leaderboard.html

• HumanEval: https://paperswithcode.com/sota/code-generation-on-humaneval

• GSM8k: reported in the models’ papers (Touvron et al., 2023; Jiang et al., 2023; 2024; OpenAI,
2023; 2024; Gemini Team, 2023).

• CSQA: reported in the models’ papers (Jiang et al., 2023; 2024; OpenAI, 2023; 2024; Gemini
Team, 2023).

16

https://crux-eval.github.io/leaderboard.html
https://paperswithcode.com/sota/code-generation-on-humaneval

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

TABLE 5. Text generation parameters we used.

Parameter HuggingFace OpenAI Google

Top-p 0.9 1.0 1.0
Temperature 0.1 0.1 0.1
Max. tokens generated 512 512 512

APPENDIX D SIMPLE CWE EXAMPLES

Figure 10 shows a simple integer overflow vulnerability example. The CodeLLAMA model could
detect this vulnerability. The response of the CodeLLAMA model is shown in Figure 11. The
performances of all models on these simple examples are shown in Table 6.

Integer Overflow

1 int determineFirstQuarterRevenue()
2 {
3
4 // Variable for sales revenue for the quarter
5 float quarterRevenue = 0.0f;
6
7 short JanSold = getMonthlySales(JAN); /* Get sales in January */
8 short FebSold = getMonthlySales(FEB); /* Get sales in February */
9 short MarSold = getMonthlySales(MAR); /* Get sales in March */

10
11 // Calculate quarterly total
12 short quarterSold = JanSold + FebSold + MarSold;
13
14 // Calculate the total revenue for the quarter
15 quarterRevenue = calculateRevenueForQuarter(quarterSold);
16
17 saveFirstQuarterRevenue(quarterRevenue);
18
19 return 0;
20 }

FIGURE 10. A simple integer overflow example collected from CWE database. The summation of
three short int numbers can be more than the value of the maximum short int number, which will
introduce integer overflow vulnerability.

Example response

No, the function does not contain any of the following vulnerability types:
* CWE-190: Integer Overflow
* CWE-476: Null Pointer Dereference
* CWE-125: Out-of-bound Read
* CWE-787: Out-of-bound Write
* CWE-416: Use After Free

FIGURE 11. Code LLAMA’s response to the simple example in Figure 10

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

TABLE 6. The performance of the studied models on simple CWE examples.

Model Performance

GPT-4 OpenAI (2024) 65.78
Gemini 1.0 Pro Gemini Team (2023) 50.87
GPT-3.5 OpenAI (2023) 56.14
Mixtral-MoE Jiang et al. (2024) 61.40
Code LLAMA Roziere et al. (2023) 61.40
LLAMA 2 Touvron et al. (2023) 46.49
WizardCoder Luo et al. (2023) 51.75
DeepSeek-Coder Touvron et al. (2023) 66.67
StarChat2 HuggingFaceH4 Team (2024) 55.26
StarCoder2 HuggingFaceH4 Team (2024) 50.87
StarChat Tunstall et al. (2023) 50.00
StarCoder Li et al. (2023b) 41.52
MagiCoder Wei et al. (2023) 62.28
Mistral Jiang et al. (2023) 57.01

APPENDIX E PERFORMANCE BREAKDOWN BY BUG TYPE

Table 7 provides a breakdown of model performance by bug type.

TABLE 7. Performance breakdown by bug type.

Model CWE-125
(OOB Read)

CWE-190
(Integer Overflow)

CWE-416
(UAF)

CWE-476
(NPD)

CWE-787
(OOB Write)

Code LLAMA 53.67 55.29 51.88 52.42 55.86
Gemini 55.08 54.65 57.73 55.51 52.68
GPT-3.5-turbo 53.83 53.16 51.59 51.09 54.5
GPT-4-turbo 54.53 54.65 53.17 55.61 53.57
LLAMA 2 53.66 52.17 50.13 51.72 52.83
MagiCoder 53.67 52.04 55.91 52.44 57.23
Mistral 52.95 51.25 52.49 51.32 54.46
Mixtral 52.72 55.54 50.55 53.08 55.96
StarChat 50.84 52.06 52.58 52.52 50.92
StarChat2 53.54 52.66 54.36 52.56 56.58
StarCoder 56.70 58.44 54.91 53.17 58.66
StarCoder2 58.65 52.03 52.11 51.69 54.99
WizardCoder 53.01 53.85 55.38 53.55 57.55

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

APPENDIX F ERROR ANALYSIS METHODOLOGY

To support measurable and targeted improvements in model reasoning, we open-sourced our error
analysis tool Anonymous (2024). Researchers can use this tool to quickly analyze a sample of LLM
responses to measure whether and how much the LLMs improved on a specific reasoning error, as we
demonstrated in Section 3.3. By offering concrete metrics and a practical tool to measure them, we
aim to accelerate both advancements in LLM reasoning research and the adoption of reasoning-based
models for vulnerability detection tasks.

F.1 INTER-RATER AGREEMENT

We first analyzed 50 examples to create detailed error categories for each reasoning step. All three
raters independently identified errors in the LLM responses, refining the protocol after processing 1⁄3,
1⁄2, and all of the data. We added new error categories when needed, and merged similar categories
after analysis concluded. We measured inter-rater agreement using Fleiss’ kappa (κ) Fleiss (1971),
achieving 0.78 with 86% agreement. We resolved disagreements by majority vote, followed by
discussion for the final categorization. After the categories were set in Section 3, we used one rater to
analyze the responses reported in Sections 3.1 to 3.3.

F.2 ERROR ANALYSIS UI

FIGURE 12. Error analysis user interface.

