
A Notation

For the reader’s reference, we collect the notation that recurs throughout this paper.

The data space Yn is a subset of Rdn and the parameter space Xn is a subset of Rpn . We let h·, ·i be
the Euclidean inner product of its inputs, with the space understood contextually.

Y` denotes the `’th data point drawn from the data distribution Pn 2 M (Yn) where M (A) is the set
of all probability measures on A. X` denotes the stochastic gradient descent at step `, generated with
loss function L : Xn ⇥ Yn ! R and step-size �n. We consider (X`) initialized from X0 ⇠ µn for
µn 2 M (Xn).

For a given loss function L, we let �(x) = EL(x, Y ) denote the population loss, and let H(x) be the
random variable L(x, Y )� �(x). We can then define, at each point x 2 Rpn , the covariance matrix

V (x) = E[rH(x)⌦rH(x)] ,

where ⌦ denotes the tensor product, and the first and second order differential operators

An = hrH,ri =
X

i

@i�(x)@i and LN =
1

2
hV (x),r2i = 1

2

X

i,j

Vij(x)@i@j .

In our paper, un(x) = (u1(x), ..., uk(x)) denotes the summary statistics, with un 2 C1(Rpn ;Rk)
meaning it is a continuously differentiable function from Rpn to Rk. We let Jn be the corresponding
Jacobian.

Given the above, when the limiting dynamics exist per Theorem 2.2, the limiting dynamics is denoted
ut (with the subscript n dropped), h is the limiting effective drift defined as in (2.1), and ⌃(u) denotes
the limiting volatility as in (2.2). Bt denotes standard brownian motion in Rk. The initialization for
the limiting dynamics is given by ⌫ = limn!1(un)⇤µn.

B Remarks and intuition on localizability conditions

Let us include a brief discussion of the various scalings appearing in Definition 2.1.
Remark 2. The kinds of summary statistics that we most frequently have in mind for application
are (1) linear functions of the parameter space Xn, for instance the correlation with a unit vector, or
some ground truth; (2) radial statistics, like the `2-norm of the parameters, or some subset of the
parameters; and (3) rescaled versions (usually blown up by ��1/2

n of these near their fixed points.
Regarding the item (1) in Definition 2.1, for linear functions, it trivially holds; for radial statistics,
the Hessian is a block identity matrix, so item (1) holds as long as �n is O(1); therefore item (1) is
most restrictive for rescalings of non-linear statistics, e.g., u(x) = ��↵

n (kxk2 � 1) where it prevents
consideration of this statistic with ↵ > 1/2.

Turning to item (2) of Definition 2.1, we comment that the regularity assumptions made on L here
are less restrictive than uniform Lipchitz or smoothness assumptions common to the literature. In
particular, we do not assume the population loss is Lipschitz everywhere, as we may have thatS

K u�1
n (EK) does not cover Xn, nor does it imply uniform smoothness of H (and in turn L) as we

will be taking �n ! 0 with n.

Let us lastly motivate the scalings appearing in item (3), which ensure there is some independence
between H and the values of ru and r2u at x. As a testbed, suppose that rH(x) is a random vector
with i.i.d. entries all of order 1. Then, if u is a rescaled linear statistic, e.g., ��1/2

n hx, e1i then the first
bound of item (3) is saturated, and the second of course is trivial due to the linearity of u. The second
bound is saturated by taking a rescaling of a radial statistic, e.g., ��1/2

n kxk2, again assuming for
maximal simplicity that rH is an i.i.d. random vector with order one entries. In fact, the second part
of item (3) could be dropped at the expense of more complicated diffusion coefficients in limiting
SDE’s: see Remark 3.
Remark 3. While we discussed above the reasons for which the various scalings of Definition 2.1
were selected, it is interesting to ask what changes in Theorem 2.2 should certain of the assumptions
of Definition 2.1 be violated. Most of the assumed bounds in the definition of localizability are
used to establish tightness and ensure higher order terms in Taylor expansions vanish in the n ! 1
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limit. One assumption which could in principle be relaxed is the second assumption in item (3) of
Definition 2.1; indeed if that assumption is dropped, Theorem 2.2 would still essentially apply, except
the limiting diffusion matrix would be the n ! 1 limit (assuming it exists) of

�JV JT + �JE[hrH, Ji ⌦ hr2u,rH ⌦rH � V i] + �JE[hr2u,rH ⌦rH � V i ⌦ hrH, Ji]
+ �2E[hr2u,rH ⌦rH � V i⌦2] ,

as opposed to simply the limit of �JV JT .

C Proof of Theorem 2.2

In this section, we prove our main convergence result, namely Theorem 2.2. The proof of this can
be thought as a version of the classical martingale problem [46] for summary statistics of stochastic
gradient descent in the high-dimensional n ! 1 limit.

For ease of notation, in the following we say that f . g if there is some constant C > 0 such
that f  Cg and that f .a g if there is some constant C(a) > 0 depending only on a such that
f  C(a)g. Furthermore, for readability, we will often suppress the dependence on n in subscripts,
when it is clear from context.

Proof of Theorem 2.2. Our aim is to establish un ! u weakly as random variables on C([0,1))
where u solves (2.3). It is equivalent to show the same on C([0, T ]) for every T > 0.

Let ⌧nK denote the exit time for the interpolated process un(t) from En
K . Define its pre-image

E⇤
K,n := u�1

n (En
K) and let L1

K,n = L1(E⇤
K,n)). For any function f , we use the shorthand f` to

denote f(X`). By Taylor’s theorem, we have that for any C3 function f and any `  ⌧nK/�,

f` = f(X`�1 � �r�`�1 � �rH`
`�1)

= f`�1 � �[Af
` �Af

`�1]� �[Mf
` �Mf

`�1] +O(�3||r3f ||L1
K,n

· ||rL||3L1
K,n

) , (C.1)

where Af
` and Mf

` are defined by their increments as follows:

Af
` �Af

`�1 = hr�,rfi`�1 � �
⇣
Lnf`�1 +

1
2

⌦
r�⌦r�,r2f

↵
`�1

⌘
,

Mf
` �Mf

`�1 =
⌦
rH`,rf

↵
`�1

+ �(Ef
` � Ef

`�1) ,

Ef
` � Ef

`�1 = �r2f(r�,rH`)`�1 � 1
2

⌦
r2f,rH` ⌦rH` � V

↵
`�1

,

for Ln = 1
2

P
i,j Vij@i@j and V = E[rH ⌦ rH]. Observe that Af

` is pre-visible and Mf
` is a

martingale. We bound these for f = uj among un = (u1, ..., uk).

After recalling Definition 2.1, we see that since un are �n-localizable, the error term in (C.1) has

�3 sup
x2E⇤

K,n

E[||r3uj || · ||rL||3] . �3||r3uj ||L1
K,n

 
||r�||3L1

K,n
+ sup

E⇤
K,n

E||rH||3
!

.K �3/2 .

Since �n goes to infinity as n ! 1, we may thus write uj(X`) as

uj(X`) = uj(0)� �
X

`0`

�
A

uj

`0 �A
uj

`0�1

�
� �

X

`0`

�
M

uj

`0 �M
uj

`0�1

�
+ o(1) ,

where the last term is o(1) in L1 uniformly for `  ⌧K/�.

Now let us define for s 2 [0, T ],

a0j(s) = A
uj

[s/�] �A
uj

[s/�]�1

b0j(s) = M
uj

[s/�] �M
uj

[s/�]�1

If we let aj(s) =
R s
0 a0j(s

0)ds0 = aj(�[s/�]) + (s � �[s/�])(A
uj

[s/�] � A
uj

[s/�]�1) and bj(s) =R s
0 b0j(s

0)ds0, then recalling that un(s) is the linear interpolation of (uj([s/�]))j , we may write

un(s) = un(0) + an(s) + bn(s) + o(1).
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where an(s) = (aj(s))j and bn(s) = (bj(s))j .

We now prove that the sequence (un(s ^ ⌧nK)) is tight in C([0, T ]) with limit points which are
↵-Holder for each K. To this end, let us define vn(s) = an(s) + bn(s) + un(0). As the o(1) error
above is uniform in t, we have that

sup
0s⌧n

K�
||un(s)� vn(s)|| ! 0 , in L1 .

Thus it suffices to show the claimed tightness and Holder properties of limit points for vn instead
of un. We aim to show that for all 0  s, t  T ,

E||vn(s ^ ⌧K)� vn(t ^ ⌧K)||4 .K,T (t� s)2, (C.2)

from which we will get that the sequence vn(s ^ ⌧K) is uniformly 1/4-Hölder by Kolmogorov’s
continuity theorem.

Evidently, for all s, t we have

kvn(s)� vn(t)k  kan(s)� an(t)k+ kbn(s)� bn(t)k .

We control these terms in turn. We will do this coordinate wise and, for readability, fix some j  k
and let u = uj , a = aj , b = bj etc.

For the pre-visible term, we have

E|a(s ^ ⌧K)� a(t ^ ⌧K)|4 .
E
���
X

k

�
hr�,ruik � (�Lnu)k

���4 + E
���2
X

k

⌦
r�⌦r�,r2u

↵
k

��4, (C.3)

where these sums are over steps k ranging from [s/�] ^ ⌧K/� to [t/�] ^ ⌧K/�.

