A Minimal S-slope Holder extension

In this section we describe a procedure that extends Holder functions in an optimally smoothest
manner at every point, as it will serve as a crucial ingredient in our proofs. That is, given a subset of
a metric space A C € and a function f : @ — [0, 1], it produces F4 : 2 — [0, 1] such that

1. It extends f|A : FA‘A = f|A
2. Forany F : Q — [0, 1] that extends f

A, it holds that A?;A (x) < A%(x) forall z € Q.

Such a procedure was described for Lipschitz extensions (namely when 5 = 1) in Ashlagi et al.
[2021]. The purpose of this section is to generalize this procedure to any Holder exponent.

Throughout this section we fix 8 € (0,1], # # A C Qand f : Q — [0, 1], and will always assume
the following.
Assumption A.1. || f|4|lgss < oo and diam(A) < oo.

Keeping in mind that the case we are really interested in is when A is finite (i.e. a sample), the
conditions above are trivially satisfied. Nonetheless, everything we will present continues to hold in
this more general setting. For u, v € A we introduce the following notation:

f(v) = F(u)
o, 0)P + pla, u)?
Fo(u,v) = f(u) + Ro(u,0)p(z,u)”

R: = sup Ra(u,v),
u,vEA

Wy(e) :={(u,v) € Ax A: Ry(u,v) > R; —¢}, 0<e<R]
D, (2) = {Fy(u,v) : (u,v) € Wp(e)} .

Definition A.2. We define the S-pointwise minimal slope extension (5-PMSE) to be the function
Fya: Q — R satisfying

R, (u,v) :=

)

Fy(z) := El_i>r(r)1+ D,(e) .

In the degenerate case in which f(u) = f(v) for all u,v € A, define Fa(x) := f(u) for some (and
hence any) u € A.
Theorem A.3. Let ) # A C Q, f: Q — [0,1], such that Assumption A.1 holds. Then Fy : Q —
[0, 1] is well defined, and satisfies for any x € Q) : Ag}; (x) < A? (x). Furthermore, if A is finite,
then Fa(x) can be computed for any x € Q within O(|A|?) arithmetic operations.
Remark A.4. When R, (-, -) has a unique maximizer (ul,v}) € Ax A, the definition of F' 4 simplifies
to ( )ﬁ
* P\ZL, U?; * *
Fa(z) = f(uy) + vy) — fluy)) . 3

a(0) = F03) + O (7(02) = f(02) ®
We conclude that under Assumption A.1, we can assume without loss of generality that for each
x € Q) there is such a unique maximizer (since the function is well defined, thus does not depend on

the choice of the maximizer). Furthermore, this readily shows that when A is finite, we can compute
Fu(z) for any x € Q within O(|A|?) arithmetic operations — simply by finding this maximizer.

Proof. (of Theorem A.3)

We will assume that there exist u,v € A such that f(u) # f(v), since the degenerate (constant
extension) case is trivial to verify. This assumption implies that R} > 0. It is also easy to verify that
SUp,eq Ry < oo = [|f|[gap < oo

Lemma A.5. Fy is well defined. Namely, under Assumption A.1 the limit lim,_,o+ ®,(¢) € [0,1]
exists.
Proof. Fix x € Q (we will omit the x subscripts from now on). Let ¢ < R*/2, (u,v), (uv/,v") €
W (g). Note that R(u,v) > 0 and that F(u,v) = f(v) — R(u,v)p(z,v)?. Hence

f(u) < Fu,v) < f(v), )
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and the same clearly holds if we replace (u,v) by (u’,v"). Assume without loss of generality that
F(u,v) < F(u',0), hence f(u) < F(u,v) < F{u,0/) < f(1'). We get

R(u',v") +e > R*

f) = fw)
~ plz,v")P + p(z,u)P
_ W) = F, V) + Fu,v) = f(u) | F',v') = Fu,v)
pla,v")? + p(z,u)? pla,v")? + p(z,u)?
_ R(u',v")p(z,v")? + R(u,v)p(x,u)? n F(u',v'") — F(u,v)
o )P T o, )P o 0P T o, )P
o R\ v)p(@,v')? + (R, v') — e)p(w,u)?  F(u/,v) = F(u,v)
- p(z,v")8 + p(x,u)? 2diam(A)P
o F(u',v') = F(u,v)
z Rlu',v) —e+ 2d1am(A)5

— |Fp(u,v) — Fp(u',0v")| < 4e diam(A)7 .
We conclude that if diam(A) < oo then lim, g+ ®,(¢) indeed exists.
O

It remains to prove the optimality of the 3-slope. Throughout the proof we will denote for any

uFove:
[Fa(u) — Fa(v)|

S =
(0) = = )P
and for any point z € €, subset B C € and function g : Q — [0, 1] we let
l9(2) —9(y)l

A(z,B) = sup
s(@:B) veB\{z} P(T,y)°

The proof is split into three claims.

