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Appendix A. Proof of Theorem 1
To prove Theorem 1, we show a useful lemma first.

Lemma 3 Under Assumptions 3-4, bLN (�) = LN (�) +OP (a2N ).

Proof For the simplicity of the notations, we denote

Aµ,i = µ(Xi, Si)� µ̂
�k(i)(Xi, Si), Bµ,i = Yi � µ(Xi, Si),

Ae,i = e(Xi, Si)� ê
�k(i)(Xi, Si), Be,i = Ai � e(Xi, Si).

By algebra, we have

bLN (�) =PN{Bµ,i +Aµ,i � g(Xi, Si;�)Be,i � g(Xi, Si;�)Ae,i}2

=PN{Bµ,i � g(Xi, Si;�)Be,i}2 + PN{Aµ,i � g(Xi, Si;�)Ae,i}2+
2PN{Bµ,i � g(Xi, Si;�)Be,i}PN{Aµ,i � g(Xi, Si;�)Ae,i}

=LN (�) + PNA
2
µ,i + PNA

2
e,ig

2(Xi, Si)� 2PNAµ,iAe,ig(Xi, Si;�)+

2PNBµ,iAµ,i � 2PNBµ,iAe,ig(Xi, Si;�)� 2PNBe,iAµ,ig(Xi, Si;�) + 2PNBe,iAe,ig
2(Xi, Si).

By Markov’s inequality and Assumption 4, we have the second term above PNA
2
µ,i is OP (a2N ).

Plus Assumption 3, we have the third term PNA
2
e,i is OP (a2N ). As for the fourth term,

PNAµ,iAe,ig(Xi, Si;�)  C1PNAµ,iAe,i  C1

q
PNA2

µ,iPNA2
e,i = OP (a

2
N ),

for some positive constant C1, and the last inequality is by Cauchy-Schwarz inequality.
Next, to deal with the last four terms, we tackle PNBµ,iAµ,i first. Let

B
k
µµ =

P
i:k(i)=k Bµ,iAµ,i

|{i : k(i) = k}| ,

and note that |PNBµ,iAe,i| 
PK

k=1 |Bk
µµ|, where K is finite, thus it is suffice to show B

k
µµ =

OP (a2N ). Let I�k = {Xi, Ai, Yi, Si : k(i) 6= k}. Then we have

E(Bk
µµ) = E(Bµ,iAe,i) = E{E(Bµ,iAe,i | I�k

, Xi, Si)}
= E{Ae,iE(Bµ,i | I�k

, Xi, Si)} = 0.
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Then we have its variance

var(Bk
µµ) = E{(Bk

µµ)
2} =

E{
P

i:k(i)=k B
2
µ,iA

2
µ,i +

P
i 6=j:k(i)=k,k(j)=k Bµ,iBµ,jAµ,iAµ,j}

|{i : k(i) = k}|2

=
E(B2

µ,iA
2
µ,i)

|{i : k(i) = k}| +
P

i 6=j:k(i)=k,k(j)=k E(Bµ,iBµ,jAµ,iAµ,j)

|{i : k(i) = k}|2 .

By Assumption 3-4 we have E(B2
µ,iA

2
e,i) = E{E(B2

µ,iA
2
e,i | I�k

, Xi, Si)} = E{A2
e,iE(B2

µ,i |
I�k

, Xi, Si)}  C2EA2
e,i = O(a2N ), for some positive constant C2. As for the interaction terms, we

have E(Bµ,iBµ,jAµ,iAµ,j) = E
�
Aµ,iAµ,jE(Bµ,iBµ,j | I�k

, Xi, Si)
 
= E

�
Aµ,iAµ,jE(Bµ,j)E(Bµ,i |

I�k
, Xi, Si)

 
= 0. The second last equality is implied by Bµ,i and Bµ,j are independent for

i 6= j, and the last equality comes from the definition of Bµ,i. Therefore, we have var(Bk
µµ) =

(K/N)O(a2N ) = O(a2N/N), which is negligible with a faster diminishing rate than O(a2N ). Then,
by Chebyshev’ inequality, we have Bk

µµ = OP (a2N/N), i.e., PNBµ,iAµ,i = OP (a2N/N). Similarly,
under the Assumption 3 that g(Xi, Si;�) is uniformly bounded, we can get the same results for the
left three terms equal to OP (a2N/N). Therefore, bLN (�)�LN (�) is dominated by the OP (a2N )-term
PNA

2
µ,i + PNA

2
e,ig

2(Xi, Si) � 2PNAµ,iAe,ig(Xi, Si;�), which finally leads to the conclusion in
the lemma bLN (�)� LN (�) = OP (a2N ).

