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ABSTRACT

In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fit-
ted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that
facilitates the modelling of local-global interactions in every decoder transformer
block through attention heads of several distinct local and global windows. Em-
pirical results on ten downstream audio tasks show that MW-MAEs consistently
outperform standard MAEs in overall performance and learn better general-purpose
audio representations, along with demonstrating considerably better scaling char-
acteristics. Investigating attention distances and entropies reveals that MW-MAE
encoders learn heads with broader local and global attention. Analyzing attention
head feature representations through Projection Weighted Canonical Correlation
Analysis (PWCCA) shows that attention heads with the same window sizes across
the decoder layers of the MW-MAE learn correlated feature representations which
enables each block to independently capture local and global information, leading
to a decoupled decoder feature hierarchy.

1 INTRODUCTION

With rapid advances in hardware capabilities driving models of ever-increasing complexity and
appetite for data, leveraging unlabelled data for learning effective deep representations has garnered
significant interest. Self-supervised learning, which solves a pretext task that utilizes labels generated
from the data itself, has emerged as a notable approach for training deep neural representations
without labelled data. Several methods for learning self-supervised representations from audio data
have been proposed, including autoregressive methods that learn to predict the future based on the
past input (Oord et al., 2018; Chung et al., 2019), methods that learn contrastive representations from
different views of the input (Saeed et al., 2021; Schneider et al., 2019; Baevski et al., 2020; Sarkar
et al., 2019), and masked predictive modelling methods that learn to predict removed portions of the
input data (Devlin et al., 2019).

Together with the transformer architecture (Vaswani et al., 2017) and its successors (Dosovitskiy et al.,
2021; Liu et al., 2021), masked predictive modelling has led to significant advances across natural
language processing (NLP) (Devlin et al., 2019; Lewis et al., 2020), computer vision (Xie et al., 2022;
Bao et al., 2022) and audio and speech processing (Hsu et al., 2021a). Masked Autoencoders (MAEs)
by He et al. (2022) are a recent addition to the masked predictive modelling family. Initially proposed
for learning visual representations from randomly masked image patches, MAEs are experiencing
widespread adoption across several domains (Feichtenhofer et al., 2022; Wei et al., 2022; Hou et al.,
2022; Pang et al., 2022; Bachmann et al., 2022; Seo et al., 2023) due to their inherent scalability and
simple design. In the audio domain, several recent works have adapted MAEs to learn a general-
purpose audio representation from spectrogram inputs (Baade et al., 2022; Niizumi et al., 2022).
These works address several challenges that are unique to the audio domain and exhaustively study
the effect of masking strategies and other hyperparameters, providing vital information for training
MAEs on audio data.
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Figure 1: An overview of the proposed Multi-Window Multi-Head Attention (MW-MHA) mod-
ule, and the overall MW-MAE architecture. In MW-MHA, each attention head operates on non-
overlapping windows of different sizes (coded by different colours) of the input matrices. As evident
from b) MW-MAE uses the proposed MW-MHA block only in the decoder.

Recent works have shown that leveraging local information in the Multi-Head Attention (MHA)
module of a transformer layer through convolutions (Gulati et al., 2020), attention with local windows
(Beltagy et al., 2020; Liu et al., 2021; Dong et al., 2022) or pooling attention (Fan et al., 2021;
Li et al., 2022; Zhu & Omar, 2023) can lead to improved performance. Within the framework of
Masked Autoencoders, Huang et al. (2022) evaluated the impact of local windowed attention (Liu
et al., 2021) for audio representation learning, demonstrating better performance across 4 downstream
audio recognition tasks. However, in these methods: (i) all the attention heads within a MHA module
operate at the same local context, thus only capturing local information at the transformer layer level,
and (ii) they require explicit approaches to mitigate the lack of connections across windows and to
capture local-global information.

In this work, we propose Multi-Window Masked Autoencoders (MW-MAE) with both local and global
attention for learning general-purpose audio representations from spectrogram inputs. Decoders in an
MW-MAE are fitted with a novel Multi-Window Multi-Head Attention module (MW-MHA) (Fig 1).
Each attention head in the proposed MW-MHA module computes self-attention over non-overlapping
windows of different sizes, which facilitates modelling of local-global interactions in every decoder
transformer block. The proposed MW-MAEs outperform standard MAEs on 10 downstream audio
recognition tasks. At the same time, MW-MAEs adapt better to varying patch sizes and increasing
number of patches, perform better in low-data scenarios, as well as demonstrate better performance
and scaling characteristics with respect to changing encoder and decoder complexities. Exhaustive
exploratory analysis of attention distances and entropies shows that attention heads in MW-MAE
encoders learn broader local-global attention as compared to standard MAEs, despite having an
identical architecture. Further, analysis of feature representations from the decoder attention heads
using Projection Weighted Canonical Correlation Analysis (PWCCA) (Morcos et al., 2018) indicates
that attention heads with the same window sizes across the decoder layers of the MW-MAE learn
correlated feature representations leading to a decoupled feature hierarchy, confirming that MW-MHA
modules learn local-global features in each decoder block.

