
Supplementary Material for “LLARVA”490

Here, we provide additional information about our model’s emergent properties, our constructed491

dataset, and implementation details. Specifically, Section A provides additional experiment results,492

Section B provides details about our constructed vision-action instruction dataset, and Section C493

provides additional implementation details.494

A Additional Experiment Results495

A.1 Additional Experiments496

Method
Task

open
drawer

meat off
grill

turn
tap

put
money

push
buttons

sweep
dustpan

slide
block

close
jar

screw
bulb

3-D methods
C2FARM-BC 20 20 68 12 72 0 16 24 8
PERACT 80 84 80 44 48 56 72 60 24

2-D methods
Image-BC (CNN) 4 0 8 4 0 0 4 0 8
Image-BC (ViT) 0 0 16 0 0 0 0 0 16
LLARVA 60 80 56 44 56 84 100 28 8

Method
Task

place
wine

reach and
drag

stack
blocks

put in
drawer

sort
shape

insert
peg

stack
cups

put in
cupboard

place
cups

3-D methods
C2FARM-BC 8 24 0 4 8 4 0 0 0
PERACT 12 68 36 68 20 0 0 16 0

2-D methods
Image-BC (CNN) 0 0 0 8 0 0 0 0 0
Image-BC (ViT) 0 0 0 0 0 0 0 0 0
LLARVA 12 52 0 0 0 0 0 0 0

Table 4: Success rate (%) on RLBench Multi-Task setting. We fine-tuned (with visual trace
prediction) the pre-trained model on 18 tasks and evaluate with 25 episodes per task. Each evaluation
episode is scored either 0 for failure or 100 for success. We gray out methods with 3-D information.

Complete Simulation Results on RLBench. Following [16, 7], we evaluate LLARVA on 18 tasks497

in RLBench, with the comprehensive results presented in Table 4. LLARVA demonstrates signifi-498

cant improvements over 2-D methods and shows comparable performance to 3-D methods in most499

tasks. However, for “long horizon” tasks, which are more complex and involve multiple sub-steps500

or extended durations, LLARVA exhibits similar limitations to other methods. Specifically, for the501

“place cups” task, where success is defined by placing a specified number of cups on a rack, our502

experiments reveal that the model often successfully places the first cup but then becomes confused503

and wanders randomly. As discussed in the main paper, while the introduction of 2-D visual traces504

provides the model with a rudimentary sense of memory (as seen in the “push buttons” case), the505

length of this memory remains limited along the temporal axis. This issue can be partially addressed506

by incorporating additional conditions that include information from more previous steps, however,507

it will place greater demands on the maximum context length that vision-language models (VLMs)508

can handle. Fortunately, several recent works, such as [57], have demonstrated promising solutions509

and performance for VLMs with long context length.510

Additional Explorations for Behavior-specific Tasks. In order to provide a more comprehen-511

sive evaluation of LLARVA , we explored additional tasks in RLBench with specific behavior pat-512

terns. The results for 5 additional tasks are presented in Table 5, using the same fine-tuning and513

evaluation settings as in the main paper. These 5 tasks are categorized into two types: “Bending514
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Task
Bending Task Placement Task

toilet seat
down

close
laptop lid

put
knife

put
umbrella

move
hanger

Success rate 96 68 40 4 88

Table 5: Evaluation results on more tasks in RLBench. We explore additional tasks in RLBench,
which can be further categorized into “Bending Task” (i.e. the robot arm is supposed to grab the
target object then bend and move the target down) and “Placement Task” (i.e. the robot arm is
supposed to grab the target object, hold and move it to a specified area).

