
A Supplementary Numerical Results

A.1 Comparison with the straightforward strategy

In this example, we compare the proposed Algorithm 1 with the straightforward strategy, where the
latter method pulls arms according to the latent utility defined in Eq. (1) and calibrates the state in the
same way as Algorithm 1.

Suppose there are n arms A = {A1, A2, . . . , An} and three agents P = {P1, P2, P3}, where each
agent has a quota q < n/3. There are two equally likely states: sa and sb with sa = 1� sb > 1/2.
All arms prefer P1 and P2 to P3, but the arms prefer P3 compared to being unmatched. Agents
P1 and P2 evaluate each arm based on score v and with probability p

⇤
2 (0, 1), each of P1 and P2

finds an arm unacceptable. Agent P3 evaluates each arm only based on the score. For each state
j 2 {a, b}, a fraction sj of arms receives utility u1 when matched to P1 and utility u2 when matched
to P2, where u1 > u2 and the remaining (1� sj) of arms receive the opposite utilities. Hence, P1 is
more popular under the state sa and P2 is more popular under the state sb. In each state, an arm gets
utility u3 from P3, where (1� p

⇤)u1 < u3 < u1. This condition implies that an arm is better off by
accepting P3 than waiting for P1 or P2. We consider a two-stage matching, where at the first stage,
each agent pulls a set of arms and wait-lists other arms. An arm pulled by an agent must accept or
reject the agent immediately.

Proposition A.4. Agent P1 is better off by using Algorithm 1 than using the straightforward strategy,
where the expected payoff is improved by O(⌘1,1). Here ⌘1,1 is the regularization parameter defined
in Theorem 1.
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Figure 3: Comparison of the proposed Algorithm 1 (i.e., LUB-CDM) and the straightforward strategy.
The results are averaged over 500 data replications. (a) The relative increase of P1’s payoffs when
P1 changes from the straightforward strategy to the LUB-CDM, where the improvement is O(⌘1,1).
(b) The relative decrease of P2’s payoffs when P1 changes from the straightforward strategy to the
LUB-CDM.

To illustrate the improvement, we consider the states sa = 0.6, sb = 0.4, the number of arms n = 100,
the quota q = 10, the utilities u1 = 1, u2 = 0.9, u3 = 0.8, and the probability p

⇤ = 0.3. Suppose
that the score v follows a deterministic uniform design points {1.05, 1.1, 1.15, . . . , 2.95, 3} ⇢ [1, 3].
The penalties of exceeding the quota are �1 = �2 = �3 = 5. We compare the proposed Algorithm 1
(i.e., LUB-CDM) with the straightforward strategy (i.e., CDM). The latter method is a straightforward
strategy as it pulls arms according to the latent utilities in Eq. (1) without strategic behaviors. Figure
3 reports P1’s and P2’s relative changes in payoffs, when P1 changes from using the CDM to using
the LUB-CDM. The results are averaged over 500 data replications. Here P1 using the LUB-CDM
and the CDM correspond to ⌘1,1 > 0 and ⌘1,1 = 0, respectively. The P2 uses CDM. It is seen the
LUB-CDM improves P1’s expected payoff, where the improvement is at the cost of P2’s payoff.
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A.2 Comparison with the patient strategy

In this example, we compare the proposed Algorithm 1 with the patient strategy, where the latter
method pulls arms according to the latent utility at the beginning stage but has more strategic
behaviors as the matching proceeds. We consider a search model due to [2], which captures the
search process in matching markets and builds a connection between the multi-stage decentralized
matching markets and the centralized matching markets.

Suppose there are n arms A = {A1, A2, . . . , An} and m agents P = {P1, P2, . . . , Pm}, where
each agent has quota q = 1. At each stage, each agent comes across a randomly sampled arm. Let
vP(i) and vA(j) be the reservation utilities of agent Pi and arm Aj from staying unmatched and
continuing the search. Recall the latent utility Ui(Aj) in Section 2. Similarly, we define Uj(Pi)
as the utility that arm Aj receives when matched to Pi. Let vP(i) and vA(j) be the reservation
utilities of agent Pi and arm Aj from staying single and continuing the search for a match. Hence
1{Pi pulls Aj} = 1{Ui(Aj) � vP(i)}, and 1{Aj accepts Pi} = 1{Uj(Pi) � vA(j)}. The utility
that agent Pi gets upon coming across arm Aj is

Ūi(Aj) = Ui(Aj)1{Ui(Aj) � vP(i)}1{Uj(Pi) � vA(j)}

+ vP(i)[1� 1{Ui(Aj) � vP(i)}1{Uj(Pi) � vA(j)}],

where the first term on the right-hand side is the utility from a successful match and the second term
on the right-hand side is the utility when no match occurs. Adachi’s model involves a stage discount
factor ⇢ > 0, where the Bellman equations for the optimal reservation values and search rules are

vP(i) = ⇢

Z
Ūi(Aj)dFA(j) and vA(j) = ⇢

Z
Ūj(Pi)dFP(i), (A.10)

where FA and FP are the distributions that each agent and arm came across. In [2] the author shows
that Bellman equations in Eq. (A.10) defines an iterative mapping that converges to the equilibrium
reservation utilities (v⇤

P
(i), v⇤

A
(j)). Furthermore, as ⇢ ! 1, the Bellman equations lead to the

matching outcomes that are stable in the sense of Gale and Shapley [21].
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Figure 4: Performance of the proposed Algorithm 1 (i.e., LUB-CDM) and the patient strategy. The
results averaged over 500 data replications. (a) P1’s reservation utility under the LUB-CDM given by
50� 5log(k), where the stage k = 1, . . . , 500. (b) P1’s reservation utility under the patient strategy
given by 50 + 5log(N+1�k

N ). (c) P1’s payoffs with varying number of arms.

