
A Minimal �-slope Hölder extension

In this section we describe a procedure that extends Hölder functions in an optimally smoothest
manner at every point, as it will serve as a crucial ingredient in our proofs. That is, given a subset of
a metric space A ⇢ ⌦ and a function f : ⌦ ! [0, 1], it produces FA : ⌦ ! [0, 1] such that

1. It extends f |A : FA|A = f |A.

2. For any eF : ⌦ ! [0, 1] that extends f |A, it holds that ⇤�
FA

(x)  ⇤
�
eF
(x) for all x 2 ⌦.

Such a procedure was described for Lipschitz extensions (namely when � = 1) in Ashlagi et al.
[2021]. The purpose of this section is to generalize this procedure to any Hölder exponent.

Throughout this section we fix � 2 (0, 1], ; 6= A ⇢ ⌦ and f : ⌦ ! [0, 1], and will always assume
the following.
Assumption A.1. kf |AkHöl

� < 1 and diam(A) < 1.

Keeping in mind that the case we are really interested in is when A is finite (i.e. a sample), the
conditions above are trivially satisfied. Nonetheless, everything we will present continues to hold in
this more general setting. For u, v 2 A we introduce the following notation:

Rx(u, v) :=
f(v)� f(u)

⇢(x, v)� + ⇢(x, u)�
,

Fx(u, v) := f(u) +Rx(u, v)⇢(x, u)
�
,

R
⇤
x := sup

u,v2A
Rx(u, v) ,

Wx(") := {(u, v) 2 A⇥A : Rx(u, v) > R
⇤
x � "} , 0 < " < R

⇤
x

�x(") := {Fx(u, v) : (u, v) 2 Wx(")} .

Definition A.2. We define the �-pointwise minimal slope extension (�-PMSE) to be the function
FA : ⌦ ! R satisfying

FA(x) := lim
"!0+

�x(") .

In the degenerate case in which f(u) = f(v) for all u, v 2 A, define FA(x) := f(u) for some (and
hence any) u 2 A.
Theorem A.3. Let ; 6= A ⇢ ⌦, f : ⌦ ! [0, 1], such that Assumption A.1 holds. Then FA : ⌦ !
[0, 1] is well defined, and satisfies for any x 2 ⌦ : ⇤

�
FA

(x)  ⇤
�
f (x). Furthermore, if A is finite,

then FA(x) can be computed for any x 2 ⌦ within O(|A|2) arithmetic operations.
Remark A.4. When Rx(·, ·) has a unique maximizer (u⇤

x, v
⇤
x) 2 A⇥A, the definition of FA simplifies

to

FA(x) = f(u
⇤
x) +

⇢(x, u
⇤
x)

�

⇢(x, u⇤
x)

� + ⇢(x, v⇤x)
�
(f(v

⇤
x)� f(u

⇤
x)) . (3)

We conclude that under Assumption A.1, we can assume without loss of generality that for each
x 2 ⌦ there is such a unique maximizer (since the function is well defined, thus does not depend on
the choice of the maximizer). Furthermore, this readily shows that when A is finite, we can compute
FA(x) for any x 2 ⌦ within O(|A|2) arithmetic operations — simply by finding this maximizer.

Proof. (of Theorem A.3)

We will assume that there exist u, v 2 A such that f(u) 6= f(v), since the degenerate (constant
extension) case is trivial to verify. This assumption implies that R⇤

x > 0. It is also easy to verify that
supx2⌦

R
⇤
x < 1 () kfk

Höl
� < 1.

Lemma A.5. FA is well defined. Namely, under Assumption A.1 the limit lim"!0+ �x(") 2 [0, 1]

exists.

Proof. Fix x 2 ⌦ (we will omit the x subscripts from now on). Let " < R
⇤
/2, (u, v), (u0

, v
0
) 2

W ("). Note that R(u, v) > 0 and that F (u, v) = f(v)�R(u, v)⇢(x, v)
� . Hence

f(u)  F (u, v)  f(v) , (4)
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and the same clearly holds if we replace (u, v) by (u
0
, v

0
). Assume without loss of generality that

F (u, v)  F (u
0
, v

0
), hence f(u)  F (u, v)  F (u

0
, v

0
)  f(v

0
). We get

R(u
0
, v

0
) + " > R

⇤

� f(v
0
)� f(u)

⇢(x, v0)� + ⇢(x, u)�

=
f(v

0
)� F (u

0
, v

0
) + F (u, v)� f(u)

⇢(x, v0)� + ⇢(x, u)�
+

F (u
0
, v

0
)� F (u, v)

⇢(x, v0)� + ⇢(x, u)�

=
R(u

0
, v

0
)⇢(x, v

0
)
�
+R(u, v)⇢(x, u)

�

⇢(x, v0)� + ⇢(x, u)�
+

F (u
0
, v

0
)� F (u, v)

⇢(x, v0)� + ⇢(x, u)�

� R(u
0
, v

0
)⇢(x, v

0
)
�
+ (R(u

0
, v

0
)� ")⇢(x, u)

�

⇢(x, v0)� + ⇢(x, u)�
+

F (u
0
, v

0
)� F (u, v)

2diam(A)�

� R(u
0
, v

0
)� "+

F (u
0
, v

0
)� F (u, v)

2diam(A)�

=) |Fx(u, v)� Fx(u
0
, v

0
)|  4" diam(A)

�
.

We conclude that if diam(A) < 1 then lim"!0+ �x(") indeed exists.

It remains to prove the optimality of the �-slope. Throughout the proof we will denote for any
u 6= v 2 ⌦ :

S(u, v) :=
|FA(u)� FA(v)|

⇢(u, v)�
,

and for any point x 2 ⌦, subset B ⇢ ⌦ and function g : ⌦ ! [0, 1] we let

⇤
�
g (x,B) := sup

y2B\{x}

|g(x)� g(y)|
⇢(x, y)�

.

The proof is split into three claims.

