INTEGRATIVE R-LEARNER

Supplementary Material for ‘“Integrative R-learner of heterogeneous
treatment effects combining experimental and observational studies”
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Appendix A. Proof of Theorem 1
To prove Theorem 1, we show a useful lemma first.
Lemma 3 Under Assumptions 3-4, Ly (8) = Ln(8) + Op(a%).
Proof For the simplicity of the notations, we denote
Ay = p(Xi, Si) — i "Xy, 80), Bui =Y — u(Xi, Si),
Aci = e(Xi, ) — e ¥(X;,8)), Bei = Ai — e(X;, ).
By algebra, we have

Ln(B) =PN{Byi + Aui — 9(Xi, Si; 8)Beji — 9(Xi, Sii B) Aesi }?
=Pn{Byui — 9(Xi, Si; 8)Bei}* + Pn{Aui — 9(X;, Sis B) Aei 2+
2PN{Byi — 9(Xi, Si; B)Be,i YPN{Aui — 9(Xi, Si; B) Aci}
=LN(B) +PNA%; + PnAZig*(Xi, Si) — 2PN Ay Acig(Xs, Si; B)+
2PN ByiAui — 2PN BiAeig(Xi, Si; B) — 2PN BeiAuig(Xi, Si; B) + 2Py Be i Ac.ig? (Xi, Si).

By Markov’s inequality and Assumption 4, we have the second term above IP’NAii is O p(a?\,).
Plus Assumption 3, we have the third term Py A2 ; is Op(a3;). As for the fourth term,

PnApiAeig(Xi, Si; B) < C1PNAiAe; < C1/PNAZ PNAZ, = Op(a%),

for some positive constant C, and the last inequality is by Cauchy-Schwarz inequality.
Next, to deal with the last four terms, we tackle Py B, ;A,, ; first. Let

{i: k(i) =k}

and note that [Py B, ;Aci| < S, |B;Iju" where K is finite, thus it is suffice to show Bﬁﬂ =
Op(a%). Let T7% = {X;, A;,Y;,S; : k(i) # k}. Then we have

k _
B/m_

E(Bﬁu) =E(B,Aci) = B{E(B.iAc: | T7%, X;,5:)}
=E{A.;E(B,; | T7% Xi,S)} = 0.
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Then we have its variance

E{X k)=t BiiAn i + 2 izjiy=b () =k BuiBuujApiAuj}
var(B/’jM) = E{(B/’ju)g} = (©) it p, #5:k(8)=k.k(5)

{i: k(i) = k}?
_ E(Bz,iAi,i) Zz’;ﬁj:k(i):k,k(j):k]E(BMJBMJAMJAH,D
{i: k(i) = K} {i: k(i) = k}[?
By Assumption 3-4 we have E(B?,A2,) = E{E(B} A2, | T% X;,5)} = E{AZ,E(B:, |

7% X;,8)}) < C’gEAiZ- = O(a%), for some positive constant Cs. As for the interaction terms, we
have E(B,,i By jApiAu;) = E{Aui A B(BuiBu; | T7%, Xi,8)} = E{A.iA,;E(Bu;)E(B, |
7k X;, S,)} = 0. The second last equality is implied by B,,; and B, ; are independent for
i # j, and the last equality comes from the definition of B, ;. Therefore, we have Var(Bfw) =
(K/N)O(a3;) = O(a%;/N), which is negligible with a faster diminishing rate than O(a3;). Then,
by Chebyshev’ inequality, we have Bﬁu = Op(a%;/N),ie,PnB,iA,; = Op(ai//N). Similarly,
under the Assumption 3 that g(X;, S;; 8) is uniformly bounded, we can get the same results for the
left three terms equal to Op(a%;/N ). Therefore, Ly (B)—Ln(B) is dominated by the Op(a%;)-term
IP’NAi’i + IP’NAiZgQ(Xi, Si) — 2PN A, i Aeig(Xi, Si; 8), which finally leads to the conclusion in
the lemma EN([E) — Ln(B) = Op(a%). [ |

Next, we are showing the proof of Theorem 1 with the help of Lemma 3.
Proof of Theorem 1:

First, we let Gy = VN(Py —P), p” = {A — e(X, A)}p-(X), and p¢ = {A — e(X, A)}(1 —
S)pe(X). Recall pI = {(p”)7, (p°)7}, and then

T(pT)T T(nC\T
T = P(pip]) = {p ()T P (") }déd <£T: ?) |

By the definition of /3 and Lemma 3, we have

B = argmin Py {Y; — (X5, S;) — pgb}2 + Op(a%).
b

By the Pointwise Linearizaiton of the series method (see Lemma 4.1 in Belloni et al., 2015), under
Assumptions 5-7 and the fact E(e | X, A, S) = 0 which is shown under Assumptions 1-2 in Section
3, we have for any o := (af,al)T € R?P,

71 -
VNaT(B—B) =aT (?: ?) Gy (ZZ) +op(1) +0p (VNaE).  (12)

5 <ETT Em) _ (rw FTC) -
ECT 2CC ’ PCT PCC )
Since under Assumption 4, ay = O(N~"),r > 1/4, thus Op (\/Na%\,) is negligible compared to
op(1). Therefore, we have

Let

\/Nal(ﬁAT - /BT) = a;r-GN (ETTPTG + Ercpce) + OP(l)- (13)
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Under Assumptions 5-7 and the fact E(e | X, A, S) = 0, by the Pointwise Normality of the series
method (see Theorem 4.2 in Belloni et al., 2015), we have

T4 _
\/NW 4 N(0,1) + op(1),

where Q = E{(X;-p"e + 3;cp) (Xr7p7€ + Xrep®€)T}. Then, we take o, = p7, for any x € X,

~

WW % N(0,1) + op(1).