Since the equilibrium reservation utilities (v⇤
P
(i), v⇤

A
(j)) are unknown in practice, agents need to

learn an optimal strategy of choosing the reservation utility vP(i) at different stages. We compare
the proposed Algorithm 1 (i.e., LUB-CDM) with the patient strategy, where the latter is defined as
the strategy with ⇢ = 1 at the beginning stage k = 1 and decreasing ⇢ as the matching proceeds
in Eq. (A.10). Note that LUB-CDM has less strategic behaviors as the matching proceeds. Hence
it corresponds to the case that vP(i) is a convex function of the stages. On the other hand, the
patient strategy has more strategic behaviors as the matching proceeds. Hence it corresponds to
the case that vP(i) is a concave function of the stages. Suppose that different arms receive the
same utility for matching the same agent, that is, Uj(Pi) = Uj0(Pi), 8j 6= j

0, which utility is
unknown to Pi. Similarly, different agents receive the same utility for matching the same arm,
that is, Ui(Aj) = Ui0(Aj), 8i 6= i

0, which utility is known to Aj . Then Pi matches with Aj if the
event {Uj(Pi) � Ui(Aj) � vP(i)} holds. Suppose that agent P1’s utility is Uj(P1) = 40, and
m = n 2 {100, 200, . . . , 1000}. Let the reservation utility vP(1) at the stage k be 50� 5log(k) and
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50 + 5log(N+1�k
N ) for the LUB-CDM and the patient strategy, respectively; see Figure 4(a) and (b).

Figure 4(c) reports P1’s payoff under two methods, where the LUB-CDM outperforms the patient
strategy. Therefore, the strategic behavior at early stages improves the agent’s payoff in practice,
which result corroborates Theorem 1.

A.3 Comparison of multi-stage matching and DA

In this example, we compare the multi-stage decentralized matching with the DA algorithm [21].
Suppose there are four arms A = {A1, A2, A3, A4} and three agents P = {P1, P2, P3}. Agents have
varied quotas: q1 = 2 and q2 = q3 = 1. Arms’ attributes are given by v1 = v2 = v3 = 2, v4 = 1,
and e13 = e23 = e32 = 0, e12 = e22 = e31 = 0.5, e11 = e21 = e33 = 1, e14 = 0.2, e24 = 0.5,
e34 = 0.8. The latent utilities and arms’ true preferences are shown in Table 1. For the decentralized
matching, suppose that at each stage, every agent uses the straightforward strategy by pulling its most
preferred arms up to the quota. Arms accept their most preferred agent (if any) or wait until the next
stage. Then the decentralized matching has the outcome (A1, P1), (A2, P1), (A3, P3), (A4, P2). On
the other hand, the DA algorithm gives the outcome (A1, P3), (A2, P2), (A3, P1), (A4, P1), which
the unique stable matching outcome. Here both P1 and P3 strictly prefer the decentralized matching
outcome to DA outcome. This result corroborates the remark in Section 4 that some agents are better
off under the decentralized matching.

Table 1: (a) Arm’s latent utilities for each agent, which corresponds to Eq. (1). (b) Arms’ preferences
with the number indicating the arms’ ranking of agents. For example, A1 ranks P3 first, P1 second,
P2 third. These preferences are unknown to agents.

(a) Arm’s latent utility (b) Arm’s preference

A1 A2 A3 A4

P1 3 2.5 2 1.2
P2 3 2.5 2 1.5
P3 2.5 2 3 1.8

A1 A2 A3 A4

P1 2 2 1 1
P2 3 1 3 2
P3 1 3 2 3

Second, we study the incentive of agents in the multi-stage decentralized matching. We show that
it is not a dominant strategy for each agent to use the straightforward strategy by pulling arms
according to the latent utility. For example, consider the preferences in Table 1. If P2 skips over
A1 and firstly pulls A2, and other agents pull their most preferred arms up to their quotas. Then the
decentralized matching has the outcome (A1, P1), (A2, P2), (A3, P3), (A4, P1), where P2 is strictly
better off compared to the outcome when P2 firstly pulls A1.

Table 2: (a) Arm’s latent utilities for each agent. (b) Arms’ preferences with the number indicating
the arms’ ranking of agents. For example, A1 ranks P4 first, P1 second, P3 third, P2 fourth.

(a) Arm’s latent utility (b) Arm’s preference

A1 A2 A3 A4

P1 3 2 2.6 2.3
P2 2 2.6 3 2.3
P3 2.3 2 3 2.6
P3 2 2.3 2.6 3

P1 P2 P3 P4

A1 2 4 3 1
A2 4 2 1 3
A3 1 3 4 2
A3 3 1 2 4

Finally, we show that arms can also be better off if they are strategic in multi-stage decentralized
matching. Suppose there are four agents and four arms, and each agent has a quota one. The latent
utilities and arms’ true preferences are given in Table 2. When agents and arms are not strategic, the
decentralized matching has the outcome (A1, P1), (A2, P3), (A3, P2), (A4, P4). However, suppose
arms are strategic, where A4 rejects P4 as P4 is A4’s least favorite agent and A4 believes the coming
agent will not be worse. The outcome becomes (A1, P1), (A2, P4), (A3, P2), (A4, P3). Hence A4 is
strictly better off. Besides, if A3 also rejects {P2, P3} as they are A3’s two least favorite agents, the
decentralized matching gives the outcome (A1, P1), (A2, P2), (A3, P4), (A4, P3). Hence A3 and A4

are both strictly better off. Moreover, suppose there is a coordination mechanism among arms such
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that each arm only accepts the most preferred agent. The decentralized matching gives the outcome
(A1, P4), (A2, P3), (A3, P1), (A4, P2), which is the arm-optimal stable matching.

A.4 Comparison of multi-stage and single-stage matching

In this example, we show the gap between multi-stage welfare and single-stage welfare. Suppose
there are four arms A = {A1, A2, A3, A4} and three agents P = {P1, P2, P3}. Agents have varied
quotas: q1 = 2 and q2 = q3 = 1. Arms’ attributes are given by v1 = v2 = v3 = 2, v4 = 1, and
e13 = e23 = e32 = 0, e12 = e22 = e31 = 0.5, e11 = e21 = e33 = 1, e14 = 0.2, e24 = 0.5,
e34 = 0.8. The latent utilities and arms’ true preferences are shown in Table 1. Suppose each
agent uses the straightforward strategy by pulling its most preferred arms up to the quota. Then the
single-stage matching has the outcome (A1, P1), (A2, P1), (A3, P3). The multi-stage matching gives
the outcome (A1, P1), (A2, P1), (A3, P3), (A4, P2). Hence P2 is strictly better off in multi-stage
matching as P2’s welfare increases from 0 to 1.5 by changing from single-stage matching to multi-
stage matching. On the other hand, P1 and P3 have the same welfare in single-stage and multi-stage
matching. This result corroborates Proposition 3.

