Learning Nonlinear Causal Effect via Kernel Anchor Regression
(Supplementary Material)

A PROOFS AND DERIVATIONS

A.1 PROOF OF THEOREM

Before proving Theorem we introduce the exact bounds of the approximation errors for estimating E% and EY. in the
disjoint sample sets projection stage. Lemma[AT]and [AZ]below are adapted from Theorem 2 in[Singh et al.| [2019].

Lemma A1 Under Condition[l] V6 € (0, 1), the following holds w.p. 1 — §:

”Egi,X - g{H’HF <7rp,(6,n1,¢1) =

VGl +1) <4H(Q1 + K| B ||y 1n(2/5)>2111
47T VniGi(er — 1) ’

o = <8H(Q1 + K| E% || a4 1n(2/5)>cf+1
' VniCi(er — 1) '

Lemma A2 Under Conditioncmd Condition Ve € (0,1), the following holds w.p. 1 — e:

”EEE,Y - E€”He <71, (€,n2,¢2) 1=

VGles 1) (4@ e P e 1n<2/e>>ii+1

4= VnaGa(ez — 1) :
= (Sﬂ(sz + 6l BY [l4e 1n(2/6)>022+1
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Recall that we define the population-level risk for the regression stage £ (H ), population-level risk with regularization
&J (H), and the empirical risk &' (H) with E% and Ey being replaced by E}! y and E/? ., respectively. Denote the
optimal operator to & (H) as H = argminy & (H). We now define the empirical risk &S, (H) with true EX and EY,
and the corresponding optimal operator. ‘

ELT(H) = -3 s = Hib 4 €1 Hy HE™ = axgmin £ (H),
=1

where the true transformed inputs and outputs are given by
Vyi = (@) + (V7 = DEYd(21) € Hay  yya =y + (V7 — DEVO(2) € V.

The closed form solution of H g "™ is given by Lemma|A3|below, and it’s adapted from Theorem 3 in |Singh et al.|[2019]

Lemma A3 V¢ > 0, the solution H'™ to '™ exists, is unique, and
T=0 Y0 T 8= 5 20t Qo Y, HI™ = (T + § log.

We then define the following terms.

Submitted to the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023). To be used for reviewing only.



Definition 1 Fixn € (0,1) and define the following constants

M
Cy =9610°(6/n), M =2(C+|H"|u,VB), T= >

For the excess error of KAR estimator I g "™ we can bound it by five terms according to Proposition 32 in|Singh et al.
[2019].

Lemma A4 The excess error can be bounded as follows

EV(HP™) — EV(H) <5[S_1 + So + A() + S1 + Sa],

where
S = [IVTo(T+& ' @—e)l3,,
So = [IVTo(T+& !XT -T)HI" 3,
Si = [VTo(T+&  g—TH)|},,
Sy = [VTo(T+& T —T)(H — H)|3,,,
A©) = IVT(H] - H)|3,.

For all five terms above, only g — g in S_; depends on the approximation error of EY.. The bounds for other four terms are
same to the KIV case. Below we introduce without proof the bond of Sy, S1, S2 and A(§) according to Theorem 7 in|Singh
et al.|[2019]].

Lemma A5 Under Condition if m is large enough and § < ||T'|| (3, then ¥, € (0, 1), the following holds up w.p.

1—n—24:
Sy < %4BL27~§LHHQ””||${Q,
BM? 2 /b
< 3912 27 51/b, v
Sio= 320n7(6m) [m% + m sin(ﬂ'_)fl/bw]
4B2(E! | Bege
< 2
So 81n°(6/n) [ m2E + mé ] )
Al < (€.

To extend the convergence rate of KIV estimator to KAR estimator. We then illustrate the bound for S_;. To begin with, the
bound of term /T o (T +&)~tin S_; is given by Proposition 39 in|Singh et al.|[2019).