Task” and “Placement Task”. In “Bending Tasks”, the robot arm is required to grab the target ob-515

ject and move it down to a certain height. LLARVA demonstrates excellent performance on these516

tasks. In “Placement Task” the robot arm must grab the target object and move it to a pre-specified517

area. LLARVA performs well overall, except in cases requiring delicate operations during either518

the “grab” or “place” stages. For example, in the “put knife” task, most failures occur because the519

gripper misses the thin and delicate handle of the knife. Conversely, in the “put umbrella” task, most520

failures occur during the “place” stage, as the umbrella stand has a very small hole requiring precise521

positioning of the gripper during inserting. These issues are primarily due to the lack of detailed522

information from the visual observation, given that LLARVA uses only a single view image with a523

128x128 resolution. Our future work will try to enable our VLM to process multiple view images524

or to adapt it with a more informative vision encoder that can better capture task-related features.525

A.2 Emergent Properties526

Figure 4: Emergent Properties. Top: The task in this episode is “take the steak off the grill”.
As we see in the third image, LLARVA fails to pick up the steak in the first attempt. However, it
tries again and succeeds the second time, showing capability of attempting a task multiple times.
Bottom: The single view which is used as the model input shows the top and back of a safe. The
task is for the robot to move the money stack from the top of the safe to one of the shelves inside the
safe. LLARVA can still move the money to the correct shelf in the safe despite the camera view not
showing the shelves.

Multiple Attempts after Failure. The top row of Figure 4 shows an example of the model failing527

to pick up an object, and then retrying as soon as the end-effector comes back into view without the528

object in its grasp. Specifically, the third image represents the moment where the end-effector be-529

comes visible again, and LLARVA then attempts to complete the task again. This behavior emerges530

from the fact that the instruction prompt fed into LLARVA at this moment is similar to the prompt at531

the start of the first attempt, with the main difference being the previous actions/positions included532

in the prompt. We highlight this as an interesting emergent property since the training data does not533

include any examples with such behavior.534
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Handling Obstructed Views. In both pre-training and fine-tuning stages of LLARVA, we use only535

a single camera view to provide visual inputs. Using only 2-D inputs creates a challenge since536

robotics tasks require very accurate action predictions in three dimensions.537

The model should be able to see the exact location of the target and also have a sense of depth,538

which other works typically achieve by using either multiple camera views or 3-D representations.539

We note that our model uses a single camera view due to input limitations of current open-source540

LMMs. These limitations can certainly be overcome and are left for future work.541

Using a single camera view presents further challenges when objects in the scene occlude each542

other. However, we find that LLARVA can often complete tasks even in these occluded situations.543

For example, as shown in the second row of Figure 4, the task is “put the money away in the safe544

on the top shelf”. The camera view only shows the top and back side of the safe, which is enough545

information to pick up the money from the top of the safe. However, the top shelf of the safe is not546

visible, and LLARVA can still predict the correct actions to place the stack of money there. This547

example shows LLARVA can, in some cases, work despite visual obstructions, which we believe548

is in part attributable to the introduction of the visual traces. We hypothesize that understanding549

and predicting the visual trace provides the model with information about a successful end-effector550

trajectory in the presence of such occlusions.551
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Figure 5: Data distributions. We do vision-action instruction pre-training for LLARVA on a dataset
built upon Open X-Embodiment [10], including 8.5M image-2-D visual trace pairs.

B Additional Dataset details552

Here, we provide more information about our constructed dataset.553

Data Distribution. As mentioned in the paper, we construct the vision-action tuning dataset from554

a subset of Open X-Embodiment (OXE) [10]. We excluded OXE subsets with poor image quality,555

smaller image resolution, ambiguous action spaces, or those with widely different robot morpholo-556

gies, such as Autonomous Mobile Robots (AMRs, which involve locomotion), resulting in 8.5M557

image-text pairs, whose distribution is shown in Figure 5 and Table 6. Overall, we ensured that the558

resulting dataset contains subsets of [10] that use end-effector control and joint control, in addition559

to including both absolute and delta control modes.560
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OXE Subset Number of Image + 2-D visual trace pairs
kuka 1044466

