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A Fairness Analysis on Differentially Private
Aggregation of Teacher Ensembles

SupplementalMaterial

A Missing Proofs

This section contains the missing proofs associated with the theorems and corollaries presented in
the main paper. The theorems are restated for completeness.

First we provide the upper bound on the excess risk per group a 2 A in the following Lemma 1.
This helps to understand what factors control the excess risk for a particular group.
Lemma 1. The excess risk R(D̄ a) of a group a 2 A is upper bounded as:
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where Ga = Ex⇠D̄ a

h
r✓⇤`( f̄✓⇤ (x), y)

i
is the gradient of the group loss evaluated at ✓

⇤, and �✓̃ and
�2
✓̃

capture the first and second order statistics of the model deviation.

Proof. By �a smoothness assumption on the loss function defined over a group a 2 A it follows
that:
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By taking the expectation on both sides of the above equation w.r.t. the randomness of the noise, we
obtain:
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where the last inequality is by Cauchy-Schwarz inequality on vectors. Next, by substituting
R(D̄ a) = E[L(✓̃; D a,T ] �L(✓⇤; D a,T ) into Equation 13 we obtain the Lemma statement.

⇤

Theorem 1. The model fairness is upper bounded as:
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Proof. By convexity assumption on the loss function defined over a group a 2 A it follows that:
L(✓⇤; D a,T ) +
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By taking the expectation on both sides of the above equation w.r.t. the randomness of the noise, we
obtain:
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By combining Equation 16 and Equation 12 we obtain the following:
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Based on the definition of fairness in Equation 4, it follows that:
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Theorem 2. Consider a student model f̄✓ trained with a convex and decomposable loss function
`(·). Then, the expected di↵erence between the private and non-private model parameters is upper
bounded as follows:

E
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x2D̄

p$x kGmax
x k
3
7777775 , (20)

where c is a real constant and Gmax
x = max✓ kr✓h✓(x)k represents the maximum gradient norm

distortion introduced by a sample x. Both c and h are defined as in Equation equation 6.

Proof of Theorem 2 requires the following Lemma 2 from Shalev-Shwartz (2007) on the property
of strongly convex functions.
Lemma 2 (Shalev-Shwartz (2007)). Let L(✓) be a di↵erentiable function. Then L(✓) is �-strongly
convex i↵ for all vectors ✓,✓0:

(r✓L � r✓0L)T (✓ � ✓
0) � �k✓ � ✓

0k2. (21)

Proof of Theorem 2. Let us denote with ŷi = v(T (xi)) to indicate the non-private voting label asso-
ciated with xi and ỹi = ṽ(T (xi)) for the private voting label counterpart. The regularized empirical
risk function with the non-private voting labels from Equation 1 can be rewritten as follows:
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where the second equality is due to the decomposable loss assumption. Likewise, define L̃ to be the
regularized empirical risk function with private voting labels ỹi:
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Based on Equation 23 and Equation 24, it follows that: L̃ = L+�L where�L = c
m
Pm

i=1(ỹi�ŷi)h✓(xi).

Furthermore, since each individual loss function `( f̄✓(xi), ỹi) or `( f̄✓(xi), ŷi) is convex for all i from
the given assumption, then L̃ and L both are �-strongly convex.

Next, from the definition of ✓̃ = arg min✓ L̃, and
?

✓= arg min✓ L it follows that:
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Now since r✓̃L̃ = 0 by Equation 25, we can rewrite Equation 26 as
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By definition of r?
✓�L we can rewrite the above inequality as follows:
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Next, let ⇢i = ŷi� ỹi, applying this substitution to the above and by triangle inequality it follows that:
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where the first inequality is due to definition of gxi = max✓ kr✓h✓(xi)k and the second inequality is
due to the general triangle inequality . Since |⇢i| is a Bernoulli random variable, in which |⇢i| = 1
w.p. p$xi

and |⇢i| = 0 w.p of 1 � p$xi
. Therefore E[|⇢i|] = p$xi

. Thus, it follows that:
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which concludes the proof. ⇤

Theorem 3. For a sample x 2 D̄ let the teacher models outputs f i(x) be in agreement, 8i 2 [k].
The flipping probability p$x is given by p$x = 1 ��( kp

2�
), where �(·) is the CDF of the std. Normal

distribution and � is the standard deviation in the Gaussian mechanism.