Lemma A6 If||1ZAY — Uyl < rewp. 1 =0, & < T nepg), m is sufficiently large and Conditionholds, then w.p.
1-n/3-24¢
2

\/To 'i‘ -1 < —.
| (T+¢) Hmm)-\/g

With the the error propagated from the estimators in the projection stage, we can bound {/;,Y — 1, and §J, — y as shown in

Lemmal[A7HAS]

Lemma A7 Under Condition Vo € (0, 1), the following statement holds wp. 1 — 6:Vz € Z,x € X,
1y = ¥y llrn < 72(v,0,m0,1) == VA = Uire, (8,n1, ¢1).

Proof 1 By definition, we have

19y — ¥y ll70

| (7 =D (B3 x = B%) 62l
VA = UIEZ x = B llne 9(2) 0

IN



This, together with Lemma@and Conditionm ensures that w.p. 1 — 9
||¢v - 1%”%»( <re(y,6,n1,¢1) = |\ﬁ - 1|/f7“E1 (0,n1,¢1).

Remark A1 Corollary 1 inSingh et al] [2019] is a special case of Lemma[A7|with v = .

Lemma A8 Under ConditionIZI Ve € (0,1), the following statement holds wp. 1 —e:Vz € Z,y € Y,
19y — yyllay < ry(7s €02, ¢2) = [V — 1]krE, (6, n2, ¢2).

Proof 2 Lemma @ is analogous to Lemma @ by replacing 1)~ with y.,. The proof is thus omitted.

Combining Lemma we can derive the bound of g — g and then the bound of S_ 1.

Lemma A9 If\|1$7 — Uyl <Tzwp. l—30dand||yy —yylly <rywp.1—¢ thenwp. 1 -6 —e¢

€T

g — gll3,, < 3(L*r3ry + B*r) + L*r2'C*).

Proof 3 By definition, we have

Z (qu;%l{l]»%l - wa(;c)yy,z)
=1

3=

g-g =

NE

1 - -
- {%%, - wa} W = v0ad Q5 AUyt = vyt + {%,l =Dy, } Yt
=1

We then have

& - gll%,

3Im — - ~
S {25, = Qo f B = v} e+ 19, {5 — v} g
=1

2
{92, = Y vl

IN

3 — ) R , , ~ ,
319 = QI 9t 1t = vl 120, 30 [0 = 90
=1
+H195,, = Iz ly.al13-
Do S L@, o) 197y
By the boundedness and the Holder property in Condition[3] we obtain that w.p. 1 — & — €,

m
3

I8 —elde < > L2y — rall i 18 = yralld + 1920, 12 300 50 = 9ral3
=1

m
+ L2 ||ty 0 — Yyl 1yl
< 3(L2Tgbr§ + B2r§ + L27“325‘C’2).

Lemma A10 Under Condition[IH3] then wp. 1 — 6 — €
4
St < gB(LArEy + By + L C?).

Proof 4 We can derive from the definition of S_1 that

S_1 S IVT o (T + )77 30 I8 — &lI30,-
This, together with Lemma @Iand Lemma @ ensures

4
S_1 < E3(L2r§‘r§ + B2T§ + L?r2C?).



We then show the order of the sum Sy + 57 + S3 + A(&), which is adapted from Theorem 4 in Singh et al.|[2019].

_1 dy(e1+1)

Lemma A1l Under Condilion choose a1 = n;”“, ny =m -0 where d; > 0. Let

— 1 1 1 Cy 71 71
f(m) = m2+digs + ml+di £2+1/by + mdig +&0 + m2¢ + meL/by’

we then have

Op(So + A(§) + 51+ 52) = O(f(m)).

dycy

d
@) Ifd; < % then O(f(m)) = O(m™ =F1) with £ = m—ﬁ;

byc b

(@i) If dy > 5L then O(f(m)) = O(m~ T 1) with € = m e,

Proof 5 (Proof of Theorem|I[) The choices of a1, as and ny, no in the statement of Theoremensure that

1 2

r2 = 0([tny HTF) = 0m™*), 13 = 0(((n;

x

2

5)EAPR) = O(m~™).

€T

dy,ds > 0, and dy < ds by Condition m— 4 /€ then dominates two other terms in S_.