ClaimL VzeQ\A: A} (z,4) < Az, A).

Letx € Q\ A, and let (u*,v*) € A x A be its associated maximizer of R,. Recall Eq. (4) from
which we can deduce that F4 (u*) < Fu(x) < Fa(v*). Also note that a simple rearrangement based
on Eq. (3) (and the fact that f and F4 agree on A) shows that S(u*, z) = R, (u*,v*) = S(z,v*).
Furthermore, we claim that A[;A (z, A) == supyc o\ (5} S(2,y) = S(x,u”). If this were not true then
we would have S(z,y) > S(z,u*) = S(z,v*) for some y € A\ {z,u*,v*}. Using the mediant
inequality, if f(y) > f(«) this implies

ey T - fw)  Fay) = Fa(z) + Fa(z) = Fa(u®) N .k
Bl = P ple P~ g plwyy o) S RO
while if f(y) < f(x) then

o JO)=fly)  _ Fa(") = Fa(x) + Fa(z) - Fa(y) . -
B L P L D L E A
both contradicting the maximizing property of (u*,v*) - so indeed Alﬁ;A (x,A) = S(z,u*) =

S(x,v*). In particular, we see that if Fi4(x) > f(x) then

8 _ fy) = f@)|  f0) = f(x) | Fa(w") = Fa(z) _ 8
B L s LI
while if Fis(x) < f(x) then

) @) = f@)] _ f@) = ) | Fale) = Fa@?) _ A (o, A
B E ) I o L e C St

proving Claim I in either case.
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ClaimIL Vze Q\A: A (2,Q\ A) <A} (2, A), in particular Ay, (2,9Q) = A}, (z, A).
It suffices to show that for any z,y € Q\ A :
S(w,y) < min{A, (z, 4), Ap, (v, A)} .

since taking the supremum of the left hand side over y € ) \ A shows the claim. Let (u}, v}), (uy;, vy)
the associated maximizers of R, R, respectively, and note that by definition we have

A?,A(z,A) sup  S(z,2) > max{S(z,uy),S(z,v,)} . 5)
z€A\{z}

We assume without loss of generality that Alﬂ% (z,A) < AgA (y, A), and recall that by Eq. (4) we
can deduce that Fia(u}) < Fa(z) < Fa(vy) and Fa(u;) < Fa(y) < Fa(vy). Now suppose by
contradiction that S(x,y) > A%A (z,A). If Fy(x) < Fa(y) then

Fa(vy) = Fa(@) + pla,y)°S(z,y) + ply, v3) AL, (y, A)
> Fa(z) + p(z,y) AL, (2, A) + p(y, v})P AL, (z, A)
> Fa(z) + plz,v3) AL (2, A),

|Fa(@)—Fa(vy)|

thus S(z,v;) = o(z.07)P

Fa(x) > Fa(y) then
Fa(z) = Fa(uy) + p(u
> Fa(uy,) + p(u
> FA(uZ) o(u

|Fa(z)—Fa(uy)l
p(z,uy)P

> AI;A (z, A) which contradicts Eq. (5). On the other hand, if

)AL (3, A) + ply, )P S(x,y)
VAL (2, A) + ply, x)P AT, (x, A)
)P (2, A),

thus S(z,uy) = > A?’A (z, A) which contradicts Eq. (5), and proves claim Claim II.

ClaimIIL Yz € A: A} (2,Q) =A% (v, 4) < A(2,Q).
Let x € A. Assume towards contradiction that there exists y ¢ A such that
Ap,(2,9) > S(z,y) > Ap (z,A) .

We denote by (uy,v;) € A x A the maximizer of R, (-, ). Recall that since z € A, in the proof of
Claim I we showed that S(z,y) < S(y,u;) = S(y,v y) If Fa(z) < Fa(y) < Fa(vy) then

Fa(vy) — Fa(z) - Fa(vy) — Fa(y) + Fa(y) — Fa(z)
plog, @)~ p(vy, ) + p(x,y)”
> min{S(y, v}), S(z,y)} = S(z,y) > A}, (2, A)
while on the other hand if Fia(z) > Fa(y) > Fa(uy) then
Fa(x) — Fa(uy) - Fa(x) — Fa(y) + Fa(y) — Fa(uy)
plz,up)f  ~ p(z,y)? + p(uy, y)P
> min{S(x,y), S(y,up)} = S(x,y) > AL, (x,A),

where in both calculations we used the mediant inequality. Both inequalities above contradict the
definition of A?A (z, A), thus proving Claim III.