Claim I. 8x 2 ⌦ \A : ⇤
�
FA

(x,A)  ⇤
�
f (x,A).

Let x 2 ⌦ \ A, and let (u⇤
, v

⇤
) 2 A ⇥ A be its associated maximizer of Rx. Recall Eq. (4) from

which we can deduce that FA(u
⇤
)  FA(x)  FA(v

⇤
). Also note that a simple rearrangement based

on Eq. (3) (and the fact that f and FA agree on A) shows that S(u⇤
, x) = Rx(u

⇤
, v

⇤
) = S(x, v

⇤
).

Furthermore, we claim that ⇤�
FA

(x,A) := supy2A\{x} S(x, y) = S(x, u
⇤
). If this were not true then

we would have S(x, y) > S(x, u
⇤
) = S(x, v

⇤
) for some y 2 A \ {x, u⇤

, v
⇤}. Using the mediant

inequality, if f(y) � f(x) this implies

Rx(u
⇤
, y) =

f(y)� f(u
⇤
)

⇢(x, y)� + ⇢(x, u⇤)�
=

FA(y)� FA(x) + FA(x)� FA(u
⇤
)

⇢(x, y)� + ⇢(x, u⇤)�
> S(x, u

⇤
) = Rx(u

⇤
, v

⇤
) ,

while if f(y) < f(x) then

Rx(y, v
⇤
) =

f(v
⇤
)� f(y)

⇢(x, v⇤)� + ⇢(x, y)�
=

FA(v
⇤
)� FA(x) + FA(x)� FA(y)

⇢(x, v⇤)� + ⇢(x, y)�
> S(x, v

⇤
) = Rx(u

⇤
, v

⇤
) ,

both contradicting the maximizing property of (u
⇤
, v

⇤
) - so indeed ⇤

�
FA

(x,A) = S(x, u
⇤
) =

S(x, v
⇤
). In particular, we see that if FA(x) � f(x) then

⇤
�
f (x,A) = sup

y2A\{x}

|f(y)� f(x)|
⇢(y, x)�

� f(v
⇤
)� f(x)

⇢(v⇤, x)�
� FA(v

⇤
)� FA(x)

⇢(v⇤, x)�
= S(x, v

⇤
) = ⇤

�
FA

(x,A) ,

while if FA(x) < f(x) then

⇤
�
f (x,A) = sup

y2A\{x}

|f(x)� f(u)|
⇢(x, y)�

� f(x)� f(u
⇤
)

⇢(x, u⇤)�
>

FA(x)� FA(u
⇤
)

⇢(x, u⇤)�
= S(x, u

⇤
) = ⇤

�
FA

(x,A) ,

proving Claim I in either case.
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Claim II. 8x 2 ⌦ \A : ⇤
�
FA

(x,⌦ \A)  ⇤
�
FA

(x,A), in particular ⇤�
FA

(x,⌦) = ⇤
�
FA

(x,A).

It suffices to show that for any x, y 2 ⌦ \A :

S(x, y)  min{⇤�
FA

(x,A),⇤
�
FA

(y,A)} ,

since taking the supremum of the left hand side over y 2 ⌦\A shows the claim. Let (u⇤
x, v

⇤
x), (u

⇤
y, v

⇤
y)

the associated maximizers of Rx, Ry respectively, and note that by definition we have

⇤
�
FA

(x,A) = sup

z2A\{x}
S(x, z) � max{S(x, u⇤

y), S(x, v
⇤
y)} . (5)

We assume without loss of generality that ⇤�
FA

(x,A)  ⇤
�
FA

(y,A), and recall that by Eq. (4) we
can deduce that FA(u

⇤
x)  FA(x)  FA(v

⇤
x) and FA(u

⇤
y)  FA(y)  FA(v

⇤
y). Now suppose by

contradiction that S(x, y) > ⇤
�
FA

(x,A). If FA(x)  FA(y) then

FA(v
⇤
y) = FA(x) + ⇢(x, y)

�
S(x, y) + ⇢(y, v

⇤
y)

�
⇤
�
FA

(y,A)

> FA(x) + ⇢(x, y)
�
⇤
�
FA

(x,A) + ⇢(y, v
⇤
y)

�
⇤
�
FA

(x,A)

� FA(x) + ⇢(x, v
⇤
y)

�
⇤
�
FA

(x,A) ,

thus S(x, v
⇤
y) =

|FA(x)�FA(v⇤
y)|

⇢(x,v⇤
y)

� > ⇤
�
FA

(x,A) which contradicts Eq. (5). On the other hand, if
FA(x) > FA(y) then

FA(x) = FA(u
⇤
y) + ⇢(u

⇤
y, y)

�
⇤
�
FA

(y,A) + ⇢(y, x)
�
S(x, y)

> FA(u
⇤
y) + ⇢(u

⇤
y, y)

�
⇤
�
FA

(x,A) + ⇢(y, x)
�
⇤
�
FA

(x,A)

� FA(u
⇤
y) + ⇢(u

⇤
y, x)

�
⇤
�
FA

(x,A) ,

thus S(x, u⇤
y) =

|FA(x)�FA(u⇤
y)|

⇢(x,u⇤
y)

� > ⇤
�
FA

(x,A) which contradicts Eq. (5), and proves claim Claim II.

Claim III. 8x 2 A : ⇤
�
FA

(x,⌦) = ⇤
�
FA

(x,A)  ⇤
�
f (x,⌦).

Let x 2 A. Assume towards contradiction that there exists y /2 A such that

⇤FA(x,⌦) � S(x, y) > ⇤
�
FA

(x,A) .

