
Under review as a conference paper at ICLR 2021

A CONVERGENCE OF THE FCM CLUSTERING ALGORITHM

We first need to consider our separate updates as a single update procedure. Let F : M 7! R be
defined by (1) and G : R 7!M be defined by (2), and for R = {rjk} and M = {Mk} consider the
sequence n

T (l)(R,M) : l = 0, 1, . . .
o
, where T (R,M) = (F �G(R), G(R)).

We wish to show convergence of the iterates of T to a local minimum or saddle point of the cost
function

J(R,M) =
nX

j=1

cX

k=1

r2jkW2(Mk,Dj)
2.

The two stage update process of T is too complicated to use standard fixed point theorems, so as in
Bezdek (1980) we shall use the following result, which is proven in Zangwill (1969).
Theorem 3 (Zangwill’s Convergence Theorem). Let A : X ! 2X be a point-to-set algorithm acting

on X . Given x0 2 X , generate a sequence {xk}1k=1 such that xk+1 2 A(xk) for every k. Let � ⇢ X
be a solution set, and suppose that the following hold.

(i) The sequence {xk} ⇢ S ⇢ X for a compact set S.

(ii) There exists a continuous function Z on X such that if x 62 � then Z(y) < Z(x) for all

y 2 A(x), and if x 2 � then Z(y)  Z(x) for all y 2 A(x). The function Z is called a descent

function.

(iii) The algorithm A is closed on X \ �.

Then every convergent subsequence of {xk} tends to a point in the solution set �.

Our algorithm is the update function T . We define our solution set as

� =
n
(R,M) : J(R,M) < J(R̂, M̂) 8 (R̂, M̂) 2 B((R,M), r)

o

for some r > 0, where the ball surrounding R is the Euclidean ball in Rnc and the ball surrounding
M is [ck=1BW2(Mk, r). This set contains the local minima and saddle points of the cost function
(Bezdek et al., 1987). We wish to show that our cost function J(R,M) is the descent function Z. We
proceed by verifying each of the requirements for Zangwill’s Convergence Theorem.

Lemma 4. Every iterate T (l)(R,M) 2 [0, 1]nc ⇥ conv(D)c, where

conv(D) =
c[

k=1

[

�j

m[

i=1

conv{�j(y(i)) : j = 1, . . . , n},

with �j a bijection Mk ! Dj and conv{�j(y(i)) : j = 1, . . . , n} the ordinary convex hull in the

plane. Furthermore, [0, 1]nc ⇥ conv(D)c is compact.

Proof. By construction, every rjk 2 [0, 1]. Since j = 1, . . . , n and k = 1, . . . , c, we can view R
as a point in [0, 1]nc, and so every iterate of R is in [0, 1]nc. We shall show that for a fixed k and a
fixed bijection �j : Mk ! Dj , each updated y(i) is contained in a convex combination of {�j(y(i)) :
j = 1, . . . , n}. Where �j(y(i)) = �, let �j(y(i)) = w� as defined in (4), as this is the update point
we use for the diagonal. Since there are a finite number of off-diagonal points, each updated Mk

is therefore contained in the union over all bijections and all points y(i) of the convex combination
of {�j(y(i)) : j = 1, . . . , n}. By also taking the union over each k, we show that every iterate of
M must be contained in the finite triple-union of the convex combination of each possible bijection.
To show that each updated y(i) is contained in a convex combination of {�j(y(i)) : j = 1, . . . , n},

recall that y(i) =
⇣Pn

j=1 r
2
jk

⌘�1 Pn
j=1 r

2
jk�j(y

(i)). Letting t(i)j = r2jk

⇣Pn
j=1 r

2
jk

⌘�1
, clearly each

t(i)j > 0 and
Pn

j=1 t
(i)
j = 1. Since y(i) =

Pn
j=1 t

(i)
j �j(y(i)), each y(i) is contained in the convex

combination. Therefore T (l)(R,M) 2 [0, 1]nc ⇥ conv(D)c for each l = 0, 1,

13

Under review as a conference paper at ICLR 2021

Now, [0, 1] is closed and bounded, so is compact. The convex hull of points in the plane is closed and
bounded, so conv{�j(y(i)) : j = 1, . . . , n} is compact. Since finite unions and finite direct products
of compact sets are compact, [0, 1]nc ⇥ conv(D)c is also compact.

Lemma 5. The cost function J(R,M) is a descent function, as defined in Theorem 3(ii).

