
Proceedings of Machine Learning Research vol 272:1–24, 2025 36th International Conference on Algorithmic Learning Theory

Fast Convergence of Φ-Divergence Along the
Unadjusted Langevin Algorithm and Proximal Sampler

Siddharth Mitra SIDDHARTH.MITRA@YALE.EDU

Andre Wibisono ANDRE.WIBISONO@YALE.EDU

Department of Computer Science, Yale University, New Haven, CT, USA

Editors: Gautam Kamath and Po-Ling Loh

Abstract
We study the mixing time of two popular discrete-time Markov chains in continuous space,

the Unadjusted Langevin Algorithm and the Proximal Sampler, which are discretizations of the
Langevin dynamics. We extend mixing time analyses for these Markov chains to hold in Φ-
divergence. We show that any Φ-divergence arising from a twice-differentiable strictly convex
function Φ converges to 0 exponentially fast along these Markov chains, under the assumption that
their stationary distributions satisfy the corresponding Φ-Sobolev inequality, which holds for exam-
ple when the target distribution of the Langevin dynamics is strongly log-concave. Our setting in-
cludes as special cases popular mixing time regimes, namely the mixing in chi-squared divergence
under a Poincaré inequality, and the mixing in relative entropy under a log-Sobolev inequality. Our
results follow by viewing the sampling algorithms as noisy channels and bounding the contraction
coefficients arising in the appropriate strong data processing inequalities.
Keywords: Langevin dynamics, unadjusted Langevin algorithm, proximal sampler, Φ-divergence,
Φ-Sobolev inequalities, strong data processing inequalities

1. Introduction

Sampling from a probability distribution is a fundamental task that appears in many fields, including
machine learning, statistics, and Bayesian inference (Gelman et al., 1995; MacKay, 2003; Robert
et al., 1999; Von Toussaint, 2011; Johannes and Polson, 2003). Suppose we wish to obtain samples
from a continuous probability distribution ν ∝ exp (−f) on Rd; a common approach is to construct
a Markov chain which admits ν as its invariant or stationary distribution, and then draw samples
after some initial burn-in time. A rigorous study of burn-in time (Gilks et al., 1995; Geyer, 2011)
leads one to analyze the mixing time of a Markov chain, which tracks how quickly the Markov chain
converges to its stationary distribution (Levin et al., 2017). Different choices of distances1 between
probability distributions lead to different guarantees, which can be bounded in terms of each other,
to yield interesting results and bounds.

A general, useful, and well-studied family of divergences are that of Φ-divergences (Csiszár,
1967)2, which include many popular divergences such as Kullback-Leibler (KL) divergence, chi-
squared divergence, Total Variation (TV) distance, and squared-Hellinger distance. For any convex
function Φ : R≥0 → R with Φ(1) = 0, the Φ-divergence between probability distributions µ and ν
such that µ ≪ ν is defined by

DΦ(µ ∥ ν) := E
ν

[
Φ
(µ
ν

)]
, (1)

1. We use “distance” loosely here to refer to metrics such as Wasserstein metric, or divergences such as KL divergence.
2. Also commonly known as f -divergences in the literature.
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and it is +∞ if µ ≪̸ ν. For example, the KL divergence or relative entropy corresponds to
Φ(x) = x log x, chi-squared divergence corresponds to Φ(x) = (x− 1)2, TV distance corresponds
to Φ(x) = 1

2 |x−1|, and squared-Hellinger distance corresponds to Φ(x) = 1
2(
√
x−1)2. In general,

Φ-divergences do not satisfy a triangle inequality, but some examples which do are the TV distance
and Marton’s divergence (Sason and Verdú, 2016, (72)). Further examples of Φ-divergences can
be found in Table 1 in Appendix A. The family of Φ-divergences have found profound applications
from hypothesis and distribution testing (Pensia et al., 2024; Györfi and Vajda, 2002; Gretton and
Györfi, 2008), and neuroscience (Nemenman et al., 2004; Belitski et al., 2008), to reinforcement
learning (Ho et al., 2022; Panaganti et al., 2024). We study Φ-divergences in the context of mixing
time for Markov chains, and extend the analysis from KL divergence3 to Φ-divergence.

We study the mixing time of Markov chains in Φ-divergence under the assumption that their
stationary distribution satisfy a Φ-Sobolev inequality. These inequalities include as special cases
popular isoperimetric inequalities such as the log-Sobolev inequality (LSI) and Poincaré inequality,
and are defined as follows.

Definition 1 A probability distribution ν satisfies a Φ-Sobolev inequality (ΦSI) with constant α >
0 if for all probability distributions µ ≪ ν , we have

2αDΦ(µ ∥ ν) ≤ FIΦ(µ ∥ ν), (2)

where DΦ(µ ∥ ν) is the Φ-divergence defined in (1), and FIΦ(µ ∥ ν) is the Φ-Fisher information
defined by

FIΦ(µ ∥ ν) := E
ν

[∥∥∥∇µ

ν

∥∥∥2Φ′′
(µ
ν

)]
.

We define the Φ-Sobolev constant of ν to be the optimal (largest) constant α such that the above
inequality holds:

αΦSI(ν) := inf
µ

FIΦ(µ ∥ ν)
2DΦ(µ ∥ ν)

(3)

where the infimum is taken over all probability distributions µ with 0 < DΦ(µ ∥ ν) < ∞.

The inequality (2) is equivalent to saying that for all smooth functions g : Rd → R≥0 with
Eν [g] = 1,

2αEntνΦ(g) ≤ Eν
Φ(g) , (4)

where

EntνΦ(g) := E
ν
[Φ(g)]− Φ(E

ν
[g]) and Eν

Φ(g) := E
ν

[
∥∇g∥2Φ′′(g)

]
.

To see this, take g to be the density function of µ with respect to ν.
For Φ(x) = x log x, the Φ-divergence is the KL divergence and the Φ-Sobolev inequality is

the log-Sobolev inequality. For Φ(x) = (x − 1)2, the Φ-divergence is the chi-squared divergence
and the Φ-Sobolev inequality is the Poincaré inequality. Further examples are mentioned in Table 1
in Appendix A. The Poincaré inequality is the weakest Φ-Sobolev inequality in that it is implied
by any other Φ-Sobolev inequality (Chafaı̈, 2004, Section 2.2). This extends the more well-known

3. And other specific analyses such as in chi-squared divergence.
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statement that the log-Sobolev inequality implies the Poincaré inequality. Additionally, one can start
from a Φ-Sobolev inequality and show that it satisfies a Φ-Sobolev inequality for Φ(x) = xp − 1
for p ∈ (1, 2] but without a tight constant (Chafaı̈, 2004, Section 2.2). This class of Φ-Sobolev
inequalities are related to Beckner inequalities (Bakry et al., 2014, Section 7.6.2).

We discuss how the Φ-Sobolev constant of a distribution evolves along various operations such
as convolutions and pushforwards in Section 2.1. These properties will be crucial when analyzing
mixing time. We now introduce the Markov chains we will study.

1.1. Langevin dynamics

The Langevin dynamics to sample from ν ∝ exp (−f) on Rd is the following stochastic differential
equation (SDE):

dXt = −∇f(Xt) dt+
√
2 dWt , (5)

where Wt is the standard Brownian motion on Rd. The Langevin dynamics admits ν as the sta-
tionary or invariant distribution, and hence is a natural process to study for sampling (Bakry et al.,
2014). It also has the natural optimization interpretation as the gradient flow to minimize KL diver-
gence in the space of probability distributions over Rd with the Wasserstein W2 metric, see (Jordan
et al., 1998; Wibisono, 2018).