A.5 Supplementary results for real application

We give supplementary results to the real data analysis, where the admission data is from the New York
Times “The Choice" blog (available at https://thechoice.blogs.nytimes.com/category/admissions-data).
Two colleges, Harvard and Yale, are excluded from the sample due to a significant proportion of
missing values.

A.5.1 Chi-squared test with FDR control

Figure 5: Regression of the yield on the size of admitted class and the ranking, respectively. We fit
the dashed curves using smoothing splines with the tuning parameter chosen by GCV. The labels
{1, 2, . . . , 35} of each point indicates colleges’ ranking according to U.S. News and World Report,
where two (or more) colleges might tie in the ranking, and liberal arts colleges, national universities,
and other undergraduate programs are ranked separately within their categories. Gray and black
points denote colleges with insignificant and significant p-values, respectively, in chi-squared tests
under an FDR control.

We test if the yields of colleges changed over 2015–17. The null hypothesis is that the state is
the same. We use a simultaneous chi-squared test for all colleges with the count data on accepted
and enrolled students and under an FDR control at a .05 significance level [9]. Figure 5 shows
that colleges with large numbers of admitted students are likely to have significantly varied yields.
Moreover, top-ranked national universities and liberal arts colleges are likely to have significantly
varied yields. This observation corroborates the uncertainty in applicants’ preferences facing colleges.
Tables 3 and 4 report the 13 colleges with significant p-values and the 22 colleges with insignificant
p-values, respectively.
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Table 3: 13 chi-squared tests with significant p-value under the FDR control at the .05 significance
level. Colleges’ ranking data are from U.S. News and World Report. The "Y/N" means the use of the
waiting list varied during 2015–17.

p-value Category Ranking Waiting list

Boston University .0013 National University 40 Yes
Brown University .0012 National University 14 No
Claremont McKenna College .0003 Liberal Arts College 7 Y/N
College of Holy Cross 2.20E-16 Liberal Arts College 27 Yes
Emory University 2.20E-16 National University 21 Yes
Georgia Tech .0022 National University 29 Yes
Middlebury College .0065 Liberal Arts College 7 Y/N
Princeton University 8.31E-12 National University 1 Yes
Stanford University 2.50E-06 National University 6 Y/N
University of Chicago 2.20E-06 National University 6 Y/N
University of Rochester .0001 National University 29 Y/N
USC 2.31E-11 National University 22 No
University of Wisconsin .0008 National University 46 Y/N

Table 4: 22 chi-squared tests with insignificant p-value under the FDR control at the .05 significance
level. Colleges’ ranking data are from U.S. News and World Report. The "Y/N" means the use of the
waiting list varied during 2015–17.

p-value Category Ranking Waiting list

Babson College .8994 Other Program 31 Yes
Barnard College .6159 Liberal Arts College 25 Yes
Bates College .0798 Liberal Arts College 21 Yes
CalTech .0584 National University 12 Y/N
Carnegie Mellon University .4988 National University 25 Yes
College of William&Mary .2227 National University 40 Yes
Cooper Union .9512 Other Program 3 Yes
Dartmouth College .2217 National University 12 Y/N
Dickinson College .4727 Liberal Arts College 46 Y/N
Elon University .6872 National University 84 Y/N
George Washington University .0309 National University 70 Yes
Johns Hopkins University .1799 National University 10 Yes
Kenyon College .8012 Liberal Arts College 27 Yes
Lafayette College .8719 Liberal Arts College 39 Yes
Olin College of Engineering .5317 Other Program 5 Y/N
Rensselaer Polytech .0285 National University 50 Y/N
Scripps College .6511 Liberal Arts College 33 Y/N
St. Lawrence University .0587 Liberal Arts College 58 Yes
University of Maryland .4438 National University 64 Y/N
University of Michigan .0277 National University 25 Y/N
University of Pennsylvania .3665 National University 6 Y/N
Vanderbilt University .7576 National University 15 Y/N

A.5.2 Evidence on hierarchical structure

We present the evidence on the hierarchical structure in the sense that students who were invited
to the waiting list and remain available at a later stage are likely to be far worse than the admitted
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students at the regular admission stage. The report of National Association for College Admission
Counseling [29] shows that the admission rate of the waiting list is significantly lower than that of
regular admission. The top students in a college’s waiting list, uncertain about their rankings in
the list and whether the college would admit them later, may have accepted offers from their less
preferred colleges. We calculate the admission rate of the waiting list as follows:

the number of offers sent to wait-listed students
the total number of students invited to the waiting list

.

Figure 6 reports that the majority (> 77%) of admission rate of the waiting list are below 5%, which
result corroborates the existence of the hierarchical structure in college admissions with waiting lists.

Figure 6: The regression uses smoothing splines with the tuning by GCV.

B Proofs

B.1 Proof of Theorem 1

B.1.1 Hierarchical structure

We the exploit the underlying hierarchical structure of the optimization problem in Eq. (3). For an
arm set Bi,k ✓ {Ak \ [lk�1Bi,l}, its loss can be formulated by comparing its expected payoff to
the expected payoff of B̄i,k, where we suppose that [k2[K]B̄i,k achieves the optimal value Ūi in (3).
Then the loss of Bi,k for any k 2 [K] becomes

Li,k[Bi,k] = 1
n X

j2Bi,k

⇡i,k(s
⇤

i,k, vj) > qi � card([lk�1Ci,l)
o

OE[Bi,k]

+ 1
n X

j2Bi,k

⇡i,k(s
⇤

i,k, vj)  qi � card([lk�1Ci,l)
o

UE[Bi,k].
(B.11)