austin sailor dataset converted externally to rlds 70758

fractal20220817 data 753647

maniskill dataset converted externally to rlds 909568

cmu play fusion 47115

bc z 1198963

berkeley rpt converted externally to rlds new 1533451

bridge 195745

language table 885876

stanford kuka multimodal dataset converted externally to rlds 30128

robo net 496454

toto 65527

furniture bench dataset converted externally to rlds 786692

stanford hydra dataset converted externally to rlds 72160

ucsd pick and place dataset converted externally to rlds 13545

kaist nonprehensile converted externally to rlds 6512

stanford mask vit converted externally to rlds 57012

utokyo pr2 opening fridge converted externally to rlds 2276

berkeley fanuc manipulation 11854

utaustin mutex 72461

taco play 47780

berkeley autolab ur5 19621

austin sirius dataset converted externally to rlds 56101

columbia cairlab pusht real 5486

stanford robocook converted externally to rlds 22894

roboturk 37120

berkeley cable routing 7797

nyu franka play dataset converted externally to rlds 9118

jaco play 15515

viola 15146

tokyo u lsmo converted externally to rlds 2398

austin buds dataset converted externally to rlds 6771

dlr sara pour converted externally to rlds 2695

utokyo xarm pick and place converted externally to rlds 1381

utokyo pr2 tabletop manipulation converted externally to rlds 6545

dlr edan shared control converted externally to rlds 746

dlr sara grid clamp converted externally to rlds 1543

Table 6: More statistics about the vision-action instruction tuning dataset.
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Control ModeRobotVisual ObservationsSubset

End effector controlFrankafractal20220817
_data

Joint controlFranka
berkeley_rpt_co
nverted_external
ly_to_rlds

End effector controlFrankatoto

End effector controlUR5berkeley_autola
b_ur5

2D Visual Trace

Figure 6: A few samples from our constructed vision-action tuning dataset. We visualize some
samples of the instruction tuning dataset used in the pre-training stage of LLARVA, with the corre-
sponding robot type and control mode.

The Generation of 2-D Visual Traces. The 2-D visual traces can be seen as a trace of the end-561

effector location in the image plane across time. To generate these traces, we trained an object562

detector to locate the end-effector from input 2-D images. We use the Detectron2 [12] implemen-563

tation of Faster R-CNN [58] to obtain bounding boxes enclosing the end-effector, and then use the564

center point of the bounding boxes as the end-effector keypoint. The detector was trained using 200565

manually annotated images from each OXE subset. Some examples of the resulting detector training566

set are shown in Figure 6, where the 2-D visual traces are shown in yellow. Note that the traces are567

a sequence of 2-D coordinates, and Figure 6 is a visualization of these sequences. During training568

the sequences are predicted in language token space and compared to ground truth.569

C Additional Implementation Details570

C.1 RLBench Experiments571

LLARVA is evaluated on 12 tasks from RLBench. All RLBench tasks include two or more vari-572

ations of a language instruction describing the goal. For example, there might be three variations573

of the instruction for the same task: “open the top drawer”, “grip the top handle and pull the top574

drawer open” and “slide the top drawer open”. For simplicity, we use the first instruction variant575

for training. Below, we describe the RLBench tasks we use for simulator evaluation, along with576

any modifications we made to the tasks. The intention behind the modifications is to increase the577

variations of the tasks, such as adding distractor objects with different colors. This exercises the578

model’s language grounding abilities. All tasks are unmodified unless otherwise noted.579

Training Setup. We start with a LLARVA model that has undergone vision-action instruction pre-580

training on OXE as described in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning581

for four epochs on task-specific downstream data (e.g., picking, stacking, destacking) using eight582

A100 GPUs. Step 2 instruction tuning is done using 800 demonstrations for each RLBench task.583

