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Supplementary Material for “LLLARVA”

Here, we provide additional information about our model’s emergent properties, our constructed
dataset, and implementation details. Specifically, Section A provides additional experiment results,
Section B provides details about our constructed vision-action instruction dataset, and Section C
provides additional implementation details.

A Additional Experiment Results

A.1 Additional Experiments

Task
Method .
open meat off  turn put push sweep  slide close screw
drawer grill tap money buttons dustpan block jar bulb
3-D methods
C2FARM-BC 20 20 68 12 72 0 16 24 8
PERACT 80 84 80 44 48 56 72 60 24
2-D methods
Image-BC (CNN) 4 0 8 4 0 0 4 0 8
Image-BC (ViT) 0 0 16 0 0 0 0 0 16
LLARVA 60 80 56 44 56 84 100 28 8
Method o Tk ,
place reachand stack putin sort insert  stack put in place
wine drag blocks drawer shape peg cups cupboard cups
3-D methods
C2FARM-BC 8 24 0 4 8 4 0 0 0
PERACT 12 68 36 68 20 0 0 16 0
2-D methods
Image-BC (CNN) 0 0 0 8 0 0 0 0 0
Image-BC (ViT) 0 0 0 0 0 0 0 0 0
LLARVA 12 52 0 0 0 0 0 0 0

Table 4: Success rate (%) on RLBench Multi-Task setting. We fine-tuned (with visual trace
prediction) the pre-trained model on 18 tasks and evaluate with 25 episodes per task. Each evaluation
episode is scored either O for failure or 100 for success. We gray out methods with 3-D information.

Complete Simulation Results on RLBench. Following [16, 7], we evaluate LLARVA on 18 tasks
in RLBench, with the comprehensive results presented in Table 4. LLARVA demonstrates signifi-
cant improvements over 2-D methods and shows comparable performance to 3-D methods in most
tasks. However, for “long horizon” tasks, which are more complex and involve multiple sub-steps
or extended durations, LLARVA exhibits similar limitations to other methods. Specifically, for the
“place cups” task, where success is defined by placing a specified number of cups on a rack, our
experiments reveal that the model often successfully places the first cup but then becomes confused
and wanders randomly. As discussed in the main paper, while the introduction of 2-D visual traces
provides the model with a rudimentary sense of memory (as seen in the “push buttons” case), the
length of this memory remains limited along the temporal axis. This issue can be partially addressed
by incorporating additional conditions that include information from more previous steps, however,
it will place greater demands on the maximum context length that vision-language models (VLMs)
can handle. Fortunately, several recent works, such as [57], have demonstrated promising solutions
and performance for VLMs with long context length.

Additional Explorations for Behavior-specific Tasks. In order to provide a more comprehen-
sive evaluation of LLARVA , we explored additional tasks in RLBench with specific behavior pat-
terns. The results for 5 additional tasks are presented in Table 5, using the same fine-tuning and
evaluation settings as in the main paper. These 5 tasks are categorized into two types: “Bending
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Bending Task Placement Task

Task .
toilet seat close put put move
down laptop lid knife umbrella hanger
Success rate 96 68 ‘ 40 4 88

Table 5: Evaluation results on more tasks in RLBench. We explore additional tasks in RLBench,
which can be further categorized into “Bending Task” (i.e. the robot arm is supposed to grab the
target object then bend and move the target down) and “Placement Task” (i.e. the robot arm is
supposed to grab the target object, hold and move it to a specified area).

Task” and “Placement Task”. In “Bending Tasks”, the robot arm is required to grab the target ob-
ject and move it down to a certain height. LLARVA demonstrates excellent performance on these
tasks. In “Placement Task” the robot arm must grab the target object and move it to a pre-specified
area. LLARVA performs well overall, except in cases requiring delicate operations during either
the “grab” or “place” stages. For example, in the “put knife” task, most failures occur because the
gripper misses the thin and delicate handle of the knife. Conversely, in the “put umbrella” task, most
failures occur during the “place” stage, as the umbrella stand has a very small hole requiring precise
positioning of the gripper during inserting. These issues are primarily due to the lack of detailed
information from the visual observation, given that LLARVA uses only a single view image with a
128x128 resolution. Our future work will try to enable our VLM to process multiple view images
or to adapt it with a more informative vision encoder that can better capture task-related features.