Here the over-enrollment (OE) loss in (B.11) is defined as

OE[Bi,k] ⌘ �i

n X

j2Bi,k

⇡i,k(s
⇤

i,k, vj) + card([lk�1Ci,l)� qi

o

�

n X

j2Bi,k

(vj + eij)⇡i,k(s
⇤

i,k, vj)�
X

j2B̄i,k

(vj + eij)⇡i,k(s
⇤

i,k, vj)
o
, 8k 2 [K],

where we recall that penalty parameter �i is defined in (2). The under-enrollment (UE) loss in (B.11)
is given by

UE[Bi,k]

⌘

(
⇢i,k[

P
j2B̄i,k

(vj + eij)⇡i,k(s⇤i,k, vj)�
P

j2Bi,k
(vj + eij)⇡i,k(s⇤i,k, vj)], k  K � 1,P

j2B̄i,k
(vj + eij)⇡i,K(s⇤i,k, vj)�

P
j2Bi,k

(vj + eij)⇡i,K(s⇤i,k, vj), k = K,

(B.12)
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where ⇢i,k 2 (0, 1) is a discount factor for k  K � 1. Note that ⇢i,k < 1 is because Pi can fill the
remaining quota (if any) in subsequent stages of the matching process. On the other hand, ⇢i,k > 0
is due to the observation that the arms available at subsequent stages are likely to be worse than
the arms available at the current stage. Specifically, we refer to this observation as the hierarchical
structure of the multi-stage matching and it is defined as follows: For any agent Pi, the jth best arm
available at the subsequent stage has lower latent utility than the jth best arm available at the current
stage, where j � 1. The hierarchical structure has been noted in college admissions with waiting lists
[13]. Unlike the stages k  K � 1, the last stage k = K has the discount factor equals to 1 since the
agent cannot fill the remaining quota (if any) after the last stage.

The formulation in Eq. (B.11) allows one to study stage-wise optimal sets Bi,k that minimize the loss
Li,k for each k 2 [K]. This makes the optimization problem easier compared to jointly finding Bi,k

for all k 2 [K] such that [k2[K]Bi,k maximizes the expected payoff in (3).

B.1.2 Main proof of Theorem 1

Proof. We introduce additional notations. Let Vi,k(s⇤i,k,Bi,k) be the expected utility of arms from
Bi,k ✓ {Ak \ [lk�1Bi,l} for agent Pi at stage k 2 [K]. That is,

Vi,k(s
⇤

i,k,Bi,k) ⌘
X

j2Bi,k

(vj + eij)⇡i,k(s
⇤

i,k, vj).

Let Ni,k(s⇤i,k,Bi,k) be the expected number of arms in Bi,k accepting Pi. That is,

Ni,k(s
⇤

i,k,Bi,k) ⌘
X

j2Bi,k

⇡i,k(s
⇤

i,k, vj).

By Lagrangian duality, the optimization of Li,k[Bi,k] in Eq. (B.11) can be reformulated to the
constraint form:

max
Bi,k✓{Ak\[lk�1Bi,l}

n
Vi,k(s

⇤

i,k,Bi,k)� �i max{Ni,k(s
⇤

i,k,Bi,k) + card([lk�1Ci,l)� qi, 0}
o

| {z }
I1

,

s.t. UE(Bi,k) � ⌘
0

i,k| {z }
I2

,

Here ⌘
0

i,k > 0 is an appropriately chosen tolerance parameter for k  K � 1, and ⌘
0

i,K = 0. The
constraint I2 can be written as

Vi,k(s
⇤

i,k,Bi,k)  Vi,k(s
⇤

i,k,B
⇤

i,k)� ⌘
0

i,k, 8s
⇤

i,k, (B.13)

where Bi,k ✓ {Ak \ [lk�1Bi,l}. Since ⇡i,k(·, ·) is assumed to belong to an RKHS, ⇡i,k(·, ·) is
bounded [39]. By Hoeffding’s bound, with probability at least 1� e

�✏
, 8✏ > 0,

Vi,k(s
⇤

i,k,Bi,k) < Es⇤i,k
[Vi,k(s

⇤

i,k,Bi,k)] +

s
2✏

X

j2Bi,k

�2i,k(vj)(vj + eij)2

< Es⇤i,k
[Vi,k(s

⇤

i,k,Bi,k)] +
p

2✏
X

j2Bi,k

�i,k(vj)(vj + eij).

Hence a sufficient condition for Eq. (B.13) is to control
X

j2Bi,k

�i,k(vj)(vj + eij) < ⌘
00

i,k, for Bi,k ✓ {Ak \ [lk�1Bi,l}. (B.14)

Here ⌘
00

i,k > 0 is a tolerance parameter for k  K � 1. Both the I1 and Eq. (B.14) are convex,
and so by Lagrangian duality, they can be reformulated in the penalized form that finding Bi,k ✓

{Ak \ [lk�1Bi,l} to maximize
X

j2Bi,k

(vj + eij)[⇡i,k(si,k, vj)� ⌘i,k�i,k(vj)]

� �i max{Ni,k(s
⇤

i,k,Bi,k) + card([lk�1Ci,l)� qi, 0},

where ⌘i,k > 0 for k  K � 1 and ⌘i,K = 0. This completes the proof.
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B.2 Proof of Theorem 2

B.2.1 Quantifying the cutoff for the greedy strategy

Let bi,k be the value of r of those arms on the cutoff. That is, arms on the cutoff satisfy bi,k =

(v+ei)[1�⌘i,k�i,k(v)⇡
�1
i,k (si,k, v)] � 0. Let ⇧i,k(bi,k) be the expected number of arms in bBi,k(si,k)

that would accept Pi. That is,

⇧i,k(bi,k)

=
X

j2A

1
⇣
eij � min

n
max

n
bi,k[1� ⌘i,k�i,k(vj)⇡

�1
i,k (si,k, vj)]

�1
� vj , 0

o
, 1
o⌘

⇡i,k(si,k, vj).

