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A CONVERGENCE OF THE FCM CLUSTERING ALGORITHM

We first need to consider our separate updates as a single update procedure. Let F' : M — R be
defined by (1) and G : R — M be defined by (2), and for R = {r;;} and Ml = {M}, } consider the
sequence

{T(’)(R,M) 1=0,1,... } where T(R, M) = (F o G(R), G(R)).

We wish to show convergence of the iterates of 7" to a local minimum or saddle point of the cost
function

J(RM) = >3 13 Wy (My, Dj)>.
j=1k=1

The two stage update process of 7" is too complicated to use standard fixed point theorems, so as in
Bezdek! (1980) we shall use the following result, which is proven in Zangwill| (1969).

Theorem 3 (Zangwill’s Convergence Theorem). Let A : X — 2% be a point-to-set algorithm acting
on X. Given xg € X, generate a sequence {xy}7° | such that vy41 € A(zy,) forevery k. LetT’ C X
be a solution set, and suppose that the following hold.

(i) The sequence {x} C S C X for a compact set S.

(ii) There exists a continuous function Z on X such that if v € T then Z(y) < Z(x) for all
y € A(z), andif x € T then Z(y) < Z(x) forally € A(x). The function Z is called a descent
function.

(iii) The algorithm A is closed on X \ T
Then every convergent subsequence of {xy} tends to a point in the solution set T
Our algorithm is the update function 7. We define our solution set as

r— {(R, M) : J(R,M) < J(R, M)V (&,M) € B((R, M),r)}

for some r > 0, where the ball surrounding R is the Euclidean ball in R™¢ and the ball surrounding
M is US_, Bw, (M, 7). This set contains the local minima and saddle points of the cost function
(Bezdek et al., [1987). We wish to show that our cost function J (R, M) is the descent function Z. We
proceed by verifying each of the requirements for Zangwill’s Convergence Theorem.

Lemma 4. Every iterate T (R, M) € [0,1]"¢ x conv(D)¢, where

conv(D) = U U U conv{y;(y"):5=1,...,n},

k=1 ~; i=1

with v; a bijection My, — D; and conv{~;(y)) : j = 1,...,n} the ordinary convex hull in the
plane. Furthermore, [0,1]™¢ x conv (D)€ is compact.

Proof. By construction, every r;; € [0,1]. Since j = 1,...,nand k = 1,...,¢c, we can view R
as a point in [0, 1]™¢, and so every iterate of R is in [0, 1]™¢. We shall show that for a fixed k and a
fixed bijection v, : M, — D;, each updated y(*) is contained in a convex combination of {;(y®) :
j=1,...,n}. Where v;(y)) = A, let ; (y?)) = wa as defined in (4), as this is the update point
we use for the diagonal. Since there are a finite number of off-diagonal points, each updated M,
is therefore contained in the union over all bijections and all points 3(*) of the convex combination
of {7;(y) : j = 1,...,n}. By also taking the union over each k, we show that every iterate of
M must be contained in the finite triple-union of the convex combination of each possible bijection.
To show that each updated 3(*) is contained in a convex combination of {yj(y("')) :j=1,...,n},

. -1 . ) -1
recall that y(V) = (Z?Zl r?k> S 3y (). Letting t;l) =12 (Z?Zl r3k> , clearly each
t? > 0and 37, t;i) = 1. Since y() = > tg-i)fyj (y™), each y¥ is contained in the convex
combination. Therefore () (R, M) € [0, 1]"¢ x conv(D)¢ for eachl = 0,1, ....
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Now, [0, 1] is closed and bounded, so is compact. The convex hull of points in the plane is closed and
bounded, so conv{vy;(y?) : j = 1,...,n} is compact. Since finite unions and finite direct products
of compact sets are compact, [0, 1] x conv(ID)¢ is also compact. O

Lemma 5. The cost function J(R, M) is a descent function, as defined in Theorem 3(ii).