The domain gap between step 1 and step 2 is large as we change from almost entirely real data to584

simulation while at the same time changing robots and tasks. We note that while other works train585

on a smaller amount of data, they use roughly the same order of magnitude of data as LLARVA, and586

exploit the power of 3-D representations. For example, PerAct [7] uses 100 examples per task but587

exploits voxel-based 3-D representations, which are rare and difficult to obtain. Our approach has588

the advantage of being able to leverage 2-D representations, which may require additional data but589

with roughly the same order of magnitude as methods that utilize 3-D.590
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Open Drawer. The task is to open one of three drawers. The success metric is a full extension of591

the prismatic joint of the target drawer.592

Meat off Grill. The task is to take either a piece of chicken or steak off the grill and put it on the593

side. The success metric is the placement of the specified meat on the side, away from the grill.594

Turn Tap. The task is to turn either the left or right handle of the tap. Left and right are defined595

according to the orientation of the faucet. The success metric is the joint of the specified handle596

being at least 90◦ away from the starting position.597

Put Money. The task is to pick up the stack of money and place it on the specified shelf of a safe.598

The safe has three shelves: top, middle, and bottom. The success metric is the placement of the599

stack of money on the specified shelf in the safe.600

Push Buttons. The task is to push the colored buttons in the specified sequence. There are always601

three buttons present in the scene, whose colors are sampled from 20 options, and the number of602

buttons to press is between one and three. The success metric is all specified buttons being pressed603

in the right order.604

Sweep Dustpan. The task is to sweep the dirt particles into the specified dustpan. There are two605

dustpans, one short and one tall, and both are always present in the scene. The success metric is606

all five dirt particles being inside the specified dustpan. We modified this task by adding a variation607

with a different-sized dustpan.608

Slide Block. In this task there is a block and four colored squares in the scene (green, blue, pink,609

and yellow). The task is to slide the block onto either the green or pink squares. The success metric610

used is some part of the block being on the specified target square. The original task only had one611

target square, and we modified it by adding three additional colored squares — one target and two612

distractors.613

Close Jar. The task is to screw in the lid on the jar with the specified color. There are always two614

colored jars in the scene, one target jar and one distractor jar. The success metric used is the lid615

being on top of the specified jar and the robot gripper not grasping any object. We modified this task616

so that the target jar color is drawn from a list of two possible colors (blue or teal). The color for the617

distractor jar was still chosen out of 20 options.618

Screw Bulb. There are two bulb holders of different colors, and the task is to pick up a light bulb619

from the stand specified by color and screw it into the bulb stand. The color of the target holder is620

sampled from two colors, while the color of the distractor holder is sampled from the original 20621

color options. The success metric used is the bulb from the specified holder being inside the bulb622

stand. We modified this task to use two colors for the target holder (yellow and purple) rather than623

20 as in the original task specification.624

Place Wine. The task is to pick up the wine bottle and place it at the specified location in a wooden625

rack. The rack has three locations: left, middle, and right. The success metric is the placement of626

the bottle on the specified location in the rack.627

Reach and Drag. The environment has a cube, a stick, and four possible colored target squares.628

The task is to pick up the stick and use it to drag the cube to the target square of a specified color.629

The other three squares are considered distractors. The success metric used is some part of the block630

being inside the target’s area. We modified this task to sample the target color from a list of three631

colors (maroon, magenta, teal). The colors for distractor squares are still sampled from 20 options.632

Stack Blocks . The scene starts with 8 blocks and a green platform. Four of the blocks are of a target633

color, and the other four have a distractor color. The task is to stack N blocks of the target color on634

the green platform. The success metric is N blocks being inside the area of the green platform.635

Put Item in Drawer. There is a block kept on top of a chest of closed drawers. The task is to636

place the block into the specified drawer among three possible options: top, middle, or bottom. The637

success metric is the placement of the block inside the specified drawer.638
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Sort Shape. The scene has four distractor shapes and one correct shape. The task is to pick up the639

shape specified in the language instruction and place it in the correct hole in the sorter. The success640

metric is the correct shape being inside the corresponding hole.641

Insert Onto Square Peg. The scene has a platform with three differently colored pegs, and one642

square shaped object with a hole in the middle. The three colors are sampled from 20 color instances.643