We denote by (u
⇤
y, v

⇤
y) 2 A⇥A the maximizer of Ry(·, ·). Recall that since x 2 A, in the proof of

Claim I we showed that S(x, y)  S(y, u
⇤
y) = S(y, v

⇤
y). If FA(x)  FA(y)  FA(v

⇤
y) then

S(x, v
⇤
y) =

FA(v
⇤
y)� FA(x)

⇢(v⇤y , x)
�

�
FA(v

⇤
y)� FA(y) + FA(y)� FA(x)

⇢(v⇤y , y)
� + ⇢(x, y)�

� min{S(y, v⇤y), S(x, y)} = S(x, y) > ⇤
�
FA

(x,A) ,

while on the other hand if FA(x) > FA(y) � FA(u
⇤
y) then

S(x, u
⇤
y) =

FA(x)� FA(u
⇤
y)

⇢(x, u⇤
y)

�
�

FA(x)� FA(y) + FA(y)� FA(u
⇤
y)

⇢(x, y)� + ⇢(u⇤
y, y)

�

� min{S(x, y), S(y, u⇤
y)} = S(x, y) > ⇤

�
FA

(x,A) ,

where in both calculations we used the mediant inequality. Both inequalities above contradict the
definition of ⇤�

FA
(x,A), thus proving Claim III.

Combining the ingredients. We are now ready to finish the proof. For x 2 ⌦, if x 2 A then Claim
III provides the desired inequality. Otherwise, if x 2 ⌦ \A then

⇤
�
FA

(x,⌦)
Claim II

= ⇤
�
FA

(x,A)
Claim I

 ⇤
�
f (x,A)  ⇤

�
f (x,⌦) .
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B Proofs

B.1 Proof of Theorem 3.1

We start by stating a strengthened version of the triangle inequality (also known as the “snowflake”
triangle inequality) which we will use later on. For any � 2 (0, 1], x 6= y, z 2 ⌦:

⇢(x, y)
�  ⇢(x, z)

�
+ ⇢(z, y)

�
. (6)

Indeed, this follows from

⇢(x, z)
�
+ ⇢(z, y)

�

⇢(x, y)�
� ⇢(x, z)

�
+ ⇢(z, y)

�

(⇢(x, z) + ⇢(z, y))�
=

✓
⇢(x, z)

⇢(x, z) + ⇢(z, y)

◆�

+

✓
⇢(z, y)

⇢(x, z) + ⇢(z, y)

◆�

�
✓

⇢(x, z)

⇢(x, z) + ⇢(z, y)

◆
+

✓
⇢(z, y)

⇢(x, z) + ⇢(z, y)

◆
= 1 .

Let 0 < " <
1

4
, denote K := dlog

2
(1/")e, "0 := 1

(K+1)2K
and note that

"
0 � 1

(log
2
(1/") + 2) 2log2(1/")+1

=
"

2 (log
2
(1/") + 2)

� "

4 log
2
(1/")

. (7)

Let N = {x1, . . . , x|N |} be a
⇣

"0

32L

⌘1/�
-net of ⌦ of size |N | = N⌦

✓⇣
"0

32L

⌘1/�◆
, and let ⇧ =

{C1, . . . , C|N |} be its induced Voronoi partition. We define B = {[lj , uj ]}j2J ⇢ [0, 1]
⌦ ⇥ [0, 1]

⌦ to
be the pairs of functions constructed as follows:

• l, u are both constant over every cell Ci 2 ⇧, and map each cell to a value in
{0, "0

2
, "

0
,
3"0

2
, . . . , 1}.

• Choose some cells S1 ⇢ ⇧ such that µ(
S

Ci2S1
Ci)  "

0 and set for any Ci 2 S1 : l|Ci =

0, u|Ci = 1.
• For m = 2, . . . ,K choose some “unchosen” cells Sm ⇢ ⇧ \

S
j<m Sj such

that µ(
S

Ci2Sm
Ci)  2

m�1
"
0 and set for any Ci 2 Sm : l|Ci 2

{0, 1

2m
,

2

2m
, . . . ,

2
m�2

2m
}, , u|Ci = l +

1

2m�1 .
• In the ”remaining” cells SK+1 := ⇧ \

S
jK Sj set for any Ci 2 SK+1 :

l|Ci 2
⇢
0,

1

2K+1
,

2

2K+1
, . . . ,

2
K+1 � 2

2K+1

�
, u|Ci = l +

1

2K
.

Notice that for any [l, u] 2 B we have

kl � ukL1(µ) =

X

Ci2⇧

Z

Ci

|l(x)� u(x)|dµ(x) =
K+1X

m=1

X

Ci2Sm

Z

Ci

|l(x)� u(x)|dµ(x)

=

K+1X

m=1

X

Ci2Sm

Z

Ci

1

2m�1
dµ(x) =

K+1X

m=1

1

2m�1

X

Ci2Sm

µ(Ci)

=

K+1X

m=1

2
m�1

"
0

2m�1
= "

0
(K + 1) =

1

2K
 " .

Furthermore, we can bound |B| by noticing that any such l is defined by its values over |N | cells
who all belong to {0, "0

2
, "

0
, . . . , 1}, and that once l is fixed then any associated u has at most K + 1

possible values over each cell since it equals l + 1

2m�1 for some m 2 [K + 1]. Thus

|B|  (K + 1)

✓
8

"0

◆|N |
 log

2

✓
1

"

◆
·
✓
16 log

2
(1/")

"

◆N
⇣
(

"
128L log(1/") )

1/�
⌘

,
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where the last inequality uses Eq. (7) and definition of K. In order to finish the proof, in remains to
show that B indeed cover gHöl

�

L(⌦, µ) as brackets. Namely, that for any f 2gHöl
�

L(⌦, µ) there exist

[l, u] 2 B such that l  f  u. To that end, let f 2gHöl
�

L(⌦, µ). Denote

S
f
1
:=

⇢
Ci 2 ⇧ : 8x 2 Ci : ⇤

�
f (x) �

L

"0

�

and notice that
S
{Ci 2 S

f
1
} ✓ {x : ⇤

�
f (x) � L/"

0} =) µ(
S
{Ci 2 S

f
1
})  "

0. Hence we can
pick [l, u] 2 B such that (l|Ci , u|Ci) ⌘ (0, 1) for any Ci 2 S

f
1

(serving as S1 in their construction).
Clearly any such l, u bound f over these cells. Furthermore, for m = 2, . . . ,K we denote

S
f
m :=

8
<

:Ci 2 ⇧ \
[

j<m

S
f
j : 8x 2 Ci : ⇤

�
f (x) �

L

2m�1"0

9
=

; ,

and notice that
S
{Ci 2 S

f
m} ✓ {x : ⇤

�
f (x) � L/(2

m�1
"
0
)} =) µ(

S
{Ci 2 S

f
m})  2

m�1
"
0.