Next, we are showing the proof of Theorem 1 with the help of Lemma 3.
Proof of Theorem 1:

First, we let GN =
p
N(PN � P), p⌧ = {A� e(X,A)}p⌧ (X), and p

c = {A� e(X,A)}(1�
S)pc(X). Recall p|i = {(p⌧ )|, (pc)|}, and then

� = P(pip|i ) =
⇢
p
⌧ (p⌧ )| p

⌧ (pc)|

p
c(p⌧ )| p

c(pc)|

�
denoted as

=

✓
�⌧⌧ �⌧c

�c⌧ �cc

◆
.

By the definition of �̂ and Lemma 3, we have

�̂ =argmin
b

PN {Yi � µ(Xi, Si)� p
|
i b}

2 +OP (a
2
N ).

By the Pointwise Linearizaiton of the series method (see Lemma 4.1 in Belloni et al., 2015), under
Assumptions 5-7 and the fact E(✏ | X,A, S) = 0 which is shown under Assumptions 1-2 in Section
3, we have for any ↵ := (↵|

⌧ ,↵
|
c )| 2 R2D,

p
N↵

|(�̂ � �) = ↵
|
✓
�⌧⌧ �⌧c

�c⌧ �cc

◆�1

GN

✓
p
⌧
✏

p
c
✏

◆
+ oP (1) +OP

⇣p
Na

2
N

⌘
. (12)

Let

⌃ =

✓
⌃⌧⌧ ⌃⌧c

⌃c⌧ ⌃cc

◆
:=

✓
�⌧⌧ �⌧c

�c⌧ �cc

◆�1

.

Since under Assumption 4, aN = O(N�r), r > 1/4, thus OP

⇣p
Na

2
N

⌘
is negligible compared to

op(1). Therefore, we have
p
N↵

|
⌧ (�̂⌧ � �⌧ ) = ↵

|
⌧GN (⌃⌧⌧p

⌧
✏+ ⌃⌧cp

c
✏) + oP (1). (13)
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Under Assumptions 5-7 and the fact E(✏ | X,A, S) = 0, by the Pointwise Normality of the series
method (see Theorem 4.2 in Belloni et al., 2015), we have

p
N

↵
|
⌧ (�̂⌧ � �⌧ )

k↵|
⌧⌦1/2k

d�! N (0, 1) + oP (1),

where ⌦ = E {(⌃⌧⌧p
⌧
✏+ ⌃⌧cp

c
✏) (⌃⌧⌧p

⌧
✏+ ⌃⌧cp

c
✏)|}. Then, we take ↵⌧ = p

⌧ , for any x 2 X ,

p
N

(p⌧ )|(�̂⌧ � �⌧ )

k(p⌧ )|⌦1/2k
d�! N (0, 1) + oP (1).

Under Assumption 6(d), the approximation error is negligible relative to the estimation error, then

p
N

⌧̂(x)� ⌧(x)

k(p⌧ )|⌦1/2k
d�! N (0, 1) + oP (1),

which immediately arrives at the first part conclusion in Theorem 1, ⌧̂(x)� ⌧(x) = O(N�1/2), for
any x 2 X . Besides, it also gives the asymptotic variance of ⌧̂(x),

V{⌧̂(x)} = N
�1(p⌧ )|⌦p⌧ . (14)

Expanding ⌦, under Assumption 7, we have

⌦ =⌃⌧⌧E
�
p
⌧ (p⌧ )|✏2

 
⌃⌧⌧ + ⌃⌧cE

�
p
⌧ (pc)|✏2

 
⌃⌧c+

⌃⌧cE
�
p
c(pc)|✏2

 
⌃⌧c + ⌃⌧⌧E

�
p
⌧ (pc)|✏2

 
⌃⌧c

=(⌃⌧⌧�⌧⌧ + ⌃⌧c�
|
⌧c)⌃⌧⌧�

2 + (⌃⌧c�cc + ⌃⌧⌧�⌧c)⌃
|
⌧c�

2

=⌃⌧⌧�
2 + 0D⇥D

=
�
�⌧⌧ � �⌧c�

�1
cc �

|
⌧c

��1
�
2

=
⇥
E{Sp⌧ (p⌧ )|}+ E{(1� S)p⌧ (p⌧ )|}� �⌧c�

�1
cc �

|
⌧c

⇤�1
�
2
. (15)

Next, we aim to obtain the asymptotic variance of the HTE estimator ⌧̂rct = (p⌧ )|�̂rct with only
the RCT, where �̂rct = argminb2RD PNSi

⇥
Yi � µ̂

�k(i)(Xi, Si)� {Ai � ê
�k(i)(Xi, Si)}p|⌧ (Xi)b

⇤2.
Similarly, we can replace the estimated nuisance functions with the true ones based on Lemma 3,
and following the same strategy as the integrative R-learner above to obtain the asymptotic variance,
V(⌧̂rct) = N