S(x,v)) =

7Y

S(z,ul) =

*Y

Combining the ingredients. We are now ready to finish the proof. For x € Q, if x € A then Claim
III provides the desired inequality. Otherwise, if 2z € Q0 \ A then

Claim II Claim1
A (2,) T2 AL (0, 4) < Af(z,A) < A(2,9)
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B Proofs

B.1 Proof of Theorem 3.1

2

We start by stating a strengthened version of the triangle inequality (also known as the “snowflake
triangle inequality) which we will use later on. For any 8 € (0,1],  # y,z € (&

p(z,y)” < p(x,2)" + p(z,y)" . (6)

Indeed, this follows from

p(z,2)" +p(z,y)" _ plx,2)’ +p(z,y)° p(z, 2) ’ p(z,y) ’
p(z,y)P = (p(x,2) + p(z,y))" < ($,2)+p(z7y)) N (p(aaz) +p(z7y))

(o) () =

Let 0 < € < 1, denote K := [log,(1/¢)], ¢’ := W and note that

, 1 € €
> = > .
~ (logy(1/e) +2) 221/ 2 (logy(1/e) +2) ~ 4log,(1/e)

(7

;N\ 1/8 . N\ 1/B
Let N = {x1,...,7n|} be a (:;TL) -net of 2 of size |N| = N (ﬁ) ,and let IT =

{C1,...,C)n|} be its induced Voronoi partition. We define B = {[l;,u;]};cs C [0,1]% x [0,1]% to
be the pairs of functions constructed as follows:

e lu are both constant over every cell C; € II, and map each cell to a value in
{0, <, /’ 3¢’ 1}
* Choose some cells Sy C I such that y(Ug, ¢, Ci) < €’ and set forany C; € S : |c, =

0, U‘Ci =1.
* For m = 2,...,K choose some “unchosen” cells S,, C II \ |J;_,, S; such
that (Ug,es, Ci) < 2™7'¢’ and set for any C; € S, : o, €
12 2m 2
{07W727mu"'72777u

* In the "remaining” cells Sk 41 := I\ ;< g S setforany C; € Sk41

1 2 2K+l _ 9 1
0’2K+1’2K+1""’ 2K+1 7’U,CL:l+27K
Notice that for any [I, u] € B we have
K+1
=l = 3 / i) = u(@du@) = 3 3 [ 1w - ula)ldu(o)
C,ell m=1C;ESm ¥ Ci
K+1 K+ 1
=Y ¥ [ gdn) = Y g 3w
m=1C;€S,, m=1 C;€Sm
K+
2m—1€/ 1
:Zw=€’(K+l) 5% <€
m=1

Furthermore, we can bound |B| by noticing that any such [ is defined by its values over |N| cells
who all belong to {0, 5-,¢’,..., 1}, and that once / is fixed then any associated u has at most K + 1
possible values over each cell since it equals [ + 2n—1_1 for some m € [K + 1]. Thus

B < (K +1) (j)m < log, (i) . (Mﬂ/@)”((mf”) |

3
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where the last inequality uses Eq. (7) and definition of K. In order to finish the proof, in remains to
show that 3 indeed cover ﬁai(ﬁ, 1) as brackets. Namely, that for any f € ﬁai(ﬁ, 1) there exist
[[,u] € Bsuchthat! < f < w. To thatend, let f € }’I\gllz(Q,u). Denote
: L
s! :{cyen : VxEC’i:A?(a:)ZE,}
and notice that | J{C; € 7} C {z : A?(m) > L/e'y = u(U{C; € ${}) < &' Hence we can
pick [, u] € B such that (I|¢,, u|c,) = (0,1) forany C; € S{ (serving as S; in their construction).