Let h = (hj)jk be as in (2.1). Then by (2.1), we have
��hr�(x),ru(x)i � (�Lnu)(x)

��  hj(un(x)) + o(1) ,

uniformly over all x 2 E⇤
K,n. Therefore, the first term in (C.3) satisfies

E
���
X

k

�
hr�,ruik � (�Lnu)k

���4 . E|�
X

hj(un)k|4 + o((t� s)4)

 (t� s)4
⇣
||hj ||4L1(En

K) + o(1)
⌘

. (t� s)4

by continuity of hj . For the second term in (C.3),

E|�2
X⌦

r�⌦r�,r2u
↵
`
|4  �8

⇣
|((t� s)/�)| sup

x2E⇤
K,n

||r�(x)||2 sup
x2E⇤

K,n

||r2u(x)||op
⌘4

.K �2(t� s)4

where in the last inequality, we have used the definition of �n-localizability. (Applying this bound for
s = 0, t = T , the last term in a is vanishing in the limit for each K whenever �n = o(1).) Combining
the above bounds yields

E|a(s ^ ⌧K)� a(t ^ ⌧K)|4 .K (t� s)4.

For the martingale term, notice that by independence,

E|b(s ^ ⌧K)� b(t ^ ⌧K)|4 = E
⇣

�
X

(Mu
` �Mu

`�1)
⌘4�

= E
⇣

�2
X

(Mu
` �Mu

`�1)
2
⌘2�

,

where the sum again runs over steps ` ranging from [s/�] ^ ⌧K to [t/�] ^ ⌧K . Repeatedly using the
inequality (x+ y + z)2 . x2 + y2 + z2, it suffices to bound the above quantity for each of the three
terms defining the martingale difference Mu

` �Mu
`�1 respectively.
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For the first term in that martingale difference, observe that

E
h⇣

�2
X

`

⌦
rH`,ru

↵2
`�1

⌘2i
= �4

X

`,`0

E
h⌦
rH`,ru

↵2
`�1

⌦
rH`0 ,ru

↵2
`0�1

i


⇣
�
X

`

⇣
�2E

⌦
rH`,ru

↵4
`�1

⌘1/2⌘2

.K (t� s)2 , (C.4)

where in the middle line we used Cauchy-Schwarz and in the last we used �n-localizability.

For the second term in the martingale difference,

E
h⇣

�4
X

`

�
r2u(r�,rH`)`�1

�2⌘2i  �6(t� s)2 sup
x2E⇤

K,n

||r2u(x)||4 · ||r�(x)||4 · E||rH(x)||4

.K �2(t� s)2 , (C.5)

again by �n-localizability. Finally, by the same reasoning, for the third term,

E
h⇣

�4
X

`

⌦
r2u,rH` ⌦rH` � V

↵2
`�1

⌘2i
. �6(t� s)2 sup

x2E⇤
K,n

||r2u(x)||4 · E
⇥
||rH(x)||4

⇤2

.K (t� s)2 . (C.6)

All of the above terms are O((t� s)2) since 0  s, t  T . Thus we have the claimed (C.2), and by
Kolmogorov’s continuity theorem, (vn(s^ ⌧K))s, are uniformly 1/4-Holder and thus the sequence is
tight with 1/4-Holder limit points. Notice furthermore that if we look at (vn(t ^ ⌧K)� an(t ^ ⌧K))t,
this sequence is also tight and the limits points are continuous martingales. Let us examine their
limiting quadratic variations.

Let vK
n (t) = vn(t ^ ⌧K) and define aKn (t) and bK

n (t) analogously. Furthermore, let vK(t), aK(t)
and bK(t) be their respective limits which we have established to exist and be 1/4-Holder.

We will compute the limiting quadratic variation for bK(t). For ease of notation, let �Mui
` =

Mui
` �Mui

`�1 and �Eui
` = Eui

` � Eui
`�1.

Notice first that for 1  i, j  k,

bKn,i(t)b
K
n,j(t)�

Z t

0
�E
⇥
�Mui

[s/�]^⌧K
�M

uj

[s/�]^⌧K

⇤
ds ,

is a martingale. We therefore need to consider the limit as n ! 1 of the integral above. We can
write

E[�Mui
` �M

uj

` ] = hrui, Vruji+ �E[hrH`,ruii`�1�Euj

` ] + �E[hrH`,ruji`�1�Eui
` ]

+ �2E[�Eui
` �Euj

` ] .

Consider the integrals of � times each of these four terms separately.

By the assumption of (2.2),

sup
tT

���
Z t

0
� hrui, Vruji[s/�]^⌧K

ds�
Z t

0
⌃ij(v

K
n (s))ds

���

 sup
x2E⇤

K,n

|� hrui, Vruji (x)� ⌃ij(un(x))| ,

goes to zero as n ! 1.

We now reason that the integrals of the other three terms all go to zero as n ! 1. We will show this
for one of them, the arguments for the others being similar. By Cauchy–Schwarz,

sup
x2E⇤

K,n

|�2E[hrH,ruii�Euj

` ]|  �2E[hrH,ruii2]1/2E[(�Eui
` )2]1/2 .
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The first expectation contributes ��1/2 by the first part of Item 3 of localizability. At the same time,

E[(�Eui
` )2]1/2 . E[hr2ui,r�⌦rHi2]1/2 + E[hr2ui,rH ⌦rH � V i2]1/2 .

The first of these terms is at most ��1 as argued in (C.5). The second is o(��3/2) by the second part
of Item 3 in the definition of localizability. As such, we are able to conclude that

sup
tT

���
Z t

0
�2E[hrH,ruii[s/�]^⌧K�Euj

[s/�]^⌧K
]ds
��� ,

goes to zero as n ! 1. Altogether, with the analogous reasoning for the other two terms, we
conclude that

lim
n!1

sup
i,jk

sup
tT

���
Z t

0
�E[�Mui

[s/�]^⌧K
�M

uj

[s/�]^⌧K
]ds�

Z t

0
⌃ij(v

K
n (s))ds

��� = 0 .

Thus, if we consider the continuous martingales given by bK(t), its angle bracket is, by definition,
given by

hbKit =
Z t

0
⌃(vK(s))ds .

By Ito’s formula for continuous martingales (see, e.g., [18, Theorem 5.2.9]), we have that f(vt)�R t
0 Lfds is a martingale for all f 2 C1

0 (Rk) (smooth compactly supported functions on Rk), where

L =
1

2

kX

ij=1

⌃ij@i@j �
kX

i=1

hi@i.

Since, by assumption, h,
p
⌃ are locally lipschitz—and thus lipschitz on EK—this property uniquely

characterizes the solutions to (2.3) (see, e.g., [46, Theorem 6.3.4]). Thus vK converges to the solution
of (2.3) stopped at ⌧K . Thus by a standard localization argument [46, Lemmas 11.1.11-12], every
limit point v(t) of vn(t) solves the SDE (2.3) (using here that EK is an exhaustion by compact sets
of Rk).

D Deferred proofs from Section 3

D.1 The effective dynamics for Matrix and Tensor PCA

Our aim in this section is to establish Proposition 3.1, showing that the summary statistics un =
(m, r2?) satisfy the conditions of Theorem 2.2 with the desired f ,g and ⌃. In what follows, for ease
of notation we will denote r2 = r2? and R2 = m2 + r2. We first establish that the sequence un is
�n-localizable for any �n = O(1/n). The localizing sequence EK will simply be centered balls of
radius K in R2, say. We first check the regularity of the observable pair un; express the Jacobian for
that pair as

rm = v , rr2 = 2(x�mv) . (D.1)

To check the regularity of observables, notice that r2m = 0, while r2r2 = 2(I � vvT ), whose
operator norm is simply 2, and r`ui = 0 for all ` � 3. Next, we verify the regularity of the loss. In
this appendix we will do things in the more general setting where we add a ridge penalty to the loss,
so that for ↵ > 0 fixed, the loss is given by

L(x, Y ) = �2(hW,x⌦ki+ �hx, vik) + ||x||2k + ↵
2 kxk

2 + c(Y ) ,

and thus H(x) = �2hW,x⌦ki. In the coordinates (m, r2?), we have �(x) = �2�mk + (r2? +
m2)k + ↵

2 (r
2
? +m2) + c0. Observe that

r� = @1�rm+ @2�rr2.

where

@1� = �2�kmk�1 + (2kR2k�2 + ↵)m @2� = kR2k�2 + ↵
2 .
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Notice that hrm,rmi = 1,
⌦
rm,rr2

↵
= 0, and

⌦
rr2,rr2

↵
= 4r2. Consider kr�k 

|@1�|krmk + |@2�|krr2k; the bounding quantity is evidently a continuous function of m, r2

and therefore as long as x is such that (m, r2) 2 EK , it is bounded by some C(K). Next, if we
consider

E[krHk4]  CkE[kW (x, . . . , x, ·)k4]  EkWk4op ·R4k  C(k,K)n2

where the bound on the operator norm of an i.i.d. Gaussian k-tensor can be found, e.g., in [5]. By the
same reasoning, for every w,

E[hrH,wi4]  16kE[|W (w, x, . . . , x)|4]  C(k,K)n2kwk .

If w = rm = v then kwk = 1 and if w = rr2 = 2(x�mv) then kwk  C(K), so in both cases
this is at most C(k,K)n2. Finally, r2u is only non-zero if u = r in which case it is I � vvT . Then,

E[hr2r,rH ⌦rH � V i2]  2E[krHk2]  C(k,K)n

by the second item in the definition of localizability, and evidently the right-hand side is o(��2) if
�n = O(1/n). This concludes the proof of �n localizability for every �n = O(1/n).

We now turn to calculating f ,g,⌃. Starting with f , by the above,

fm = hr�,rmi = �2�kmk�1 + (2kR2k�2 + ↵)m

fr2 = hr�,rr2i = 2r2(2kR2k�2 + ↵) .