If there exists some bi,k � 0 such that ⇧i,k(bi,k) = qi�card([lk�1Ci,l), we letbbi,k(si,k) = bi,k and
the cutoff bei,k(si,k, v) = min{max{bbi,k(si,k)[1� ⌘i,k�i,k(v)⇡

�1
i,k (si,k, v)]

�1
� v, 0}, 1}. However,

if there is no solution to ⇧i,k(bi,k) = qi � card([lk�1Ci,l), we let

b
+
i,k(si,k) = argmax

bi,k�0
{⇧i,k(bi,k) > qi � card([lk�1Ci,l)} ,

b
�

i,k(si,k) = argmin
bi,k�0

{⇧i,k(bi,k) < qi � card([lk�1Ci,l)} .

To choose between b
+
i,k and b

�

i,k, it is necessary to balance the expected utility and the ex-
pected penalty for exceeding the quota due to pulling arms on the boundary. Define two cutoffs
e
+
i,k(si,k, v) ⌘ min{max{b+i,k(si,k)[1 � ⌘i,k�i,k(v)⇡

�1
i,k (si,k, v)]

�1
� v, 0}, 1} and e

�

i,k(si,k, v) ⌘

min{max{b�i,k(si,k)[1� ⌘i,k�i,k(v)⇡
�1
i,k (si,k, v)]

�1
� v, 0}, 1}. The two cutoffs correspond to two

sets, B+
i,k(si,k) = {j | eij � e

+
i,k(si,k, vj)} and B

�

i,k(si,k) = {j | eij � e
�

i,k(si,k, vj)}, respectively.
Consider the following condition for the arms on the boundary {B

+
i,k(si,k) \ B

�

i,k(si,k)}. This con-
dition formalizes the comparison of the variational expected utility and the expected penalty of
exceeding the quota:

X

j2B
+
i,k(si,k)\B

�
i,k(si,k)

(vj + eij)[⇡i,k(si,k, vj)� ⌘i,k�i,k(vj)]

� �i

X

j2B
+
i,k(si,k)

⇡i,k(si,k, vj)� �i[qi � card([lk�1Ci,l)].
(B.15)

If (B.15) holds, let bbi,k(si,k) = b
+
i,k(si,k) and otherwise, let bbi,k(si,k) = b

�

i,k(si,k). Then the cutoff

bei,k(si,k, v) = min
n
max

n
bbi,k(si,k)[1� ⌘i,k�i,k(v)⇡

�1
i,k (si,k, v)]

�1
� v, 0

o
, 1
o
. (B.16)

Finally, using the greedy strategy, agent Pi pulls arms from

bBi,k(si,k) = {j |Aj 2 {Ak \ [lk�1Bi,l} with (vj , eij) satisfying eij � bei,k(si,k, vj)}
= {j |Aj 2 {Ak \ [lk�1Bi,l} satisfying r(Aj) � r⇤} ,

where r⇤ is the cutoff defined in Section 3.1.

B.2.2 Main proof of Theorem 2

Proof. We define the function,

UE†
⌘

h
min

j2B
�
i,k(si,k)

(vj + eij)(1� ⌘i,k⇡
�1
i,k (si,k, vj)�i,k(vjf))

i

·

h
qi � card([lk�1Ci,l)�

X

j2B
�
i,k(si,k)

⇡i,k(si,k, vj)
i
.

It is not hard to see that UE†
� 0 and it equals 0 if there is a continuum of arms and ⇡i,k(·, v) is

continuous in v. We divide the main proof of Theorem 2 into five steps.
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Step 1. We show that the optimal strategy prefers an arm with higher fit given the same score.
Suppose that arms Aj1 , Aj2 2 {Ak \[lk�1Bi,l} have the same score vj1 = vj2 , but Aj1 has a worse
fit than Aj2 to agent Pi. Now assume that Aj1 was pulled by Pi at stage k but Aj2 was not, that is,
Aj1 2 bBi,k(si,k), Aj2 62 bBi,k(si,k). Then the expected number of arms accepting Pi is unchanged if
Pi replaces Aj1 with Aj2 in bBi,k(si,k). On the other hand, since the loss function in Eq. (4) is strictly
decreasing in fit eij , Pi should pull Aj2 instead Aj1 . This argument holds regardless of strategies of
other agents.

Step 2. We show that the cutoff curve bei,k(si,k, v) in Eq. (B.16) is well-defined. If the boundary
{B

+
i,k(si,k) \ B

�

i,k(si,k)} is not empty, then Pi pulling an arm Aj on the boundary yields the loss

L
†

i,k[Aj ]  0,

which justifies the condition specified by Eq. (B.15). Since bei,k(si,k, v) 2 [0, 1], the cutoff curve is
well-defined.

Step 3. We show that the cutoff strategy of pulling arms from the set bBi,k(si,k) is near-optimal. Let
eBi,k(si,k) be any other arm set. Define the following mixed strategy:

�i,k(si,k, v, ei; t) ⌘ t · 1{(v, ei) 2 eBi,k(si,k)}+ (1� t) · 1{(v, ei) 2 bBi,k(si,k)}, for t 2 [0, 1].

The corresponding loss of the mixed strategy �i is

L̄i,k(t) =
X

j2{Ak\[lk�1Bi,l}

(vj + eij)[⌘i,k�i,k(vj)� ⇡i,k(si,k, vj)]�i,k(si,k, vj , eij ; t)

+ �i max
n X

j2{Ak\[lk�1Bi,l}

⇡i,k(si,k, vj)�i,k(si,k, vj , eij ; t) + card([lk�1Ci,l)� qi, 0
o
.

It is clear that L̄i,k(t) is convex in t. We discuss the local change dL̄i,k(0)/dt in three cases.

Case (I): Consider removing a single arm from bBi,k(si,k). If the arm is from the non-empty boundary
{B

+
i,k(si,k) \ B

�

i,k(si,k)}, the condition specified by Eq. (B.15) implies that the loss L̄i,k(t) increases
if not pulling the arm. Moreover, by construction, any other arm Aj in bBi,k(si,k) satisfies

(vj + eij)[⇡i,k(s
⇤

i,k, vj)� ⌘i,k�i,k(vj)] > bbi,k(si,k)⇡i,k(s
⇤

i,k, vj)

� �i

X

j02 bBi,k(si,k)

⇡i,k(si,k, vj0)� �i[qi � card([lk�1Ci,l)].