Proof. The cost function J is continuous, as it’s a sum, product and composition of continuous
functions. Furthermore, we have that for any (R,M) 62 �,

J(T (R,M)) = J(F �G(R), G(R)) < J(R,G(R)) < J(R,M),

where the first inequality is due to Proposition 1 in Bezdek (1980), and the second inequality comes
from the definition of the Fréchet mean. If (R,M) 2 � then the strict inequalities include equality
throughout.

Theorem 6. For any (R,M), every convergent subsequence of {T (l)(R,M) : l = 0, 1, . . . } tends to

a local minimum or saddle point of the cost function J .

Proof. We proceed with Zangwill’s Convergence Theorem. Our algorithm is the update function
T , our solution set is �, and our descent function is the cost function J(R,M). By Lemma 4, every
iterate is contained within a compact set. By Lemma 5, J is a descent function. Finally, since our
function T only maps points in the plane to points in the plane, it is a closed map. The theorem
follows by applying Theorem 3.

B CONVERGENCE OF THE FRÉCHET MEAN ALGORITHM

Recall that the Fréchet mean is computed by finding the argmin of

F (D̂) =
nX

j=1

r2jkFj(D̂), with Fj(D̂) = W2(D̂,Dj)
2, (5)

for fixed k. We start by recounting work in Turner et al. (2012), which this section adapts for the
weighted Fréchet mean.4 The proofs we’re adapting use a gradient descent technique to prove local
convergence. In order to use their techniques, we need to define a differential structure on the space
of persistence diagrams.

By Theorem 2.5 in Turner et al. (2012), the space of persistence diagrams DL2 =
{D : W2(D,�) <1} is a non-negatively curved Alexandrov space. An optimal bijection � :
D1 ! D2 induces a unit-speed geodesic �(t) = {(1 � t)x + t�(x) : x 2 D1, 0  t  1}. For a
point D 2 DL2 we define the tangent cone TD. Define ⌃̂D as the set of all non-trivial unit-speed
geodesics emanating from D. Let �, ⌘ 2 ⌃̂D and define the angle between them as

\D(�, ⌘) = arccos

✓
lim
s,t#0

s2 + t2 �W2(�(s), ⌘(t))2

2st

◆
2 [0,⇡]

when the limit exists. Then the space of directions (⌃D,\D) is the completion of ⌃̂D/ ⇠ with respect
to \D, with � ⇠ ⌘ () \D(�, ⌘) = 0. We now define the tangent cone as

TD = (⌃D ⇥ [0,1))/(⌃D ⇥ {0}).
Given u = (�, s), v = (⌘, t), we define an inner product on the tangent cone by

hu, vi = st cos\D(�, ⌘).

Now, for ↵ > 0 denote the space (DL2 ,↵W2) as ↵DL2 and define the map i↵ : ↵DL2 ! DL2 .
For an open set ⌦ ⇢ DL2 and a function f : ⌦ ! R, the differential of f at D 2 ⌦ is defined by
dDf = lim↵!1 ↵(f � iD � f(D)). Finally, we say that s 2 TD is a supporting vector of f at D if
dDf(x)  �hs, xi for all x 2 TD.

4In Turner et al. (2012), the Fréchet mean is defined as the arg min of the Fréchet function F (D̂) =R
W2(D̂,Dj)

2d⇢(D̂) with the empirical measure ⇢ = n�1 Pn
j=1 �Dj . We are using the empirical measure

⇢ =
⇣Pn

j=1 r
2
jk

⌘�1 Pn
j=1 r

2
jk�Dj , but for ease we drop the scalar

⇣Pn
j=1 r

2
jk

⌘�1
as it is positive, so doesn’t

affect the minimum of the function.

14

Under review as a conference paper at ICLR 2021

Lemma 7. The following two results are proven in Turner et al. (2012).

(i) Let D 2 DL2 . Let Fj(D̂) = W2(D̂,Dj)2. Then if � is a distance-achieving geodesic from D to

D̂, then the tangent vector to � at D of length 2W2(D̂,D) is a supporting vector at D of f .

(ii) If D is a local minimum of f and s is a supporting vector of f at D, then s = 0.

If there is a unique optimal matching �D3
D1

: D1 ! D3, we say that it is induced by an optimal
matching �D2

D1
: D1 ! D2 if there exists a unique optimal matching �D3

D2
: D2 ! D3 such that

�D3
D1

= �D3
D2
� �D2

D1
. Proposition 3.2 from Turner et al. (2012) states that an optimal matching at a point

is also locally optimal. In particular, it states the following.
Lemma 8. Let D1,D2 2 DL2 such that there is a unique optimal matching from D1 to D2. Then

there exists an r > 0 such that for every D3 2 BW2(D2, r), there is a unique optimal pairing from

D2 to D3 that is induced by the matching from D1 to D2.