Consequently we can let Sf
m serve as Sm in the construction of [l, u] 2 B, assuming we will show

such a choice can serve as a bracket of f over such cells. Indeed, for any x 2 Ci we have

|f(x)� f(zi)|  ⇤
�
f (zi) · ⇢(x, zi)

�
Eq. (6)
 L

2m�2"0
· 2"

0

32L
=

1

2m+2
,

which by the triangle inequality shows in particular that for any x, y 2 Ci :

|f(x)� f(y)|  |f(x)� f(zi)|+ |f(zi)� f(y)|  1

2m+1
=

1

4 · 2m�1
.

So clearly there exists ↵i 2 {0, 1

2m
,

2

2m
, . . . ,

2
m�2

2m
} such that ↵i  f |Ci  ↵i+

1

2m�1 , and by setting
l|Ci , u|Ci = (↵i,↵i +

1

2m�1 ) for any Ci 2 S
f
m we ensure the bracketing property. Finally, for any of

the remaining cells Sf
K+1

:= ⇧ \
S

jK S
f
j we get by construction that 9zi 2 Ci : ⇤

�
f (zi) <

L
2K"0

(otherwise they would satisfy the condition for some previously constructed S
f
m). Hence for any

x 2 Ci we have

|f(x)� f(zi)|  ⇤
�
f (zi) · ⇢(x, zi)

�
Eq. (6)
 L

2K"0
· 2"

0

32L
=

1

2K+4
,

which by the triangle inequality shows that for any x, y 2 Ci :

|f(x)� f(y)|  1

2K+3
=

1

8 · 2K .

So as before, there clearly exists ↵i 2 {0, 1

2K+1 ,
2

2K+1 , . . . ,
2
K+1�2

2K+1 } such that ↵i  f |Ci  ↵i+
1

2K
,

and by setting l|Ci , u|Ci = (↵i,↵i +
1

2K
) for any Ci 2 S

f
m we ensure the bracketing property over

all of ⌦, which finishes the proof.

B.2 Proof of Proposition 3.2

Recalling that the realizability assumption ensures a “perfect” predictor f
⇤ 2 F , we start by

introducing the loss class LF ⇢ [0, 1]
⌦
:

LF = {`f (x) := |f(x)� f
⇤
(x)| : f 2 F} .

Fix ↵ > 0. We observe that LF is no larger than F in terms of bracketing entropy, namely

N[ ](LF , L1(µ),↵)  N[ ](F , L1(µ),↵) . (8)

Indeed, suppose we are given an ↵-bracketing of F denoted by B↵, and denote for any f 2 F by
[lf , uf ] 2 B↵ its associated bracket. Then any `f 2 LF is inside the bracket [l`f , u`f ] where

l`f := max{0 , min{lf � f
⇤
, f

⇤ � uf}} ,
u`f := min{1 , max{uf � f

⇤
, f

⇤ � lf}} .
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It is straightforward to verify that ku`f � l`f kL1(µ)  kuf � lfkL1(µ)  ↵, and clearly the set of all
such brackets is of size at most |B↵|, yielding Eq. (8).

Now notice that for any f 2 F :

LD(f)� 1.01LS(f) = k`fkL1(µ) � 1.01k`fkL1(µn)
 ↵+ kl`f kL1(µ) � 1.01kl`f kL1(µn)

,

hence

sup
f2F

(LD(f)� 1.01LS(f))  ↵+max
l`f

(kl`f kL1(µ) � 1.01kl`f kL1(µn)
) . (9)

In order to bound the right hand side, fix some l`f , and note that Var(l`f )  kl2`f kL1(µ)  kl`f kL1(µ),
since l`f (x) 2 [0, 1]. Thus by Bernstein’s inequality and the AM-GM inequality we get that with
probability at least 1� � :

kl`f kL1(µ) � kl`f kL1(µn)
 log(1/�)

n
+

r
2kl`f kL1(µ) log(1/�)

n

 202 log(1/�)

n
+

1

101
kl`f kL1(µ)

=) kl`f kL1(µ) � 1.01kl`f kL1(µn)
 205 log(1/�)

n
.

Setting � = �/N[ ](F , L1(µ),↵) and taking a union bound over l`f whose number is bounded due to
Eq. (8), we see that with probability 1� � :

max
l`f

(kl`f kL1(µ) � 1.01kl`f kL1(µn)
) 

205 logN[ ](F , L1(µ),↵) + 205 log(1/�)

n
.

Plugging this back into Eq. (9), and minimizing over ↵ > 0 finishes the proof.

B.3 Proof of Theorem 4.1

Proposition B.1. Let f : ⌦ ! [0, 1]. Then with probability at least 1� �/2 over drawing a sample
it holds that

b⇤�
f  4 log

2
(4n/�)⇤

�
f (µ) +

4 log
2
(4n/�)

n
.

Corollary B.2. If D is realizable by Höl
�
L(⌦, µ), then for f⇤

: ⌦ ! [0, 1] such that LD(f
⇤
) = 0

it holds with probability at least 1� �/2 : b⇤�
f⇤  5 log

2
(4n/�)L. Hence, bf(Xi) := f

⇤
(Xi) = Yi

satisfies LS(
bf) = 0 and b⇤�

bf
 5 log

2
(4n/�)L .