Clearly any such [, u bound f over these cells. Furthermore, for m = 2, ..., K we denote
st={cien\ |Js! :veel :Alw)> L
T = € \U Ve el f(l’)_m )

j<m

and notice that |J{C; € S} C {z : A?(m) > L/(2m )} = wU{Ci € S,}) <2m-le.
Consequently we can let S,,J; serve as .Sy, in the construction of [[, u] € B, assuming we will show
such a choice can serve as a bracket of f over such cells. Indeed, for any z € C; we have

Eq. (6) [ 2¢’ 1
, Bly). B - = -
@) = FE) S M) plo, ) S 5t e = s
which by the triangle inequality shows in particular that for any x,y € C; :

17(@) ~ F)] < 1£(x) — )+ 17 () ~ FO)| < gy = g -

So clearly there exists a;; € {0, 5, 52, . - ., 27;,;2} suchthat a; < flc, < a;+ 57—, and by setting
lley,ule, = (i, i + =) forany C; € S, we ensure the bracketing property. Finally, for any of

the remaining cells S{(H =\ U<k S]f we get by construction that 3z; € C; : A?(zl) < oH

(otherwise they would satisfy the condition for some previously constructed Sy,). Hence for any
z € C; we have

Eq. (6) [ 2¢’ 1
A By, B —
|f<x)_f(zz)‘ SAf(ZZ)'p<xvzl) < 9K g/ ’ 391 T 9K+4”

which by the triangle inequality shows that for any z,y € C; :

1 1
So as before, there clearly exists a; € {0, 3757, 32, - - - » 2;(;152} such that a; < fle, < i+ 3,

and by setting l|¢,, u|c;, = (a4, o + 2%() for any C; € S;, we ensure the bracketing property over
all of 2, which finishes the proof.

B.2 Proof of Proposition 3.2

Recalling that the realizability assumption ensures a “perfect” predictor f* € F, we start by
introducing the loss class £ C [0,1]% :

Lr={Us(z):=|f(x) = [ (@) : feF}.
Fix o > 0. We observe that £~ is no larger than F in terms of bracketing entropy, namely
-/\[[](’C-Fle(/J')aa) SA/[](-Fle(/j')va) : ®)

Indeed, suppose we are given an «a-bracketing of F denoted by B,, and denote for any f € F by
[lr,uf] € By its associated bracket. Then any ¢y € L is inside the bracket [ls,, u¢,] where

le, == max{0, min{ly — f*, f* —uy}},
ug, := min{l, max{uy — f*, f* —ls}} .
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It is straightforward to verify that [|u,, — l¢, |1, (u) < luy —Ifllz,(u) < @, and clearly the set of all
such brackets is of size at most | B,|, yielding Eq. (8).

Now notice that for any f € F :
LD(f) - 1'01L5(f) = H£f||L1(l‘«) - 1'01H€f||L1(Mn) Sa+ ||l€f||L1(M) - 1'01HlffHL1(ltn) ’

hence

sup (Lp(f) = LO0LLs(f)) < o+ max(|lle, |2, oy — 1Ol Ml 24 () - ©)
S f

In order to bound the right hand side, fix some I, and note that Var(l,,) < Hl?f oy < Wepllzy ()

since Ig, (z) € [0,1]. Thus by Bernstein’s inequality and the AM-GM inequality we get that with
probability at least 1 — ~y :

log(1 2|l || 2y () log(1/7)
Ne Moy — Wep iz uny < g(1/7) +\/ s (p)

n n
2021log(1/7) 1

< — ﬁHlZfHLl(H)
2051og(1/7)

= ey ) — 1-01lley || 2y (i) < -

Setting v = 0 /N[j(F, L1(u), ) and taking a union bound over /;, whose number is bounded due to
Eq. (8), we see that with probability 1 — § :

2051log Nj1(F, L1 (i), o) + 205 log(1/8)
max (e, . oy = 101ley 22 un) < : :
f

n

Plugging this back into Eq. (9), and minimizing over o > 0 finishes the proof.

B.3 Proof of Theorem 4.1

Proposition B.1. Let f : Q — [0, 1]. Then with probability at least 1 — §/2 over drawing a sample
it holds that
n 41og®(4n /)

n

N B
RY < 41og?(4n/6)R} (1)

Corollary B.2. If D is realizable by f&i(ﬂ, ), then for f* : Q — [0,1] such that Lp(f*) =0
it holds with probability at least 1 — §/2 : N3, < 5log?(4n/8)L. Hence, f(X;) := f*(X;) = Y,
satisfies Ls(f) = 0 and /A\? < 5log?(4n/d)L .