Under Assumption 6(d), the approximation error is negligible relative to the estimation error, then

() —7(x) a
\/NW = N(0,1) +op(1),

which immediately arrives at the first part conclusion in Theorem 1, #(z) — 7(z) = O(N~/2), for
any x € X. Besides, it also gives the asymptotic variance of 7(z),

V{F(2)} = N (") Tp" (14)
Expanding €2, under Assumption 7, we have

Q=% E{p"(p")T€*} Trr + B {p7 ()77} Sret
S E {p°(p9) €} Sre + S E DT (09) TR} S
= (SrDrr 4 Brel'T) Brr0? + (Srelee + Brp i) B0
=%,,0% + 0pxp
— (Try — Tyl TT,) 02
= [E{Sp" ()T} + E{(1 - S)p" (o)} — Trel 2 TT,] ' 02, (15)

Next, we aim to obtain the asymptotic variance of the HTE estimator 7;¢ = (p”)7 Bm with only
the RCT, where B, = argmingcgp PnS; [YZ — pk@ (X, Si) —{A; — gk (X, Si)}pl(Xi)b]Q.
Similarly, we can replace the estimated nuisance functions with the true ones based on Lemma 3,

and following the same strategy as the integrative R-learner above to obtain the asymptotic variance,
V(#et) = N7Hp™)TQuep™, where

Qe = [E{Sp"(p")T}] " * 62, (16)

By Holder’s inequality, E{(1—S)p™ (p7)T} — ;' 'L is non-negative definitive; i.e., for any
veRD,
oI — Qv >0, (17)

rct

where the inequality becomes an equality if and only if p,(X) = Mp.(X) for some constant matrix
M. From (14), we have

PV () (p")T = N7 ()T ()T
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= IpV{#(2)} = N"'p"(p")TQ
= IpV (@)} = NO T {p" (")}
= ()T ") VT E @) = N )T e ()T T
LE )T (" ()Y [V @)} — VT (@)} 7 > 0
(Multiply a positive number (p”)Tp” on the both sides and get the below formula)
— ) ) )T T [V R} -V (@)} 2 0
= (p")™p" [V_l{%(x)} - V_l{%rct(x)}] >0
— V H{# ()} = V  {#u(2)} >0
= V{#(2)} < V{fra(2)},

with the equality holding when p,(X) = Mp.(X) for some constant matrix M. [

Appendix B. Proof of Proposition 2

Proof The proof of (10) is mainly based on the inverse probability weights (IPW) component, thus
we tackle it first.
a) [PW-adjusted outcomes: We have

E{déiﬂ“‘szo}

_d;(DWP”WX%4—LS—%HdXﬁ%HmAY\X¢$—QS—0H1—4Xﬁn]

—E{Y | X,A=1,8=0}.

Similarly, we have

E{l(i;(f()’};)|X,S:O}:IE{Y|X,A:O,S:O}.

b) Augmented IPW-adjusted outcomes: Then we have

ALY — Qs(X.1)}
E[ (X, 5)

+Qs(X,1) | X,S:O]

:E{e(ﬁ;) yX,S:0}+Qo(X,1)E [{1—6()‘25)} ]X,S:O]
—E(Y | X,A=1,8 = 0).

Similarly, we have

p[C= A0 —ascx0)
1—e(X,9)

+QS(X,0)\X,S:O] —E(Y | X,A=0,8=0).

Finally, by taking the difference of the above two formulas and based on the definition of c(X)
in (1), we arrive at the conclusion E(Y | X, S = 0) = 7(X) + ¢(X) [ |

20



INTEGRATIVE R-LEARNER

Appendix C. Iterative learning for the integrative [2-learner in the real data
experiment

Algorithm 2 Iterative learning for the integrative R-learner

Data: The RCT and the OS data {(X;, 4;,Y;, Si) }iez,uz,,; the number of iterations B

Result: 7(-)

Initialize confounding function ¢(X;).

Estimate the nuisance functions with cross-fitting based on Xgboost, denoted as [i(X;, S;) and
é(XzSZ), resulting in éyi =Y, — ﬂ(XZ, S,) and €Ai =A;, — é(Xi, SZ)

forb=1,..., Bdo

Calculate the pseudo outcomes Y; « éy,/€a, — (1 — Si)e(Xy),i € T, ULy;

Obtain 7(-) by fitting }7; on X; using weighted random forest with weights equal to éii,i €
L, UL,

Update the pseudo outcomes Y, « ey, /éa, — T(Xi),i € Ly;

Update ¢(X;) by fitting Y; on X; using weighted random forest with weights equal to é124,-’ 1€
T

end
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