The Langevin dynamics is a continuous-time Markov process, and it needs to be discretized
in time in order to implement in practice. We will focus on two discretizations of the Langevin
dynamics – the Unadjusted Langevin Algorithm (ULA), which has been well-studied in (Roberts
and Tweedie, 1996; Roberts and Rosenthal, 1998; Dalalyan, 2017; Cheng and Bartlett, 2018; Vem-
pala and Wibisono, 2019; Chewi et al., 2022a), and the Proximal Sampler, which has been studied
in (Lee et al., 2021; Chen et al., 2022; Yuan et al., 2023; Kook et al., 2024; Kook and Zhang, 2025).

The convergence of Φ-divergence along Langevin dynamics is easy to establish (Corollary 9)
and the properties of Φ-divergence along continuous-time dynamics are well-studied (Chafaı̈, 2004;
Dolbeault and Li, 2018; Achleitner et al., 2015). We study the convergence of Φ-divergence for
discrete-time samplers in Theorems 2 and 3.

1.2. Unadjusted Langevin algorithm

The Unadjusted Langevin Algorithm (ULA) is a simple discretization of the Langevin dynamics (5)
and is given by the following update

Xk+1 = Xk − η∇f(Xk) +
√
2ηZk , (6)

where Zk ∼ N (0, I) and η > 0 is the stepsize. It is well-known (Roberts and Tweedie, 1996) that
the ULA is a biased discretization, which means that it admits as its stationary distribution νη ̸= ν
for all η > 0; furthermore, as ηk → t and η → 0, νη → ν and ULA (6) recovers the Langevin
dynamics (5). The ULA has been widely studied, and we now have guarantees on its mixing time
in numerous settings: Dalalyan (2017) studies the mixing time to ν in Wasserstein W2 distance
under ν being strongly log-concave; Cheng and Bartlett (2018) study the mixing time to ν in KL
divergence under ν being strongly log-concave; Vempala and Wibisono (2019) study mixing to ν in
KL divergence under an LSI assumption on ν, and also study mixing to the biased limit νη in Rényi
divergence under an LSI assumption on νη; Altschuler and Talwar (2023) study mixing to νη under
a strong log-concavity assumption on ν; and Chewi et al. (2022a) study mixing to ν under modified
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LSI assumptions on ν. We refer the reader to Chewi (2024) for a comprehensive overview of recent
mixing time results.

A probability distribution ν ∝ exp (−f) is said to be L > 0 smooth if −LI ⪯ ∇2f ⪯ LI , and
all of the aforementioned works make smoothness assumptions on the target distribution ν. This
is common for discrete-time analysis. In Theorem 2, we show mixing guarantees for ULA in Φ-
divergence for smooth target distributions ν and under the assumption that the stationary distribution
νη of ULA satisfies the corresponding Φ-Sobolev inequality (Definition 1). To the best of our
knowledge, we are the first to study mixing time guarantees in any Φ-divergence for ULA. We
prove Theorem 2 in Section 3.2.

Theorem 2 Suppose the stationary distribution νη of ULA satisfies a Φ-Sobolev inequality with
optimal constant α > 0, and ν is L-smooth for some 0 < α ≤ L < ∞. Let Xk ∼ ρk evolve
following ULA (6) with step size 0 < η ≤ 1/L from X0 ∼ ρ0. Then for all k ≥ 1,

DΦ(ρk ∥ νη) ≤
(
1 +

2αη

(1 + ηL)2

)−k

DΦ(ρ0 ∥ νη). (7)

As ηk → t and η → 0, Theorem 2 recovers the correct exp (−2αt) convergence rate for
Langevin dynamics under a Φ-Sobolev inequality (see Corollary 9 in Section 2.1). We show that
the rate of Theorem 2 is tight for KL divergence via an explicit calculation for the case when ν is a
Gaussian, see Proposition 17 in Appendix G.1.

A common setting in which νη satisfies a Φ-Sobolev inequality is when ν is strongly log-
concave (see Lemma 13 in Section 3.3). To the best of our knowledge, properties of the limiting dis-
tribution νη under assumptions on ν which are weaker than strong log-concavity remain unknown.
Similar to how log-Sobolev and Poincaré inequalities are stable to bounded perturbations (Holley
and Stroock, 1987), Φ-Sobolev inequalities also enjoy similar properties (Chafaı̈, 2004, Section 3.3).
Therefore, an interesting question one can ask is if the stationary distribution νη continues to satisfy
a Φ-Sobolev inequality when ν undergoes a suitable perturbation; we leave this for future work.

Theorem 2 shows convergence to the stationary distribution νη. The bias DΦ(ν
η ∥ ν) between

the stationary distribution and the target distribution depends on the choice of Φ. For example,
for the Ornstein-Uhlenbeck process where ν = N (0, 1

αI), we have νη = N (0, 2
α(2−ηα)I) (see

Appendix G.1). In this case, the bias has linear dependence in the dimension d for KL divergence
(Φ(x) = x log x) and exponential dependence in d for chi-squared divergence (Φ(x) = (x− 1)2).

1.3. Proximal Sampler

While the simplicity of ULA is appealing, its biased limiting distribution makes it less ideal for
applications requiring sampling with high accuracy. The Proximal Sampler (Lee et al., 2021; Chen
et al., 2022) is an alternative discretization that addresses this shortcoming. Given the close con-
nections between optimization and sampling, along with the modern interpretation of sampling as
optimization in the space of distributions (Jordan et al., 1998; Wibisono, 2018), the Proximal Sam-
pler as introduced in Lee et al. (2021) can be seen to be a sampling analogue of the proximal point
algorithm in optimization (Martinet, 1970; Rockafellar, 1976). The Proximal Sampler was analyzed
in great generality in Chen et al. (2022), who show mixing guarantees in KL divergence, Rényi di-
vergence, chi-square divergence, and W2 distance, under isoperimetry or log-concavity assumptions
on ν. In Theorem 3, we show mixing guarantees for the Proximal Sampler in Φ-divergence under
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the assumption that ν satisfies the corresponding Φ-Sobolev inequality (Definition 1). Our results
extend the mixing time of the Proximal Sampler to Φ-divergence.

The Proximal Sampler considers an augmented (X,Y ) space Rd×Rd and performs Gibbs sam-
pling on the joint space. We will use the appropriate superscripts to denote probability distributions
on their respective spaces.4 Let the target distribution we wish to sample from be νX ∝ exp (−f)
on Rd. The joint target distribution on Rd × Rd is defined as:

νXY (x, y) ∝ exp

(
−f(x)− ∥x− y∥2

2η

)
, (8)

for step size η > 0. The Proximal Sampler, initialized from X0 ∼ ρX0 , is the following two-step
algorithm:

Step 1 (forward step) : Sample Yk | Xk ∼ νY |X=Xk = N (Xk, ηI)

Step 2 (backward step) : Sample Xk+1 | Yk ∼ νX|Y=Yk
(9)

Note that νXY has the desired target distribution νX as the X marginal, and that the Y marginal
νY is a smoothed version of νX , i.e., νY = νX ∗ N (0, ηI). The forward step of the algorithm
is easy to implement as it corresponds to drawing a Gaussian random variable. For the backward
step, implementation is possible given access to a Restricted Gaussian Oracle (RGO). A RGO is an
oracle that, given any y ∈ Rd, outputs a sample from νX|Y=y, i.e. from

νX|Y (x | y) ∝x exp

(
−f(x)− ∥x− y∥2

2η

)
.