A.2 Emergent Properties

Figure 4: Emergent Properties. Top: The task in this episode is “take the steak off the grill”.
As we see in the third image, LLARVA fails to pick up the steak in the first attempt. However, it
tries again and succeeds the second time, showing capability of attempting a task multiple times.
Bottom: The single view which is used as the model input shows the top and back of a safe. The
task is for the robot to move the money stack from the top of the safe to one of the shelves inside the
safe. LLARVA can still move the money to the correct shelf in the safe despite the camera view not
showing the shelves.

Multiple Attempts after Failure. The top row of Figure 4 shows an example of the model failing
to pick up an object, and then retrying as soon as the end-effector comes back into view without the
object in its grasp. Specifically, the third image represents the moment where the end-effector be-
comes visible again, and LLARVA then attempts to complete the task again. This behavior emerges
from the fact that the instruction prompt fed into LLARVA at this moment is similar to the prompt at
the start of the first attempt, with the main difference being the previous actions/positions included
in the prompt. We highlight this as an interesting emergent property since the training data does not
include any examples with such behavior.
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Handling Obstructed Views. In both pre-training and fine-tuning stages of LLARVA, we use only
a single camera view to provide visual inputs. Using only 2-D inputs creates a challenge since
robotics tasks require very accurate action predictions in three dimensions.

The model should be able to see the exact location of the target and also have a sense of depth,
which other works typically achieve by using either multiple camera views or 3-D representations.
We note that our model uses a single camera view due to input limitations of current open-source
LMMs. These limitations can certainly be overcome and are left for future work.

Using a single camera view presents further challenges when objects in the scene occlude each
other. However, we find that LLARVA can often complete tasks even in these occluded situations.
For example, as shown in the second row of Figure 4, the task is “put the money away in the safe
on the top shelf”. The camera view only shows the top and back side of the safe, which is enough
information to pick up the money from the top of the safe. However, the top shelf of the safe is not
visible, and LLARVA can still predict the correct actions to place the stack of money there. This
example shows LLARVA can, in some cases, work despite visual obstructions, which we believe
is in part attributable to the introduction of the visual traces. We hypothesize that understanding
and predicting the visual trace provides the model with information about a successful end-effector
trajectory in the presence of such occlusions.
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Figure 5: Data distributions. We do vision-action instruction pre-training for LLARVA on a dataset
built upon Open X-Embodiment [10], including 8.5M image-2-D visual trace pairs.

B Additional Dataset details

Here, we provide more information about our constructed dataset.

Data Distribution. As mentioned in the paper, we construct the vision-action tuning dataset from
a subset of Open X-Embodiment (OXE) [10]. We excluded OXE subsets with poor image quality,
smaller image resolution, ambiguous action spaces, or those with widely different robot morpholo-
gies, such as Autonomous Mobile Robots (AMRs, which involve locomotion), resulting in 8.5M
image-text pairs, whose distribution is shown in Figure 5 and Table 6. Overall, we ensured that the
resulting dataset contains subsets of [10] that use end-effector control and joint control, in addition
to including both absolute and delta control modes.