Proof. The cost function J is continuous, as it’s a sum, product and composition of continuous
functions. Furthermore, we have that for any (R, M) ¢ T,

J(T(R,M)) = J(F o G(R),G(R)) < J(R,G(R)) < J(R, M),

where the first inequality is due to Proposition 1 in|Bezdek| (1980), and the second inequality comes
from the definition of the Fréchet mean. If (R, M) € I then the strict inequalities include equality
throughout. O

Theorem 6. For any (R, M), every convergent subsequence of {T")(R,M) : 1 =0,1,...} tends to
a local minimum or saddle point of the cost function J.

Proof. We proceed with Zangwill’s Convergence Theorem. Our algorithm is the update function
T, our solution set is I', and our descent function is the cost function J(R, M). By Lemma 4, every
iterate is contained within a compact set. By Lemma 5, J is a descent function. Finally, since our
function 7" only maps points in the plane to points in the plane, it is a closed map. The theorem
follows by applying Theorem 3. O

B CONVERGENCE OF THE FRECHET MEAN ALGORITHM
Recall that the Fréchet mean is computed by finding the arg min of
F(D) =Y r3 F;(D), with F;(D) = Wy(D, D;)?, (5)
j=1

for fixed k. We start by recounting work in [Turner et al.[|(2012), which this section adapts for the
weighted Fréchet mean The proofs we’re adapting use a gradient descent technique to prove local
convergence. In order to use their techniques, we need to define a differential structure on the space
of persistence diagrams.

By Theorem 2.5 in [Turner et al. (2012), the space of persistence diagrams Dy =
{D: W5(D, A) < oo} is a non-negatively curved Alexandrov space. An optimal bijection 7 :
D; — Dy induces a unit-speed geodesic ¢(t) = {(1 —t)x + ty(z) : ® € D;1,0 < ¢ < 1}. Fora

point D € Dy > we define the tangent cone Tp. Define X as the set of all non-trivial unit-speed
geodesics emanating from D. Let ¢, n € Xp and define the angle between them as

52+ 12 — Wa(o(s), 2
Zp(é,n) = arccos (lim +17 — Wa(é(s),n(t)) > € [0, 7]

5,t10 2st

when the limit exists. Then the space of directions (Xp, Zp) is the completion of i‘@/ ~ with respect
to £p, with ¢ ~n < Zp(¢,n) = 0. We now define the tangent cone as

Tp = (ZD X [0, OO))/(ED X {0})
Given u = (¢, s),v = (n,t), we define an inner product on the tangent cone by
(u,v) = stcos Zp(p,n).

Now, for @ > 0 denote the space (Dyz2, aWs) as o Dyz and define the map i, : a« Dz — Die.
For an open set {2 C D2 and a function f : Q — R, the differential of f at D € € is defined by
dpf = limg_ye0 a(f o ip — f(D)). Finally, we say that s € T} is a supporting vector of f at D if
dpf(z) < —(s,z) forall z € Tp.

*In [Turner et al.|(2012), the Fréchet mean is defined as the arg min of the Fréchet function F(]ﬁ)) =
J W2(DD,D;)*dp(D) with the empirical measure p = n~' 32" dp,. We are using the empirical measure

-1
p= (E;‘Zl T]Zk) > r?k(SD] , but for ease we drop the scalar (ngzl rfk) as it is positive, so doesn’t
affect the minimum of the function.
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Lemma 7. The following two results are proven in|Turner et al.|(2012).

(i) LetD € Dyy2. Let F} (D) = Wy (D, D, ;)2 Then if ¢ is a distance-achieving geodesic from D to
D, then the tangent vector to ¢ at D of length 2Ws (Ilj), D) is a supporting vector at D of f.

(it) If D is a local minimum of f and s is a supporting vector of f at D, then s = Q.

If there is a unique optimal matching 'ygf : D; — D3, we say that it is induced by an optimal
matching 7D D; — Dy if there exists a unique optimal matching VD' Dy — Dj3 such that

%Df = 7D3 o %@2 Proposition 3.2 from Turner et al. (2012) states that an optimal matching at a point
is also locally opt1mal In particular, it states the following.

Lemma 8. Let D1,y € Dy2 such that there is a unique optimal matching from Dy to Ds. Then
there exists an r > 0 such that for every D3 € By, (D, ), there is a unique optimal pairing from
Dy to D3 that is induced by the matching from D1 to Ds.