Similar to Lee et al. (2021); Chen et al. (2022), in our main result for the Proximal Sampler (Theo-
rem 3), we consider an ideal implementation of the sampler where we have exact access to a RGO.
Specific cases where the RGO can be implemented efficiently are discussed in Lee et al. (2021), and
improved implementations of the RGO along with analysis of the Proximal Sampler with inexact
RGO implementations have been an active area of research (Fan et al., 2023; Liang and Chen, 2022;
Altschuler and Chewi, 2024). Fan et al. (2023) show an implementation via approximate rejection
sampling and Altschuler and Chewi (2024) show an approach based on the Metropolis-adjusted
Langevin algorithm.

We mention a basic approach to implement the RGO via rejection sampling in Appendix B.
We also mention the oracle complexity (in this case, the expected number of calls to the first order
oracle of f ) when sampling using the Proximal Sampler with the rejection sampling based RGO
implementation in Corollary 4.

When both steps are implemented exactly (i.e. given access to an exact RGO), the Proximal
Sampler corresponds to Gibbs sampling from the stationary distribution νXY , and the algorithm is
therefore unbiased. Step 1 is referred to as the forward step as it corresponds to evolving along the
(forward) heat flow, and step 2 is referred to as the backward step is it corresponds to backward
heat flow; this perspective is further made clear in Sections 4.1 and 4.2. We now state the main
theorem describing the mixing time of the Proximal Sampler in Φ-divergence. We prove Theorem 3
in Section 4.3.

4. For example, ρXY denotes a distribution on the joint space, ρX refers to a distribution on the X space, and ρY |X=x

denotes a conditional distribution supported on the Y space.
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Theorem 3 Suppose νX satisfies a Φ-Sobolev inequality with optimal constant α. Let Xk ∼ ρXk
evolve along the Proximal Sampler (9) with step size η > 0 from X0 ∼ ρX0 . Then for all k ≥ 1,

DΦ(ρ
X
k ∥ νX) ≤ DΦ(ρ

X
0 ∥ νX)

(1 + αη)2k
.

We show the tightness of Theorem 3 in KL divergence by doing an explicit calculation for the
case when ν is Gaussian, see Proposition 18 in Appendix G.2. The setting of Theorem 3 includes
popular mixing time results as special cases. For example, it directly implies the mixing in KL
divergence under a log-Sobolev inequality, and mixing in chi-squared divergence under a Poincaré
inequality. Under a strong log-concavity assumption on ν, it implies mixing in all Φ-divergences.
Φ-Sobolev inequalities and Φ-divergences for different choices of Φ are mentioned in Table 1 in
Appendix A.

Theorem 3 considers the ideal implementation of the Proximal Sampler where we assume exact
access to the RGO. Combined with an RGO implementation via rejection sampling, which requires
an additional smoothness assumption on f , Theorem 3 yields the following corollary.

Corollary 4 Suppose νX satisfies a Φ-Sobolev inequality with optimal constant α and is L-smooth.
Then for any ϵ > 0, the Proximal Sampler with η ≍ 1

Ld and with rejection sampling based RGO
implementation (as described in Appendix B) outputs Xk ∼ ρXk with DΦ(ρ

X
k ∥ νX) ≤ ϵ whenever

k ≥ Ld
2α log

DΦ(ρ
X
0 ∥νX)
ϵ . The expected number of oracle calls to f is O

(
Ld
α log

DΦ(ρ
X
0 ∥νX)
ϵ

)
.

1.4. Related work

Our main results, Theorems 2 and 3, study the mixing time in Φ-divergence of the ULA (6) and
Proximal Sampler (9) respectively. We give an overview of the algorithms along with prior mixing
time results in Sections 1.2 and 1.3, and refer the reader to those sections for the corresponding ref-
erences. We discuss other related works here; see also Chewi (2024) for a comprehensive overview
of Langevin-based samplers.

Both the ULA (6) and Proximal Sampler (9) have the Langevin dynamics (5) as the limiting dy-
namics as η → 0, and the convergence of Φ-divergence along the Langevin dynamics is well-known
(see Corollary 9, and see also Chafaı̈ (2004); Dolbeault and Li (2018); Achleitner et al. (2015) for a
general discussion for diffusions). To study the convergence for discrete-time algorithms, our main
tool is that of Strong Data Processing Inequalities (SDPIs) (see Section 2.2). SDPIs are Markov
chain-dependent strengthenings of the data processing inequality, and are a fundamental concept
in information theory. For a comprehensive overview of SDPIs, we refer the reader to Polyanskiy
and Wu (2024, Chapter 33). Just as data processing inequalities hold in many different metrics,
so do SDPIs. Raginsky (2016) study SDPIs in Φ-divergence for discrete-space Markov chains,
and du Pin Calmon et al. (2017); Polyanskiy and Wu (2017) study SDPIs in lesser generality than
Φ-divergences, but for continuous-space chains and networks.

SDPI-inspired techniques have been used in prior works studying the mixing time of Langevin
based algorithms, but most works use them implicitly, and to the best of our knowledge, none study
Φ-divergences in general. Vempala and Wibisono (2019) use them to study the convergence of ULA
to νη in Rényi divergence, Chen et al. (2022) use them for the Proximal Sampler, Yuan et al. (2023)
mention SDPIs and use them for the Proximal Sampler on graphs, Kook et al. (2024); Kook and
Zhang (2025) use them for the constrained Proximal Sampler. We make the SDPI-based approach
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explicit (Section 2.2) and use it for Φ-divergence. It should also be noted that Rényi divergence
is not a Φ-divergence, but it is a simple transformation of a Φ-divergence, so SDPI-based analyses
have also been used to show mixing time in Rényi divergence: Vempala and Wibisono (2019)
present mixing guarantees in Rényi divergence via SDPI for the ULA, and Chen et al. (2022) for
the Proximal Sampler.

Bounding the contraction coefficient (Definition 10) is the key step in showing a Markov chain
satisfies a SDPI, and the main idea used to bound the contraction coefficient for Langevin-based
Markov chains is by taking the time derivative of the divergence along two simultaneous stochastic
processes (Lemma 8). This idea traces back to de Bruijn’s identity (Stam, 1959), and similar meth-
ods have been used well beyond information theory, for example to study diffusions and diffusion
models (Chafaı̈, 2004; Albergo et al., 2023; Vempala and Wibisono, 2019; Kook et al., 2024).

Organization We go over the necessary background material in Section 2, and then discuss the
convergence of Φ-divergence along ULA in Section 3, and along the Proximal Sampler in Section 4.
We summarize and discuss open questions in Section 5 to conclude.

2. Preliminaries

A distribution ν ∝ exp (−f) on Rd with a twice-differentiable potential function f is α-strongly
log-concave for some α > 0 if αI ⪯ ∇2f , and is L-smooth for some L > 0 if −LI ⪯ ∇2f ⪯ LI .
When α = 0, we call ν (weakly) log-concave. Throughout, we take Φ: R≥0 → R to be a twice-
differentiable strictly convex function with Φ(1) = 0. Whenever we refer to any probability distri-
bution, we always take it to be a member of P2,ac(Rd), i.e. the set of probability distributions on Rd

which are absolutely continuous with respect to Lebesgue measure and have finite second moment.
We also refer to distributions via their densities with respect to Lebesgue measure. We denote Nt as
shorthand for N (0, tI) where t > 0, and use N (µ,Σ) to refer to a Gaussian distribution with mean
µ ∈ Rd and positive-definite covariance matrix Σ ∈ Rd×d.