Hence, removing Aj from bBi,k(si,k) results in a strict increase in L̄i,k(t). We have dL̄i,k(0)/dt > 0
in this case. By the convexity of L̄i,k(t) in t, we obtain

L̄i,k(1) = L̄i,k(0) +
dL̄i,k(0)

dt
(1� 0) > L̄i,k(0),

Case (II): Consider adding a new arm with attributes {vj0 , eij0} to bBi,k(si,k), where the new arm is
not from the set B+

i,k(si,k). Denote by B
0

i,k(si,k) the new arm set with the added arm. Note that Pi

pulls a new arm only if the arm reduces the loss L̄i,k(t), that is,

(vj0 + eij0)[⇡i,k(si,k, vj0)� ⌘i,k�i,k(vj0)]

� �i

X

j2B
0
i,k(si,k)

⇡i,k(si,k, vj)� �i[qi � card([lk�1Ci,l)]. (B.17)
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Since the added new arm is not in B
+
i,k(si,k) and

P
j2B

+
i,k(si,k)

⇡i,k(si,k, vj) � qi�card([lk�1Ci,l),
we have X

j2B
0
i,k(si,k)

⇡i,k(si,k, vj)� [qi � card([lk�1Ci,l)]

�

X

j2B
0
i,k(si,k)

⇡i,k(si,k, vj)�
X

j2B
+
i,k(si,k)

⇡i,k(si,k, vj)

� ⇡i,k(si,k, vj0)

� ⇡i,k(si,k, vj0)� ⌘i,k�i,k(vj0).

(B.18)

Because that �i > supj2A
{vj + eij} and ⌘i,k � 0, the result in Eq. (B.18) is contradictory to

Eq. (B.17). Hence, adding a new arm to bBi,k(si,k) results in an increase in the loss L̄i,k(t). Hence,
dL̄i,k(0)/dt > 0 in this case. By the convexity of L̄i,k(t) in t, we obtain

L̄i,k(1) = L̄i,k(0) +
dL̄i,k(0)

dt
(1� 0) > L̄i,k(0),

Case (III): Consider removing an arm with attributes (vj , eij) from bBi,k(si,k) and simultaneously
adding new arms to bBi,k(si,k). Suppose that the new arms have attributes (vj00 , eij00) and are from
B
00

i,k(si,k). If bBi,k(si,k) = B
�

i,k(si,k), then the new arms are not in B
�

i,k(si,k) and by definition,

(vj00 + eij00)[⇡i,k(si,k, vj00)� ⌘i,k�i,k(vj00)]⇡
�1
i,k (si,k, vj00)

 min
j2B

�
i,k(si,k)

n
(vj + eij)[⇡i,k(si, vj)� ⌘i�i,k(vj)]⇡

�1
i,k (si,k, vj)

o
.

Hence,

L
†

i [B
�

i,k(si,k)]� L̄i,k(1)



X

j002B
00
i,k(si,k)

(vj00 + eij00)[⇡i,k(si,k, vj00)� ⌘i,k�i,k(vj00)]⇡
�1
i,k (si,k, vj00) · ⇡i,k(si,k, vj00)



h
min

j2B
�
i,k(si,k)

(vj + eij)(1� ⌘i,k⇡
�1
i,k (si,k, vj)�i,k(vj))

i

·

h
qi � card([lk�1Ci,l)�

X

j2B
�
i,k(si,k)

⇡i,k(si,k, vj)
i

= UE†
.

(B.19)

If bBi,k(si,k) = B
+
i,k(si,k), then by definition of B+

i,k(si,k)

L
†

i [B
+
i,k(si,k)]� L̄i,k(1)  L

†

i [B
�

i,k(si,k)]� L̄i,k(1)  UE†
.

where the last inequality is by Eq. (B.19). Hence,

L̄i,k(0)� L̄i,k(1)  UE†
.

Therefore, exchanging an arm in bBi,k(si,k) with arms not in bBi,k(si,k) could result in an increase in
the loss L̄i,k(t) by at most UE†. Combining the cases (I), (II), (III), we obtain that

L
†

i [
bBi,k(si,k)]  min

Bi,k✓{Ak\[lk�1Bi,l}

L
†

i [Bi,k] + UE†
.

Step 4. We prove the other direction of the inequality. Since bBi,k(si,k) ✓ {Ak \ [lk�1Bi,l},

L
†

i [
bBi,k(si,k)] � min

Bi,k✓{Ak\[lk�1Bi,l}

L
†

i [Bi,k].
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Step 5. If there is a continuum of arms and ⇡i,k(·, v) is continuous in v, then there exists bi,k � 0
such that ⇧i,k(bi,k) = qi � card([lk�1Ci,l), where ⇧i,k(bi,k) is defined in Section 3.1:

⇧i,k(bi,k) =
X

j2A

1
⇣
eij � min

n
max

n
bi,k[1� ⌘i,k�i,k(vj)⇡

�1
i,k (si,k, vj)]

�1
� vj , 0

o
, 1
o⌘

⇡i,k(si,k, vj).

Therefore, by definition, bBi,k(si,k) = B
+
i,k(si,k) = B

�

i,k(si,k), and

qi � card([lk�1Ci,l)�
X

j2B
�
i,k(si,k)

⇡i,k(si,k, vj) = 0.

Hence UE† = 0. This completes the proof.

B.3 Proof of Theorem 3

B.3.1 Main proof of Theorem 3

Proof. We follow the proof arguments for Theorem 4 in [15]. The only difference is that here we
define the following penalized expected utility and the expected number of arms:

Vi,k(s
⇤

i,k,
bBi,k) ⌘

X

j2 bBi,k

(vj + eij)[⇡i,k(s
⇤

i,k, vj)� ⌘i,k�i,k(vj)],

Ni,k(s
⇤

i,k,
bBi,k) ⌘

X

j2 bBi,k

⇡i,k(s
⇤

i,k, vj).

We omit the details for simplicity.

B.3.2 Calibration under the worst-case loss

Besides the average-case loss in Theorem 3, we also consider the worst-case loss with respect to the
unknown s

⇤

i,k. Theorem 4 gives minimax calibration, which calibrates si,k to minimize the maximum
loss maxs⇤i,k{L

†

i,k[
bBi,k(si,k)]} over the unknown s

⇤

i,k.