We next turn to calculating the corrector. For this, we first calculate the matrix V = E[rH ⌦rH].
Recalling that H = �2hW,x⌦ki where W is an i.i.d. Gaussian k-tensor, we have that

Vij = E[@iH@jH] = 4k(k � 1)xixjR
2k�4 +

⇢
4kR2k�2 i = j
0 i 6= j

. (D.2)

In particular, for � = c�/n, we have

�L�m = 0

�L�r2 =
4c�
n

X

i

(1� v2i )R
2k�2 +

4c�
n

k(k � 1)r2R2k�4

=
4c�
n

k
⇣
(n� 1)R2k�2 + (k � 1)r2R2k�4

⌘

from which we obtain in the limit that n ! 1 that gm = 0 and gr2 = 4c�kR2k�2.

Together, these yield the ODE system of (3.1),

u̇1 = 2u1(�ku
k�2
1 � kR2k�2 � ↵) , u̇2 = �(4u2 � 4c�)kR

2k�2 � 2↵u2 .

which reduces in the ↵ = 0 case to that claimed in Proposition 3.1.

Finally, in order to see that ⌃ = 0, consider

JV JT =

✓
4k(k � 1)m2R2k�4 + 4kR2k�2 4k(k � 1)m(R2 �m)R2k�4

4k(k � 1)m(R2 �m)R2k�4 4k(k � 1)(R2 �m)2R2k�4

◆
, (D.3)

which when multiplied by � = O(1/n) evidently vanishes.

D.2 The fixed points of Proposition 3.1

We now turn to analyzing the ODE of Proposition 3.1 and obtaining the fixed point classification of
Proposition 3.2. At the fixed points, we must have that

�kuk�1
1 =

�
kR2k�2 + ↵

�
u1 ,

2c�kR
2k�2 =

�
2kR2k�2 + ↵

�
u2 .

If u1 = 0, then R2 = u2 and there are two possible fixed points: either u2 = 0 or u2 solves

kuk�2
2 (2c� � 2u2) = ↵.
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Notice that if k = 2, this has a nontrivial solution of the form c� � ↵
2 = u2, provided ↵ < ↵c(2) :=

2c� , and if k > 2, this has a nontrivial solution provided
↵  max

x�0
kxk�2(2c� � 2x) ,

which is attained at c�(k � 2)xk�3 � (k � 1)xk�2 = 0 which is at c�(k�2)
k�1 = x, which gives

↵ < ↵c(k) := 2ck�1
� k(k � 1)�(k�1)(k � 2)k�2.

Evidently when we take ↵ = 0, then its non-trivial solution is at u2 = 1 for all k � 2.

Alternatively, if u1 6= 0 at a fixed point, then we can simplify further by dividing out by u1 to get

�uk�2
1 = R2k�2 +

↵

k
, and kR2k�2 = (kR2k�2 + ↵)u2 ,

so that at the fixed point,

uk�2
1 =

✓
kR2k�2 + ↵

�k

◆
, and u2 =

2c�kR2k�2

2kR2k�2 + ↵
.

Let us for simplicity of calculations at this point set ↵ = 0 as is the case in Proposition 3.1. Then, we
simply get u2 = c� . In the case of k = 2, we also find that there is a solution if and only if � > c� , in
which case R2 = �, from which together with R2 = u2

1 + u2, we also get u1 = ±
p
�� c� .

In the general case of k > 2, we find that

R2 = c� + �� 2
k�2R

4(k�1)
k�2 .

This has real solutions (all of which have R � u2 = c� as required) whenever � > �c(k) defined as

�c(k) :=
⇣c�
k

⌘k/2⇣ (2k � 2)k�1

(k � 2)(k�2)/2

⌘
. (D.4)

(Notice that with the interpretation 00 = 1, this returns �c(2) = c�.) With this choice of �, then,
whenever � > �c(k), the equation for R2 has exactly two real solutions, both of which are at least c�
which we can denote by

⇢†(k,�) := inf{⇢ � 1 : �� 2
k�2 ⇢

2(k�1)
k�2 � ⇢+ c� = 0} ,

⇢?(k,�) := sup{⇢ � 1 : �� 2
k�2 ⇢

2(k�1)
k�2 � ⇢+ c� = 0} .

When � > �c(k), ⇢† < ⇢? and when � = �c(k), the two are equal. Given this, we can then solve for
ũ1 at the corresponding fixed point, and find that they occur at

m†(k,�) =
p

⇢† � c� , and m?(k,�) =
p
⇢? � c� . (D.5)

D.3 Effective dynamics for the population loss

In practice it is often most useful to track the loss, or ideally, the generalization error. In this
subsection, we add the generalization error � to our set of summary statistics and obtain limiting
equations for its evolution. For simplicity of calculations let us stick to ↵ = 0.

f� = hr�,r�i = 4�2k2m2(k�1) � 8�k2mkR2k�2 + 4k2R4k�4m2 + 4k2r2R4k�4

= 4k2m2
�
�2m2(k�2) � 2�mk�2R2k�2 +R4k�4

�
+ 4k2r2R4k�4 .

Next, consider the corrector for �. For this, notice that
1
2r

2� = ��k(k � 1)mk�2rm⌦2 + kR2k�2rm⌦2 + k(k � 1)R2(k�2)(2mrm+rr2)⌦rm

+ k(k � 1)R2(k�2)(2mrm⌦rr2 +rr2 ⌦rr2) + 1
2@2�r

2r2 .

Recalling V from (D.2), and taking � = c�/n, all the terms in
P

ij Vij@i@j� vanish in the limit
except the contribution from the r2r2, which yields

g� = lim
n!1

�L�� = 4c�k
2R4(k�1)

Finally, we wish to compute the volatility for the stochastic part of the evolution of �. For this,
consider r�Vr�T and notice that all the entries of that matrix are continuous functions of un and
therefore when multiplied by � = O(1/n), the limit as n ! 1 of ⌃ vanishes. We are left with

�̇ = �4k2m2
�
�2m2(k�2) � 2�mk�2R2k�2 +R4k�4

�
� 4k2R4(k�1)(r2 � c�) . (D.6)

One could then perform the fixed point analysis directly on (D.6) if desired.
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D.4 Diffusive limits at the equator

In this subsection, we develop the stochastic limit theorems for the rescaled observables about the
axis m = 0. Here we take as variables (ũ1, ũ2) = (

p
nm, r2). For simplicity of presentation, we

take ↵ = 0 and c� = 1 here. In this case, the change from the previous pair of variables is in the J
matrix, in which now rũ1 =

p
nrm =

p
nv. As such,

hr�,rũ1i =� 2k�
p
nmk�1 + 2k

p
nR2k�2m = �2k�n� k�2

2 ũk�1
1 + 2k(r2 + (ũ2

1/n))
k�1ũ1 ,

hr�,rr2i =4kr2R2k�2 = 4kr2(r2 + (ũ2
1/n))

k�1 .

Taking limits as n ! 1, as long as � is fixed in n, we see that f is given by

fũ1 =

⇢
�2�ũk�1

1 + 2kũk�1
2 ũ1 k = 2

2kũk�1
2 ũ1 k � 3

, and fũ2 = 4kũk
2 .

We turn to obtaining the correctors in these rescaled coordinates. Evidently �Lũ1 = 0 still by linearity
of ũ1. Following the calculation for the corrector, we find that it is now given by gũ2 = 4kũk�1

2 .

Next we consider the volatility of the stochastic process one gets in the limit. Recalling JV JT

from (D.3), and noticing that the rescaling J ! J̃ multiplies its (1, 1)-entry by n and its off-diagonal
entries by

p
n, we find that in the new coordinates,

J̃V J̃T =

✓
4k(k � 1)ũ2

1R
2k�4 + 4knR2k�2 4k(k � 1)ũ1(R2 �m)R2k�4

4k(k � 1)ũ1(R2 �m)R2k�4 4k(k � 1)(R2 �m)2R2k�4

◆
(D.7)

Multiplying by � = 1/n and taking the limit as n ! 1, the only entry of this matrix that survives is
from ⌃11 where we get ⌃11 = 4kũk�1

2 . Putting the above together yields the claimed Proposition 3.3.

Regarding the discussion in the k � 3 case when �n = ⇤n(k�2)/2, observe that the first term in
h�,rũ1i above would not vanish and would instead converge to �4k⇤ũk�1

1 .

E Deferred proofs from Section 4

E.1 The summary statistics

Recall the cross-entropy loss for the binary GMM with SGD from (4.1), and recall the set of summary
statistics un from (4.2). The next lemma shows that un form a good set of summary statistics.
Lemma E.1. The distribution of L((v,W )) depends only on un from (4.2). In particular, we have
that �(x) = �(un) for some �. Furthermore, un satisfy the bounds in item (1) of Definition 2.1 if
EK is the ball of radius K in R2N+2.

Proof. Let Xµ ⇠ N (µ, I/�) and X�µ ⇠ N (�µ, I/�). Then, notice that

L((v,W ))
d
=

⇢
�v · g(WXµ) + log(1 + ev·g(WXµ)) + p(v,W ) w. prob. 1/2
log(1 + ev·g(�WXµ)) + p(v,W ) w. prob. 1/2

.

Next, notice that as a vector,

(W1Xµ,W2Xµ)
d
= (m1 + Z1,µm1 + Z1,?,m2 + Z2,µm2 + Z2,?)

where Z1,µ, Z2,µ are i.i.d. N (0,��1), and Z1,?, Z2,? are jointly Gaussian with means zero and
covariance

��1


R?