2.1. Φ-divergences, Φ-Sobolev inequalities, and their properties

Recall the Φ-divergence between probability distributions is defined in (1). To study the mixing
time of the ULA (Theorem 2) and Proximal Sampler (Theorem 3) in Φ-divergence, we assume a
Φ-Sobolev inequality assumption on the stationary distribution (Definition 1).

Our proofs of Theorems 2 and 3 are based on SDPIs (Section 2.2), and core to this SDPI-based
proof strategy will be analyzing the change of the Φ-Sobolev constant along various operations
such as convolution and pushforward. These operations arise by interpreting the Markov chains (6)
and (9) as updates in the space of distributions, and will be described in Sections 3 and 4 respectively.
The evolution of the Φ-Sobolev constant along these operations is classical (Chafaı̈, 2004) and we
discuss them now.

The following lemma tells us how the ΦSI constant evolves along a Lipschitz pushforward map.

Lemma 5 (Chafaı̈, 2004, Remark 7) Assume ν satisfy Φ-Sobolev inequality with optimal constant
αΦSI(ν). Let T : Rd → Rd be a γ-Lipschitz map. Then, the pushforward ν̃ = T#ν satisfies
Φ-Sobolev inequality with optimal constant

αΦSI(ν̃) ≥
αΦSI(ν)

γ2
.

7
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The next lemma describes the change of the ΦSI constant after convolution.

Lemma 6 (Chafaı̈, 2004, Corollary 3.1) Assume µ and ν satisfy ΦSI with optimal constants αΦSI(µ)
and αΦSI(ν), respectively. Then the convolution µ ∗ ν satisfies ΦSI with constant

1

αΦSI(µ ∗ ν)
≤ 1

αΦSI(µ)
+

1

αΦSI(ν)
.

The following lemma tells us that when ν is α-strongly log-concave, it also satisfies Φ-Sobolev
inequality with the same constant.

Lemma 7 (Chafaı̈, 2004, Corollary 2.1) If ν is α-strongly log-concave for some α > 0, then ν
satisfies ΦSI with constant

αΦSI(ν) ≥ α.

We conclude this subsection by describing the rate of change of Φ-divergence along simultane-
ous evolutions of the same SDE. The following lemma will be crucial in the SDPI-based approach.
The same lemma described in terms of Markov semigroup theory can be found in Chewi (2024,
Theorem 8.3.1). We prove Lemma 8 in Appendix C.

Lemma 8 Suppose Xt ∼ µt and Xt ∼ νt with initial conditions µ0 and ν0 are two solutions of
the following SDE:

dXt = bt(Xt) dt+
√
2cdWt , (10)

where bt : Rd → Rd is a time-varying drift function, c is a positive constant, and Wt is the standard
Brownian motion on Rd. Then for all t ≥ 0,

d

dt
DΦ(µt ∥ νt) = −cFIΦ(µt ∥ νt).

As mentioned in Section 1.4, when (10) is taken to be Brownian motion (i.e. the drift bt = 0),
νt is fixed to be the Lebesgue measure, and Φ(x) = x log x , Lemma 8 corresponds to de Bruijn’s
identity (Stam, 1959). The SDE (10) is more general than the Langevin dynamics (5) as it includes
a time-varying drift function; this is required to study the Proximal Sampler, since as we will see
in Section 4, the backward step of the Proximal Sampler corresponds to an SDE with time-varying
drift.

As an easy consequence of Lemma 8, we have the following exponential convergence of Φ-
divergence for the Langevin dynamics when ν satisfies a Φ-Sobolev inequality.

Corollary 9 Suppose Xt ∼ ρt evolves along the Langevin dynamics (5) to sample from ν ∝
exp (−f), and let ν satisfy a Φ-Sobolev inequality with optimal constant α > 0. Then,

DΦ(ρt ∥ ν) ≤ e−2αtDΦ(ρ0 ∥ ν).

Proof Applying Lemma 8 (with µt = ρt and νt = ν) along with the Φ-Sobolev inequality of ν
yields,

d

dt
DΦ(µt ∥ ν) = −FIΦ(µt ∥ ν) ≤ −2αDΦ(µt ∥ ν).

Integrating the differential inequality from 0 to t using Grönwall’s lemma completes the proof.
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2.2. Strong data processing inequalities

We now discuss Strong Data Processing Inequalities (SDPIs), which will be our primary proof
strategy. For any Φ-divergence, the data processing inequality states that for any two distributions
µ and ν, and for any Markov kernel Q, DΦ(µQ ∥ νQ) ≤ DΦ(µ ∥ ν), provided all quantities are
well-defined.5 Strong data processing inequalities check if the inequality is strict, and quantify
the decrease (Polyanskiy and Wu, 2024, 2017; Raginsky, 2016). They do so by fixing the second
input distribution (i.e. ν) and then varying the first distribution (i.e. µ), to see the worst case ratio
DΦ(µQ∥νQ)
DΦ(µ∥ν) . The ratio is called the contraction coefficient, and when it is strictly less than 1 for all

valid distributions µ , we say that (Q, ν) satisfies a strong data processing inequality.
Next, we define the contraction coefficient in Definition 10 and define SDPIs in Φ-divergence

in Definition 11.

Definition 10 Let ν be a probability distribution, Q be a Markov kernel, and DΦ be a Φ-divergence.
Then the contraction coefficient εDΦ

is defined as follows

εDΦ
(Q, ν) := sup

ρ : 0<DΦ(ρ∥ν)<∞

DΦ(ρQ ∥ νQ)

DΦ(ρ ∥ ν)
. (11)

Definition 11 Let ν be a probability distribution, Q be a Markov kernel, and DΦ be a Φ-divergence.
Further define εDΦ

(Q, ν) as in (11). Then we say that (Q, ν) satisfies a strong data processing in-
equality in Φ-divergence when εDΦ

(Q, ν) < 1 . In particular, we have,

DΦ(µQ ∥ νQ) ≤ εDΦ
(Q, ν)DΦ(µ ∥ ν) , (12)

where µ is any distribution such that DΦ(µ ∥ ν) < ∞ .

As a direct consequence of Definition 11, we can see that if ν is invariant for Q, then for any µ,

DΦ(µQ
k ∥ ν) ≤ εDΦ

(Q, ν)k DΦ(µ ∥ ν). (13)

Hence, if we desire to show a mixing time result for Markov chain Q with invariant distribution ν,
then we require a bound on εDΦ

(Q, ν) which is strictly less than 1.

3. Convergence Along ULA

Recall the ULA update (6) for sampling from ν ∝ exp (−f). Defining ρk := law(Xk) , the up-
date (6) can be seen as the following update in distribution:

ρk+1 = (id− η∇f)#ρk ∗ N (0, 2ηI) . (14)

Denote the Markov kernel of ULA as P (i.e. ρk+1 = ρkP = ρ0P
k+1), and define F : Rd → Rd

by F (x) = x− η∇f(x). Recall from Section 1.2 that ULA has a biased stationary distribution νη.
Then as per (13), in order to obtain a mixing time result, our goal is to bound εDΦ

(P, νη). We now
provide a proof outline for this.

5. For an example of the Markov kernel notation, and its behaviour as on operator on distributions, see (14) and the
subsequent text.