For simplicity of exposition Theorem 3 considers binary classifiers, i.e., Y = {0, 1}. The argument,
however, can be trivially extended to generic C-classifiers.

Proof. By assumption, for any given sample x, all teachers agree in their predictions, so w.l.o.g.,
assume k teachers output label 0, while none of them outputs label 1. Next, let  , 0 ⇠ N(0,�2)
be two independent Gaussian random variables which are added to true voting counts, k and 0,
respectively. The associated flipping probability is:

p$x = Pr [ṽ(T (x)) , v(T (x))] = Pr(k +   0 +  0) = Pr( 0 �  � k) (34)
= 1 � Pr( �  0  k), (35)

since  , 0 are two independent Gaussian random variable with zero mean and standard deviation of
�. Therefore,  0 �  ⇠ N(0, 2�2). Thus:

Pr( �  0  k) = Pr(N(0, 2�2)  k) = �(
kp
2�

).

Hence, the flipping probability will be: p$x = 1 � �( kp
2�

). ⇤

Corollary 1 (Theorem 2). Let f̄✓ be a logistic regression classifier. Its expected model deviation is
upper bounded as:
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Proof. The loss function `( f̄✓(x), y) of a logistic regression classifier with binary cross entropy loss
can be rewritten as follows:
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1

1 + exp(�✓T x)
) � (1 � y) log(
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�
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Hence, `(·) is decomposable by Definition 3 with h✓(x) = �✓T
x, c = 1 and z(h) = � log( exp(h)

1+exp(h) ).

Applying Theorem 2 with Gmax
x = max✓ kr✓h✓(x)k = max✓ kr✓ �✓

T
xk = kxk, and c = 1, gives the

intended result.

⇤

Corollary 2 (Theorem 2). Given the same settings and assumption of Theorem 2, it follows:
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Proof. First, by Theorem 2 we obtain an upper bound for E
h
�2
✓̃

i
as follows:

E
h
�2
✓̃

i
 c2

�2

2
6666664

1
m

X

x2D̄

p$x kGmax
x k
3
7777775

2

. (41)

Applying the sum of squares inequality on the R.H.S. of Equation 41 we obtain:
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which concludes the proof.

⇤

B Privacy Analysis

This section provides the privacy analysis for the original PATE model and the proposed mitigation
solution. In PATE with the noisy-max scheme presented in Equation 2 of the main paper (also called
GNMAX), the privacy budget is used for releasing the voting labels ṽ(T (xi)) (a.k.a. hard labels) for
each of the m public data samples xi 2 D̄ according to:

ṽ(T (xi))=arg max
c
{#c(T (xi))+N(0,�2)} (43)

The proposed mitigation solution, instead, releases privately the voting counts (#c(T (xi)) +
N(0,�2))C

c=1 and uses these noisy counts to construct the soft-labels, see Equation (11).

Using an analogous analysis as that provided in Papernot et al. (2018), adding or removing one
individual sample x from any disjoint partition Di of D can change the voting count vector by
at most two. This value of the query deviation is obtained by GNMAX Papernot et al. (2018).
Therefore the privacy cost for releasing hard labels or soft-labels is equivalent.

Next, this section provides the privacy computation ✏ given by Gaussian mechanism which adds
Gaussian noise with standard deviation � to the voting counts.

The privacy analysis of PATE with hard or soft-labels is based on the concept of Renyi di↵erential
privacy (RDP) Mironov (2017). In either implementations, the process uses the Gaussian mecha-
nism to add independent Gaussian noise to the voting counts. The following Proposition 1 from
Papernot et al. (2018) derives the privacy guarantee for GNMAX.
Proposition 1. The GNMAX aggregator with private Gaussian noise N(0,�2) satisfies (�, �/�2)-
RDP for all � � 1.

Since the GNMAX mechanism is applied on m public data samples from D̄, the total privacy loss
spent to provide the private labels is derived by the following composition theorem.
Theorem 4 (Composition for RDP). If a mechanismM consists of a sequence of adaptive mecha-
nismsM1,M2, . . . ,Mm such that for any i 2 [m],Mi guarantees (�, ✏i)-RDP, thenM guarantees
(�,
Pm

i=1 ✏i)-RDP.
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Based on Theorem 4 and Proposition 1, PATE satisfies (�, m�/�2)-RDP. PATE also satisfies (✏, �)-DP
by the following theorem.