�1(p⌧ )|⌦rctp
⌧
, where

⌦rct = [E {Sp⌧ (p⌧ )|}]�1
�
2
. (16)

By Hölder’s inequality, E{(1�S)p⌧ (p⌧ )|}��⌧c��1
cc �

|
⌧c is non-negative definitive; i.e., for any

v 2 RD,
v
|(⌦�1 � ⌦�1

rct )v � 0, (17)

where the inequality becomes an equality if and only if p⌧ (X) = Mpc(X) for some constant matrix
M . From (14), we have

p
⌧V{⌧̂(x)}(p⌧ )| = N

�1
p
⌧ (p⌧ )|⌦p⌧ (p⌧ )|
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=) IDV{⌧̂(x)} = N
�1

p
⌧ (p⌧ )|⌦

=) IDV�1{⌧̂(x)} = N⌦�1 {p⌧ (p⌧ )|}�1

=) (p⌧ )| {p⌧ (p⌧ )|}�1V�1{⌧̂(x)}p⌧ = N(p⌧ )| {p⌧ (p⌧ )|}�1⌦�1 {p⌧ (p⌧ )|}�1
p
⌧

by (17)
=) (p⌧ )| {p⌧ (p⌧ )|}�1 ⇥V�1{⌧̂(x)}� V�1{⌧̂rct(x)}

⇤
p
⌧ � 0

(Multiply a positive number (p⌧ )|p⌧ on the both sides and get the below formula)

=) (p⌧ )|p⌧ (p⌧ )| {p⌧ (p⌧ )|}�1
p
⌧
⇥
V�1{⌧̂(x)}� V�1{⌧̂rct(x)}

⇤
� 0

=) (p⌧ )|p⌧
⇥
V�1{⌧̂(x)}� V�1{⌧̂rct(x)}

⇤
� 0

=) V�1{⌧̂(x)}� V�1{⌧̂rct(x)} � 0

=) V{⌧̂(x)}  V{⌧̂rct(x)},

with the equality holding when p⌧ (X) = Mpc(X) for some constant matrix M .

Appendix B. Proof of Proposition 2
Proof The proof of (10) is mainly based on the inverse probability weights (IPW) component, thus
we tackle it first.

a) IPW-adjusted outcomes: We have

E
⇢

AY

e(X,S)
| X,S = 0

�

=
1

e(X, 0)
[E{AY | X,A = 1, S = 0}e(X, 0) + E{AY | X,A = 0, S = 0}{1� e(X, 0)}]

=E{Y | X,A = 1, S = 0}.

Similarly, we have

E
⇢

(1�A)Y

1� e(X,S)
| X,S = 0

�
= E{Y | X,A = 0, S = 0}.

b) Augmented IPW-adjusted outcomes: Then we have

E

A{Y �QS(X, 1)}

e(X,S)
+QS(X, 1) | X,S = 0

�

=E
⇢

AY

e(X,S)
| X,S = 0

�
+Q0(X, 1)E

⇢
1� A

e(X,S)

�
| X,S = 0

�

=E(Y | X,A = 1, S = 0).

Similarly, we have

E

(1�A){Y �QS(X, 0)}

1� e(X,S)
+QS(X, 0) | X,S = 0

�
= E(Y | X,A = 0, S = 0).

Finally, by taking the difference of the above two formulas and based on the definition of c(X)
in (1), we arrive at the conclusion E(eY | X,S = 0) = ⌧(X) + c(X)
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Appendix C. Iterative learning for the integrative R-learner in the real data
experiment

Algorithm 2 Iterative learning for the integrative R-learner
Data: The RCT and the OS data {(Xi, Ai, Yi, Si)}i2In[Im ; the number of iterations B
Result: ⌧(·)
Initialize confounding function c(Xi).
Estimate the nuisance functions with cross-fitting based on Xgboost, denoted as µ̂(Xi, Si) and
ê(Xi.Si), resulting in ✏̂Yi = Yi � µ̂(Xi, Si) and ✏̂Ai = Ai � ê(Xi, Si).

for b = 1, . . . , B do
Calculate the pseudo outcomes eYi  ✏̂Yi/✏̂Ai � (1� Si)c(Xi), i 2 In [ Im;
Obtain ⌧(·) by fitting eYi on Xi using weighted random forest with weights equal to ✏̂

2
Ai
, i 2

In [ Im;
Update the pseudo outcomes eYi  ✏̂Yi/✏̂Ai � ⌧(Xi), i 2 Im;
Update c(Xi) by fitting eYi on Xi using weighted random forest with weights equal to ✏̂

2
Ai
, i 2

Im.
end
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