OXE Subset

Number of Image + 2-D visual trace pairs

kuka

1044466

austin_sailor_dataset_converted_externally_to_rlds 70758
fractal20220817_data 753647
maniskill_dataset_converted_externally_to_rlds 909568
cmu_play_fusion 47115
bc_z 1198963
berkeley _rpt_converted_externally_to_rlds_new 1533451
bridge 195745
language _table 885876
stanford_kuka_multimodal_dataset_converted_externally_to_rlds 30128
robo_net 496454
toto 65527
furniture_bench_dataset_converted_externally_to_rlds 786692
stanford_hydra_dataset_converted_externally_to_rlds 72160
ucsd_pick_and_place_dataset_converted_externally_to_rlds 13545
kaist_nonprehensile_converted_externally _to_rlds 6512
stanford_mask_vit_converted_externally_to_rlds 57012
utokyo_pr2_opening_fridge_converted_externally_to_rlds 2276
berkeley_fanuc_manipulation 11854
utaustin_mutex 72461
taco_play 47780
berkeley_autolab_ur5 19621
austin_sirius_dataset_converted_externally_to_rlds 56101
columbia_cairlab_pusht_real 5486
stanford_robocook_converted_externally_to_rlds 22894
roboturk 37120
berkeley_cable_routing 7797
nyu_franka_play_dataset_converted_externally_to_rlds 9118
jaco_play 15515
viola 15146
tokyo_u_Ismo_converted_externally_to_rlds 2398
austin_buds_dataset_converted_externally_to_rlds 6771
dlr_sara_pour_converted_externally_to_rlds 2695
utokyo_xarm_pick_and_place_converted_externally_to_rlds 1381
utokyo_pr2_tabletop_manipulation_converted_externally _to_rlds 6545
dlr_edan_shared_control_converted_externally_to_rlds 746
dlr_sara_grid_clamp_converted_externally _to_rlds 1543

Table 6: More statistics about the vision-action instruction tuning dataset.
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Figure 6: A few samples from our constructed vision-action tuning dataset. We visualize some
samples of the instruction tuning dataset used in the pre-training stage of LLARVA, with the corre-
sponding robot type and control mode.

The Generation of 2-D Visual Traces. The 2-D visual traces can be seen as a trace of the end-
effector location in the image plane across time. To generate these traces, we trained an object
detector to locate the end-effector from input 2-D images. We use the Detectron2 [12] implemen-
tation of Faster R-CNN [58] to obtain bounding boxes enclosing the end-effector, and then use the
center point of the bounding boxes as the end-effector keypoint. The detector was trained using 200
manually annotated images from each OXE subset. Some examples of the resulting detector training
set are shown in Figure 6, where the 2-D visual traces are shown in yellow. Note that the traces are
a sequence of 2-D coordinates, and Figure 6 is a visualization of these sequences. During training
the sequences are predicted in language token space and compared to ground truth.

C Additional Implementation Details

C.1 RLBench Experiments

LLARVA is evaluated on 12 tasks from RLBench. All RLBench tasks include two or more vari-
ations of a language instruction describing the goal. For example, there might be three variations
of the instruction for the same task: “open the top drawer”, “grip the top handle and pull the top
drawer open” and “slide the top drawer open”. For simplicity, we use the first instruction variant
for training. Below, we describe the RLBench tasks we use for simulator evaluation, along with
any modifications we made to the tasks. The intention behind the modifications is to increase the
variations of the tasks, such as adding distractor objects with different colors. This exercises the
model’s language grounding abilities. All tasks are unmodified unless otherwise noted.

Training Setup. We start with a LLARVA model that has undergone vision-action instruction pre-
training on OXE as described in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning
for four epochs on task-specific downstream data (e.g., picking, stacking, destacking) using eight
A100 GPUs. Step 2 instruction tuning is done using 800 demonstrations for each RLBench task.
The domain gap between step 1 and step 2 is large as we change from almost entirely real data to
simulation while at the same time changing robots and tasks. We note that while other works train
on a smaller amount of data, they use roughly the same order of magnitude of data as LLARVA, and
exploit the power of 3-D representations. For example, PerAct [7] uses 100 examples per task but
exploits voxel-based 3-D representations, which are rare and difficult to obtain. Our approach has
the advantage of being able to leverage 2-D representations, which may require additional data but
with roughly the same order of magnitude as methods that utilize 3-D.