Theorem 5 (From RDP to DP). If a mechanism M guarantees (�, ✏)-RDP, then M guarantees
(✏ + log 1/�

��1 , �)-DP for any � 2 (0, 1).

As a result of Theorem 5, PATE (with either hard or soft labels) satisfies (m�/�2 +
log 1/�
��1 , �)-DP.

C Experimental Analysis (Ext)

This section reports detailed information about the experimental setting as well as additional results
conducted on the Income, Bank, Parkinsons, Credit Card and UTKFace datasets.

C.1 Setting and Datasets

Computing Infrastructure All of our experiments are performed on a distributed cluster equipped
with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz and 8GB of RAM.

Software and Libraries All models and experiments were written in Python 3.7. All neural network
classifier models in our paper were implemented in Pytorch 1.5.0.

The Tensorflow Privacy package was also employed for computing the privacy loss.

Datasets This paper evaluates the fairness analysis of PATE on the following four UCI datasets:
Bank, Income, Parkinsons, Credit card and UTKFace dataset. A descriptions of each dataset is
reported as follows:

1. Income (Adult) dataset, where the task is to predict if an individual has low or high income,
and the group labels are defined by race: White vs Non-White Blake & Merz (1988).

2. Bank dataset, where the task is to predict if a user subscribes a term deposit or not and the
group labels are defined by age: people whose age is less than vs greater than 60 years old
Blake & Merz (1988).

3. Parkinsons dataset, where the task is to predict if a patient has total UPDRS score that
exceeds the median value, and the group labels are defined by gender: female vs male
Little et al. (2007).

4. Credit Card dataset, where the task is to predict if a customer defaults a loan or not. The
group labels are defined by gender: female vs male Carcillo et al. (2019).

5. UTKFace dataset, where the task is to predict the gender of a given facial image. The
group labels are defined based on the following 9 age ranges: 0-10, 10-15, 15-20, 20-25,
25-30, 30-40, 40-50, 50-60, 60-120. Hwang et al. (2020)

On each dataset we perform standardization to render all input features with zero mean and unit
standard deviation. Each dataset was partitioned into three disjoint subsets: private set, public train,
and test set, as follows. We randomly select 75% of the dataset to use as private data and the rest for
public data. For the public data, m = 200 samples are randomly selected to train the student model,
and the rest of the data is used as a test set to evaluate that model.

Models’ Setting
To visually show how tight the upper bound from Corollary 1 is, the paper uses a logistic regression
model with 1000 runs to estimate the expected model deviation E

⇥
�✓̃
⇤
= E
h
k✓̃� ?

✓ k
i
.

For other experiments, the paper uses a neural network with with two hidden layers and nonlinear
ReLU activations for both the ensemble and student models. All reported metrics are an average of
100 repetitions, used to compute the empirical expectations. The batch size for stochastic gradient
descent is fixed to 32 and the learning rate is ⌘ = 1e � 4.
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(a) Bank dataset (b) Credit card dataset (c) Income dataset (d) Parkinsons dataset

Figure 8: Upper bound of the expected model deviation on 4 datasets with � = 20, k = 20.

(a) Bank dataset (b) Credit card dataset (c) Income dataset (d) Parkinsons dataset

Figure 9: Upper bound of the expected model deviation on 4 datasets with � = 100, k = 200.

C.2 Upper bound of the expected model deviation

The following provides empirical results on Corollary 1 on four benchmark datasets. As indicated
in this corollary, the expected model deviation is bounded by 1

m�
⇥P

x2D̄ p$x kxk
⇤
. To visualize how

tight the bounds are we report the RHS and LHS values of Equation 8 on di↵erent datasets. We run
with two settings: k = 20, � = 20 in Figure 8 and k = 200, � = 100 in Figure 9.