Theorem 4. The worse-case loss maxs⇤i {L
†

i,k[
bBi,k(si,k)]} is minimized if si,k 2 [0, 1] is chosen as

the solution to
X

j2 bBi,k(si,k)

2(vj + eij)�i,k(vj) +
X

j2 bBi,k(0)

(vj + eij) [⇡i,k(0, vj)� ⌘i,k�i,k(vj)]

=
X

j2 bBi,k(1)

(vj + eij) [⇡i,k(1, vj)� ⌘i,k�i,k(vj)] + �i

X

j2 bBi,k(si,k)

⇡i,k(1, vj)� �iqi.

The Proof follows from Theorem 5 in [15].

B.4 Proof of Proposition 1

Proof. Recall the cutoff parameter bbi,k(si,k) defined in Eq. (B.16). Similarly, we define a cutoff
parameter b0i,k(si,k) for the linear cutoff: e0i,k(si,k, v) = min{max{b0i,k(si,k)� v, 0}, 1} following
three steps. First, we define that

⇧0

i,k(bi,k) ⌘
X

j2A

1(eij � min{max{bi,k � vj , 0}, 1})⇡i,k(si,k, vj).

If there exists bi,k � 0 such that ⇧0

i,k(bi,k) = qi�card([lk�1Ci,l), we let b0i,k(si,k) = bi,k. Second,
if there is no solution to ⇧0

i,k(bi,k) = qi � card([lk�1Ci,l), we let

b
+
i,k(si,k) = argmax

bi,k�0

�
⇧0

i,k(bi,k) > qi � card([lk�1Ci,l)
 
,

b
�

i,k(si,k) = argmin
bi,k�0

�
⇧0

i,k(bi,k) < qi � card([lk�1Ci,l)
 
.
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Define that
e
+
i,k(si,k, v) ⌘ min{max{b+i,k(si,k)� v, 0}, 1},

and
e
�

i,k(si,k, v) ⌘ min{max{b�i,k(si,k)� v, 0}, 1}.

Then e
+
i,k(si,k, v) and e

�

i,k correspond to following sets respectively,

B
+
i,k(si,k) = {j | eij � e

+
i,k(si,k, vj)},

and
B
�

i,k(si,k) = {j | eij � e
�

i,k(si,k, vj)}.

Consider the following condition for the arms on the boundary {B
+
i,k(si,k) \ B

�

i,k(si,k)}:
X

j2B
+
i,k(si,k)\B

�
i,k(si,k)

(vj + eij)⇡i,k(si,k, vj) � �i

X

j2B
+
i,k(si,k)

⇡i,k(si,k, vj)� �iqi.

If the above condition holds, let b0i,k(si,k) = b
+
i,k(si,k) and otherwise, let b0i,k(si,k) = b

�

i,k(si,k).
Third, we let the linear cutoff

e
0

i,k(si,k, v) = min{max{b0i,k(si,k)� v, 0}, 1}.

Now for any ⌘i,k � 0 and state si,k, the set of arms that have justified envy is

V(⌘i,k, si,k) =

(
(v, ei)

�����
bbi,k(si,k)

1� ⌘i,k�i,k(v)⇡
�1
i,k (si,k, v)

> v + ei > b
0

i,k(si,k)

)
.

Hence the probability that an arm with attributes (v, e) has justified envy is increasing in

bbi,k(si,k)
1� ⌘i,k�i,k(v)⇡

�1
i,k (si,k, v)

. (B.20)

Note that (B.20) is strictly increasing in the arm’s uncertainty level �i,k(v)⇡�1
i,k (si,k, v), the probability

that an arm has justified envy is strictly increasing in the arm’s uncertainty level.

B.5 Proof of Proposition 2

Proof. Adopting the proof in Section B.4, we note that the number of arms having justified envy is

X

j2{A
T+1
k \[lk�1Bi,l}\V(⌘i,s)

"
bbi,k(si,k)

1� ⌘i,k�i,k(vj)⇡
�1
i,k (si,k, vj)

� b
0

i,k(si,k)

#
. (B.21)

The term in the bracket of Eq. (B.21), i.e.,

bbi,k(si,k)
1� ⌘i,k�i,k(vj)⇡

�1
i,k (si,k, vj)

� b
0

i,k(si,k)

is strictly increasing in ⌘i,k. Hence the number of arms having justified envy is strictly increasing in
⌘i,k � 0. This completes the proof.

B.6 Proof of Proposition 3

Proof. We show the improved welfare for agents by construction. Consider the strategy of an agent,
for example, Pi with i 2 [m]. Suppose that Pi pulls arms at the first stage in multi-stage matching
using the strategy that Pi would have used in single-stage matching. All arms that would have
accepted Pi in single-stage matching accept Pi. The reason is that arms have incomplete information
on what other offers are coming in later stages. Hence, Pi can achieve at least as well as its payoff
from single-stage matching. Therefore, agents benefit from multi-stage matching.
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Figure 7: Cutoffs at the two stages.

B.7 Proof of Proposition A.4

Proof. First, we consider the matching outcome of the straightforward strategy by pulling arms
according to the latent utilities. Suppose that agents P1 and P2 use the CDM algorithm, which is a
straightforward strategy and calibrates the uncertain state in the same way as LUB-CDM [15]. The
calibration in Theorem 3 calibrates the state parameters as s = sa for P1 and s = sb for P2. We note
that worst-case calibration in Theorem 4 gives the same calibrations in this example. Thus, P1 and
P2 pull the same set of arms at the first stage, where the arms’ scores v � ev and the cutoff ev satisfies

X

j2A

1(vj � ev) · sa · (1� p
⇤) = q, and

X

j2A

1(vj � ev) · (1� sb) · (1� p
⇤) = q. (B.22)

Here the boundary arm set is assumed to be empty in Eq. (B.22). Next, we consider P3’s strategy.
Arms with the scores worse than ev will accept P3 since if they accept P3, they get u3 for sure, but if
they reject P3, they will at best be pulled by P1 or P2 with probability (1� p

⇤) and get the utility at
most u1, but u3 > (1� p

⇤)u1. Suppose now P3 pulls arms with the score v � bv, where bv < ev. By
Eq. (B.22), there are total (p⇤)2q[sa(1� p

⇤)]�1 of arms with v � ev that are not pulled by P1 or P2

and they will accept P3. Thus, we can quantify bv by letting it satisfy
X

j2A

1(bv  vj < ev) = q


1�

(p⇤)2

sa(1� p⇤)

�
.