Figure 12 is a screenshot of the user interface (UI) used by the raters for error analysis. The interface
features a display of the source code (center), the model’s response and explanation (bottom left), and
metadata about the vulnerability (top left). Additionally, it provides a configurable set of checkboxes
to select one or more error categories, along with a section for free-form text notes (bottom right).
We believe that this tool could be valuable for future large-scale manual analyses of LLM responses,
which is why we have included it in our data package.

F.3 ERROR CATEGORIES

Filtering: We chose the 100 shortest examples by line count in SVEN to ensure annotators could
easily understand the analyzed code. We included only examples where the LLM predicted “vulnera-
ble” to study its reasoning about vulnerabilities. We filtered for responses where the LLM provided
reasoning, excluding simple answers like “Yes” or “No.” To balance responses across models, we
randomly excluded a small number (1–10) of responses from later-released models, StarCoder2 and
DeepSeek, to reach an even total of 300. This decision also considered the cost of our rigorous
manual annotation process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Error categories: Table 8 shows the definitions for the error categories which we developed in our
manual analysis.

R
ea

so
ni

ng
St

ep
C

at
eg

or
y

D
es

cr
ip

tio
n

(1
,2

)L
oc

al
iz

in
g

an
d

un
de

rs
ta

nd
in

g
st

at
em

en
ts

re
la

te
d

to
vu

ln
er

ab
ili

ty
M

is
un

de
rs

to
od

B
ou

nd
s/

N
U

L
L

ch
ec

k
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

bo
un

ds
ch

ec
k

or
nu

ll
ch

ec
k,

su
ch

as
”i

f(
pt

r)
*p

tr
”

or
”i

f(
i¡

le
n)

bu
f[

i]
”?

M
is

un
de

rs
to

od
st

ri
ng

op
er

at
io

n
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

llo
ca

tio
n,

co
py

,r
ea

di
ng

,o
rw

ri
tin

g
of

st
ri

ng
s?

M
is

un
de

rs
to

od
ar

ith
m

et
ic

op
er

at
io

n
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

n
ar

ith
-

m
et

ic
op

er
at

io
n,

su
ch

as
+,

-,
/,

*?
M

is
un

de
rs

to
od

po
in

te
ro

pe
ra

tio
n

D
oe

s
th

e
m

od
el

st
at

e
a

fa
ls

e
pr

op
os

iti
on

ab
ou

ta
st

at
em

en
t

in
vo

lv
in

g
a

po
in

te
rd

er
ef

er
en

ce
op

er
at

io
n?

M
is

un
de

rs
to

od
al

lo
c/

fr
ee

op
er

at
io

n
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

m
em

or
y

al
lo

ca
tio

n
su

ch
as

m
al

lo
c

or
ne

w
?

M
is

un
de

rs
to

od
in

de
x

op
er

at
io

n
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

st
at

em
en

t
in

vo
lv

in
g

an
ar

ra
y

in
de

x
op

er
at

io
n?

M
is

un
de

rs
to

od
ex

ec
ut

io
n

or
de

r
D

oe
s

th
e

m
od

el
st

at
e

a
fa

ls
e

pr
op

os
iti

on
ab

ou
ta

co
nd

i-
tio

na
l,

su
ch

as
if

or
sw

itc
h,

or
th

e
or

de
r

of
ex

ec
ut

io
n

be
tw

ee
n

tw
o

st
at

em
en

ts
?

Im
pr

op
er

as
su

m
pt

io
n

D
oe

s
th

e
m

od
el

m
ak

e
an

un
re

as
on

ab
le

as
su

m
pt

io
n

ab
ou

t
a

fu
nc

tio
n,

va
ri

ab
le

,o
rp

ar
am

et
er

in
th

e
ex

am
pl

e?
M

is
un

de
rs

to
od

sy
nt

ax
D

oe
s

th
e

m
od

el
m

is
in

te
rp

re
tt

he
sy

nt
ax

of
vi

si
bl

e
co

de
,

e.
g.

in
te

rp
re

tin
g

th
e

de
cl

ar
at

io
n
i
n
t
*
x

=
N
U
L
L
;

as
a

de
re

fe
re

nc
e

of
x?

(3
)L

og
ic

al
re

as
on

in
g

Fa
ul

ty
im

pl
ic

at
io

n
D

oe
s

th
e

m
od

el
m

ak
e

a
lo

gi
ca

l
im

pl
ic

at
io

n
w

he
re

th
e

co
nc

lu
si

on
do

es
no

tf
ol

lo
w

fr
om

th
e

pr
em

is
e(

s)
?

In
co

ns
is

te
nt

D
oe

s
th

e
m

od
el

m
ak

e
an

y
st

at
em

en
ts

w
ith

in
its

re
sp

on
se

w
hi

ch
ar

e
co

nt
ra

di
ct

or
y?

C
ro

ss
-c

ut
tin

g
er

ro
rs

H
al

lu
ci

na
tio

n
D

oe
s

th
e

m
od

el
re

as
on

ab
ou

tc
od

e
th

at
is

n’
tt

he
re

?
M

em
or

iz
at

io
n

D
oe

s
th

e
m

od
el

re
as

on
ab

ou
tc

od
e

th
at

is
po

te
nt

ia
lly

m
em

-
or

iz
ed

fr
om

th
e

tr
ai

ni
ng

da
ta

,s
uc

h
as

ta
lk

in
g

ab
ou

tt
he

ca
lli

ng
co

nt
ex

t?
R

ep
et

iti
on

D
oe

s
th

e
m

od
el

ou
tp

ut
re

pe
at

ed
se

nt
en

ce
s

w
hi

ch
do

n’
t

m
ak

e
se

ns
e

in
se

qu
en

ce
?

TABLE 8. Definitions of Model Reasoning Errors

20