C.3 The impact of regularization parameter

This section provides further empirical supports regarding impact of the regularization parameter
� to the accuracy and fairness trade-o↵. As seen from Theorem 2, increasing � reduces the model
deviation which in turns decreases the group excessive risk R(D̄ a) by Theorem 2 from the main
text. On the other hand, large regularization can intuitively impacts negatively to the model accuracy.
This was verified empirically in Figure 10 which shows how model deviation(left), excessive risk
di↵erence between two groups (middle) and utility(right) vary according to �.

C.4 The impact of teachers ensemble size k

This section illustrates the e↵ect of teacher ensemble sizes k to: 1) flipping probability p$x , and 2)
the trade-o↵s among model deviation E

⇥
�✓̃
⇤
, model’s fairness and utilities.

First, Theorem 3 from the main text shows that larger k values correspond to smaller flipping proba-
bility p$x . We provide more empirical evidence on other datasets and report the dependency between
flipping probability with number of teachers k in Figure 11. It can be observed consistently on all
datasets, the more number of teachers k, the smaller the flipping probability p$x over all samples x

is.

Second, regarding to the fairness analysis, similar to the previous subsection, we provide additional
empirical supports on the e↵ects of k on the model deviation, the di↵erence between the group
excessive risk, and the utility of the PATE models. We report these metrics on the other three bench-
marks datasets in Figure 12. A similar trend with the regularization parameter � also holds for the
parameter k here. When the parameter k is increased to a large enough value, both model deviation
and accuracy decreases, but the unfairness measured by the excessive risk di↵erence between two
groups reduces. This can be explained by looking again Figure 11 and Theorem 3 from the main
text. A large number of teachers k results to a smaller flipping probability which in turns reduces
the model deviation. By Theorem 2 a small model deviation can reduce the level of unfairness.
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(a) Bank dataset (b) Income dataset

(c) Parkinsons dataset (d) UTKFace dataset

Figure 10: Expected model deviation (left), empirical risk (middle), and model accuracy (right)
as a function of the regularization. The experiments are performed with the following settings:
k = 150,� = 50.

.

(a) Bank dataset (b) Income dataset (c) Parkinsons dataset

Figure 11: Average flipping probability p$x for samples x 2 D̄ as a function of the ensemble size k.

(a) Bank dataset (b) Income dataset

(c) Parkinsons dataset (d) UTKFace dataset

Figure 12: Expected model deviation (left), empirical risk (middle), and model accuracy (right) as a
function of the ensemble size. The experiments are performed with the following settings: � = 100,
� = 50.

.
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(a) Income dataset (b) Bank dataset (c) Parkinsons dataset

Figure 13: Relation between input norm and model deviation.

(a) Bank dataset (b) Income dataset

(c) Credit card dataset (d) Parkinsons dataset

Figure 14: Correlation between the excessive risk and input norm on 5 datasets. The experiments
are performed with the following settings: � = 100, � = 50, k = 150.

C.5 The impact of the data input norm

This section provides further experimental results regarding relation between (1) the input norm with
the private model deviation and (2) the input norm with its excessive risk.

Regarding the first relation, Corollary 1 from the main text implies that the smaller the input norm
kxk is the smaller the model deviation is. For each dataset, we then vary the range of the input norm
kxk and report the associated values of the expected model deviation in Figure 13. It can be seen
clearly from the Figure 13, a monotone connection between input norm and the model deviation
which verifies the statement from Corollary 1.

On the other hand, the input norm can a↵ect the excessive risk by Lemma 1 of the Appendix, the
individuals or group of individuals of large gradient norm can su↵er from large excessive risk. In
other words, the individuals of large data norm which are often observed at the tail of data can loose
more accuracy. To confirm such claims, we report in Figure 14 the Spearman correlation between
input norm and the excessive risk at individual levels. On all datasets, we can see obviously a
positive relationship between data input norm and the excessive risk.
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Figure 15: Relation Between Gradient Norm and Input Norm on all datasets.

C.6 Connection between input norm and smoothness parameter �a

It is noted that the smoothness parameter �a captures the local flatness of the loss function of
a particular group a. Consider the logistic regression classifier, then the smoothness parameter
`( f✓(x), y) for one particular data point is given by �x = 0.25kxk Shi et al. (2021). Recall the fol-
lowing important property of the smooth function: If L =

P
i `i and each `i is �i-smooth then L is

maxi �i-smooth. Because of that, the smoothness parameter �a for one particular group a is given
by: �a = 0.25 maxx2Da kxk
The above clearly illustrates the relationship between input norms kxk and the smoothness parame-
ters �a.