9
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3.1. Proof outline

We wish to bound εDΦ
(P, νη). To that end, let µ be an arbitrary probability distribution and recall

by Definition 10 that we want to control

DΦ(µP ∥ νηP)

DΦ(µ ∥ νη)
=

DΦ(F#µ ∗ N (0, 2ηI) ∥ F#ν
η ∗ N (0, 2ηI))

DΦ(µ ∥ νη)
.

Suppose that F is a bijective map. Then, as Φ-divergence is invariant to simultaneous bijective
deterministic maps, we have DΦ(µ ∥ νη) = DΦ(F#µ ∥ F#ν

η).6 Therefore, under the assumption
that F is bijective, the quantity we wish to bound is

DΦ(F#µ ∗ N (0, 2ηI) ∥ F#ν
η ∗ N (0, 2ηI))

DΦ(F#µ ∥ F#νη)
.

Denoting F#µ ∗ N (0, tI) = µt and F#ν
η ∗ N (0, tI) = νt, we want to bound

DΦ(µ2η ∥ ν2η)
DΦ(µ0 ∥ ν0)

.

As convolving with a Gaussian can be viewed as the solution to the heat equation, this quantity can
be bounded as a consequence of Lemma 8 (for the Brownian motion SDE, i.e., for (10) with bt = 0
and c = 1

2 ) under the assumption that νt satisfies a Φ-Sobolev inequality for t ∈ [0, 2η]. The final
expression obtained is independent of µ, and therefore this provides a bound on εDΦ

(P, νη).
This is the outline we follow and the assumptions stated in Theorem 2 are to ensure that the

assumptions mentioned in the proof sketch go through.

3.2. Proof of Theorem 2

In this section we prove Theorem 2. The key lemma for doing so is the following. The proof of
Lemma 12 follows the outline mentioned in Section 3.1 and is in Appendix D.

Lemma 12 Let P denote the ULA Markov kernel with update (14). Suppose νη satisfies a Φ-
Sobolev inequality with optimal constant α, ν is L-smooth, and η ≤ 1

L . Then,

εDΦ
(P, νη) ≤ (1 + ηL)2

(1 + ηL)2 + 2αη
.

Lemma 12 gives a bound on the contraction coefficient for ULA, with which we can prove
Theorem 2.
Proof of Theorem 2 By an application of Definition 11 and by noting that νη is stationary for P,
we have that,

DΦ(ρk ∥ νη) ≤ εDΦ
(P, νη)k DΦ(ρ0 ∥ νη) .

Using Lemma 12, we get that,

DΦ(ρk ∥ νη) ≤
(

(1 + ηL)2

(1 + ηL)2 + 2αη

)k

DΦ(ρ0 ∥ νη) =
(
1 +

2αη

(1 + ηL)2

)−k

DΦ(ρ0 ∥ νη) .

6. This can be seen as a consequence of data processing inequality, i.e. for any µ and ρ and bijective map F , DΦ(µ∥ρ) ≥
DΦ(F#µ ∥ F#ρ) ≥ DΦ(F

−1
# F#µ ∥ F−1

# F#ρ) = DΦ(µ ∥ ρ), hence all the inequalities must be equalities.

10
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An explicit calculation for the Ornstein-Uhlenbeck process implying the tightness of Theorem 2
for KL divergence can be found in Proposition 17 in Appendix G.1.

3.3. Property of the biased limit

We conclude this section by showing that the biased limit satisfies a Φ-Sobolev inequality under
strong log-concavity of ν. We prove Lemma 13 in Appendix E.

Lemma 13 Suppose ν ∝ exp (−f) is α-strongly log-concave and L-smooth. Consider the ULA (6)
to sample from ν with step size η ≤ 1

L . Then the biased limit νη satisfies:

αΦSI(ν
η) ≥ α

2
.

4. Convergence Along Proximal Sampler

Recall the Proximal Sampler from Section 1.3 with update given by (9), with the forward and back-
ward steps. We will denote the Proximal Sampler as Pprox = P+

proxP
−
prox where P+

prox corresponds
to the forward step and P−

prox to the backward step. Each step of the Proximal Sampler is an update
on Rd, and so this perspective via composition of Markov kernels is valid. In terms of notation,
we have ρXk := law(Xk), ρYk := law(Yk), and therefore ρXk Pprox = ρXk+1 , ρXk P+

prox = ρYk , and
ρYk P

−
prox = ρXk+1.

As mentioned in Section 1.3, we know that νX is stationary for the Proximal Sampler, and
from (13), our goal is to then bound the contraction coefficient εDΦ

(Pprox, ν
X). The following

lemma shows that this can be bounded by the product of the contraction coefficients of the forward
and backward steps.

Lemma 14 Let Pprox = P+
proxP

−
prox denote the Proximal Sampler (9) with joint stationary distribu-

tion νXY . Then,
εDΦ

(Pprox, ν
X) ≤ εDΦ

(P+
prox, ν

X) εDΦ
(P−

prox, ν
Y ) .

Proof By Definition 10,

εDΦ
(Pprox, ν

X) = sup
µ

DΦ(µPprox ∥ νXPprox)

DΦ(µ ∥ νX)

= sup
µ

[
DΦ(µP

+
prox ∥ νXP+

prox)

DΦ(µ ∥ νX)
×

DΦ(µP
+
proxP

−
prox ∥ νXP+

proxP
−
prox)

DΦ(µP
+
prox ∥ νXP+

prox)

]
≤ εDΦ

(P+
prox, ν

X) εDΦ
(P−

prox, ν
XP+

prox) .

The claim follows by noting that νY = νXP+
prox (which is further made clear in Section 4.1).

In light of Lemma 14, we will bound each of the contraction coefficients separately and get our
convergence result. As each contraction coefficient can at most equal 1 (as a consequence of data
processing inequality), this perspective implies that showing that either coefficient is strictly less
than 1 yields a convergence guarantee in Φ-divergence. We will in fact show both coefficients for
the forward step and the backward step are strictly less than 1.

11
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4.1. Forward step

Without loss of generality consider k = 0, and recall the forward step of the Proximal Sampler (9),
where X0 ∼ ρX0 and Y0 | X0 ∼ N (X0, ηI). To understand the forward step, we wish to understand
ρY0 . For any y ∈ Rd, ρY0 (y) =

∫
νY |X(y | x)ρX0 (x) dx =

∫
1

(2πη)
d
2
exp(−∥y−x∥2

2η )ρX0 (x) dx, and

therefore ρY0 = ρX0 ∗ N (0, ηI). This implies that P+
prox corresponds to evolving along the heat flow

(i.e. dXt = dWt) for time η. And so, to get a control on εDΦ
(P+

prox, ν
X), we can use Lemma 8

with bt = 0 and c = 1
2 , just like was done for ULA (discussed in Section 3). This leads to the

following guarantee on the contraction coefficient. We prove Lemma 15 in Appendix F.1.

Lemma 15 Let Pprox = P+
proxP

−
prox denote the Proximal Sampler (9) with step size η > 0, to sample

from νX where νX satisfies a Φ-Sobolev inequality with optimal constant α > 0. Then,

εDΦ
(P+

prox, ν
X) ≤ 1

1 + αη
.