Proof. (of Proposition B.1) Fix f : Q — [0, 1]. Given a sample (X;)?" ; ~ p" which induces an
empirical measure p,,, we get

s 1y |f(Xi) — f(2)] 8 8
A< =N qup Y DI R OA(X)] < 21og(n)W e, [AS(X)], (10)
PSR I Tk AT 0] S 2108 W, [N (X)]
where the last inequality follows from the reversed strong-weak mean inequality for uniform measures.
We will now show that with high probability W x .., [A}(X)] £ Wx.,[A}(X)] = A}. To that
end, we denote for any ¢t > 0 : M(t) = {z : A?(m) >t} C Qlet K = K?(,u)7 N =
[21log(4n/d)loglog(4n/d)] and note that

W x oy, [A(X)] = sup tpn (Mg (t)) (11)

< sup tpn (Mg(t)) + 2 max 29 Ky (Mp(27K)) 4+ sup tun(M(t)) .
0<t<K j€{0,1,....N—1} t>2NK

We will bound all three summands above. We easily bound the first term by
sup tun (M (t)) < K -1 =A(p) . (12)

0<t<K
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For the second term, denote for any ¢ > 0 by M;r (t) D Mjy(t) a containing set for which % <

w(M f+ (t)) < u(My(t))+ L. We can always assume without loss of generality that such a set exists.’
By the multiplicative Chernoff bound we have for any ¢, > 0 :

6&

+ +
Pripn(My (1)) = (1 +a)u(My (1))] < Aoy

hence by the union bound we get with probability at least 1 — ﬁ :
max 29 K pn (M (27K)) < max QjKun(Mf(ZjK))

jG{O,l ..... Nfl} jE{O 1,..., 1}
1 VLu(MF (2K
<( +a)je{07§§§N_l} WMy (2 K))

, , 1
<@ WK W(Ms(20K)) + —
<) o K (W00 K) + )

~ 14+«
§(1+a)A?(u)+7.

Letting v = log(4n/d) — 1, by our choice of N = [2log(4n/d)loglog(4n/d)] we get that with
probability at least 1 — 6 /4 :

2 max 2jK,un(Mf(2jK))SQlog(4n/5)K?(u)+M. (13)

je{o,1,....N—1} n

In order to bound the last term in Eq. (11), we observe that the empirical measure satisfies for any
ACQ:pp(A) <2 = p,(4) =0, and that My(s) C My(t) for s > t. Furthermore, by

definition of K = K? (1) we have p(My(t)) < %, hence by Markov’s inequality

P [sup i (M5(9) 0| < Brlun (0150 # 0] = B [ 0170 = 1] < 5

s>t n
For t := 2V K yields Prg [Sup,sqn i fin(My(s)) # 0] < g% < $. Combining this with Eq. (12),
Eq. (13) and plugging back into Eq. (11), we get that with probability at least 1 — §/2 :

2log(4n/0) 2log(4n/9)

< (1+2log(4n/5))K?(u)+ n

Wy, [AF (X)) < (142 log(4n/6)) A7 (u)+
Recalling Eq. (10), we get overall that

A7 < 2log(n) |(1+ 2log(4n/6))K} (1) + 210%(:"@] _

Simplifying the expression above finishes the proof.
O

Proposition B.3. Under the same setting, for any v > 0 there exists an algorithm that given a sample
S ~ D" and any function f : S — [0, 1], provided that n > N for N = 9] (M),
constructs a function f : Q — [0, 1] such that with probability at least 1 — §/2 :

* 1 = Fllsquny <A1+ 289, In particular Ls(f) < Ls(f) + (1 + 2A%).

iﬁ ~
« Ap(p) < 5A€.

3Such a set does not exist only in the case of atoms o € Q with large probablhty mass p(xo). If that is the
case, consider a “copy” metric space Q with zo split into two pomts T, T2 € Q at distance & apart and each of
mass ((xo)/2. Any function f : Q — R is extended to f Q — Rvia f(z1) = f(z2) = f(x0). Repeating

the split if necessary and taking € | 0, we obtain a space Q with all of the relevant properties of {2 but no atoms
of large mass.
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Proof. Throughout the proof, we denote for any point « € €2, subset B C {2 and function g : B —
[0,1] :
l9(z) — 9(y)
Ag(m,B) = sup
yer\{z} P(@,9)

Give the sample S = (X;,Y;)™,, we denote S, = (X;)"_;. Let v > 0. The algorithm constructs
f:Q —[0,1] as follows:

1. Let 53(7) C S consist of the |yn| points whose A (-, S;) values are the largest (with ties
broken arbitrarily), and S, () := S, \ Sz(7y) be the rest.

2. Let A C S (v) be ay'/B-net of S (7).

3. Define f : Q@ — [0,1] to be the 5-PMSE extension of ffrom A to Q as defined in
Definition A.2 (and analyzed throughout Appendix A).