Proof. (of Proposition B.1) Fix f : ⌦ ! [0, 1]. Given a sample (Xi)
n
i=1

⇠ µ
n which induces an

empirical measure µn, we get

b⇤�
f  1

n

nX

i=1

sup
z 6=Xi

|f(Xi)� f(z)|
⇢(Xi, z)

�
= E

X⇠µn

[⇤
�
f (X)]  2 log(n)WX⇠µn [⇤

�
f (X)] , (10)

where the last inequality follows from the reversed strong-weak mean inequality for uniform measures.
We will now show that with high probability WX⇠µn [⇤

�
f (X)] . WX⇠µ[⇤

�
f (X)] = e⇤�

f . To that
end, we denote for any t > 0 : Mf (t) := {x : ⇤

�
f (x) � t} ⇢ ⌦, let K := e⇤�

f (µ), N :=

d2 log(4n/�) log log(4n/�)e and note that

WX⇠µn [⇤
�
f (X)] = sup

t>0

tµn(Mf (t)) (11)

 sup
0<tK

tµn(Mf (t)) + 2 max
j2{0,1,...,N�1}

2
j
Kµn(Mf (2

j
K)) + sup

t�2NK
tµn(Mf (t)) .

We will bound all three summands above. We easily bound the first term by

sup
0<tK

tµn(Mf (t))  K · 1 = e⇤�
f (µ) . (12)
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For the second term, denote for any t > 0 by M
+

f (t) � Mf (t) a containing set for which 1

n 
µ(M

+

f (t))  µ(Mf (t))+
1

n . We can always assume without loss of generality that such a set exists.5
By the multiplicative Chernoff bound we have for any t,↵ > 0 :

Pr
S

h
µn(M

+

f (t)) � (1 + ↵)µ(M
+

f (t))

i
 e

↵

(1 + ↵)1+↵
,

hence by the union bound we get with probability at least 1� Ne↵

(1+↵)1+↵ :

max
j2{0,1,...,N�1}

2
j
Kµn(Mf (2

j
K))  max

j2{0,1,...,N�1}
2
j
Kµn(M

+

f (2
j
K))

 (1 + ↵) max
j2{0,1,...,N�1}

2
j
Lµ(M

+

f (2
j
K))

 (1 + ↵) max
j2{0,1,...,N�1}

2
j
K

✓
µ(Mf (2

j
K)) +

1

n

◆

 (1 + ↵)e⇤�
f (µ) +

1 + ↵

n
.

Letting ↵ = log(4n/�) � 1, by our choice of N = d2 log(4n/�) log log(4n/�)e we get that with
probability at least 1� �/4 :

2 max
j2{0,1,...,N�1}

2
j
Kµn(Mf (2

j
K))  2 log(4n/�)e⇤�

f (µ) +
2 log(4n/�)

n
. (13)

In order to bound the last term in Eq. (11), we observe that the empirical measure satisfies for any
A ⇢ ⌦ : µn(A) <

1

n () µn(A) = 0, and that Mf (s) ⇢ Mf (t) for s > t. Furthermore, by
definition of K = e⇤�

f (µ) we have µ(Mf (t))  K
t , hence by Markov’s inequality

Pr
S


sup
s�t

µn(Mf (s)) 6= 0

�
 Pr

S
[µn(Mf (t)) 6= 0] = Pr

S


µn(Mf (t)) �

1

n

�
 nK

t
.

For t := 2
N
K yields PrS

⇥
sups�2nK µn(Mf (s)) 6= 0

⇤
 n

2N
 �

4
. Combining this with Eq. (12),

Eq. (13) and plugging back into Eq. (11), we get that with probability at least 1� �/2 :

WX⇠µn [⇤
�
f (X)]  (1+2 log(4n/�))e⇤�

f (µ)+
2 log(4n/�)

n
 (1+2 log(4n/�))⇤

�
f (µ)+

2 log(4n/�)

n
.

Recalling Eq. (10), we get overall that

b⇤�
f  2 log(n)


(1 + 2 log(4n/�))⇤

�
f (µ) +

2 log(4n/�)

n

�
.

Simplifying the expression above finishes the proof.

Proposition B.3. Under the same setting, for any � > 0 there exists an algorithm that given a sample
S ⇠ Dn and any function bf : S ! [0, 1], provided that n � N for N = eO

⇣
N⌦(�)+log(1/�)

�

⌘
,

constructs a function f : ⌦ ! [0, 1] such that with probability at least 1� �/2 :

• kf � bfkL1(µn)
 �(1 + 2b⇤�

bf
). In particular LS(f)  LS(

bf) + �(1 + 2b⇤�
bf
).

• ⇤
�
f (µ)  5b⇤�

bf
.

5Such a set does not exist only in the case of atoms x0 2 ⌦ with large probability mass µ(x0). If that is the
case, consider a “copy” metric space e⌦ with x0 split into two points x1, x2 2 e⌦ at distance " apart and each of
mass µ(x0)/2. Any function f : ⌦ ! R is extended to ef : e⌦ ! R via ef(x1) = ef(x2) = f(x0). Repeating
the split if necessary and taking " # 0, we obtain a space e⌦ with all of the relevant properties of ⌦ but no atoms
of large mass.
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Proof. Throughout the proof, we denote for any point x 2 ⌦, subset B ⇢ ⌦ and function g : B !
[0, 1] :

⇤
�
g (x,B) := sup

y2B\{x}

|g(x)� g(y)|
⇢(x, y)�

.

Give the sample S = (Xi, Yi)
n
i=1

, we denote Sx = (Xi)
n
i=1

. Let � > 0. The algorithm constructs
f : ⌦ ! [0, 1] as follows:

1. Let Sx(�) ⇢ Sx consist of the b�nc points whose ⇤ bf (·, Sx) values are the largest (with ties
broken arbitrarily), and S

0
x(�) := Sx \ Sx(�) be the rest.

2. Let A ⇢ S
0
x(�) be a �

1/�-net of S0
x(�).

3. Define f : ⌦ ! [0, 1] to be the �-PMSE extension of bf from A to ⌦ as defined in
Definition A.2 (and analyzed throughout Appendix A).