Note that f(m) in Lemmaalso includes m~% /€. Therefore, given Condition the sum of four terms So+A(€)+ 51+ 52
dominates S_1, which suggests that the approximation error of EY. is dominated by that of E%;. We can then derive the
result from Lemmal[AT])

Thus, by Lemma we have Op(S_1) = Op(1/E(r2r2 + 2 +124)) = Op(1/E {m™ + m~% + m~N =% 1})_ Since

A.2 PROOF OF THEOREM

Proof 6 (Proof of Theorem[2) Under the kernel structural equation model, simple calculation gives

C = Boz®(Z) + €c, (D
U(X) = (Bxz + BxcBcz)®(Z) + Bxcec + €x, (2)
Y = [Byz + BycBcz + Byx(Bxz + BxcBez)|®(Z) + (Byc + ByxBxc)ec + Byxex +ey.  (3)

We denote Boya as the adjoint operator of Ban, Boa = B . When no ambiguity arise, we use the transpose matrix

notation Bop = B)q. For instance, Bxz = Bjy, Byc = Bly. Recall that the transformed input and output in
Equation (16) and Equation (I7) has the form

1y (X) = (X)) — EX¢(2) + VYEX 6(Z),

and
Y, =Y — ELo(Z) + VTEL6(Z).

In the SEM case, the projections E% and EY, into ¢(Z) are noted by the (composition of) operators in Equation (2)) and
Equation @), where
E% = (Bxz + BxcBcz),

and
EY =|Byz + BycBez + Byx(Bxz + BxcBez).

As such, the transformed input and output has the form

Yy (r) = Bxcec + ex +/7(Bxz + BxcBeoz)o(Z), “)

and

Yy = (Byc + ByxBxc)ec + Byxex + ey +7[Byz + BycBcz + By x(Bxz + BxcBcz)|p(Z). )



Define relevant covariance matrix/operators as Yc = Elecel], S x = Elex ® ex] and Xz = E[¢p(Z) @ ¢(Z)], where ®
denotes the tensor outer product. Then the solution for the least square objective on the transformed input output can be
written as

HY = E[wav(X)](E[wv(X) ® %(X)])_l-
Plug in the transformed terms in the form of Equation @) and Equation (3)), we have

E[py(X) ® ¢y (X)]

=E[(Bxcec + ex + v7(Bxz + BxcBez)$(Z))(Bxoec + ex + 7 (Bxz + BxcBoz)$(Z)) "]
= BxcElecel]Bex + Elex ® ex] +v(Bxz + BxcBez)E[¢(Z) ® ¢(Z)|(Bzx + BzcBex)

= BxcXcBex +Xx +7(Bxz + BxcBcz)Yz(Bzx + BzcBox)-

Moreover, E[Y 1 (X)| has the form

(Byc + ByxBxc)Elecel|Box + By xElex ® ex]+

Y[Byz + BycBcz + By x(Bxz + BxcBcz)E[¢(Z) ® ¢(2)](Bzx + BzcBex)
=(Byc + ByxBxc)XcBcx + By xXx+

Y[Byz + BycBez + Byx(Bxz + BxcBcz)|2z(Bzx + BzcBex)

as ec, €x and ey are independent variables, which are also independent of Z. In overall, we have

HY =[(Byc + ByxBxc)YcBex + ByxXx
+v[Byz + BycBcz + Byx(Bxz + BxcBcz)|2z(Bzx + BzcBox)]
[BxcXoBox + Ex +v(Bxz + BxcBez)Yz(Bzx + BzeBex)) ™

The bias of the target KAR estimator is then given by

HY" —Byx =

[(BYC + ByxBxc)YcBex + ByxXx +7[Byz + BycBcz + Byx(Bxz + BxcBez)|2z(Bzx + BZCBCX)}

{BXCECBCX +¥x +7v(Bxz + BxcBcz)YXz(Bzx + BZC'BCX)] . Byx

= [(Byc + ByxBxc)XcBex + Byx¥x +7[Byz + BycBcoz + By x(Bxz + BxcBeoz)|Yz(Bzx + BzcBex)
— Byx(BxcXcBox +Xx +7v(Bxz + BxcBez)Yz(Bzx + BZCBCX))}