11 R?
12

R?
12 R?

22

�
(E.1)

Similarly, the distribution of WX�µ also only depends on (mi, R?
ij)i,j . Finally,

p(v,W ) =
↵

2

�
v21 + v22 +m2

1 +R?
11 +m2

2 +R?
22

�

22



Therefore, at a fixed point, the law of L((v,W )) is simply a function of un(v,W ). This of course
implies the same for the population loss �.

To see that the summary statistics satisfy the bounds of item (1) in Definition 2.1, write r =
(@v1 , @v2 ,rW1 ,rW2). Then

J = (ru`)` =

2

66666664

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, µ, 0)
(0, 0, 0, µ)

(0, 0,W?
2 ,W?

1 )
(0, 0, 2W?

1 , 0)
(0, 0, 0, 2W?

2 )

3

77777775

(E.2)

For the higher derivatives, evidently we only have second derivatives in the last 3 variables each
of which is given by a block diagonal matrix where only one block is non-zero and is given by an
identity matrix. The third derivatives of all elements of un are zero.

We can now express the loss, the population loss, and their respective derivatives and they (their laws
at a fixed point) will evidently only depend on the summary statistics. One arrives at the following
expressions for rL by direct calculation from (4.1).

rviL = (Wi ·X)1Wi·X�0

�
� y + �(v · g(WX)

�
+ ↵vi (E.3)

rWiL = viX1Wi·X�0

�
� y + �(v · g(WX))

�
+ ↵Wi (E.4)

In what follows, for an arbitrary vector w 2 RN , we use the notation

Ai = E
⇥
X1Wi·X�0

�
� y + �(v · g(WX)

�⇤
(E.5)

(Notice that if w 2 {µ,Wi,W?
i }, then Ai ·w is only a function of un by the same reasoning as used

in Lemma E.1.) Then, we can also easily express

rvi� = Wi ·Ai + ↵vi (E.6)
rWi� = viAi + ↵Wi (E.7)

and for H = L� �,

rviH = Wi ·
⇣
X1Wi·X�0

�
� y + �(v · g(WX)

�
�Ai

⌘
, (E.8)

rWiH = vi
⇣
X1Wi·X�0

�
� y + �(v · g(WX)

�
�Ai

⌘
. (E.9)

Finally, the matrix V can be expressed as follows:

Vvi,vj = E
⇥
(Wi ·X)(Wj ·X)1Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� (Wi ·Ai)(Wj ·Aj)

Vvi,Wj = vjE
⇥
(Wi ·X)X1Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� vj(Wi ·Ai)Aj

VWi,Wj = vivjE
⇥
X⌦21Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� vivjAi ⌦Aj . (E.10)

Let us conclude this subsection with the following simple preliminary bound that will be useful
towards establishing the conditions of �n-localizability from Definition 2.1.
Lemma E.2. For every fixed w 2 Rn, we have

E[|X · w|4] . (w · µ)4 + kwk4��2 , and kAik  C(un) .

Proof. For the first bound, let Z ⇠ N (0, I) and consider

E[|X · w|4] = 1

2
E[(w · µ+ ��1/2w · Z)4] +

1

2
E[(�w · µ+ ��1/2w · Z)4] .

Using the fact that Z is mean zero, and pulling out w · µ, we see that this is at most some universal
constant times

(w · µ)4 + ��2E[(w · Z)4] .
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For the second term, notice that w · Z is distributed as z ⇠ N (0, kwk2), implying the desired.

The bound on Ai goes as follows. Evidently it suffices to let Xµ = µ+ ��1/2Z for Z ⇠ N (0, I),
and prove the bound on the norm of

E[Xµ1Wi·Xµ�0(�1 + �(g(WXµ)))] = E[(µ+ ��1/2Z)1Wi·Xµ�0(�1 + �(g(WXµ)))] .

Now decompose Z as
Zµµ+ Z1,?W

?
1 + Z2,?W

?
2 + Z3 ,

where Zµ ⇠ N (0, 1) is independent of (Z1,?, Z2,?) which is distributed as N (0, A) with A given
by (E.1), which is independent of Z3 distributed as a standard Gaussian vector orthogonal to the
subspace spanned by (µ,W?

1 ,W?
2 ). By independence of Z3 from the indicator and the argument of

the sigmoid, all those terms contribute nothing to the expectation, and therefore,

kAik2 
X

w2{µ,W?
1 ,W?

2 }

E[(X · w)21Wi·X�0(�y + �(g(WX)))]  (1 +R?
11 +R?

22)(1 + ��1) .

Here, we used the first inequality of the lemma. This yields the desired.

E.2 Verifying the conditions of Theorem 2.2 for fixed �

Throughout this section we will take µ = e1. By rotational invariance of the problem, this is without
loss of generality, and only simplifies certain expressions.
Lemma E.3. For �n = O(1/N) and any fixed �, the 2-layer GMM with observables un is �n-
localizable for EK being balls of radius K about the origin in R7.

Proof. The condition on un was satisfied per Lemma E.1. Recalling r� from (E.6)–(E.7), one can
verify that the norm of each of the four terms in r� is individually bounded, using the Cauchy–
Schwarz inequality together with the bound of Lemma E.2 on kAik.

Next, consider bounding E[krHk4] by

E[krHk4] 
X

i=1,2

E[|rviH|4] + E[krWiHk4] ,

and recall the expressions for rH from (E.8)–(E.9). Using the trivial bound |�(x)|  1, and the
inequality (a+ b)4  C(a4 + b4), for i 2 {1, 2}, the first term is at most

C
�
E[|X ·Wi|4] + kWik4kAik4

�
,

which is bounded by a constant depending continuously on un per Lemma E.2. If we let Z be a
standard Gaussian, the second term is evidently governed by

C
⇣
v4i E

h
kX1Wi·X�0�(�v · g(WX))k4

i
+ v4i kAik4

⌘
 C|vi|4

⇣
1 +

E||Z||4

�2

⌘
.

Using the well-known bound that E[kZk4]  N2, and the fact that � = O(1/N), we see that this is
at most C��2 as needed.

We turn to the third item in the definition of localizability. We next verify the claimed bound that

�2n sup
i

sup
x2u�1

n (EK)

E[hrH,ruii4]  C(K) . (E.11)

When ui is vi, this is simply a fourth moment bound on rviH , which follows as the third moment
bound did, with no need for the �2n. When ui is mi, or R?

ij , the bound follows from

E[hrWiH,wi4]  C|vi|4
�
E[|X · w|4] + kwk4kAik4

�
,

for choices of w being either µ in which case kwk = 1 or W?
i in which case kwk = R?

ii . For each
K, this is at most some constant C(K) using the two bounds of Lemma E.2. Again, we note that the
factor of �2n wasn’t needed.

Finally, consider the quantity

E[hr2u,rH ⌦rH � V i2]
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This is only non-zero for u 2 {R?
ij} for which r2u is a block-identity matrix, having operator norm

at most 2 in all cases. Therefore, this quantity is at most 4E[krHk2] which is at most N by the
above proved second item in the definition of localizability. This is therefore O(��1

n ) = o(��2
n ) as

needed.

Proof of Proposition 4.1. The convergence of the population drift to f from Proposition 4.1 follows
by taking the inner products of rL from (E.6) with the rows of J from (E.2), and noticing that Aµ

i

from (4.3) is exactly Ai · µ and A?
ij from (4.3) is exactly Ai ·W?

j .

Next consider the convergence of the correctors to the claimed g. The variables u 2 {v1, v2,m1,m2}
are linear so Lnu = 0 and for these, gu = 0. For u = R?

ij for i, j 2 {1, 2}, the relevant entries in V

are those corresponding to W?
i and W?

j . For ease of notation, in what follows let ⇡ = �(v ·g(WX)).

For ease of calculation taking µ = e1, we have

LnR
?
ij =

X

k 6=1

VWik,Wjk ,

which by (E.10), and the choice of �n = c�/N , is given by

�nLnR
?
ij =

c�
N

X

k 6=1

vivj
⇣
E
⇥
(X · ek)21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
� (Ai · ek)(Aj · ek)

⌘

=
c�
N

vivj
⇣
E
⇥
kX?k21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
� hAi �Aµ

i µ,Aj �Aµ
j µi
⌘
.

(E.12)

Let us first consider the two terms separately. For the first term, rewrite

1

N
E
⇥
kX?k21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤

= E
⇥�

1
N kX?k2 � ��1

�
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
+ ��1Bij .

Of course the second term is exactly what we want to be gu, so we will show the first term here goes
to zero. By Cauchy–Schwarz, if Z ⇠ N (0, I � e⌦2

1 ), the first term above is at most

��1E
h⇣kZk2

N
� 1
⌘2i1/2

 2

�
p
N

,

where we used the fact that for a standard Gaussian, g ⇠ N (0, 1), we have E[(g2 � 1)2] = 2. It
remains to show the inner product term in (E.12) goes to zero as n ! 1. For this term, rewrite

1

N
hAi �Aµ

i µ,Aj �Aµ
j µi =

1

N
E
⇥
(X?

1 ·X?
2 )1Wi·X1�01Wj ·X2�0(�y + ⇡1)(�y + ⇡2)

⇤
,

where X1, X2 are i.i.d. copies of X , and ⇡1,⇡2 are the corresponding �(v · g(WX1)) and �(v ·
g(WX2)). By Cauchy–Schwarz, if Z,Z 0 are i.i.d. N (0, I � e⌦2

1 ), this is at most

1

�N
E
⇥
(Z · Z 0)2

⇤1/2  1

�
p
N

.