The task is to pick up the square and put it on the peg specified in the language instruction, with the644

success metric being the placement of the square fully on the peg.645

Stack Cups. The scene has three cups with colors sampled from 20 options. The task is to stack all646

cups inside the cup specified in the language instruction. The success metric for this task is all other647

cups being inside the specified cup.648

Put Groceries in Cupboard. The scene always has nine grocery items and one cupboard. The task649

is to place the item specified in the language instruction inside the cupboard. The success metric650

used is the placement of the item inside the cupboard.651

Place Cups. The scene always has one cup holder with three spokes and three cups with handles.652

The task is to place N of the cups on the cup holder (N ∈ {1, 2, 3}). The success metric used is the653

alignment of each cup’s handle with a spoke on the cup task.654

Toilet Seat Down. The scene consists of a toilet which initially has its seat up. The task is to put the655

toilet seat down. The success metric used is the joint of the toilet seat being at an angle consistent656

with the seat being fully down.657

Close Laptop Lid. The scene consists of a laptop which initially has its lid open. The task is to658

close the laptop. The success metric used is the joint of the laptop lid being at an angle such that the659

screen is fully down.660

Put Knife on Chopping Board. The scene consists of a knife inside a knife holder, and a chopping661

board. The task is to pick up the knife from the holder, and place it on the chopping board. The662

success metric used is the knife being on the surface of the chopping board, and the robot gripper663

not grasping anything.664

Put Umbrella in Umbrella Stand. The scene consists of an umbrella and an umbrella holder. The665

task is to pick up the umbrella and put it into the stand. The success metric used is the umbrella666

being inside the stand, and the robot gripper not grasping anything.667

Move Hanger. The scene consists of a clothes hanger and two racks. The task is to move the hanger668

from its current rack to the other rack. The success metric used is the hanger being placed on the669

other rack.670

C.2 Real Robots Experiments671

Hardware Setup. We use a Franka Emika Panda robot with a Franka gripper for real robot data672

collection and evaluations. A Logitech BRIO 4K camera positioned to the right of the Franka robot673

provides single-view RGB (without depth data) vision input to our model, as shown in Figure 7.674

Camera autofocus is disabled, and the data is captured at 640x480 resolution. The model inference675

is done on a 48GB NVIDIA A6000.676

Data Collection. We use the data collection code and process from https://github.com/Max-677

Fu/franka-scripted to collect data for picking, stacking, and destacking tasks. The script generates678

data for an arbitrary number of episodes. For each episode, the process generates x-y positions on679

the table plane using a uniform random distribution for each axis. The script directs the robot to680

place the cube at each location and then collects the camera and joint information as the robot is681

directed to pick, stack, or destack the cubes. Vision is not used during this process as the cube682

locations are all generated and therefore known.683

Training and Execution. For the Franka Emika Panda robot experiments, we start with our684

LLARVA model that has undergone vision-action instruction pre-training on OXE as described685
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Figure 7: The real robot setup with Franka Emika Panda used for evaluating LLARVA.

in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning for four epochs on 1920686

episodes of task-specific downstream data (e.g., picking, stacking, destacking) using 8 A100 GPUs.687

This is similar to other baselines, such as RPT [17], that uses an equal amount of in-domain episodes688

(1920) for pre-training, with an additional 120-240 episodes used for fine-tuning depending on the689

task. Additionally, [17] uses three camera views for each episode, while LLARVA uses only one.690

Nevertheless, it can be observed that LLARVA demonstrates superior performance on all three tasks691

tested despite using comparable or even fewer episodes. Finally, each real robot evaluation consists692

of 16 repeated pick, stack, or destack operations at a random x-y location on the table plane for each693

repetition. We report the success rate of the 16 operations.694

D Licenses and Privacy695

The license, PII, and consent details of each dataset are in the respective papers. In addition, we696

wish to emphasize that the datasets we use do not contain any harmful or offensive content, as many697

other papers in the field also use them. Thus, we do not anticipate a specific negative impact, but, as698

with any machine learning method, we recommend exercising caution.699
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