[BXCZCBCX +¥x +7(Bxz + BxcBcz)Xz(Bzx + BZCBCX)} -

Collecting all the common terms we get

H" — Byx = [BYCZCBC’X +v(Byz + BycBcz)Xz(Bzx + BZCBCX)}

L
Z"YX

I
Dy x

-1
[BXCECBCX +Yx +v(Bxz + BxcBcz)2z(Bzx + BZCBCX)}

Thus, Yz € X,y € Y, consider the inner product y' (H" — By x)(z) = 0 when the following holds: (i) Byc = 0
and v = 0, or (ii) By z + BycBcz = 0 and v = oo, or (iii) Byc = 0, Byz + BycBcz = 0and v > 0, or (iv)
Eux = aXyy for some a > 0, and ¥ = oo, or (v) E‘)‘(Y = —aX%y for some a > 0, and v = 1/c. As such, we conclude
H" = Bxy.

A.3 CONVERGENCE RATE FOR KAR.2 ESTIMATOR

In this section, we will further discuss the convergence rate of KAR.2 estimator, and show that the rate does not improve
upon the convergence rate of KAR estimator.



In the three-stage KAR procedure, we approximate E%. and E}. by EZi y and E? 5.y respectively. In the two-stage KAR

procedure, instead, we approximate the two operators by E7} - and £} 1, respecnvely Note that the estimated operators

E"  and E7 y use the same . The shared o may fail to ensure the optimal approximation error for E7 - and E7 , at the
a, X a,Y y Y PP a, X a,Y

same time.

Lemma A12 Under Condition[I| Vé € (0, 1), the following holds w.p. 1 — 4:

+H E r ln 2 (S c1—1
B2 x — Bl < rifa) = OB D) g2

Under Conditionand Condition[Z] Ve € (0,1), the following holds w.p. 1 — e:

4 E? In(2 co—
I8y = Bl < o) = T RCID 4 o502 /Gy

cp—1
Approximation error bound r1(«) for EY x achieves its minimum at rate O(n R Gy ) when

)

85(Q1 + 5| E% oee) ln<2/6>)”2“ PP
- (M ot

__ca—1
and approximation error bound ro(c) for E7 y achieves its minimum at rate O(n~ 2(2¥1) ) when

_ (85(Q 4 Bl EY o) 2/ \ 7T _ o
‘( ViGa(ez — 1) ) o

Lemma above provides the upper bounds of the approximation errors for £ y and EJ y-, and it’s adapted from
Theorem 2 in[Singh et al|[2019]. We can see that if ¢; # c2, we cannot claim the optimal convergence rate for £ X and
E7, y at the same time, which disjoint sample sets projection estimators can guarantee by setting different o and Qg as
shown in Lemma(I]and [2} In other words, in KAR.2 procedure, the error propagated to the final stage, which are caused by
using B} y and E} y-, can have larger order than using £}  and E;” - separately in the KAR procedure. Therefore, we
cannot ensure a same or improved convergence rate for KAR.2 estimator compared to KAR estimator.

B ADDITIONAL SIMULATION DETAILS AND RESULTS

B.1 SYNTHETIC EXAMPLE IN KIV SETTING

In this section, we show the data generating process and implementation details for the example that follows the simulation
case of learning counterfactual functions|Chen and Christensen|[2018]] studied in|Singh et al.| [2019]. The structural model is
set as follows,

Y =C+In(]16X — 8|+ 1)sgn(X — 0.5).