We will prove that f satisfies both requirements. For the first requirement, since f|4 = f| 4 and
Sy = Si(7) WSy (y) we have

1= Fllza e = Zm @l=> ¥ @-F@l+ Y @),
z€5z(Y)\A zeS; (V\A

The first summand above is bounded by ~ since 0 < f,f < 1 = |f(z) — f(x)| < 1 and
|Sz ()] < yn. In order to bound the second term, we denote by N4 : S (y) — A to be the mapping
of each element to its nearest neighbor in the net, and note that p(z, N4 (z)) < /2. Then

1 - 1 . N
o Z |f(z) — f(z)] < = Z m“@)—f@?”

vESL(\A " zesin\a
ol f(x) = F(Na(@))| + | f(Na()) — f(z)]
=5 M%\A p(w, Na(2))?
_ 3 |f(z) — f(Na(z))] n |f(Na()) — f(2)]
noE s AENA@)E e, Na(@)?
<IN a + A, 4)
n €S, (v)\A
[Theorem A.3] < 2% Z Aﬁ(x A)
zeS!(
<2vL.

So overall we get || f — ﬂ|L1(un) < v+ 2yL = (1 + 2L) as claimed in the first bullet.

We move on to prove the second bullet. Let U C Q) be a "’14/ ’ -net of , II be its induced Voronoi

partition and let m := |TI| < N (y'/#/4). Let Consider the following partition of IT into “light” and
“heavy” cells:
I :={C €l : pu,(C) <my/m}, I :=T\II;.

We will now state three lemmas required for the proof, two of which are due to [Ashlagi et al., 2021].

Lemma B.4. Suppose A C Qand that f : Q — [0, 1] is the 3-PMSE extension of some function from
A10Q. Let E C Q such that diam(E)P < J mingsoc 4 p(x,2”)P. Then sup, . cp v ((;,)) <2

Proof. Let u},v; € A be the pair of points which satisfy Aﬂ () = %. By

assumption on E, we know that 2diam(E)? < p(vi,u%)? < p(vi,x)? + p(ul,x)?, hence
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(03, 2)° + plu, )" + 2diam(E) < 2(p(ur, 2) + pluct, 2)7). We get
B s fwi) = fug)
A @) 2 e T g, )P
> ) — Fu)
= p(vi, )8 + diam(E)P + p(us, z)8 + diam(E)?
fi) = f(ug) _1
= 2p(vy, )P + plug,2)?) 27

Lemma B.5 (Ashlagi et al., 2021, Lemma 16). If n’yz > m, then

. pa(0) 1]
Zl>1 = _
Sfén Lnélﬁlh ite) > 2] 2 1 — mexp(—ny/4m) ,

pn (C) |
m >1— —
Sflr)n |:CE%§ u(C) < 2_ 2 1—mexp(-ny/3m),

o lz n(C) <2y >1—exp (—n(v - m/71)2/2) :

Cell

Lemma B.6 (Ashlagi et al., 2021, Lemma 17). || flgge < %

Equipped with the three lemmas, we calculate

/AB du_Z/AB du+Z/Aﬁ (14)

Cell, Celly

The first summand above is bounded with high probability using Lemma B.5 and Lemma B.6, since
under the event described in Lemma B.5 we have:

/Aﬂ Ydp < Z/—du_— > u(C)

Cell; CEHZ Cell
9 L

g=—

4

In order to bound the second term in Eq. (14), let C € II, 2’ € C and note that by applying
Lemma B.4 to E := S, N C we get that A? (') < 2mingeg, ne A? (). Thus, under the high
probability event described in Lemma B.5 we have

B B B
Z /A x)du < Z /216%1120A x)dp =2 Z min _ A (2)p(C)

xzeS,NC
Celly, Celly,

<4
P Z 2 min Ar)
CGHh z'eS,NC

3%2 > A <fZA5 <4L,
Celly, 2’€SNC z' €S,

where the last inequality is due to the extension property of Theorem A.3. Overall, plugging these
bounds into Eq. (14) and using the union bound to ensure all required events to hold simultaneously,
we see that the desired second bullet holds holds with probability at least 1 — m exp(—n~y/4m) —

exp (—n(7 —\/m/n)?/ 2). A straightforward computation shows that by our assumption on n
being large enough, this probability exceeds 1 — /2 as required.