4.2. Backward step

We now focus on the backward step of the Proximal Sampler. For the forward step, we were able
to relate it to the Brownian motion SDE (dXt = dWt) by observing how it acts on distributions
(i.e. on ρX0 , and seeing that ρY0 = ρX0 ∗ N (0, ηI)). For the backward step, this approach is not
as clear. Indeed, writing ρX1 (x) =

∫
νX|Y (x | y)ρY0 (y) dy does not immediately yield an SDE

interpretation. By step 2 of the Proximal Sampler (9), we want to find an SDE such that when
initialized from a point mass δy at any y ∈ Rd, the output has distribution νX|Y=y at time η; and
therefore in general, when initialized at νY the SDE will output νX , and when initialized at ρY0 the
SDE will output ρX1 . It turns out we can obtain this by reversing the heat flow path from νX to νY .

For the forward step, we have that dXt = dWt where if X0 ∼ νX , then Xη ∼ νY . The time
reversal of this SDE is called the backward heat flow and is given by

dYt = ∇ log(νX ∗ Nη−t)(Yt) dt+ dWt. (15)

By construction, if we start (15) from νY , then for any t ∈ [0, η], the marginal law along (15) is
the same as νX ∗ Nη−t. Such a reverse SDE construction is popular in diffusion models (Chen
et al., 2023), and details regarding it can be found in Föllmer (2005); Cattiaux et al. (2023). Rig-
orous connections between (15) and the Proximal Sampler can be found in Chen et al. (2022, Ap-
pendix A.1.2); see also the exposition in Chewi (2024, Chapter 8.3) and Kook et al. (2024, Ap-
pendix B.2).

The following lemma describes the contraction coefficient for the backward step. We provide
the proof of Lemma 16 in Appendix F.2.

Lemma 16 Let Pprox = P+
proxP

−
prox denote the Proximal Sampler (9) with step size η > 0, to sample

from νX where νX satisfies a Φ-Sobolev inequality with optimal constant α > 0. Then,

εDΦ
(P−

prox, ν
Y ) ≤ 1

1 + αη
.

The reason that both Lemmas 15 and 16 have the same result is for two reasons. First, it is
because Lemma 8 does not depend on the drift bt. Second, it is because the backward heat flow is the

12
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time reversal of the forward heat flow SDE, and therefore by construction, there is a correspondence
between the marginal distributions of the forward and backward processes in the sense that if we
start (15) from νY , then for any t ∈ [0, η], the marginal law along (15) is the same as νX ∗ Nη−t.

4.3. Proof of Theorem 3

Equipped with Lemmas 15 and 16, the proof of Theorem 3 follows easily.
Proof of Theorem 3 By repeated application of Definition 11 and by the fact that νX is stationary
for the Proximal Sampler, we have that,

DΦ(ρ
X
k ∥ νX) ≤ εDΦ

(Pprox, ν
X)k DΦ(ρ

X
0 ∥ νX).

Further using Lemmas 14, 15, and 16, we get,

DΦ(ρ
X
k ∥ νX) ≤ DΦ(ρ

X
0 ∥ νX)

(1 + αη)2k
.

An explicit calculation for the Ornstein-Uhlenbeck process implying the tightness of Theorem 3
for KL divergence can be found in Proposition 18 in Appendix G.2.

5. Discussion

We study the mixing time in Φ-divergence for two popular discretizations of the Langevin dynam-
ics, namely the Unadjusted Langevin Algorithm (ULA) and the Proximal Sampler. Our results show
mixing to the stationary distributions of these Markov chains under the stationary distributions sat-
isfying Φ-Sobolev inequalities. As the Proximal Sampler is unbiased, this implies mixing to the
target distribution ν of interest. However, this is not the case for the ULA, where our mixing guar-
antees are to the biased limit νη of ULA. While νη can be shown to satisfy a Φ-Sobolev inequality
under strong log-concavity of ν (Lemma 13), it is interesting to study what can hold under weaker
assumptions on ν. For example one can ask if the fact that νη satisfies a Φ-Sobolev inequality
is closed under certain perturbations of ν. Alternatively, one can also ask for biased convergence
guarantees of ULA to ν in Φ-divergence directly. One can also pose all of these questions for other
Markov chains, such as Hamiltonian Monte Carlo and the underdamped Langevin algorithm.

Our results are based on strong data processing inequalities in Φ-divergence, and proceed by
bounding the respective contraction coefficients. However, different forms of (strong) data pro-
cessing inequalities exist, namely in terms of mutual information and Φ-mutual information. It is
interesting to ask if our approaches can extend to these other forms of strong data processing in-
equalities, to yield for example, the convergence of the mutual information functional. Additionally,
we require the function Φ to be twice differentiable, which prohibits many popular Φ-divergences
such as total variation distance and “hockey-stick” divergences (Sason and Verdú, 2016). These
divergences are popular in differential privacy applications (Asoodeh et al., 2020) and it would
therefore be instructive to study extensions to such divergences directly.

Finally, our results imply mixing in all (twice-differentiable) Φ-divergences for strongly log-
concave target distributions. It is interesting to ask if mixing bounds can be obtained in a variety
of Φ-divergences under weaker absolute isoperimetric assumptions on ν (such as a log-Sobolev
inequality, or in other words, a Φ-Sobolev inequality with Φ(x) = x log x).
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Appendix A. Examples of Φ-divergences

Φ(x) DΦ(µ ∥ ν) DΦ(µ ∥ ν) name Φ-Sobolev inequality

x log x
∫

dµ log dµ
dν KL divergence log-Sobolev inequality

(x− 1)2
∫

( dµ− dν)2

dν chi-squared divergence Poincaré inequality

1
2(
√
x− 1)2 1

2

∫
(
√

dµ−
√
dν)2 squared Hellinger distance –

1
2 |x− 1| 1

2

∫
|dµ− dν| TV distance –

− log x
∫

dν log dν
dµ reverse KL divergence –

1
x − x 2 +

∫
( dµ− dν)2

dµ reverse chi-squared divergence –

Table 1: Common Φ functions along with corresponding Φ-divergences (1) and Φ-Sobolev inequal-
ities (Definition 1).

Appendix B. Restricted Gaussian Oracle

Here we show a basic implementation of the RGO via rejection sampling. As mentioned in Sec-
tion 1.3, enhanced implementations of the RGO under weaker assumptions have been an active area
of research and we refer the reader to Fan et al. (2023) and the references therein.

Recall from Section 1.3 the conditional distribution the RGO seeks to sample from:

νX|Y (x | y) ∝x exp

(
−f(x)− ∥x− y∥2

2η

)
.

Define gy(x) := f(x) + ∥x−y∥2
2η so that for any fixed y ∈ Rd, the target distribution for the RGO

is ν̃y(x) ∝ exp(−gy(x)). Suppose the potential function f is L-smooth and that η < 1
L . In this

case, ν̃y is strongly log-concave with condition number 1+Lη
1−Lη . and the RGO can be implemented

efficiently via rejection sampling.
Suppose π ∝ exp (−V ) is β-strongly log-concave and M -smooth. The rejection sampling

method to sample from π is the following:

1. Compute the minimizer x∗ of V , so that for any z ∈ Rd, V (z) ≥ V (x∗) + β
2 ∥z − x∗∥2.

2. Draw Z ∼ N (x∗, 1
β I) and accept it with probability

exp

(
−V (Z) + V (x∗) +

β

2
∥Z − x∗∥2

)
.

Repeat this until acceptance.
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The output of this method is distributed according to π and the expected number of iterations is
(Mβ )d/2 (Chewi et al., 2022b, Theorem 7).

Applying this to sample from ν̃y with η ≍ 1
Ld gives a valid implementation of the RGO under

smoothness of f with O(1) many iterations in expectation. Specifically, M = L + 1
η and β =

−L+ 1
η and therefore, M

β = 1+Lη
1−Lη . So if η = 1

Ld , (Mβ )d/2 = (1 + 2
d−1)

d/2 = O(1).