We will prove that f satisfies both requirements. For the first requirement, since f |A = bf |A and
Sx = S

0
x(�) ] Sx(�) we have

kf� bfkL1(µn)
:=

1

n

nX

i=1

|f(xi)�g(xi)| =
1

n

X

x2Sx(�)\A

|f(x)� bf(x)|+ 1

n

X

x2S0
x(�)\A

|f(x)� bf(x)| .

The first summand above is bounded by � since 0  f, bf  1 =) |f(x) � bf(x)|  1 and
|Sx(�)|  �n. In order to bound the second term, we denote by NA : S

0
x(�) ! A to be the mapping

of each element to its nearest neighbor in the net, and note that ⇢(x,NA(x))  �
1/� . Then

1

n

X

x2S0
x(�)\A

|f(x)� bf(x)|  1

n

X

x2S0
x(�)\A

�

⇢(x,NA(x))
�
|f(x)� bf(x)|

 �

n

X

x2S0
x(�)\A

|f(x)� bf(NA(x))|+ | bf(NA(x))� bf(x)|
⇢(x,NA(x))

�

=
�

n

X

x2S0
x(�)\A

|f(x)� f(NA(x))|
⇢(x,NA(x))

�
+

| bf(NA(x))� bf(x)|
⇢(x,NA(x))

�

 �

n

X

x2S0
x(�)\A

⇤
�
f (x,A) + ⇤

�
bf
(x,A)

[Theorem A.3]  2�

n

X

x2S0
x(�)\A

⇤
�
bf
(x,A)

 2�L .

So overall we get kf � bfkL1(µn)
 � + 2�L = �(1 + 2L) as claimed in the first bullet.

We move on to prove the second bullet. Let U ⇢ ⌦ be a �1/�

4
-net of ⌦, ⇧ be its induced Voronoi

partition and let m := |⇧|  N⌦(�
1/�

/4). Let Consider the following partition of ⇧ into “light” and
“heavy” cells:

⇧l := {C 2 ⇧ : µn(C) < n�/m} , ⇧h := ⇧ \⇧l .

We will now state three lemmas required for the proof, two of which are due to [Ashlagi et al., 2021].

Lemma B.4. Suppose A ⇢ ⌦ and that f : ⌦ ! [0, 1] is the �-PMSE extension of some function from

A to ⌦. Let E ⇢ ⌦ such that diam(E)
�  1

2
minx 6=x02A ⇢(x, x

0
)
� . Then supx,x02E

⇤
�
f (x)

⇤
�
f (x

0)
 2.

Proof. Let u
⇤
x, v

⇤
x 2 A be the pair of points which satisfy ⇤

�
f (x) =

f(v⇤
x)�f(u⇤

x)

⇢(v⇤
x,x)

�+⇢(u⇤
x,x)

� . By
assumption on E, we know that 2diam(E)

�  ⇢(v
⇤
x, u

⇤
x)

�  ⇢(v
⇤
x, x)

�
+ ⇢(u

⇤
x, x)

� , hence
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⇢(v
⇤
x, x)

�
+ ⇢(u

⇤
x, x)

�
+ 2diam(E)

�  2(⇢(v
⇤
x, x)

�
+ ⇢(u

⇤
x, x)

�
). We get

⇤
�
f (x

0
) � f(v

⇤
x)� f(u

⇤
x)

⇢(v⇤x, x
0)� + ⇢(u⇤

x, x
0)�

� f(v
⇤
x)� f(u

⇤
x)

⇢(v⇤x, x)
� + diam(E)� + ⇢(u⇤

x, x)
� + diam(E)�

� f(v
⇤
x)� f(u

⇤
x)

2(⇢(v⇤x, x)
� + ⇢(u⇤

x, x)
�)

=
1

2
⇤
�
f (x) .

Lemma B.5 (Ashlagi et al., 2021, Lemma 16). If n�2 � m, then

Pr
S⇠Dn


min
C2⇧h

µn(C)

µ(C)
>

1

2

�
� 1�m exp(�n�/4m) ,

Pr
S⇠Dn


max
C2⇧h

µn(C)

µ(C)
< 2

�
� 1�m exp(�n�/3m) ,

Pr
S⇠Dn

"
X

C2⇧l

µ(C) < 2�

#
� 1� exp

⇣
�n(� �

p
m/n)

2
/2

⌘
.

Lemma B.6 (Ashlagi et al., 2021, Lemma 17). kfk
Höl

�  2L
� .

Equipped with the three lemmas, we calculate

⇤
�
f (µ) =

Z

⌦

⇤
�
f (x)dµ =

X

C2⇧l

Z

C
⇤
�
f (x)dµ+

X

C2⇧h

Z

C
⇤
�
f (x)dµ . (14)

The first summand above is bounded with high probability using Lemma B.5 and Lemma B.6, since
under the event described in Lemma B.5 we have:

X

C2⇧l

Z

C
⇤
�
f (x)dµ 

X

C2⇧l

Z

C

2L

�
dµ =

2L

�

X

C2⇧l

µ(C)

 2L

�
· 2q =

L

4
.

In order to bound the second term in Eq. (14), let C 2 ⇧, x
0 2 C and note that by applying

Lemma B.4 to E := Sx \ C we get that ⇤�
f (x

0
)  2minx2Sx\C ⇤

�
f (x). Thus, under the high

probability event described in Lemma B.5 we have
X

C2⇧h

Z

C
⇤
�
f (x)dµ 

X

C2⇧h

Z

C
2 min
x2Sx\C

⇤
�
f (x)dµ = 2

X

C2⇧h

min
x2Sx\C

⇤
�
f (x)µ(C)

 4

X

C2⇧h

min
x2Sx\C

⇤
�
f (x)µn(C) =

4

n

X

C2⇧h

X

x02Sx\C

min
x2Sx\C

⇤
�
f (x)

 4

n

X

C2⇧h

X

x02Sx\C

⇤
�
f (x

0
)  4

n

X

x02Sx

⇤
�
f (x

0
)  4L ,

where the last inequality is due to the extension property of Theorem A.3. Overall, plugging these
bounds into Eq. (14) and using the union bound to ensure all required events to hold simultaneously,
we see that the desired second bullet holds holds with probability at least 1�m exp(�n�/4m)�
exp

⇣
�n(� �

p
m/n)

2
/2

⌘
. A straightforward computation shows that by our assumption on n

being large enough, this probability exceeds 1� �/2 as required.