The following theorem proves that our algorithm converges to a local minimum of the Fréchet
function.

Theorem 9. Given diagrams ID;, membership values r;i, and the Fréchet function I defined in (5),
then My, = {y l)} " is a local minimum of F if and only if there is a unique optimal pairing from
M, to each of the D, denoted vy;, and each y D is updated via (4).

Proof. First assume that «y; are optimal pairings from M, to each ID;, and let s; be the vectors in
Th, that are tangent to the geodesics induced by «y; and are distance-achieving. Then by Lemma
7(i), each 2s; is a supporting vector for the function F;. Furthermore, 2 Z;;l r?k s; is a supporting

vector for F, as for any ]]5),

dyt, F(D) = duy, Zr]kF Zrdek
” r 2$J, = <22raksj, >

By Lemma 7(ii), 23°7_, 77, s; = 0. Putting s; = %(y(i)) — y@ and rearranging gives that y(*)

<
j=1

updates via (4), as required. Note that when 7, (y) = A, we let v;(y)) = wa as defined in
(4), because this minimises the transportation cost to the diagonal. Now suppose that -y; and 7; are
both optimal pairings. Then by the above argument 7, 7%, s; = >, 75,3; = 0, implying that
s; = 5; and so 7y; = 7;. Therefore the optimal pairing is unique.

To prove the opposite direction, assume that M = {y(i)} locally minimises the Fréchet function F'.
Observe that for a fixed bijection -y;, we have that

F(My) = 3 Wa(My, D;)?

j=1

n
=> inf Sy = w2
j=1 V5 M=D5 e,

=Y 5y =P
j=1 i=1

=2 [ 2ol a7

i=1 \j=1
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The final term in brackets is non-negative, and minimised exactly when y(*) is updated via (4).
Furthermore, the unique optimal pairing from M, to each of the ID;’s is the same for every M within
the ball By, (Mg, r) for some r > 0, by Lemma 8. Therefore, if My, is a local minimum of F’,
then the y(*)’s are equal to the values found by taking the optimal pairings ~; and calculating the
weighted means of yj(y(’:)) with the weights r?k, as required. It will remain a minimum as long as
the matching stays the same, which happens in the ball By, (M, r), so we are done. O

Algorithm 2 WFrechetMean
Input Diagrams D = {D;}""_,, Weights R = {r;;}}}_; (fixed k)
Output Weighted Fréchet mean M, = {y(17,

I m < maxi<j<n |Dj | 17: end if
2: for jin 1..n do 18: end if
3: [I(Z):| < HUNGARIAN(Mk7Dj) 19: end f,ornL n N m n
' Ji=1 20: 1 {2l
4: end for m om o om ’ I Jiz=1) = I Lz j2
5. while { [:vgl)] } # { [@gl)] ’ } 21: for jin 1..n do
do = =IEL g, [;cg.’)LZI < HUNGARIAN(M,, ;)
6 foriinl.mdo 23: end for
7: 38[)) ={j: acg.l) # A} 24: end while
8 3](31') _r xg_i) — A} 25: return {y}m
9: if 30) = 0 then
10: y — A
11: else L
. _ 2 2 ()
12: w —. (ZjEHg’D) Tjk) Zjeﬂ((,g Tk
13: it 39 = 0 then
14: y(i) —w
15: else

2 () 2
(4) 2q) T el ik
16: y — oD 0 3

i=1"jk

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATA

Membership values. The membership values for the synthetic datasets are in Table 2. Datasets 1-3
are the datasets of noise, datasets 4-6 are the datasets with one ring, and datasets 7-9 are the datasets
with two rings. We ran our algorithm for 20 iterations.