Appendix C. Proof of Lemma 8

Proof Begin by recalling that if Xt ∼ ρt where dXt = bt(Xt) dt +
√
2cdWt, then ρt : Rd → R

satisfies the Fokker-Planck equation, given by:

∂tρt = −∇ · (ρt bt) + c∆ρt .

Also note that using the identity ∆ρ = ∇ · (ρ∇ log ρ), the above can be written as:

∂tρt = −∇ · (ρt bt) + c∇ · (ρt∇ log ρt) . (16)

We identify µt and νt with their densities with respect to Lebesgue measure, and further de-
note their relative density as ht = µt

νt
. We also assume enough regularity to take the differential

under the integral sign and use
∫
fg as a shorthand for

∫
f(x)g(x) dx. Throughout the proof, we

use integration by parts in various steps, denoted by (IBP). With all of this in mind, we have the
following:

∂tDΦ(µt ∥ νt) = ∂t

∫
νtΦ(ht)

=

∫
(∂tνt)Φ(ht) +

∫
νt
(
∂tΦ(ht)

)
=

∫
(∂tνt)Φ(ht) +

∫
νtΦ

′(ht)
νt ∂tµt − µt ∂tνt

ν2t

=

∫
(∂tνt)Φ(ht)︸ ︷︷ ︸

T1

+

∫
Φ′(ht)(∂tµt)︸ ︷︷ ︸

T2

−
∫

Φ′(ht)
µt

νt
(∂tνt)︸ ︷︷ ︸

T3

We will now handle each of these terms separately. We have:

T1 =

∫
(∂tνt)Φ(ht)

(16)
=

∫
(−∇ · (νt bt) + c∇ · (νt∇ log νt)) Φ(ht)

= −
∫

∇ · (νt bt)Φ(ht) + c

∫
∇ · (νt∇ log νt)Φ(ht)

(IBP)
=

∫
⟨νtbt,∇(Φ(ht))⟩ − c

∫
⟨νt∇ log νt,∇(Φ(ht))⟩

=

∫
⟨νtbt,Φ′(ht)∇

µt

νt
⟩ − c

∫
⟨νt∇ log νt,Φ

′(ht)∇
µt

νt
⟩
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We also have:

T2 =

∫
Φ′(ht)(∂tµt)

(16)
=

∫
Φ′(ht) (−∇ · (µt bt) + c∇ · (µt∇ logµt))

(IBP)
=

∫
⟨µt bt,∇(Φ′(ht))⟩ − c

∫
⟨µt∇ logµt,∇(Φ′(ht))⟩

=

∫
⟨µt bt,Φ

′′(ht)∇
µt

νt
⟩ − c

∫
⟨µt∇ logµt,Φ

′′(ht)∇
µt

νt
⟩

We also have:

T3 =

∫
Φ′(ht)

µt

νt
(∂tνt)

(16)
=

∫
Φ′(ht)

µt

νt
(−∇ · (νt bt) + c∇ · (νt∇ log νt))

(IBP)
=

∫ 〈
νt bt,∇

(
Φ′(ht)

µt

νt

)〉
− c

∫ 〈
νt∇ log νt,∇

(
Φ′(ht)

µt

νt

)〉
=

∫
⟨µt bt,Φ

′′(ht)∇
µt

νt
⟩+

∫
⟨νtbt,Φ′(ht)∇

µt

νt
⟩

− c

∫ 〈
µt∇ log νt,Φ

′′(ht)∇
µt

νt

〉
− c

∫ 〈
νt∇ log νt,Φ

′(ht)∇
µt

νt

〉
Therefore, combining the above, we see many terms cancel and we have the following:

∂tDΦ(µt ∥ νt) = T1 + T2 − T3

= c

∫ 〈
µt∇ log νt,Φ

′′(ht)∇
µt

νt

〉
− c

∫ 〈
µt∇ logµt,Φ

′′(ht)∇
µt

νt

〉
= −c

∫ 〈
∇ log

µt

νt
,Φ′′(ht)∇

µt

νt

〉
µt

= −c E
µt

[〈
∇ log

µt

νt
,Φ′′(ht)∇

µt

νt

〉]
= −c E

νt

[
µt

νt

〈
∇ log

µt

νt
,Φ′′(ht)∇

µt

νt

〉]
= −c E

νt

[〈
∇µt

νt
,Φ′′(ht)∇

µt

νt

〉]
= −cFIΦ(µt ∥ νt) ,

which proves the desired statement.

Appendix D. Proof Of Lemma 12

Proof Let µ be an arbitrary probability distribution such that DΦ(µ ∥ νη) < ∞. As ν is L-smooth
(i.e. −LI ⪯ ∇2f ⪯ LI) and η ≤ 1

L , F (x) = x− η∇f(x) is a bijective map. Furthermore, it also
holds that ∥F∥Lip ≤ 1 + ηL.
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Therefore, from Lemma 5, we see that αΦSI(F#ν
η) ≥ α

(1+ηL)2
. Now for t ≥ 0, let µt := F#µ∗

N (0, tI) and νt := F#ν
η ∗ N (0, tI). For t ≥ 0, further denote αΦSI(νt) = αt as shorthand. Also

note that N (0, tI) is 1/t-strongly log-concave and therefore from Lemma 7, αΦSI(N (0, tI)) ≥ 1/t .
Hence, Lemma 6 implies that

αt ≥
α

(1 + ηL)2 + αt
.

The rate of change of Φ-divergence between µt and νt is given by Lemma 8. Applying Lemma 8
for (10) with bt = 0 and c = 1

2 , which is what the (Gaussian convolution) evolution of µt and νt
corresponds to, implies,

d

dt
DΦ(µt ∥ νt) = −1

2
FIΦ(µt ∥ νt)

≤ −αtDΦ(µt ∥ νt),

where the inequality follows from νt satisfying a Φ-Sobolev inequality. Applying Grönwall’s lemma
and integrating the differential inequality from 0 to 2η yields,

DΦ(µ2η ∥ ν2η)
DΦ(µ0 ∥ ν0)

≤ exp

(
−
∫ 2η

0
αt dt

)
≤ (1 + ηL)2

(1 + ηL)2 + 2αη
.

Finally, note that DΦ(µ2η ∥ ν2η) = DΦ(µP ∥ νηP) and DΦ(µ0 ∥ ν0) = DΦ(µ ∥ νη), where the latter
holds as F is bijective. This, along with the fact that µ was arbitrary completes the proof.

Appendix E. Proof of Lemma 13

Proof Recall the ULA update in law (14). Under the assumptions of α-strong log-concavity, L-
smoothness, and η ≤ 1

L , it holds that F (x) = x−η∇f(x) is a bijective map with ∥F∥Lip ≤ 1−αη.
Also note that N2η is 1

2η -SLC and therefore satisfies a Φ-Sobolev inequality with the same constant
(Lemma 7). Suppose ρk satisfies αk-ΦSI. Then Lemmas 5 and 6 imply that

1

αk+1
≤ (1− αη)2

αk
+ 2η .

Therefore, suppose we start from ρ0 such that α0 ≥ α
2 . Then by induction αk ≥ α

2 for all k ≥ 0.
Indeed, let us show that if αk ≥ α

2 , then αk+1 ≥ α
2 . This follows as:

1

αk+1
≤ 2(1− αη)2

α
+ 2η =

2

α
(1− αη(1− αη)) ≤ 2

α
.