The explanatory variables are generated from

C 0 1,0.5,0
1% ~ N o], 05,1,0 ,
0% 0 0,0, 1

v r(t)
Z = F(W),

where F’ denote the c.d.f of standard normal distribution. This structural model ensures that anchor Z is a valid instrumental
variable, so that KIV is supposed to perform well in this case. We conduct kernel anchor regression with three-stage
algorithm (KAR), kernel anchor regression with two-stage algorithm (KAR.2) and multiple s and kernel instrument
variable regression (KIV). Set n; = 200, no = 200, m = 600, n = ny + ny = 400. For KAR and KAR.2, we set y to be 0,
0.5,1,2,5, 10, and 100. We set a1 = cany *?, ag = cang ®5, a = cqn =2, and € = 1m =92, where ¢, > 0 is a constant
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Figure B1: Variant synthetic example: fitted nonlinear (left) and linear (right) methods.
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(a) MSE results in the KIV setting (b) MSE results of all estimators in the variant case.

Figure B2: Experimental results for additional experiments.

chosen from {0.01,0.05,0.1,0.5,0.8, 1, 2, 3} for each estimator separately to minimise the corresponding MSE. We use
Gaussian kernel for all kernel methods, where the lengthscales are set according to median heuristic |Gretton et al.[[2012].

For each algorithm, we then implement 50 simulations and calculate MSE with respect to the true causal model E(Y |do(z)),
which can be computed from the structural model. As shown in Figure 2(a)] though KIV performs better than most KAR
and KAR.2 estimators, KAR and KAR.2 with v = 2 defeat KIV in the KIV setting. This, together with the the fact that KIV
defeat other non kernel-based approaches as shown in|Singh et al.|[2019]], indicates that KAR also outperforms DeepIV and
SmoothlV in this setting. The parameters c,s are chosen to be 1, 0.1, 3, 0.8, 3, 3,3, 1, 0.1, 3, 1, 3, 3, 3 and 2 for KAR with
~ being 0, 0.5, 1, 2, 5, 10, 100, KAR.2 with same ~ series and KIV, respectively.

B.2 ADDITIONAL SYNTHETIC DATA EXAMPLES

We also consider a variant case where the structural equation is same to the case in Section[5.1]in the main text
Y =0.75C — 0.25Z + In(]16 X — 8| + 1)sgn(X — 0.5),

and the explanatory variables are generated as

C 0 1,0.3,0.2
vIi~nN|[|o],[ 0310
W 0 0.2,0, 1

Instead, X and Z are set via the following transformation.

B |W|+V> B 3
X—F<\/§ , Z=F(W|) —0.5. (6)

The fitted result of nonlinear and linear methods is shown in Figure [BT] The MSE averaged over 50 simulations is shown in
Figure 2(b)] From the result, we can also see that the proposed kernel anchor regression estimators still performs the best
among others under the variant case.

Moreover, we consider a case where the is structural equation is linear,

Y =0.75C — 0.25Z + 0.5X + 0.75,
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Figure B3: Linear SEM example: fitted nonlinear (left) and linear (right) methods.
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Figure B4: MSE for the linear SEM example.

where the data-generating process for X, Z and C' remains the same as Section 5.1 in the main text,

C 0\ /1,0.3,0.2
vi~n~n|[|o],| 0310]],
W 0 0.2,0, 1

and

x=r (YY) 2 - Fav) -0
(") W)

We compare KAR with the linear models to show the robustness and s | o
usefulness of the non-linear anchor regression. By cross-validation, T 25 I
we choose v = 3 for KAR estimators. As shown in the Figure @ % :Average bandwidth .
KAR and KAR.2 are able to learn the linear relationship well and > 20 :i n median heuristic e
both methods achieve the lower MSE among others, outperforming § I
the linear methods, as shown in Figure [B4] S5 : .
'? 1.0 . : .
B.3 BANDWIDTH CHOICE FOR GAUSSIAN KERNEL ngJ L —.“‘:f"“‘ ___Error for median heuristic
0.0 0.5 1.0 15 2.0

We conduct the experiment using different bandwidths for Gaussian
kernels on the setting in Section[3} and plot the cross-validation error
on the right. The median bandwidth, averaged over 50 trials, are plotted in red vertical line; and the average cross-validation
error are plotted in blue horizontal line. The result Bandwidth for Gaussian kernel shows that the median heuristic bandwidth
choice achieves close-to-optimal cross-validation error, which reassures the good results presented in the main text.

Bandwidth for Gaussian' kernel
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