This term therefore also vanishes as n ! 1, yielding the desired limit for the corrector,

gR?
ij
=

c�vivj
�

E
⇥
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
=

c�vivj
�

Bij .

which we emphasize is only a function of un.

We lastly need to show that the diffusion matrix ⌃n goes to zero as n ! 1 when �n = O(1/n). This
is straightforward to see by considering any element of JV JT and using Cauchy–Schwarz together
with the two bounds of Lemma E.2 to bound it in absolute value by some C(K) independent of n.
Then when multiplying by any �n = o(1), this entire matrix will evidently vanish.
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E.3 Preliminary estimate for small noise limits

Our next aim is to consider the effective dynamics of Proposition 4.1 in the small noise (� ! 1)
limit. In this subsection, we collect some simple estimates that will make obtaining that limit easier.
The first of these is the following elementary fact bounding the exponential moment of a Gaussian.
As before, let Xµ ⇠ N (µ, I/�).

Fact E.1. Fix µ 2 SN�1(1), and let g(x) = x _ 0. There is a function C : R2 ! R+ such that the
following holds: for all � > 0, ✓ 2 R, and (vi,Wi) 2 R⇥ RN ,

E[exp(✓vig(Wi ·Xµ))]  exp
�
✓vimi +

1
2�✓

2v2iR
?
ii

�
.

The next lemma concerns the limits as � ! 1 of some of the building block terms we encounter.
Lemma E.4. For each i, for every R?

ii < 1 and every mi > 0, we have

lim
�!1

P
�
Wi ·Xµ < 0) = 0 . (E.13)

For every vi, R?
ij and mi 6= 0 for i, j = 1, 2, we have

lim
�!1

E
⇥���(v · g(WXµ))� �(v · g(m))

��⇤ = 0 . (E.14)

Proof. The proof of (E.13) is easily seen by rewriting the probability in question as

P(Wi ·Xµ < 0) = P
�
N (0,��1) < �mi(m

2
i +R?

ii )
�1/2

�
= e�m2

i�/2(m
2
i+R?

ii) ,

so that as long as mi > 0 this goes to zero as � ! 1.

We turn to (E.14). Consider

E
⇥���(v · g(WXµ))� �(v · g(m))

��⇤  E
h��ev·g(WXµ) � ev·g(m)

��
i

 E
⇥��ev1g(W1·Xµ)ev2g(W2·Xµ) � ev1g(m1)ev2g(m2)

��⇤ .

This in turn is bounded by

E
⇥
ev2g(W2Xµ)

��ev1g(W1Xµ) � ev1g(m1)
��⇤+ ev1g(m1)E

⇥��ev2g(W2Xµ) � ev2g(m2)
��⇤ . (E.15)

Applying Cauchy–Schwarz to the first term, it suffices to establish the following bounds

E
⇥
e2vig(WiXµ)

⇤
 C , and lim

�!1
E
⇥�
evig(WiXµ) � evig(mi)

�2⇤
= 0 .

To demonstrate the first of these inequalities, notice that

E
h
e2vig(WiXµ)

i
 E

h
e2vi|WiXµ|

i
 C .

uniformly over �, per Fact E.1. For the second desired bound, expand evig(Wi·Xµ) � evig(mi) as
�
evi(Wi·Xµ)1Wi·Xµ�0 � evi(Wi·Xµ)1mi�0

�
+
�
evi(Wi·Xµ)1mi�0 � evimi1mi�0

�
.

It suffices to show the expectation of the square of each of these goes to zero as � ! 1. First,

E
⇥�
evi(Wi·Xµ)1Wi·Xµ�0 � evi(Wi·Xµ)1mi�0

�2⇤  (1 _ evi(Wi·Xµ))E[1Wi·Xµ�0 � 1mi�0] .

If mi 6= 0, the expectation on the right goes to zero by (E.13). Second,

E
⇥�
evi(Wi·Xµ)1mi�0 � evimi1mi�0

�2⇤  E
⇥
(evi(Wi·Xµ) � evimi)21mi�0

⇤
.

When mi < 0, this is evidently zero; when mi > 0, if G� ⇠ N (0, I/�), this is

e2vimiE
⇥
(evi(Wi·G�) � 1)2

⇤
.

which goes to zero as O(��1) when � ! 1, by the explicit formula for the moment generating
function of the Gaussian Wi ·G�, whose variance is (m2

i +R?
ii )�

�1.
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E.4 The small-noise limit of the effective dynamics

Let us consider the behavior of the ODE system of Proposition 4.1 in the limit that � ! 1.

Proof of Proposition 4.2. We begin with considering lim�!1 Aµ
i : its limiting value will depend

on the signs of both m1 and m2. We can express Aµ
i from (4.3) as

E[(X · µ)1Wi·X�0(�y + �(v · g(WX)))] =
1

2
E
h
(Xµ · µ)1Wi·Xµ�0(�1 + �(v · g(WXµ)))

i

+
1

2
E
h
(�Xµ · µ)1Wi·Xµ0�(v · g(�WXµ))

i
.

We claim that the two terms on the right-hand side converge to � 1
21mi>0�(�v · g(m)) and

� 1
21mi<0�(v · g(�m)) respectively. This follows by e.g., writing the difference as

E
h
(Xµ · µ)1Wi·Xµ�0�(�v · g(WXµ))

i
� 1mi�0�(�v · g(m)) (E.16)

= E
h
(Xµ · µ� 1)1Wi·Xµ�0�(�v · g(WXµ))

i

+ E
h
(1Wi·Xµ�0 � 1mi�0)�(�v · g(WXµ))

i

+ 1mi�0E
h
�(�v · g(WXµ))� �(�v · g(m))

i
.

Call these three terms I, II , and III . For I , we use the fact that E[|Xµ · µ � 1|] goes to zero as
� ! 1; II is evidently bounded by P(Wi ·Xµ < 0) when mi > 0 or its symmetric counterpart
when mi < 0—both vanishing as � ! 1 per (E.13) in Lemma E.4; finally, III goes to zero as
� ! 1 by (E.14) in Lemma E.4.

Putting the above together, we find that

lim
�!1

Aµ
i =� 1

2
1mi>0�(�v · g(m))� 1

2
1mi<0�(v · g(�m)) ,

at which point, we see that if m1,m2 � 0, this becomes 1
2�(�v · m), as it is if m1,m2  0. If

m1 � 0 and m2  0, then you get lim� A
µ
1 = � 1

2�(�v1m1) and lim� A
µ
2 = � 1

2�(�v2m2) and
likewise if m1  0 and m2 � 0.

Next consider the limit as � ! 1 of A?
ij from (4.3), which we claim converges to 0. Write

A?
ij = �1

2
E
h
(Xµ ·W?

j )1Wi·X�0�(�v · g(WXµ))
i

(E.17)

� 1

2
E
h
(Xµ ·W?

j )1Wi·Xµ<0�(v · g(�WXµ))
i
.

These two terms are bounded similarly. The absolute value of the first of these is bounded by
(1/2)E[|Xµ ·W?

j |] which is at most (1/2)
q

R?
jj�

�1/2 by (E.2). The second is analogously bounded.
These evidently go to zero as � ! 1.

Finally, since |Bij |  1, the quantity gR?
ij
= c�

vivj
� Bij evidently goes to zero as � ! 1.

Remark 4. The above argument used mi 6= 0 for the limit of Aµ
i . If one considers the cases when

mi = 0, the limiting drifts still apply. For this, it suffices to show that if mi = 0, then Aµ
i converges

to zero. Without loss of generality, suppose m1 = 0 and consider

A1 · µ = E
⇥
Z1,µ1Z1,?�0�(�v · g(Z1,?,m2Z2,µ + Z2,?))

⇤
.

This is zero independently of � by independence of Z1,µ from the other Gaussians in the expectation.

We next turn to classifying the fixed points of this limiting ODE system. Evidently, every fixed point
must have R?

ij = 0. Furthermore, if we let ui = vi �mi, then

u̇i =

⇢
�ui

2 �(�v ·m)� ↵ui m1m2 > 0
�ui

2 �(�vimi)� ↵ui else
,
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and therefore every fixed point of the ODE system must have ui = 0, which is to say vi = mi.
Therefore, it suffices to characterize the fixed points in terms of (v1, v2) as claimed. This reduces to

⇢
vi�(�kvk2) = 2↵vi v1v2 > 0
vi�(�v2i ) = 2↵vi else

.

Observe first that the point (v1, v2) = (0, 0) is a fixed point of this system. If (v1, v2) 6= 0, then
dividing out by vi, the above reduces to

⇢
�(�kvk2) = 2↵ v1v2 > 0
�(�v2i ) = 2↵ else

.

Recalling that

C↵ = � logit(2↵) = log(1� 2↵)� log(2↵) , (E.18)

we obtain the claimed set of fixed points by inverting these equations (they only have a solution if
↵ < 1/4).

In order to study the stability of the various fixed points, notice first that the ODE system of
Proposition 4.2 is a gradient system for the � = 1 population loss,

�(v,m) =
1

2

⇣
log(1 + e�v·g(m)) + log(1 + ev·g(�m))

⌘
+

↵

2

X

i=1,2

(v2i +m2
i +R?

ii ) .