Therefore, taking k → ∞, we get that for the limiting distribution, αΦSI(ν
η) ≥ α

2 .

Appendix F. Deferred Proofs From Section 4

F.1. Proof of Lemma 15

Proof Let µ be an arbitrary distribution such that DΦ(µ ∥ νX) < ∞. Define µt := µ ∗ Nt and
νt := νX ∗ Nt. Further denote αt as shorthand for αΦSI(νt). By assumption, we know that νX
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satisfies a Φ-Sobolev inequality with optimal constant α. Also note that Nt is 1
t -SLC and therefore

satisfies a Φ-Sobolev inequality with the same constant (Lemma 7). Therefore by Lemma 6 we have
that

αt ≥
α

1 + αt
. (17)

Hence, applying Lemma 8 on the SDE dXt = dWt gives us,
d

dt
DΦ(µt ∥ νt) = −1

2
FIΦ(µt ∥ νt) .

We can then apply the Φ-Sobolev inequality of νt and integrate the differential inequality from 0 to
η to yield

DΦ(µη ∥ νη)
DΦ(µ0 ∥ ν0)

≤ exp

(
−
∫ η

0
αt dt

)
≤ 1

1 + αη
.

Observe that DΦ(µη ∥ νη) = DΦ(µP
+ ∥ νXP+) and that DΦ(µ0 ∥ ν0) = DΦ(µ ∥ νX). As µ was

arbitrary, this gives a valid bound on the contraction coefficient and concludes the proof.

F.2. Proof of Lemma 16

Proof The proof follows similarly to that of Lemma 15. Let µ be an arbitrary distribution such that
DΦ(µ ∥ νY ) < ∞. Define µt to be the marginal law at time t when starting the SDE (15) from µ,
and let νt be the marginal law at time t when starting the SDE (15) from νY . Further denote αt as
shorthand for αΦSI(νt). As by construction of the SDE (15), νt = νX ∗ Nη−t, the same argument
used to derive (17) yields that

αt ≥
α

1 + α(η − t)
.

Hence, applying Lemma 8 on the SDE (15) gives us,
d

dt
DΦ(µt ∥ νt) = −1

2
FIΦ(µt ∥ νt) .

We can then apply the Φ-Sobolev inequality of νt and integrate the differential inequality from 0 to
η to yield

DΦ(µη ∥ νη)
DΦ(µ0 ∥ ν0)

≤ exp

(
−
∫ η

0
αt dt

)
≤ 1

1 + αη
.

Observe that DΦ(µη ∥ νη) = DΦ(µP
− ∥ νY P−) and that DΦ(µ0 ∥ ν0) = DΦ(µ ∥ νY ). As µ was

arbitrary, this gives a valid bound on the contraction coefficient and concludes the proof.

Appendix G. Ornstein-Uhlenbeck Process

Recall the Langevin dynamics (5) to sample from ν ∝ exp (−f). When ν is a Gaussian, the
Langevin dynamics is known as the Ornstein-Uhlenbeck process. For example, when ν = N (0, 1

αI),
the Langevin dynamics (5) becomes:

dXt = −αXt dt+
√
2 dWt .

When the initial distribution ρ0 is a Gaussian, the marginal distributions ρt admit convenient Gaus-
sian forms. We will leverage this to show that Theorems 2 and 3 are tight for KL divergence.

Throughout, let ν = N (0, 1
αI) for some α > 0. Recall that this is α-strongly log-concave, and

hence also satisfies a Φ-Sobolev inequality with the same constant (Lemma 7).
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G.1. ULA evolution

The ULA update (6) for ν = N (0, 1
αI) takes the following form:

Xk+1 = (1− αη)Xk +
√

2ηZk , (18)

and the solution to (18) is:

Xk = (1− αη)kX0 +

√
2(1− (1− αη)2k)

α(2− αη)
Z , (19)

where Z ∼ N (0, I) . In this case, the biased limit νη is:

νη = N
(
0,

2

α(2− αη)
I

)
. (20)

To show a tightness result, we simply take ρ0 = N (1, I) where 1 is the d-dimensional all-ones
vector.

Proposition 17 Consider the ULA (6) for ν = N (0, 1
αI) with ρ0 = N (1, I) and η ≤ 1

α . Then,
KL(ρk ∥ νη) = O(dα(1− ηα)2k).

Proof From (19), we can see that Xk ∼ ρk where

ρk = N
(
(1− ηα)k 1,

2 + (1− ηα)2k(2α− ηα2 − 2)

α(2− ηα)
I

)
. (21)

Taking k → ∞ in (21), we see that the biased limit is indeed given by (20), i.e.,

νη = N
(
0,

2

α(2− αη)
I

)
.

Therefore, using the formula for KL divergence between two multivariate Gaussians, we get

KL(ρk∥νη) =
d

2

[
(1− ηα)2kα(2− ηα)

2
+

(1− ηα)2k(2α− ηα2 − 2)

2
− log

(
1 +

(1− ηα)2k(2α− ηα2 − 2)

2

)]
.

This simplifies to reveal that

KL(ρk ∥ νη) = O(dα(1− ηα)2k).
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G.2. Proximal Sampler evolution

Similar to the ULA setting in Appendix G.1, we will take the target distribution to be νX =
N (0, 1

αI) and the starting distribution to be ρX0 = N (1, I) where 1 is the d-dimensional all-ones
vector.

The Proximal Sampler update (9) reveals that ρY0 = N (1, (1 + η)I). Moreover, we also have
that for any y ∈ Rd,

νX|Y (· | y) = N
( y

1 + ηα
,

η

1 + ηα
I
)
,

and consequently, as ρX1 (x) =
∫
νX|Y (x | y)ρY0 (y) dy, ρX1 is Gaussian. This reasoning extends to

show that all of the iterates {ρXk } and {ρYk } for k ≥ 0 are Gaussian. Denoting ρXk = N (mk, ckI),
where for all k ≥ 0, mk ∈ Rd and ck > 0, we have that,

mk+1 =
mk

1 + ηα
and ck+1 =

1

(1 + ηα)2
(
ck −

1

α

)
+

1

α
.

Therefore, as m0 = 1 and c0 = 1,

mk =
1

(1 + ηα)k
1 and ck =

1

(1 + ηα)2k
(
1− 1

α

)
+

1

α
. (22)

We have the following proposition.

Proposition 18 Consider the Proximal Sampler (9) for νX = N (0, 1
αI) with ρX0 = N (1, I) and

η > 0. Then, KL(ρk ∥ νη) = O(dα(1− ηα)−2k).

Proof Recall from (22) that ρXk = N (mk, ckI) with

mk =
1

(1 + ηα)k
1 and ck =

1

(1 + ηα)2k
(
1− 1

α

)
+

1

α
.

Therefore, using the formula for KL divergence between two multivariate Gaussians, we get

KL(ρXk ∥ νX) =
d

2

[
α

(1 + ηα)2k
+

α− 1

(1 + ηα)2k
− log

(
1 +

α− 1

(1 + ηα)2k

)]
.

This simplifies to reveal that

KL(ρk ∥ νη) = O(dα(1− ηα)−2k).

Conclusion From Corollary 9, Proposition 17, and Proposition 18, we can see that the rates of
convergence of KL divergence along the continuous time Langevin dynamics, ULA, and the Proxi-
mal Sampler are (dα exp(−2αt)),

(
dα(1− αη)2k

)
, and

(
dα(1 + αη)−2k

)
respectively.
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