We are now ready to finish the proof of Theorem 4.1. Let � > 0. By Corollary B.2, we can
construct bf : S ! [0, 1] such that with probability at least 1 � �/2 : LS(

bf) = 0 and b⇤�
bf

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5 log
2
(4n/�)L. Assuming n is appropriately large, we further apply Proposition B.3 in order to

obtain f : ⌦ ! [0, 1] such that with probability at least 1� �/2 : f 2 Höl
�
25 log

2
(4n/�)L(⌦) and also

LS(f)  LS(
bf) + �(1 + 2L) = �(1 + 2L). By the union bound, we get that with probability at

least 1� � :

LD(f) = 1.01LS(f) + (LD(f)� 1.01LS(f))

 �(1 + 2L) + sup

f2Höl
�

25 log2(4n/�)L
(⌦)

(LD(f)� 1.01LS(f)) .

(⇤)
 "

2
+

"

2
= " ,

where (⇤) is justified by setting � = ⇥("/L) and applying Theorem 3.4 for appropriately large n.

B.4 Proof of Theorem 5.1

Given a sample S = (Xi, Yi)
n
i=1

⇠ Dn, denote the empirically smooth class

dHöl :=

n
f : {X1, . . . , Xbn/2c} ! [0, 1] : b⇤�

f  5 log
2
(4n/�)L

o
.

Consider the following procedure:

1. (Empirical cover) Construct h1, . . . , hN 2 dHöl for maximal N such that 8i 6= j 2
[N ] : khi � hjkL1(µn)

� ✏
4

.
2. (Run realizable algorithm on cover) For any j 2 [N ], execute the realizable algorithm

Arealizable of Theorem 4.1 on the “relabeled” dataset (Xi, hj(Xi))
bn/2c
i=1

, and obtain fj :

⌦ ! [0, 1].
3. (ERM) Return argminf1,...,fN

Pn
i=bn/2c+1

|fj(Xi)� Yi|.

We will now prove that the algorithm above satisfies the theorem. Let f
⇤ 2

argmin
f2Höl

�
L(⌦,µ)

LD(f),6 and note that by Proposition B.1 (as explained in Corollary B.1) we

have f⇤ 2dHöl with probability at least 1��/2. By construction, h1, . . . , hN is a maximal ✏
4

-packing
of dHöl, which is known to imply that it is also a ✏

4
-net [Vershynin, 2018, Lemma 4.2.8] with respect

to the metric L1(µn). In particular, this implies that there exists j⇤ 2 [N ] such that

kf⇤ � hj⇤kL1(µn)
 ✏

4
=) LS(hj⇤)  LS(f

⇤
) +

✏

4
.

Further note for any j 2 [N ] : hj 2dHöl, so our realizable algorithm (as manifested in Proposition B.3
for � = ⇥(✏/L)) when fed the “smoothed” labels (Xi, hj(Xi))

bn/2c
i=1

will produce fj such that
LS(fj)  LS(hj)  ✏

4
and ⇤

�
fj (µ)  5b⇤�

hj
 25 log

2
(4n/�)L. In particular

LS(fj⇤)  LS(hj⇤) +
✏

4
 LS(f

⇤
) +

✏

2
.

Finally, by Eq. (1) and Theorem 3.1 (which holds for any measure, in particular for the empirical
measure µn)

logN  logNdHöl
(✏/2)

 logN[ ](
dHöl, L1(µn), ✏)

 logN⌦

 ✓
"

640 log
2
(4n/�)L log(1/")

◆1/�
!

· log
✓
16 log

2
(1/")

"

◆
.

Hence, by a standard Chernoff-Hoeffding bound over the finite class {f1, . . . , fN}, step (3) of the
algorithm yields ✏

2
excess risk as long as n

2
= ⌦

⇣
log(N)+log(1/�)

✏2

⌘
.

6We assume without loss of generality that the infimum is obtained. Otherwise we can take a function whose
loss is arbitrarily close enough to the optimal value and continue with the proof verbatim.
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B.5 Proof of Theorem 6.1

We start by providing a simple structural result which we will use for our lower bound construction,
showing that in any metric space there exists a sufficiently isolated point from a large enough subset.
Lemma B.7. There exists a point x0 2 ⌦ and a subset K ⇢ ⌦ such that

• 8x 2 K : ⇢(x0, x) � diam(⌦)

4
.

• 8x 6= y 2 K : ⇢(x, y) � ("/L)
1/�

.

• |K| =
j
N⌦(("/L)

1/�
)

2

k
.

Proof. Denote D := diam(⌦), let x0, x1 be two points such that ⇢(x0, x1) > D/2, and let ⇧ =

{C0, C1} be a Voronoi partition of ⌦ induced by {x0, x1}. For � > 0, let N� be a maximal �-packing
of ⌦. By the pigeonhole principle there must exist a cell Ci 2 ⇧ such that |Ci \ N� | � |N� |/2,
which we assume without loss of generality to be C1. Now note that any x 2 C1 satisfies ⇢(x, x0) �
1

2
⇢(x, x0) +

1

2
⇢(x, x1) � 1

2
⇢(x0, x1) > D/4. Finally, set � := "

1/� and let K ⇢ C1 \N� be any

subset of size
j
N⌦(("/L)

1/�
)

2

k
.

Given x0,K from the lemma above, we denote K = {x0} [K and define the distribution µ over
⌦ supported on K such that µ(x0) = 1 � "

2
and µ(x) =

"
2|K| for all x 2 K. From now on, the

proof is similar to a classic lower bound strategy for VC classes in the realizable case (e.g. Kearns
and Vazirani, 1994, Proof of Theorem 3.5). To that end, it is enough to provide a distribution over
functions in Höl

�
L(⌦, µ) such that with constant probability any algorithm must suffer significant loss

for some function supported by the distribution.