The following theorem proves that our algorithm converges to a local minimum of the Fréchet
function.
Theorem 9. Given diagrams Dj , membership values rjk, and the Fréchet function F defined in (5),

then Mk = {y(i)}mi=1 is a local minimum of F if and only if there is a unique optimal pairing from

Mk to each of the Dj , denoted �j , and each y(i) is updated via (4).

Proof. First assume that �j are optimal pairings from Mk to each Dj , and let sj be the vectors in
TMk that are tangent to the geodesics induced by �j and are distance-achieving. Then by Lemma
7(i), each 2sj is a supporting vector for the function Fj . Furthermore, 2

Pn
j=1 r

2
jksj is a supporting

vector for F , as for any D̂,

dMkF (D̂) = dMk

0

@
nX

j=1

r2jkFj(D̂)

1

A =
nX

j=1

r2jkdMkFj(D̂)


nX

j=1

�r2jkh2sj , D̂i = �
*
2

nX

j=1

r2jksj , D̂
+
.

By Lemma 7(ii), 2
Pn

j=1 r
2
jksj = 0. Putting sj = �j(y(i)) � y(i) and rearranging gives that y(i)

updates via (4), as required. Note that when �j(y(i)) = �, we let �j(y(i)) = w� as defined in
(4), because this minimises the transportation cost to the diagonal. Now suppose that �j and �̃j are
both optimal pairings. Then by the above argument

Pn
j=1 r

2
jksj =

Pn
j=1 r

2
jks̃j = 0, implying that

sj = s̃j and so �j = �̃j . Therefore the optimal pairing is unique.

To prove the opposite direction, assume that Mk = {y(i)} locally minimises the Fréchet function F .
Observe that for a fixed bijection �j , we have that

F (Mk) =
nX

j=1

r2jkW2(Mk,Dj)
2

=
nX

j=1

r2jk

0

@ inf
�j :M̂!Dj

X

y2Mk

||y � �j(y)||2
1

A

=
nX

j=1

r2jk

mX

i=1

||y(i) � x(i)
j ||2

=
mX

i=1

0

@
nX

j=1

r2jk||y(i) � x(i)
j ||2

1

A .

15

Under review as a conference paper at ICLR 2021

The final term in brackets is non-negative, and minimised exactly when y(i) is updated via (4).
Furthermore, the unique optimal pairing from Mk to each of the Dj’s is the same for every M̂ within
the ball BW2(Mk, r) for some r > 0, by Lemma 8. Therefore, if Mk is a local minimum of F ,
then the y(i)’s are equal to the values found by taking the optimal pairings �j and calculating the
weighted means of �j(y(i)) with the weights r2jk, as required. It will remain a minimum as long as
the matching stays the same, which happens in the ball BW2(Mk, r), so we are done.

Algorithm 2 WFrechetMean
Input Diagrams D = {Dj}nj=1, Weights Rk = {rjk}nj=1 (fixed k)
Output Weighted Fréchet mean Mk = {y(i)}mi=1

1: m max1jn |Dj |
2: for j in 1..n do
3:

h
x(i)
j

im
i=1
 HUNGARIAN(Mk,Dj)

4: end for
5: while

nh
x(i)
j

im
i=1

on

j=1
6=

nh
x̂(i)
j

im
i=1

on

j=1
do

6: for i in 1..m do
7: J

(i)
OD = {j : x(i)

j 6= �}
8: J

(i)
D = {j : x(i)

j = �}
9: if J(i)OD = ; then

10: y(i) �
11: else
12: w =

⇣P
j2J

(i)
OD

r2jk

⌘�1 P
j2J

(i)
OD

r2jkx
(i)
j

13: if J(i)D = ; then
14: y(i) w
15: else

16: y(i)
P

j2J
(i)
OD

r2jkx
(i)
j +

P
j2J

(i)
D

r2jkw�

Pn
j=1 r2jk

17: end if
18: end if
19: end for
20:

nh
x̂(i)
j

im
i=1

on

j=1

nh
x(i)
j

im
i=1

on

j=1
21: for j in 1..n do
22:

h
x(i)
j

im
i=1
 HUNGARIAN(Mk,Dj)

23: end for
24: end while
25: return {y(i)}mi=1

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATA

Membership values. The membership values for the synthetic datasets are in Table 2. Datasets 1-3
are the datasets of noise, datasets 4-6 are the datasets with one ring, and datasets 7-9 are the datasets
with two rings. We ran our algorithm for 20 iterations.