Since it is a gradient system, with only the specified fixed points, the stability of a fixed point can
be deduced by showing it is the minimizer of �. In particular, the values of � at its critical points
are given by �0 = log 2 at v1 = v2 = 0, �+ = 1

2 (log 2 + log(1 + e�C↵) + ↵C↵ when v1v2 > 0,
and �� = log(1 + e�C↵) + 2↵C↵ when v1v2 < 0. It is a simple calculus exercise to show that the
smallest of these is �0 when ↵ > 1/4 and �� when ↵ < 1/4.

To show that each of the other critical points are all unstable, one can find a direction along which the
dynamical system is locally repelled from it. For instance, we will show that the ring of fixed points
with vi = mi and R?

ij = 0 with v1v2  0 is unstable, by showing a repelling direction arbitrarily
close to the point v1 = �

p
C↵, v2 = 0. If v1 = �

p
C↵ and v2 = ✏ > 0, then v̇2 there reduces to

✏(�(�✏2)
2 � ↵), and as long as ↵ < 1/4, there exists ✏ > 0 such that �(�✏2) > 2↵ so v̇2 > 0 for all ✏

small enough.

E.5 Rescaled effective dynamics around unstable fixed points

In this section, we consider scaling limits of the rescaled effective dynamics in their noiseless limit,
where the rescaling is about the unstable set of fixed points given by the quarter circle v21 + v22 = C↵

per item (2) of Proposition 4.2. In what follows, let �n = c�/N, and fix (a1, a2) 2 R2
+ with

a21 + a22 = C↵, and let un be the variables of (4.2) with vi,mi replaced by ṽi =
p
N(vi � ai) and

m̃i =
p
N(mi � ai).

Proof of Proposition 4.3. We start by considering the drift process for these rescaled variables. No-
tice that the rescaling induces the transformation J̃ multiplying J by

p
N in its entries corresponding

to vi,mi. The fact that the rescaled variables satisfy the conditions of Theorem 2.2 follows as in
Lemma E.3 with the only distinction arising in the bound on (E.11), where previously we did not use
the �2n factor—in the new coordinates, the factor of

p
N raised to the fourth power is cancelled out

by �2n as long as �n = O(1/N).

For the population drift of the new variables, if the variables ṽi, m̃i are in a ball of radius K in R4

(which we take to be our EK), the signs of mi agree, and therefore

fṽi = �
p
Nfvi = �

p
N

vi
2
�(�v ·m) + ↵

p
Nmi

fm̃i = �
p
Nfmi = �

p
N

mi

2
�(�v ·m) + ↵

p
Nvi .
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We wish to claim that these expressions have consistent limits when ṽi, m̃i are localized to EK for
fixed K. notice that in mi = ai +N�1/2m̃i and vi = ai +N�1/2ṽi, and using

P
a2j = C↵,

v ·m = C↵ +N�1/2
X

j=1,2

aj(ṽj + m̃j) +O(1/n) .

Now Taylor expanding the sigmoid function, and using the definition of C↵, we get
�(�v ·m) = �(�C↵) + (v ·m� C↵)�(�C↵)(1� �(�C↵)) +O(n�1)

= 2↵+N�1/2aj
⇣ X

j=1,2

�
ṽj + m̃j

�
(2↵)(1� 2↵) +O(n�1) .

Plugging these into the earlier expressions for fṽi , we see that

fṽi = �N1/2ai + m̃i

2

⇣
2↵+

1

N1/2
aj
X

j=1,2

�
ṽj + m̃j

�
(2↵)(1� 2↵) +O

⇣ 1
n

⌘⌘
+ ↵(n1/2ai + ṽi)

= �↵m̃i + ↵ṽi � ai(↵� 2↵2)
X

j=1,2

aj(ṽj + m̃j) +O(n�1/2) .

Taking the limit as n ! 1, this yields exactly the population drift claimed for the ṽi variable.
The calculation for fm̃i is analogous, and the equations for R?

ij are evidently unchanged by the
transformation of vi,mi to ṽi, m̃i. Furthermore, these variables are still linear so no corrector is
introduced.

We now turn to computing the limiting diffusion matrix ⌃ in the new variables ṽi, m̃i. We first use
the following expression for the matrix V when � = 1, by taking the � = 1 in (E.10).

Vvi,vj =
mimj

4
·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

,

Vvi,Wj =
mivj
4

µ ·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

,

VWi,Wj =
vivj
4

µ⌦2 ·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

.

Rewriting these in the coordinates ṽ and m̃, we see that in EK ,

Vvi,vj = ↵2aiaj +O(n�1/2) , Vvi,Wj = µ(↵2aiaj +O(n�1/2)) ,

and
VWi,Wj = µ⌦2(↵2aiaj +O(n�1/2)) .

Now multiplying this on both sides by J̃ , for the ũn variables, the two factors of
p
N from J̃ cancel

out with the choice of �n = 1/N , and in the n ! 1 limit, leave

⌃̃vivj = ⌃̃mimj = ⌃̃vimj =↵2aiaj ,

as claimed.

F Deferred proofs from Section 5

Fix two orthogonal vectors µ, ⌫ 2 RN and recall the cross-entropy loss with penalty p(v,W ) =
↵
2 (kvk

2 + kWk2). For the XOR GMM with SGD, the cross-entropy loss is given by

L(v,W ) = �yv · g(WX) + log
�
1 + ev·g(WX)

�
+ p(v,W ) (F.1)

where if the class label y = 1, then X is a symmetric binary Gaussian mixture with means ±µ, and if
y = 0, then X is a symmetric Gaussian mixture with means ±⌫. This has the same form as the loss
for the 2-layer binary GMM, and we will find many similarities in the below between them. Indeed,
the only difference is in the distribution of X conditionally on the class label y as described, and
the fact that v is now in R4 and W = (Wi)i=1,...,4 is now a 4⇥N matrix. In what follows we take
n = 4N + 4. As such, all the formulae of (E.3)– (E.10) also hold for the XOR GMM, but with the
law of (y,X) now understood differently.
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Remark 5. In principle, we can take W to be k⇥ d and v to be a k vector, but 4 is the first reasonable
choice of k, as if k < 4 the network cannot express a good classifier. Taking k to be larger than 4 is
interesting, and can in principle be handled by our methods–we leave this for future investigation.
We could also have added a bias at each layer, however the Bayes classifier in this problem is an “X”
centered at the origin so we can safely take the biases to be 0.

F.1 Summary statistics and localizability

Recall the set of summary statistics un from (5.1). The next lemma shows that un form a good set of
summary statistics.
Lemma F.1. The distribution of L((v,W )) depends only on un from (5.1). In particular, we have
that �(x) = �(un) for some �. Furthermore, un satisfy the bounds in item (1) of Definition 2.1 if
EK is the ball of radius K in R4N+4.

Proof. Let Xw = N (w, I/�) for w 2 {µ,�µ, ⌫,�⌫}. Notice that the law of L at a fixed point
(v,W ) 2 R4+4N can be written as

L((v,W ))
d
=

8
>><

>>:

�v · g(WXµ) + log(1 + ev·g(WXµ)) + p(v,W ) w. prob. 1/4
�v · g(WX�µ) + log(1 + ev·g(WX�µ)) + p(v,W ) w. prob. 1/4
log(1 + ev·g(WX⌫)) + p(v,W ) w. prob. 1/4
log(1 + ev·g(WX�⌫)) + p(v,W ) w. prob. 1/4

(F.2)

Next, notice that as a vector

WX◆ = (mi + Zi,◆m
◆
i + Zi?)i=1,...,4 for ◆ 2 {µ, ⌫} ,

where Zi,◆ are i.i.d. N (0,��1) and (Zi?) are jointly Gaussian with covariance matrix

Cov(Zi?, Zj?) = ��1R?
ij .

Similarly, the law of WX�◆ depends only on (m◆
i, R

?
ij). Finally,

p(v,W ) = ↵
2

X

i=1,...4

�
v2i +R?

ii

�
.

Therefore, at a fixed point (v,W ) the law of L(v,W ) is only a function of un(v,W ).

To see that the summary statistics satisfy the bounds of item (1) in Definition 2.1, note that the
non-zero entries of J = (ru`)` are as follows.

@vivi = 1 , rWim
µ
i = µ , rWim

⌫
i = ⌫ , rWiR

?
jk = W?

j �ij +W?
k �ik , (F.3)

where �ij is 1 if i = j and 0 otherwise. For higher derivatives, we only have second derivatives in the
R?

jk variables, each of which is given by a block diagonal matrix where only one block is non-zero
and it is twice an identity matrix. Thus the operator norm of these second derivatives is 2. The third
derivatives of all elements of un are zero.

In the following, let

Ai = E
⇥
X1Wi·X�0

�
� y + �(v · g(WX))

�⇤
.

By the same reasoning as in Lemma F.1, if w 2 {µ, ⌫,Wi,W?
i }, then w ·Ai is only a function of

un. We then also have the conclusions of Lemma E.2 for X distributed according to the XOR GMM
by simply decomposing it into two mixtures, and we will therefore appeal to this lemma meaning its
analogue for the XOR GMM.
Lemma F.2. For � = O(1/N) and any fixed �, the 2-layer XOR GMM with observables un is
�n-localizable for EK being balls of radius K about the origin in R22.

Proof. The condition on un was satisfied per Lemma F.1. Recalling r� from (E.6)–(E.7), one can
verify that the norm of each of the four terms in r� is individually bounded, using the Cauchy–
Schwarz inequality together with the bound of Lemma E.2 on kAik, naturally adapted to XOR. The
remaining estimates are also analogous to the proof of Lemma E.3 with the analogue of Lemma E.2
applied.
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F.2 Effective dynamics for the XOR GMM

For a point (v,W ) 2 R4+4N , let

Aµ
i = µ ·Ai , A⌫

i = ⌫ ·Ai , A?
ij = W?

j ·Ai .