We define such a distribution over functions f : K ! {0, 1} as follows: Pr[f(x0) = 0] = 1, while
for any x 2 K : Pr[f(x) = 0] = Pr[f(x) = 1] =

1

2
independently of other points. We will now

show that any such f : K ! {0, 1} is average Hölder smooth with respect to µ. Indeed, for every
x 2 K :

⇤
�

f
(x) = sup

x02K\{x}

|f(x)� f(x
0
)|

⇢(x, x0)�
 1

"/L
=

L

"
,

while

⇤
�

f
(x0) = sup

x02K\{x0}

|f(x0)� f(x
0
)|

⇢(x0, x
0)�

 1

diam(⌦)/4
=

4

diam(⌦)
,

hence
⇤
�

f (x) = µ(x0)⇤
�

f
(x0) +

X

x2K

µ(x)⇤
�

f
(x)  4

D
+

L

2
 L .

Finally, we define the (random) function f
⇤
: ⌦ ! [0, 1] to be the �-PMSE extension of f from

K to ⌦ as defined in Definition A.2, and note that f⇤ satisfies the required smoothness assumption.
Setting D over ⌦⇥ [0, 1] to have marginal µ and Y = f

⇤
(X), we ensure that D is indeed realizable

by Höl
�
L(⌦).

Now assume A is a learning algorithm which is given a sample S of size |S|  |K|
4" and produces

A(S) : ⌦ ! [0, 1]. We call a point x 2 K "misclassified" by the algorithm if |A(S)(x)�f
⇤
(x)| � 1

2
,

and denote the set of misclassified points by M ⇢ K. Recalling that 8x 2 K : Pr[f(x) = 0] =

Pr[f(x) = 1] =
1

2
independently, and that µ(x) = "

2|K| , we observe that with probability at least 1

2

the algorithm will misclassify more than |K|/2 points.7 Thus, we get that with probability at least 1

2
:

LD(A(S)) = E
X⇠µ

[|A(S)(X)� f
⇤
(X)|] �

X

x2M

µ(x) · |A(S)(x)� f
⇤
(x)| � |K|

2
· "

2|K| ·
1

2
=

"

8
.

7Indeed, denoting C = K \ M we see that Pr[|C| � |K|/8]  8
|K| · E[|C|] = 8

|K| ·
|S|
2 · µ(K) 

8
|K| ·

|K|
8" · "

2 = 1
2 .
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By rescaling ", we see that in order to obtain LD(A(S))  " the sample size must be of size

⌦

✓
|K|
"

◆
= ⌦

✓
N⌦(("/L)

1/�
)

"

◆
.

B.6 Proofs from Section 7

Proof of Claim 7.1. Let � 2 (0, 1). Consider the unit segment ⌦ = [0, 1] with the standard
metric, equipped with the probability measure µ with density dµ

dx =
1

Z |x � 1

2
| ��1

2 (where Z =R
1

0
|x� 1

2
| ��1

2 < 1 is a normalizing constant). We examine the function f(x) = 1[x >
1

2
] which is

clearly not Hölder continuous since it is discontinuous. Furthermore,

µ({x : ⇤
1

f (x) � t}) = µ

✓⇢����x� 1

2

���� 
1

t

�◆
=

2

Z

Z
1/t

0

x
��1
2 dx ⇣ t

� �+1
2

=) e⇤1

f = sup
t>0

t · µ({x : ⇤
1

f (x) � t}) ⇣ sup
t>0

t
1��
2 = 1 ,

hence f /2gLipM (⌦, µ) for all M > 0. On the other hand, ⇤�
f (x) =

1

|x� 1
2 |�

so

⇤
�
f =

Z
1

0

⇤
�
f (x)dµ =

1

Z

Z
1

0

|x� 1

2
| ��1

2

|x� 1

2
|�

dx =
1

Z

Z
1

0

1

|x� 1

2
| �+1

2

dx
(�<1)

< 1 ,

thus f 2 Höl
�
L(⌦) for some L < 1. Note that by normalizing the function, the claim holds even for

L = 1.

Proof of Claim 7.2. Let � 2 (0, 1). Consider the unit segment ⌦ = [0, 1] with the standard
metric, equipped with the probability measure µ with density dµ

dx =
1

Z |x � 1

2
|��1 (where Z =R

1

0
|x� 1

2
|��1

dx < 1 is a normalizing constant). We examine the function f(x) = 1[x >
1

2
]. Note

that for any x 6= 1

2
: ⇤

1

f (x) =
1

|x� 1
2 |

, hence

µ({x : ⇤
1

f (x) � t}) = µ

✓⇢
x : |x� 1

2
|  1

t

�◆
=

2

Z

Z
1/t

0

x
��1

dx ⇣ t
��

.

This shows that
e⇤1

f = sup
t>0

t · µ({x : ⇤
1

f (x) � t}) ⇣ sup
t>0

t
1��

= 1 ,

hence f /2gLipM (⌦, µ) for all M > 0. Furthermore, for x 6= 1

2
: ⇤

�
f (x) =

1

|x� 1
2 |�

so

⇤
�
f =

Z
1

0

1

|x� 1

2
|�
dµ =

1

Z

Z
1

0

1

|x� 1

2
|
dx = 1 ,

hence f /2gHöl
�

M (⌦, µ) for all M > 0. On the other hand

µ({x : ⇤
�
f (x) � t}) = µ({|x� 1

2
|  t

�1/�}) = 2

Z

Z t�1/�

0

x
��1

dx ⇣ t
�1

=) e⇤�
f = sup

t>0

t · µ({x : ⇤
�
f (x) � t}) < 1 ,

thus f 2gHöl
�

L(⌦) for some L < 1. Note that by normalizing the function, the claim holds even for
L = 1.
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