591
592

593
594

595
596

598
599
600

601
602
603
604

605
606
607
608

609
610
611
612
613

614
615
616
617
618

619
620
621
622
623
624

625
626
627

628
629
630
631

633
634
635

636
637
638

Open Drawer. The task is to open one of three drawers. The success metric is a full extension of
the prismatic joint of the target drawer.

Meat off Grill. The task is to take either a piece of chicken or steak off the grill and put it on the
side. The success metric is the placement of the specified meat on the side, away from the grill.

Turn Tap. The task is to turn either the left or right handle of the tap. Left and right are defined
according to the orientation of the faucet. The success metric is the joint of the specified handle
being at least 90° away from the starting position.

Put Money. The task is to pick up the stack of money and place it on the specified shelf of a safe.
The safe has three shelves: top, middle, and bottom. The success metric is the placement of the
stack of money on the specified shelf in the safe.

Push Buttons. The task is to push the colored buttons in the specified sequence. There are always
three buttons present in the scene, whose colors are sampled from 20 options, and the number of
buttons to press is between one and three. The success metric is all specified buttons being pressed
in the right order.

Sweep Dustpan. The task is to sweep the dirt particles into the specified dustpan. There are two
dustpans, one short and one tall, and both are always present in the scene. The success metric is
all five dirt particles being inside the specified dustpan. We modified this task by adding a variation
with a different-sized dustpan.

Slide Block. In this task there is a block and four colored squares in the scene (green, blue, pink,
and yellow). The task is to slide the block onto either the green or pink squares. The success metric
used is some part of the block being on the specified target square. The original task only had one
target square, and we modified it by adding three additional colored squares — one target and two
distractors.

Close Jar. The task is to screw in the lid on the jar with the specified color. There are always two
colored jars in the scene, one target jar and one distractor jar. The success metric used is the lid
being on top of the specified jar and the robot gripper not grasping any object. We modified this task
so that the target jar color is drawn from a list of two possible colors (blue or teal). The color for the
distractor jar was still chosen out of 20 options.

Screw Bulb. There are two bulb holders of different colors, and the task is to pick up a light bulb
from the stand specified by color and screw it into the bulb stand. The color of the target holder is
sampled from two colors, while the color of the distractor holder is sampled from the original 20
color options. The success metric used is the bulb from the specified holder being inside the bulb
stand. We modified this task to use two colors for the target holder (yellow and purple) rather than
20 as in the original task specification.

Place Wine. The task is to pick up the wine bottle and place it at the specified location in a wooden
rack. The rack has three locations: left, middle, and right. The success metric is the placement of
the bottle on the specified location in the rack.

Reach and Drag. The environment has a cube, a stick, and four possible colored target squares.
The task is to pick up the stick and use it to drag the cube to the target square of a specified color.
The other three squares are considered distractors. The success metric used is some part of the block
being inside the target’s area. We modified this task to sample the target color from a list of three
colors (maroon, magenta, teal). The colors for distractor squares are still sampled from 20 options.

Stack Blocks . The scene starts with 8 blocks and a green platform. Four of the blocks are of a target
color, and the other four have a distractor color. The task is to stack N blocks of the target color on
the green platform. The success metric is /N blocks being inside the area of the green platform.

Put Item in Drawer. There is a block kept on top of a chest of closed drawers. The task is to
place the block into the specified drawer among three possible options: top, middle, or bottom. The
success metric is the placement of the block inside the specified drawer.
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Sort Shape. The scene has four distractor shapes and one correct shape. The task is to pick up the
shape specified in the language instruction and place it in the correct hole in the sorter. The success
metric is the correct shape being inside the corresponding hole.

Insert Onto Square Peg. The scene has a platform with three differently colored pegs, and one
square shaped object with a hole in the middle. The three colors are sampled from 20 color instances.
The task is to pick up the square and put it on the peg specified in the language instruction, with the
success metric being the placement of the square fully on the peg.