C.7 Connection between input norm and gradient norm

In the main text, we have described, for logistic regression classifiers, there is a strong relation
between the individual input norm kxk and their gradient norm at optimal parameter kr?

✓`( f̄?✓(x), y)k.
In this subsection, we extend the analysis for non-linear model. In particular, we show a similar
connection between the gradient norm and the input norm for a neural network with a single hidden
layer. We start by considering the following settings:

Settings Consider a neural network model f̄?✓(x) def
= softmax

✓
?

✓
T
1 ⌧(

?

✓
T
2 x)
◆

where x = (xi)d
i=1

is a d dimensional input vector, the parameters
?

✓22 Rd⇥H ,
?

✓12 RH⇥C and the cross entropy loss
`( f̄?✓(x), y) = �PC

c=1 yc log f̄?✓,c(x) where ⌧(·) is a proper activation function, e.g., a sigmoid function.
Let O = ⌧(

?

✓
T
2 x) 2 RH be the vector (O1, . . . ,OH) of H hidden nodes of the network. Denote the

variables h j =
Pd

i=1
?

✓2, j,i x
i as the j-th hidden unit before the activation function. Next, denote

?

✓1, j,k2 R as the weight parameter that connects the j-th hidden unit h j with the c-th output unit f̄c
and

?

✓2,i, j2 R as the weight parameter that connects the i-th input unit x
i with the j-th hidden unit

h j.

Given the settings above, we now show the dependency between gradient norm and input norm.
First notice that we can decompose the gradients norm of this neural network into two layers as
follows:

kr?
✓`( f̄?✓(x), y)k2 = kr?

✓1
`( f̄?✓(x), y)k2 + kr?

✓2
`( f̄?✓(x), y)k2. (44)

We will show that r?
✓2
`( f̄?✓(x), y)k / kxk.

Notice that:
kr?

✓2
`( f̄?✓(x), y)k2 =

X

i, j

kr?
✓2,i, j

`( f̄?✓(x), y)k2.

Applying, Equation (14) from Sadowski (2021), it follows that:

r?
✓2,i, j

`( f̄?✓(x), y) =
CX

c=1

⇣
yc � f̄?✓,c(x)

⌘ ?

✓1, j,c
⇣
Oj(1 � Oj)

⌘
x

i, (45)

which highlights the dependency of the gradient norm kr?
✓2
`( f̄✓(x), y)k and the input norm kxk. Fig-

ure 15 provides an empirical evidence for this dependency on all four datasets used in our analysis.
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It can be seen clearly a strong positive correlation between input norm and the gradient norm at
individual levels on all datasets from Figure 15.

C.8 Effectiveness of mitigation solution

This subsection provides extended empirical results regarding the e↵ectiveness of our proposed
mitigation solution which was presented in Section 8.

We report the comparison between training PATE with hard and soft labels when k = 20 in Figure 16
and when k = 150 in Figure 17. These figures again illustrate the e↵ects of the proposed mitigating
solution in terms of utility/fairness tradeo↵ on the private student model. The top subplots of each
figure show the group excessive risks R(D̄ 0) and R(D̄ 1) associated with two groups while the
bottom subplots illustrate the accuracy of the model, at increasing of the privacy loss ✏. Recall
that our mitigation solution does not require the availability of group labels during training. This
challenging settings are of importance under the scenario when it is not feasible to collect or use
protected features (e.g., under GDPR).

21



Under review as a conference paper at ICLR 2023

(a) (b)

(c) (d)

(e)

Figure 16: Comparison between training privately PATE with hard labels and soft labels in term of
fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b) Credit card, (c) Income (d)
Parkinsons, (e) UTKFace dataset. Here for each dataset, the number of teachers k = 20.
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(a) (b)

(c) (d)

Figure 17: Comparison between training privately PATE with hard labels and soft labels in term of
fairness (top subfigures) and utility(bottom subfigures) on (a) Bank, (b) Credit card, (c) Income, and
(d) Parkinsons Here for each dataset, the number of teachers k = 150.
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