O

We are now ready to finish the proof of Theorem 4.1. Let v > 0. By Corollary B.2, we can
construct f : S — [0,1] such that with probability at least 1 — §/2 : Lg(f) = 0 and AI;A <
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5log? (4n/6)L. Assuming n is appropriately large, we further apply Proposition B.3 in order to
obtain f : Q2 — [0, 1] such that with probability at least 1 — §/2 : f € Hiélg5 log? (4n/5)1, () and also

o~

Ls(f) < Ls(f) +~v(1+2L) = v(1 + 2L). By the union bound, we get that with probability at
least1 — 9 :

Lp(f)

1.01Ls(f) 4+ (Lp(f) —1.01Ls(f))

v(1+2L) + sw  (Lo(f) — L01Ls(f) .
feHsl Q)

IN

‘3 (
251og2(4n/8)L

e ¢
-2 2
where () is justified by setting

()
< < :67

= ©(e/L) and applying Theorem 3.4 for appropriately large n.

B.4 Proof of Theorem 5.1
Given a sample S = (X;,Y;)?_; ~ D", denote the empirically smooth class
Hol := {f X1 Xy} = [0,1] 2 A9 < 510g2(4n/6)L} .

Consider the following procedure:

1. (Empirical cover) Construct hy,...,hy € Ho6l for maximal N such that Vi #* j €
(NT: i = hlly o) = § -

2. (Run realizable algorithm on cover) For any j € [N], execute the realizable algorithm

Arealizable Of Theorem 4.1 on the “relabeled” dataset (X, hj(Xi))iLE{zJ, and obtain f; :
Q — [0,1].

3. (ERM) Return argming, . s > i |,/0) 41 |f5(Xi) = Yil.

We will now prove that the algorithm above satisfies the theorem. Let f* €
arg min FETEIE () Lp(f), and note that by Proposition B.1 (as explained in Corollary B.1) we
oly (€2,

have f* € Hol with probability at least 1 —§/2. By construction, hy, ..., hy is a maximal {-packing

of ﬁ& which is known to imply that it is also a -net [Vershynin, 2018, Lemma 4.2.8] with respect
to the metric L; (uy,). In particular, this implies that there exists j* € [IN] such that

£ — R

€ €
Li(un) S 7 = Ls(hj-) < Ls(f*) + 1

Further note forany j € [N] : h; € ﬁgl, so our realizable algorithm (as manifested in Proposition B.3
for v = O(e/L)) when fed the “smoothed” labels (X, h; (Xz))zLZ{QJ will produce f; such that
Ls(f;) < Lg(hj) < < and K?j (n) < 57\57 < 251og®(4n/8) L. In particular

Ls(fj) < Ls(hj-) + i < Ls(f*) + g .

Finally, by Eq. (1) and Theorem 3.1 (which holds for any measure, in particular for the empirical
measure fi,)

log N < log Nz (€/2)
< logJ\f[](P/IgL Li(pn),€)

5 1/6 161ogy(1/¢)
< log Vo ((64010g2(4n/6)L10g(1/5)) )'log< . ) '

Hence, by a standard Chernoff-Hoeffding bound over the finite class { f1, ..., fn }, step (3) of the
log(N)+log(1/6>>
€2 .

algorithm yields § excess risk as long as 5 = (

SWe assume without loss of generality that the infimum is obtained. Otherwise we can take a function whose
loss is arbitrarily close enough to the optimal value and continue with the proof verbatim.
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B.5 Proof of Theorem 6.1

We start by providing a simple structural result which we will use for our lower bound construction,
showing that in any metric space there exists a sufficiently isolated point from a large enough subset.

Lemma B.7. There exists a point xy € ) and a subset K C ) such that

'VxeK:p(xo,x)Zdia%(Q).

*Vr#yeK:ple,y) > (/L)
. |K|= {st«e/;)l”)J .

Proof. Denote D := diam(2), let xg, x1 be two points such that p(zo,z1) > D/2, and let II =
{Co, C1} be a Voronoi partition of 2 induced by {z, z1 }. For vy > 0, let NV, be a maximal y-packing
of Q. By the pigeonhole principle there must exist a cell C; € II such that |C; N N,| > |N,|/2,
which we assume without loss of generality to be C. Now note that any = € C satisfies p(z, zg) >
1p(x,20) + 2p(x,21) > Lp(20,21) > D/4. Finally, set v := /% and let K C C; N N,, be any

subset of size LMJ ) Y

Given g, K from the lemma above, we denote K = {x} U K and define the distribution ; over
Q supported on K such that z1(z) = 1 — § and p(z) = 377 forall z € K. From now on, the
proof is similar to a classic lower bound strategy for VC classes in the realizable case (e.g. Kearns
and Vazirani, 1994, Proof of Theorem 3.5). To that end, it is enough to provide a distribution over

functions in ﬁi (€2, ) such that with constant probability any algorithm must suffer significant loss
for some function supported by the distribution.