See an illustration of the cutoffs in Figure 7. Then we analyze P1’s expected payoff by using the
CDM. If the true state is sb, P1 does not fill its capacity during the first stage and needs to pull more
arms at the second stage. Suppose that P1 pulls arms with v 2 [v̌, bv) at the second stage, where v̌

satisfies X

j2A

1(v̌  vj < bv) · (1� p
⇤) = q �

X

j2A

1(vj � ev) · sb · (1� p
⇤). (B.23)

Hence, P1’s expected payoff by using CDM is

U
CDM
1 =

1

2
(1� p

⇤)

2

4
X

vj�ev

vj +
X

v̌vj<bv

vj

3

5 . (B.24)

We then consider the matching outcome of the LUB-CDM algorithm. Suppose that P1 uses the
LUB-CDM while P2 still uses the CDM. By Theorem 2, P1 pulls arms according to the ranking of
the following quantity:

vj


1� ⌘1,1 ·

�1,1(vj)

s

�
= vj


1� ⌘1,1 ·

sa � sb

2s

�
, (B.25)

where �1,1(v) =
1
2 (sa � sb) in this example and ⌘1,1 � 0 is the regularization parameter defined in

Theorem 1. The calibration in Theorem 3 calibrates the state parameter as s = sa for P1. Then P1

pulls the arms with the score v 2 [ev � 
0
, ev) [ {v � ev + } and rejects those with v 2 [ev, ev + ).

Here the boundary arm set is assumed to be empty, and ,
0 satisfy

X

j2A

1(ev � 
0
 vj < ev) =

X

j2A

1(ev  vj < ev + ) · sa. (B.26)

By Eq. (B.25),  and 
0 also need to satisfy that

ev � 
0 = (ev + )


1� ⌘1,1 ·

sa � sb

2sa

�
. (B.27)
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Then we analyze P1’s expected payoff by using the LUB-CDM. If the true state is sb, P1 needs to
pull more arms at the second stage. Since the second stage is the last stage and by Theorem 1, it is
optimal for P1 to choose ⌘1,2 = 0, where the LUB-CDM coincides with the CDM. Suppose that P1

pulls arms with v 2 [v̄, bv) at the second stage, where v̄ satisfies
X

j2A

1(v̄  vj < bv) · (1� p
⇤)

= q �

X

j2A

1(vj � ev + ) · sb · (1� p
⇤)�

X

j2A

1(ev � 
0
 vj < ev) · (1� p

⇤).
(B.28)

Subtracting Eq. (B.28) from Eq. (B.23), we obtain that
X

j2A

1(v̌  vj < v̄) =
X

j2A

1(ev � 
0
 vj < ev)�

X

j2A

1(ev  vj < ev + ) · sb

=
X

j2A

1(ev  vj < ev + ) · (sa � sb) > 0.
(B.29)

where the second equality is by Eq. (B.26). Thus, v̄ > v̌, and the P1’s expected payoff by using the
LUB-CDM is

U
LUB-CDM
1 = (1� p

⇤)
X

ev�0vj<ev

vj +
1

2
(1� p

⇤)

2

4
X

vj�ev+

vj +
X

v̄vj<bv

vj

3

5 . (B.30)

We now comparing the two expected payoffs in Eqs. (B.30) and (B.24), respective. By taking the
difference, we have

U
LUB-CDM
1 � U

CDM
1

= (1� p
⇤)

X

ev�0vj<ev

vj �
1

2
(1� p

⇤)

2

4
X

evvj<ev+

vj +
X

v̌vj<v̄

vj

3

5

> (1� p
⇤)(ev � 

0)
X

j2A

1(ev � 
0
 vj < ev)

� (ev + )
X

j2A

1(ev  v < ev + )� v̄

X

j2A

1(v̌  v < v̄)

= [(ev � v̄)(sa � sb)� (20
sa + )]

X

j2A

1(ev  vj < ev + )

= {(sa � sb) [(1� ⌘1,1)ev � v̄] + [2sa � ⌘1,1(sa � sb)� 1]}
X

j2A

1(ev  vj < ev + ),

(B.31)

where the second equality is due to Eqs. (B.26) and (B.29), and the last equality is by Eq. (B.27). For
sufficiently small  and ⌘1,1, we have

U
LUB-CDM
1 > U

CDM
1 .

Last, we quantify the improvement of the expected payoff. From Eq. (B.26),  satisfies that
X

j2A

1

✓
(ev + )

✓
1� ⌘1,1

sa � sb

2sa

◆
 vj < ev

◆
=
X

j2A

1(ev  vj < ev + ) · sa.

Suppose that vj is uniformly distributed, we have a first-order approximation of the above equations:

ev � (ev + )

✓
1� ⌘1,1

sa � sb

2sa

◆
= sa,

which implies that

 =
ev(sa � sb)⌘1,1

2sa(1 + sa)� (sa � sb)⌘1,1
= O(⌘1,1)
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Plugging it to Eq. (B.31) suggests that a sufficient condition for ULUB-CDM
1 > U

CDM
1 is

⌘1,1 <
2sa

sa � sb
·

(1 + sa)(sa � sb)(ev � v̄)

(sa � sb)(ev � v̄) + (2s2a + 1)ev . (B.32)

By the condition that 0
> 0, we have

⌘1,1 <
2sa

sa � sb
(1 + sa � ev). (B.33)

Under Eqs. (B.32) and (B.33), and noting that,
X

j2A

1(ev  vj < ev + ) = O() = O(⌘1,1),

we have that,
U

LUB-CDM
1 � U

CDM
1 = O(⌘1,1).

This completes the proof.
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