Table 2: Membership values for the synthetic dataset

Dataset 1 2 3 4 5 6 7 8 9

Cluster 1 0.6336 0.5730 0.5205 0.2760 0.2503 0.1974 0.2921 0.2128 0.2292
Cluster 2 0.1768 0.2057 0.2327 0.5361 0.5329 0.6371 0.2452 0.2291 0.1822
Cluster 3 0.1900 0.2212 0.2468 0.1879 0.2169 0.1655 0.4627 0.5580 0.5885

Timing experiments. For the timing experiments we divide the total number of points equally
between four distributions, two of which are noise and two of which are shaped in a ring. Each
clustering algorithm was run for five iterations on one core of a 2019 MacBook Pro with a 1.4GHz
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Table 3: Seconds per clustering iteration

Points 100 200 300 400 500 600 700 800 900 1000
FPDCluster 0.01552 0.1975 0.9358 2.229 5.694 12.29 19.27 34.50 53.20 77.81
ADMM 5.622 3486 1613 6176 - - - - - -
BADMM 0.2020 2.188 26.38 112.6 - - - - - -
SubGD 04217 2273 22.17 1034 - - - - - -
IterBP 0.3825 2.226 21.57 108.9 - - - - - -
LP 0.3922 2.031 2232 1173 - - - - - -

Intel Core i5. We included the time taken to compute the persistence diagrams in the running times
for our algorithm.

We also use synthetic data to empirically compare the running time of our algorithm to other dataset
clustering algorithms available. Computing the Wasserstein distance has super-cubic time complexity
Ling & Okada/(2007), so is a significant bottleneck both for our algorithm and comparable Wasserstein
barycentre clustering algorithms Benamou et al. (2015); Cutur1 & Doucet| (2014); Li & Wang|(2008);
Ye & Li/(2014);|Ye et al. (2017). Persistence diagrams generally reduce both the dimensionality and
number of points in a dataset so we in turn reduce the computational bottleneck. To demonstrate this,
we evaluated the average time per iteration of our persistence diagram clustering algorithm, as well as
the average iteration time for comparable Wasserstein barycentre clustering algorithms. We included
the time taken to compute the persistence diagrams from the datasets when timing our clustering
algorithm. We give the results in Table 3, leaving an entry blank where it became unpractical to run a
test (e.g. it takes too long to return a solution and the algorithm becomes unresponsive). We show at
least an order of magnitude improvement in performance over comparable Wasserstein barycentre
clustering algorithms.

C.2 LATTICE STRUCTURES

The results obtained are in Tables 5-8. The fuzzy values for FPDCluster are given as floats, although
in each case they converged to an absolute cluster. The Wasserstein barycentre clustering algorithms
each have discrete labels. The correct labellings are for 1-3 and 4-6 to be clustered together in
each case. We clustered the 2-PH diagrams. We denote a label as having been assigned by 1,
or not assigned by 0. We ran each algorithm for five iterations. We obtained our datasets as cif
files, converted them to xyz files, and then to csv files, producing a list of the coordinates of each
atom in R3. We create three copies of each structure. For rotation, we rotate two of them by 180°
around different axes. For reflection, we reflect two of them in different axes. For translation, we
translate them up or down by the length of the unit-cell. We use our own python implementation of
FPDCluster, available in the supplementary materials. For each of the other algorithms, we use the
implementation provided at https://github.com/bobye/WBC_Mat lab, a copy of which is
in the supplementary materials. We do not limit the number of points in the diagram when clustering.

C.3 DECISION BOUNDARIES

Why hard clustering doesn’t work. In order to assign each task to the top-ranked models, we need
to have a path from a task to the nearest cluster centre, then from that cluster centre to the k-nearest
models (note that when we refer to models/tasks, we’re implicitly referring to the persistence diagram
of their decision boundary). We can always find that route when fuzzy clustering, as the fractional
membership values mean that we have information about the proximity of every model/task with
every cluster centre. However, with hard clustering we cannot always find that route. Firstly, the
hard labelling means that you lose a lot of information about the proximity of models/tasks to cluster
centres. Therefore, in order to find a route, we need a every task to be assigned to a cluster centre

SPersistence diagrams are always planar, so if the data is in R%,d > 2, then there is a dimensionality
reduction. For p > 0, the persistence diagram of p-PH always has less points than the dataset when computed
with the Rips complex.
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Hard clustering Fuzzy clustering
Key
O Cluster . O . [

. Model ‘J_[
] —
A Task

No path exists from this With fuzzy, a path
task to a model always exists

Figure 4: With hard clustering, we cannot always find a path from a task to a model.

that also has a model assigned to it. However, there are no guarantees that will happen. We show an
example where no path exists in Figure 4.