Stack Cups. The scene has three cups with colors sampled from 20 options. The task is to stack all
cups inside the cup specified in the language instruction. The success metric for this task is all other
cups being inside the specified cup.

Put Groceries in Cupboard. The scene always has nine grocery items and one cupboard. The task
is to place the item specified in the language instruction inside the cupboard. The success metric
used is the placement of the item inside the cupboard.

Place Cups. The scene always has one cup holder with three spokes and three cups with handles.
The task is to place N of the cups on the cup holder (N € {1,2,3}). The success metric used is the
alignment of each cup’s handle with a spoke on the cup task.

Toilet Seat Down. The scene consists of a toilet which initially has its seat up. The task is to put the
toilet seat down. The success metric used is the joint of the toilet seat being at an angle consistent
with the seat being fully down.

Close Laptop Lid. The scene consists of a laptop which initially has its lid open. The task is to
close the laptop. The success metric used is the joint of the laptop lid being at an angle such that the
screen is fully down.

Put Knife on Chopping Board. The scene consists of a knife inside a knife holder, and a chopping
board. The task is to pick up the knife from the holder, and place it on the chopping board. The
success metric used is the knife being on the surface of the chopping board, and the robot gripper
not grasping anything.

Put Umbrella in Umbrella Stand. The scene consists of an umbrella and an umbrella holder. The
task is to pick up the umbrella and put it into the stand. The success metric used is the umbrella
being inside the stand, and the robot gripper not grasping anything.

Move Hanger. The scene consists of a clothes hanger and two racks. The task is to move the hanger
from its current rack to the other rack. The success metric used is the hanger being placed on the
other rack.

C.2 Real Robots Experiments

Hardware Setup. We use a Franka Emika Panda robot with a Franka gripper for real robot data
collection and evaluations. A Logitech BRIO 4K camera positioned to the right of the Franka robot
provides single-view RGB (without depth data) vision input to our model, as shown in Figure 7.
Camera autofocus is disabled, and the data is captured at 640x480 resolution. The model inference
is done on a 48GB NVIDIA A6000.

Data Collection. We use the data collection code and process from https://github.com/Max-
Fu/franka-scripted to collect data for picking, stacking, and destacking tasks. The script generates
data for an arbitrary number of episodes. For each episode, the process generates x-y positions on
the table plane using a uniform random distribution for each axis. The script directs the robot to
place the cube at each location and then collects the camera and joint information as the robot is
directed to pick, stack, or destack the cubes. Vision is not used during this process as the cube
locations are all generated and therefore known.

Training and Execution. For the Franka Emika Panda robot experiments, we start with our
LLARVA model that has undergone vision-action instruction pre-training on OXE as described
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Figure 7: The real robot setup with Franka Emika Panda used for evaluating LLARVA.

in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning for four epochs on 1920
episodes of task-specific downstream data (e.g., picking, stacking, destacking) using 8 A100 GPUs.
This is similar to other baselines, such as RPT [17], that uses an equal amount of in-domain episodes
(1920) for pre-training, with an additional 120-240 episodes used for fine-tuning depending on the
task. Additionally, [17] uses three camera views for each episode, while LLARVA uses only one.
Nevertheless, it can be observed that LLARVA demonstrates superior performance on all three tasks
tested despite using comparable or even fewer episodes. Finally, each real robot evaluation consists
of 16 repeated pick, stack, or destack operations at a random x-y location on the table plane for each
repetition. We report the success rate of the 16 operations.

D Licenses and Privacy

The license, PII, and consent details of each dataset are in the respective papers. In addition, we
wish to emphasize that the datasets we use do not contain any harmful or offensive content, as many
other papers in the field also use them. Thus, we do not anticipate a specific negative impact, but, as
with any machine learning method, we recommend exercising caution.
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