Table 2: Membership values for the synthetic dataset

Dataset 1 2 3 4 5 6 7 8 9

Cluster 1 0.6336 0.5730 0.5205 0.2760 0.2503 0.1974 0.2921 0.2128 0.2292
Cluster 2 0.1768 0.2057 0.2327 0.5361 0.5329 0.6371 0.2452 0.2291 0.1822
Cluster 3 0.1900 0.2212 0.2468 0.1879 0.2169 0.1655 0.4627 0.5580 0.5885

Timing experiments. For the timing experiments we divide the total number of points equally
between four distributions, two of which are noise and two of which are shaped in a ring. Each
clustering algorithm was run for five iterations on one core of a 2019 MacBook Pro with a 1.4GHz

16

Under review as a conference paper at ICLR 2021

Table 3: Seconds per clustering iteration

Points 100 200 300 400 500 600 700 800 900 1000

FPDCluster 0.01552 0.1975 0.9358 2.229 5.694 12.29 19.27 34.50 53.20 77.81
ADMM 5.622 34.86 161.3 617.6 - - - - - -
BADMM 0.2020 2.188 26.38 112.6 - - - - - -
SubGD 0.4217 2.273 22.17 103.4 - - - - - -
IterBP 0.3825 2.226 21.57 108.9 - - - - - -
LP 0.3922 2.031 22.32 117.3 - - - - - -

Intel Core i5. We included the time taken to compute the persistence diagrams in the running times
for our algorithm.

We also use synthetic data to empirically compare the running time of our algorithm to other dataset
clustering algorithms available. Computing the Wasserstein distance has super-cubic time complexity
Ling & Okada (2007), so is a significant bottleneck both for our algorithm and comparable Wasserstein
barycentre clustering algorithms Benamou et al. (2015); Cuturi & Doucet (2014); Li & Wang (2008);
Ye & Li (2014); Ye et al. (2017). Persistence diagrams generally reduce both the dimensionality and
number of points in a dataset,5 so we in turn reduce the computational bottleneck. To demonstrate this,
we evaluated the average time per iteration of our persistence diagram clustering algorithm, as well as
the average iteration time for comparable Wasserstein barycentre clustering algorithms. We included
the time taken to compute the persistence diagrams from the datasets when timing our clustering
algorithm. We give the results in Table 3, leaving an entry blank where it became unpractical to run a
test (e.g. it takes too long to return a solution and the algorithm becomes unresponsive). We show at
least an order of magnitude improvement in performance over comparable Wasserstein barycentre
clustering algorithms.

C.2 LATTICE STRUCTURES

The results obtained are in Tables 5-8. The fuzzy values for FPDCluster are given as floats, although
in each case they converged to an absolute cluster. The Wasserstein barycentre clustering algorithms
each have discrete labels. The correct labellings are for 1-3 and 4-6 to be clustered together in
each case. We clustered the 2-PH diagrams. We denote a label as having been assigned by 1,
or not assigned by 0. We ran each algorithm for five iterations. We obtained our datasets as cif
files, converted them to xyz files, and then to csv files, producing a list of the coordinates of each
atom in R3. We create three copies of each structure. For rotation, we rotate two of them by 180o

around different axes. For reflection, we reflect two of them in different axes. For translation, we
translate them up or down by the length of the unit-cell. We use our own python implementation of
FPDCluster, available in the supplementary materials. For each of the other algorithms, we use the
implementation provided at https://github.com/bobye/WBC_Matlab, a copy of which is
in the supplementary materials. We do not limit the number of points in the diagram when clustering.

C.3 DECISION BOUNDARIES

Why hard clustering doesn’t work. In order to assign each task to the top-ranked models, we need
to have a path from a task to the nearest cluster centre, then from that cluster centre to the k-nearest
models (note that when we refer to models/tasks, we’re implicitly referring to the persistence diagram
of their decision boundary). We can always find that route when fuzzy clustering, as the fractional
membership values mean that we have information about the proximity of every model/task with
every cluster centre. However, with hard clustering we cannot always find that route. Firstly, the
hard labelling means that you lose a lot of information about the proximity of models/tasks to cluster
centres. Therefore, in order to find a route, we need a every task to be assigned to a cluster centre

5Persistence diagrams are always planar, so if the data is in Rd, d > 2, then there is a dimensionality
reduction. For p > 0, the persistence diagram of p-PH always has less points than the dataset when computed
with the Rips complex.