Furthermore, let

Bij = E
⇥
1Wi·X�01Wj ·X�0

�
� y + �(v · g(WX))

�2⇤
.

Proposition F.1. Let un be as in (5.1) and fix any � > 0 and �n = c�/N . Then un(t) converges to
the solution of the ODE system u̇t = �f(ut) + g(ut), initialized from limn(un)⇤µn with

fvi = mµ
i A

µ
i (u) +m⌫

i A
⌫
i (u) +A?

ii(u) + ↵vi , fmµ
i
= viA

µ
i + ↵mµ

i ,

fR?
ij
= viA

?
ij(u) + vjA

?
ji(u) + 2↵R?

ij , fm⌫
i
= viA

⌫
i + ↵m⌫

i .

and correctors gvi = gmµ
i
= gm⌫

i
= 0, and gR?

ij
= c�

vivj
� Bij for 1  i  j  4.

Proof. The convergence of the population drift to f from Proposition 4.1 follows by taking the inner
products of rL from (E.6) with the rows of J from (F.3), and noticing that Aµ

i is exactly Ai · µ, A⌫
i

is exactly ⌫ ·Ai, and A?
ij is exactly Ai ·W?

j .

We next consider the population correctors. The fact that gvi = gmµ
i
= gm⌫

i
= 0 follows from the

fact that the Hessians of vi,mµ
i ,m

⌫
i are zero. For the corrector gR?

ij
for 1  i  j  4, the relevant

entries of V are those corresponding to W?
i and W?

j . For ease of notation, in what follows let
⇡ = �(v · g(WX)).

Similar to the calculation of (E.12),

�nLnR
?
ij =

c�
N

vivj
⇣
E
⇥
kX?k21Wi·X�01Wj ·X�0(⇡ � y)2

⇤

� hAi �Aµ
i µ�A⌫

i ⌫,Aj �Aµ
j µ�A⌫

j ⌫i
⌘
.

By the same arguments on the concentration of the norm of Gaussian vectors as used in the binary
GMM case, then we deduce from this that

gR?
ij
=

c�vivj
�

E
⇥
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
=

c�vivj
�

Bij .

Finally, let us establish that the limiting diffusion matrix is all-zero whenever �n = o(1). This follows
exactly as it did in the proof of Proposition 4.1.

F.3 Small noise limit of the effective dynamics

The aim of this section is to establish the following small-noise � ! 1 limit of the effective dynamics
ODE of Proposition F.1. This will again be quite similar to the analogous proofs for the binary GMM
in Section E, and when these similarities are clear we will omit details.
Proposition F.2. In the � ! 1 limit, the ODE from Proposition F.1 converges to

v̇i =
mµ

i

4

⇣
1mµ

i >0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘

� m⌫
i

4

⇣
1m⌫

i >0�(v · g(m⌫))� 1m⌫
i <0�(v · g(�m⌫))

⌘
� ↵vi ,

ṁµ
i =

vi
4

⇣
1mµ

i >0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘
� ↵mµ

i ,

ṁ⌫
i = �vi

4

⇣
1m⌫

i >0�(�v · g(m⌫))� 1m⌫
i <0�(�v · g(�m⌫))

⌘
� ↵m⌫

i ,

and Ṙ?
ij = �2↵R?

ij for 1  i  j  4.
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Proof. Let us begin with convergence of Aµ
i . We claim that it converges to

lim
�!1

Aµ
i = �1

4
1mµ

i >0�(�v · g(mµ))� 1

4
1mµ

i <0�(v · g(�m)) .

In order to see this, expand

Ai =
1

4
E
⇥
�Xµ1Wi·Xµ�0(�(�v · g(WXµ)))

⇤
� 1

4
E
⇥
X�µ1Wi·X�µ�0(�(�v · g(WX�µ)))

⇤

+
1

4
E
⇥
X⌫1Wi·X⌫�0(�(v · g(WX⌫)))

⇤
+

1

4
E
⇥
X�⌫1Wi·X�⌫�0(�(v · g(WX�⌫)))

⇤
.

The point will be that when taking the inner product with µ, the first two terms here contribute to the
limit and the latter two vanish, while when taking the inner product with ⌫, the first two terms vanish
in the � ! 1 limit while the latter two contribute.

Consider e.g., the first of the four terms above, and inner product with µ. In this case, consider

E
⇥
(Xµ · µ)1Wi·Xµ�0�(�v · g(WXµ))

⇤
� 1mµ

i �0�(�v · g(mµ)) ,

which is precisely the quantity that was exactly shown to go to zero as � ! 1 in (E.16). To see that
the third and fourth terms above go to zero when taking their inner product with µ, observe that they
become

��E
⇥
(X⌫ · µ)1Wi·X⌫�0�(v · g(WX⌫))

⇤��  E[|X⌫ · µ|] ,

which by orthogonality of µ and ⌫ is at most ��1/2 by the reasoning of Lemma E.2, therefore
vanishing as � ! 1. Together with its analogue for X�⌫ , this implies the claim for the convergence
of Aµ

i , as well as its analogous limit of A⌫
i .

We next consider the limit as � ! 1 of A?
ij , which we claim goes to 0. Using the expansion of

Ai from earlier in this proof, we can consider A?
ij = Ai ·W?

j as four terms having the form of the
terms in (E.17), which were there showed to go to zero as � ! 1. Since W?

j here is orthogonal
both to µ and ⌫, the same proof applies.

Finally, in order to see that the limit as � ! 1 of gR?
ij
= c�

vivj
� Bij is zero, which follows from the

fact that |Bij |  1.

Proposition F.3. The fixed points of the ODE system of Proposition F.2 are classified as follows. If
↵ > 1/8, then the only fixpoint is at un = 0.

If 0 < ↵ < 1/8, then let (I0, I+µ , I�µ , I+⌫ , I�⌫ ) be any disjoint (possibly empty) subsets whose union
is {1, ..., 4}. Each such partition fully dictates a connected component of fixpoints for that dynamial
system. Corresponding to that tuple (I0, I+µ , I�µ , I+⌫ , I�⌫ ), the connected component of fixpoints has
R?

ij = 0 for all i, j, and

1. mµ
i = m⌫

i = vi = 0 for i 2 I0,

2. mµ
i = vi > 0 such that

P
i2I+

µ
v2i = logit(�4↵) and m⌫

i = 0 for all i 2 I+µ ,

3. �mµ
i = vi > 0 such that

P
i2I�

µ
v2i = logit(�4↵) and m⌫

i = 0 for all i 2 I�µ ,

4. m⌫
i = vi < 0 such that

P
i2I+

⌫
v2i = logit(�4↵) and mµ

i = 0 for all i 2 I+⌫ ,

5. �m⌫
i = vi < 0 such that

P
i2I�

⌫
v2i = logit(�4↵) and mµ

i = 0 for all i 2 I�⌫ .

There are 39 connected components of fixed points. Of these, there are 4! = 24 many that are stable,
corresponding to the possible permutations in which each of I+µ , I�µ , I+⌫ , I�⌫ are singletons.

Proof. Evidently, any fixed point must have R?
ij = 0 for all i, j. Furthermore, the point vi = mµ

i =
m⌫

i = 0 for i = 1, ..., 4 evidently forms a fixed point of the system. Now suppose there is some fixed
point with vi = 0 for some i; in that case, it must be that mµ

i = 0 and m⌫
i = 0. Therefore, we can

select a subset I0 of {1, ..., 4} such that vi = mµ
i = m⌫

i for i 2 I0.
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For any such choice of I0, consider next, i /2 I0. We first claim that if vi > 0 at a fixed point, then
mµ

i 2 {±vi} and m⌫
i = 0, whereas if vi < 0 then m⌫

i 2 {±vi} and mµ
i = 0. To see this, notice that

at any fixed point,

4↵mµ
i = vi

⇣
1mµ

i �0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘
,

4↵m⌫
i = �vi

⇣
1m⌫

i �0�(�v · g(m⌫))� 1m⌫
i <0�(�v · g(�m⌫))

⌘
.

Since � is non-negative, if vi > 0, the sign of the right-hand side of the first equation is the same as
the sign of mµ

i so it can have a non-zero solution, while the sign of the right-hand side of the second
equation is the opposite of the sign of m⌫

i , so any such fixed point must have m⌫
i = 0. To see that

mµ
i = ±vi at such a fixed point, now set m⌫

i = 0 and take the fixed point equations for vi and mµ
i ,

dividing one by vi and the other by mµ
i to see that

4↵
vi
mµ

i

= 4↵
mµ

i

vi
, or v2i = (mµ

i )
2 ,

as claimed. The fixed points having vi < 0 are solved symmetrically.

Our classification now reduces to understanding the possible values taken by (v1, ..., v4) given their
signs (when non-zero). Fix a partition (I0, I+µ , I�µ , I+⌫ , I�⌫ ) of {1, ..., 4} and consider the set of fixed
points having mµ

i = m⌫
i = vi = 0 for i 2 I0, mµ

i = vi > 0 on I+µ and so on as designated by
Proposition F.3; by the above any fixed point is of this form. It remains to check that the values of vi
on each of these sets are as described by the proposition.

In order to see this, fix e.g., i 2 I+µ . Then, mµ
i = vi and m⌫

i = 0, and so the fixed point equations
reduce to

4↵vi = vi�(�v · g(mµ)) , or 4↵ = �
⇣
�
X

j2I+
µ

v2j

⌘
,

since the only coordinates where g(mµ) will be non-zero are j 2 I+µ , where mµ
j = vj . Inverting the

sigmoid function, this implies exactly the claimed
P

j2I+
µ
v2j = logit(�4↵). The cases of I�µ , I+⌫ , I�⌫

are analogous, concluding the proof.