Experimental details. All code used for computation is available in the supplementary materials. For
models, we trained the standard Pytorch CNN available at https://github.com/pytorch/
examples/blob/master/mnist/main.py. We trained them on MNIST, FashionMNIST,
and KMNIST, each obtained using the Torchvision.datasets package. We split the data into 9 binary
datasets for classification, class 0 vs each of the remaining classes. We trained three of each model,
seeded with 0, 1, and 2 respectively. MNIST and KMNIST were each trained for five epochs,
FashionMNIST was trained for 14 epochs. We used Ripser to compute the 1-persistence diagrams
using default settings. We limited the number of points in the diagram to the 25 most persistent when
clustering. Our percentage improvement values use the membership values after 16 iterations. We
compute the standard error bounds when calculating the percentage improvement.

Table 4: Clustering results after transformation

Cubic Structures Carbon Allotropes
None Rotate Reflect Translate None Rotate Reflect Translate
FPDCluster 4 4 ("4 4 4 4 ("4 (%4
ADMM v X v X v X X X
BADMM v X v X v X X X
SubGD v X v X v X X X
IterBP v X v X v X X X
LP v X v X v X X X
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Table 5: Membership values for non-transformed datasets

Cubic Structure Datasets Carbon Allotrope Datasets

1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster2 0 0 0 0 0 0
BADMM  Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster2 0 0 0 1 1 1 0 0 0 1 1 1
SubGD Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster2 0 0 0 1 1 1 0 0 0 1 1 1
IterBP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster2 0 0 0 1 1 1 0 0 0 1 1 1
LP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster2 0 0 0 1 1 1 0 0 0 1 1 1
Table 6: Membership values for rotated datasets
Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster2 1 1 0 1 1 0 0 1 0 0 1 0
BADMM Cluster1 0 1 1 0 1 1 1 1 0 1 1 0
Cluster2 1 0 0 1 0 0 0 0 1 0 0 1
SubGD Cluster 1 0 1 1 0 1 1 1 0 0 1 0 0
Cluster2 1 0 0 1 0 0 0 1 1 0 1 1
IterBP Cluster1 0 1 0 0 1 0 0 1 1 0 1 1
Cluster2 1 0 1 1 0 1 1 0 0 1 0 0
LP Cluster 1 1 0 1 1 0 1 0 1 0 0 1 0
Cluster2 0 1 0 0 1 0 1 0 1 1 0 1

Table 7: Membership values for reflected datasets

Cubic Structure Datasets Carbon Allotrope Datasets

I 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster2 0 0 0 1 1 1 1 1 1 0 0 1
BADMM  Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster2 0 0 0 1 1 1 1 1 1 0 0 1
SubGD Cluster 1 1 1 1 0 0 0 1 1 1 1 1 0
Cluster2 0 0 0 1 1 1 0 0 0 0 0 1
IterBP Cluster 1 1 1 1 0 0 0 0 0 0 0 0 1
Cluster2 0 0 0 1 1 1 1 1 1 1 1 0
LP Cluster 1 1 1 1 0 0 0 0 0 0 0 1 1
Cluster2 0 0 0 1 1 1 1 1 1 1 0 0
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Table 8: Membership values for translated datasets

Cubic Structure Datasets Carbon Allotrope Datasets

1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster1 0 0 1 0 0 1 0 0 1 0 0 1
Cluster2 1 1 0 1 1 0 1 1 0 1 1 0
BADMM Cluster1 0 1 0 1 1 0 1 1 0 1 1 0
Cluster2 1 0 1 0 0 1 0 0 1 0 0 1
SubGD Cluster1 0 0 1 0 0 1 0 1 0 0 1 0
Cluster2 1 1 0 1 1 0 1 0 1 1 0 1
IterBP Cluster1 0 1 0 0 1 0 0 0 1 0 0 1
Cluster2 1 0 1 1 0 1 1 1 0 1 1 0
LP Cluster1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster2 1 1 0 1 1 0 0 1 0 0 1 0
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