17

https://github.com/bobye/WBC_Matlab

Under review as a conference paper at ICLR 2021

Figure 4: With hard clustering, we cannot always find a path from a task to a model.

that also has a model assigned to it. However, there are no guarantees that will happen. We show an
example where no path exists in Figure 4.

Experimental details. All code used for computation is available in the supplementary materials. For
models, we trained the standard Pytorch CNN available at https://github.com/pytorch/
examples/blob/master/mnist/main.py. We trained them on MNIST, FashionMNIST,
and KMNIST, each obtained using the Torchvision.datasets package. We split the data into 9 binary
datasets for classification, class 0 vs each of the remaining classes. We trained three of each model,
seeded with 0, 1, and 2 respectively. MNIST and KMNIST were each trained for five epochs,
FashionMNIST was trained for 14 epochs. We used Ripser to compute the 1-persistence diagrams
using default settings. We limited the number of points in the diagram to the 25 most persistent when
clustering. Our percentage improvement values use the membership values after 16 iterations. We
compute the standard error bounds when calculating the percentage improvement.

Table 4: Clustering results after transformation

Cubic Structures Carbon Allotropes
None Rotate Reflect Translate None Rotate Reflect Translate

FPDCluster 4 4 4 4 4 4 4 4
ADMM 3 7 3 7 3 7 7 7
BADMM 3 7 3 7 3 7 7 7
SubGD 3 7 3 7 3 7 7 7
IterBP 3 7 3 7 3 7 7 7
LP 3 7 3 7 3 7 7 7

18

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py

Under review as a conference paper at ICLR 2021

Table 5: Membership values for non-transformed datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

BADMM Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

SubGD Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

IterBP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

LP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

Table 6: Membership values for rotated datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster 2 1 1 0 1 1 0 0 1 0 0 1 0

BADMM Cluster 1 0 1 1 0 1 1 1 1 0 1 1 0
Cluster 2 1 0 0 1 0 0 0 0 1 0 0 1

SubGD Cluster 1 0 1 1 0 1 1 1 0 0 1 0 0
Cluster 2 1 0 0 1 0 0 0 1 1 0 1 1

IterBP Cluster 1 0 1 0 0 1 0 0 1 1 0 1 1
Cluster 2 1 0 1 1 0 1 1 0 0 1 0 0

LP Cluster 1 1 0 1 1 0 1 0 1 0 0 1 0
Cluster 2 0 1 0 0 1 0 1 0 1 1 0 1

Table 7: Membership values for reflected datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster 2 0 0 0 1 1 1 1 1 1 0 0 1

BADMM Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster 2 0 0 0 1 1 1 1 1 1 0 0 1

SubGD Cluster 1 1 1 1 0 0 0 1 1 1 1 1 0
Cluster 2 0 0 0 1 1 1 0 0 0 0 0 1

IterBP Cluster 1 1 1 1 0 0 0 0 0 0 0 0 1
Cluster 2 0 0 0 1 1 1 1 1 1 1 1 0

LP Cluster 1 1 1 1 0 0 0 0 0 0 0 1 1
Cluster 2 0 0 0 1 1 1 1 1 1 1 0 0

19

Under review as a conference paper at ICLR 2021

Table 8: Membership values for translated datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 0 0 1 0 0 1 0 0 1 0 0 1
Cluster 2 1 1 0 1 1 0 1 1 0 1 1 0

BADMM Cluster 1 0 1 0 1 1 0 1 1 0 1 1 0
Cluster 2 1 0 1 0 0 1 0 0 1 0 0 1

SubGD Cluster 1 0 0 1 0 0 1 0 1 0 0 1 0
Cluster 2 1 1 0 1 1 0 1 0 1 1 0 1

IterBP Cluster 1 0 1 0 0 1 0 0 0 1 0 0 1
Cluster 2 1 0 1 1 0 1 1 1 0 1 1 0

LP Cluster 1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster 2 1 1 0 1 1 0 0 1 0 0 1 0

20

	Introduction
	Related work
	Our contributions

	Topological preliminaries
	Algorithmic design
	Clustering persistence diagrams
	Computing the weighted Fréchet mean

	Experiments
	Synthetic data
	Lattice structures
	Decision boundaries

	Conclusion
	Convergence of the FCM clustering algorithm
	Convergence of the Fréchet mean algorithm
	Experimental details
	Synthetic data
	Lattice structures
	Decision boundaries