We define such a distribution over functions f : K — {0, 1} as follows: Pr[f(zo) = 0] = 1, while
forany z € K : Pr[f(z) = 0] = Pr[f(z) = 1] = 1 independently of other points. We will now
show that any such f : K — {0, 1} is average Holder smooth with respect to zi. Indeed, for every

reK: B B
o /
Aé(x): sup Mgi:£7
s z'eK\{z} p(xv €T ) E/L 3
while B B
_ / 1 4
AP () — Fwo) = T _ _
f(xO) z’esﬁu\r{)zo} p(zo, )%~ diam(Q)/4  diam(Q2)’
hence ) s
il _ B B
Af(z) = H(JTO)AT(UEO) + Z u(x)AT(x) < ) + 5 <L.

rEK

Finally, we define the (random) function f* : Q — [0, 1] to be the 3-PMSE extension of f from

K to  as defined in Definition A.2, and note that f* satisfies the required smoothness assumption.
Setting D over 2 x [0, 1] to have marginal ¢ and Y = f*(X), we ensure that D is indeed realizable

by Tl ().

Now assume A is a learning algorithm which is given a sample S of size |.S| < % and produces

A(S) : Q — [0,1]. Wecall apoint # € K "misclassified" by the algorithm if | A(S)(z) — f*(z)| > 2,

and denote the set of misclassified points by M C K. Recalling that Vo € K : Pr[f(z) = 0] =
13

Pr[f(z) = 1] = 7 independently, and that yi() = 5%, we observe that with probability at least 3

the algorithm will misclassify more than |K|/2 points.” Thus, we get that with probability at least £ :
K| ¢ 1 =«

Lp(A(9)) = B [IAS)X) - (Xl 2 > @) JAS) (@) = fH (@) = = K] 278
xeM
"Indeed, denoting C = K \ M we see that Pr[|C| > |K|/8] < I%\ -E[|IC]] = |87| . @ cu(K) <
BIE e 1
K] 8 "2~ 2
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By rescaling e, we see that in order to obtain Lp(A(S)) < e the sample size must be of size

0 (m) g <NQ<<s£L>1/3>) |

Proof of Claim 7.1. Let 8 € (0,1). Consider the unit segment {2 = [0, 1] with the standard

metric, equipped with the probability measure p with density d—“ = Ll — %| = (where Z =

B.6 Proofs from Section 7

1
f |x — <ooisa normahzmg constant). We examine the functlon flx) =1z > 5] which is
clearly not Holder continuous since it is discontinuous. Furthermore,

.1 (Lt 2 e e
p{z : Ap(z) > t}) = p x < = x 2 dext 2
2| =% Z J,

= /~\} =supt-u({z: A}c(x) >t}) = supt% =00,
t>0

>0
hence f ¢ Lip,,; (2, ) for all M > 0. On the other hand, A?(w) = ﬁ S0
2
1 1182 1
Tr— 5| 2 1 1 (B<1)
o |r—3l ZJo |z—37=

thus f € ﬁ[z (€) for some L < oo. Note that by normalizing the function, the claim holds even for
L=1

Proof of Claim 7.2. Let 5 € (0,1). Consider the unit segment 2 = [0,1] with the standard
metric, equipped with the probability measure p with density % = %|x — %|B —! (where Z =
fol |z — §|°~'dx < oo is a normalizing constant). We examine the function f(z) = 1[z > £]. Note

that for any x # 5 : Aj(z) = Flé\’ hence

e (@) = ) = ({o: o= g1 < 1) = 2 [Tt

This shows that _
Ay =supt - p({x: A}(x) >t}) =supt' P = o0,
>0 >0

hence f ¢ EBM(Q,/J) for all M > 0. Furthermore, for z # 1 : A?(m) =

1 1
8 1 1 1

A :/ 7du:—/ ————dx = 0
o e3P Z Jo |z =3

hence f ¢ IfIgli(Q, ) for all M > 0. On the other hand

1
5 SO

-1

il M@ = ) = ulfle =gl <y = 2 [ @t e

— Al =supt-p({x: Aj(x) > 1}) < o0,
t>0

=8
thus f € Hol; () for some L < oo. Note that by normalizing the function, the claim holds even for
L=1
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