Let us now count the number of connected components of fixed points. We first notice that the fixed
point at (0, ..., 0) is disconnected from all others. Fixed points corresponding to some (I0, ..., I�⌫ ) are
part of the same connected component of fixed points if one goes from one to the other by moving an
element of I⌘◆ (for some ◆ 2 {µ, ⌫} and ⌘ 2 {±} to I0 without making I⌘◆ empty, or by moving an
element of I0 to a non-empty I⌘◆ .

We turn now to studying the stability of these various sets of fixed points. Observe that in the � ! 1
limit, the dynamical system of Proposition F.2 is a gradient system for the population loss

� =
1

4

⇣
log(1 + e�v·g(mµ)) + · · ·+ log(1 + e�v·g(�m⌫))

⌘

+
↵

2

X

i

(v2i + (mµ
i )

2 + (m⌫
i )

2 +R?
ii ) .

At a fixed point (which necessarily has vi = mi, R?
ii = 0, and is characterized by the partition of

{1, ..., 4} into I+µ , I�µ , I+⌫ , I�⌫ , this reduces to

� =
1

4

⇣
log(1 + e

�
P

i2I+µ
v2
i ) + · · ·+ log(1 + e

�
P

i2I�⌫
v2
i )
⌘
+ ↵

X

i

v2i

At this point, noticing that
P

i2I+
µ
v2i is equal to C↵ = �logit(4↵) if I+µ is non-empty and 0 if it is

empty, and similarly for I�µ , I+⌫ , I�⌫ , this turns into a simple optimization problem over the number of
non-empty I+µ , I�µ , I+⌫ , I�⌫ . Just as in the binary GMM case, it becomes evident that when ↵ > 1/8,
this is minimized at vi = 0 for all i (i.e., they are all empty and I0 = {1, ..., 4}, whereas when
↵ < 1/8 the above is minimized when every one of I+µ , I�µ , I+⌫ , I�⌫ are all non-empty. This yields
the global minima of � in these coordinates, and ensures the fixed points we claimed were stable are
indeed stable.
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To show the instability of any other connected set of fixed points, the reasoning goes just as in the
binary GMM case: consider a small perturbation of the specified critical region in the direction of the
stable fixed points and it can be seen by examining the drifts directly, that the dynamical system has a
repelling direction.

F.4 3⁄32-probability of ballistic convergence to an optimal classifier

Let us now reason that the ballistic effective dynamics of Proposition F.2 is such that under an
uninformative Gaussian initialization, the probability of being in a basin of attraction of one of the
24 stable fixed points is 3/32. Begin by noticing that if the first layer weights are initialized as
Wi ⇠ N (0, IN/N) independently for i = 1, ..., 4 and the second layer weights vi are independent
standard Gaussians, then the projection onto the coordinate system (vi,m

µ
i ,m

⌫
i , Rij) is given by

lim(un)⇤µn = N (0, 1)⌦4 ⌦ �⌦4
0 ⌦ �⌦4

0 ⌦ �I4

For the mµ
i ,m

⌫
i variables one should understand these �0 Dirac masses as a 1

2 - 12 mixture of �0�
and �0+ . Under the flow of Proposition F.2, if vi(0) is positive, then m⌫

i stays fixed at zero, and
if mµ

i (0) = 0� then mµ
i becomes negative infinitesimally quickly, whereas if mµ

i (0) = 0+ then it
becomes positive infinitesimally quickly. At any rate, the sign of vi never changes to negative from
such an initialization, and similarly if vi(0) is negative, the sign of vi will never change to positive.
As such, in order to have a chance at being in the basin of attraction of one of the stable fixed points
outlined in Proposition F.3, it must be the case that two of (vi(0))i have positive sign and two of
them have negative sign; evidently this has probability

�4
2

�
/24 = 3/8.

Given that two of vi(0) are positive, and two of them are negative—say without loss of generality
that i = 1, 2 are the coordinates in which it is positive, and i = 3, 4 are the coordinates in which
it is negative—then the dynamical system for (v1, v2,mµ

1 ,m
µ
2 ) is exactly the ballistic limit of the

two-layer GMM studied in Section E, for which we found that the probability of converging to a
good classifier is 1/2. Similarly, the dynamical system for (v2, v4,m⌫

3 ,m
⌫
4) independently gives a

further probability 1/2 of converging to its good classifier. Together, these yield a probability of 3/32
of converging to one of the 4! many optimal classifiers for the XOR GMM.

F.5 Diffusive limit on critical submanifolds

We now consider scaling limits of the rescaled effective dynamics in their noiseless limit, where the
rescaling is about the unstable set of fixed points given by the product of two quarter circles where
I+µ = {1, 2} and I+⌫ = {3, 4}. In what follows, fix (a1,µ, a2,µ) 2 R2

+ with a21,µ + a22,µ = C↵, and
a23,⌫ + a24,⌫ = C↵, and let un be the variables of (4.2) with vi,m

µ
i ,m

⌫
i replaced by

ṽi =

⇢p
N(vi � ai,µ) i = 1, 2

�
p
N(vi � ai,⌫) i = 3, 4

and

m̃µ
i =

⇢p
N(mµ

i � ai,µ) i = 1, 2
0 i = 3, 4

, m̃⌫
i =

⇢
0 i = 1, 2p
N(m⌫

i � ai,⌫) i = 3, 4
.

By the choices of m̃µ
i = 0 and m̃⌫

i = 0, we mean that we formally mean that we remove those
variables from ũn, and for us now EK will be the ball of radius K in the other coordinates, and the
point {0} for (m̃µ

i )i=3,4 and (m̃⌫
i )i=1,2.

Proof of Proposition 5.1. The fact that the rescaled variables ũn satisfy the conditions of Theo-
rem 2.2 follows as in Lemma F.2 with the only distinction arising in the bound on (E.11), where
previously we did not use the �2n factor, but is still satisfied using �n = O(1/n).

We next consider the population drift of the new variables ṽi, m̃µ
i and m̃⌫

i . If we take these variables
to be in EK , and recall the population drifts etc. in the � = 1 setting from Proposition F.2, for
i = 1, 2, we have fṽi is the n ! 1 limit of

p
N

mµ
i

4
�(�v · g(mµ))�

p
N↵vi
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If we then use the expansion

v · g(mµ) = C↵ +N�1/2
X

j=1,2

aj,µ(ṽj + m̃µ
j ) +O(1/n)

from which we obtain

�(�v · g(mµ)) = �(�C↵) +
1p
N

⇣ X

j=1,2

aj,µ(ṽj + m̃µ
j )
⌘
(4↵)(1� 4↵) +O( 1n )

Plugging these in, and taking the n ! 1 limit we find that for i = 1, 2,

fṽi = ↵(ṽi � m̃µ
i )� ai,µ(↵� 4↵2)

X

k=1,2

ak,µ(ṽk + m̃µ
k) .

By a similar reasoning, for i = 3, 4, we have

fṽi = ↵(ṽi � m̃⌫
i )� ai,⌫(↵� 4↵2)

X

k=3,4

ak,⌫(ṽk + m̃⌫
k) .

The claimed equations for fm̃µ
i

when i = 1, 2 and fm̃⌫
i

when i = 3, 4 hold by analogous reasoning,
and the equations for fR?

ij
are evidently unaffected by the change of variables to ũn. Regarding the

population correctors, they are also unaffected (all zero) since the variables that were changed in ũn

are all linear.

It remains to compute the volatility matrix in the coordinates vi, m̃µ
i , m̃

⌫
i . We first use the following

expression for the matrix V when � = 1, by taking � = 1 in (E.10). If i, j 2 {1, 2}, then

Vvi,vj =

⇢ 3
16m

µ
i m

µ
j �(�v ·mµ)2 i, j 2 {1, 2}

3
16m

⌫
i m

⌫
j�(v ·m⌫)2 i, j 2 {3, 4}

and if i 2 {1, 2} and j 2 {3, 4}, then

Vvi,vj = � 1

16
mµ

i m
⌫
j�(�v ·mµ)�(v ·m⌫)

When considering ⌃vi,vj we multiply this by N coming from J̃ and J̃T , but also multiply by
� = 1/N , so that taking the limit as n ! 1, we get

⌃̃vi,vj =

8
<

:

3↵2ai,µaj,µ i, j 2 {1, 2}
3↵2ai,⌫aj,⌫ i, j 2 {3, 4}
�3↵2ai,µaj,⌫ i 2 {1, 2}, j 2 {3, 4}

.

By a similar reasoning, if i, j 2 {1, 2}, then

Vvi,Wj · µ =
3

16
vjm

µ
i �(�v ·mµ)2 i, j 2 {1, 2}

Vvi,Wj · ⌫ =
3

16
vjm

⌫
i �(v ·m⌫)2 i, j 2 {3, 4}

and if i 2 {1, 2} and j 2 {3, 4}, then

Vvi,Wj · ⌫ = � 1

16
vjm

µ
i �(�v ·mµ)�(v ·m⌫) .

Taking the limit as n ! 1, we again recover the claimed limiting diffusion matrix, and similar
calculations yield the same for ⌃m̃µ

i ,m̃
µ
j

, ⌃m̃⌫
i ,m̃

⌫
j

and ⌃m̃µ
i ,m̃

⌫
j
, concluding the proof.
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