2 BACKGROUND AND RELATED WORKS

Recently, several works have been proposed for learning audio representations in a self-supervised
manner. Most of these works can be loosely categorized into one or more of the following groups
based on their underlying pretext task: (i) predictive; (ii) contrastive; and (iii) masked predictive
modelling. Several methods adopt a predictive coding approach, which aligns well with the sequential
nature of audio input. Autoregressive predictive coding (APC) (Chung et al., 2019; 2020; Chung
& Glass, 2020) is one such method which utilizes Recurrent Neural Networks (RNNs) to predict
future elements of a sequential input given the past, whereas non-autoregressive approaches using
Convolutional Neural Networks (CNNs) have also been proposed (Liu et al., 2021). Contrastive
predictive coding (Oord et al., 2018) optimizes a predictive coding objective in the latent space while
simultaneously optimizing a contrastive objective function. This brings us to contrastive represen-
tation learning, which operates on the premise of learning a representation space that maximizes
agreement between views from the same input sample while minimizing inter sample agreement.
Several contrastive learning-based methods, originally proposed for computer vision (Chen et al.,
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2020; Chen & He, 2021; Grill et al., 2020), have been adapted for learning audio representations
(Saeed et al., 2021; Niizumi et al., 2021; Elbanna et al., 2022). A widely used contrastive approach
for learning speech representations is the Wav2Vec family of algorithms (Schneider et al., 2019;
Baevski et al., 2019; Baevski et al., 2020; Hsu et al., 2021b), which learn contextualized speech
representations by optimizing a contrastive objective between quantized latent representations and
representations generated from masked time steps. Finally, self-supervised learning methods based
on masked predictive modelling have a simple premise: remove a portion of the input data, and learn
to predict the removed content. After being (re-)popularized by the likes of BERT (Devlin et al.,
2019) in NLP and fueled by the recognition of the Transformer (Vaswani et al., 2017) as a viable
cross-domain neural architecture, masked modelling has seen wide adoption in several domains, such
as computer vision (Bao et al., 2022; Xie et al., 2022), audio and speech (Liu et al., 2020) as well
as a multi-domain self-supervised learning frameworks (Baevski et al., 2022). In the audio domain,
several recent methods use masked predictive modelling to learn self-supervised representations
(Baevski et al., 2019). These include HuBERT (Hsu et al., 2021a), which trains a BERT-like model
to predict pre-determined cluster assignments from masked speech features, WavLM (Chen et al.,
2022b), which learns a joint denoising and masked prediction task, and SSaST (Gong et al., 2022),
which jointly reconstructs and contrasts masked patches. More recently, Chen et al. (2023) proposed
an iterative masked modelling approach using an iterative self-distilled tokenizer that generates
refined discrete labels from audio input data for the next stage of pretraining.

Masked Autoencoders (MAEs): Recently, He et al. (2022) proposed Masked Autoencoders for
learning self-supervised image representations. In an MAE, the input is split into non-overlapping
patches, which are then linearly projected to a fixed dimension by the patch embedding layer. A
large subset of these patches is masked out (e.g., over 75% of the patches), and the unmasked patches
are then encoded by a Vision Transformer (ViT) (Dosovitskiy et al., 2021). With learnable mask
tokens filled in the correct positions to restore the original patch order, these encoded patches are fed
to a transformer based decoder, whose objective is to learn to reconstruct the masked patches. The
high masking ratio allows large encoders to be paired with significantly smaller decoders due to the
reduced encoding complexity, while simultaneously forcing the encoder to learn better contextualized
representations by minimizing extrapolation from redundant neighbouring patches. Several recent
works based on MAEs have been proposed for training general-purpose audio representations. Baade
et al. (2022) explored a joint discriminative and generative objective for training audio MAEs and
evaluated fine-tuning performance on 5 downstream tasks. By training shallow downstream classifiers
on 15 downstream tasks in accordance with the HEAR-2021 (Turian et al., 2022) protocol, Niizumi
et al. (2022) investigated various hyper-parameters such as patch size and the effect of input audio
clip duration on model performance. Huang et al. (2022) investigated shifting windows based local
self-attention (Liu et al., 2021) of a fixed context (4 × 4 windows) in all but the last few layers
of audio MAEs. In contrast, in this work we propose a Masked Autoencoder fitted with a novel
Multi-Window Multi-Head Attention module that can model attention at several context levels and
can capture local-global interactions in every transformer layer.

3 PROPOSED APPROACH

3.1 MULTI-WINDOW MULTI-HEAD ATTENTION

To better capture local-global attention, we propose a Multi-Window Multi-Head Attention (MW-
MHA) module, where each attention head computes self-attention across spectrogram patches in
different local windows and then combines the contribution of each attention head, as illustrated in
Figure 1a. We define MW-MHA with h parallel heads as follows:

MWMHA(Q,K, V ) = Concat(winHead1, ...,winHeadh)W
O (1)

winHeadi = WinAttention(QWQ
i ,KWK

i , V WV
i , wini) (2)

Here, Q,K, V ∈ Rn×dm represent query, key and value input matrices, and WQ
i ,WK

i ,WV
i ∈

Rdm×dk are their corresponding learnable projection matrices. dm is the model’s feature dimension,
and dk = dm

h . As opposed to MHA, each head winHeadi computes local self-attention over non-
overlapping windows of size wini by partitioning input matrices QWQ

i ,KWK
i , V WV

i ∈ Rn×dk
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into Qwini
,Kwini

, Vwini
∈ Rm×wini×dk , given that n = m×wini. This is followed by computing

standard self-attention Xwini
= Attention(Qwini

,Kwini
, Vwini

) (Vaswani et al., 2017) on these
partitioned inputs. Finally, Xwini

∈ Rm×wini×dk is reshaped to X ∈ Rn×dk to get the output.

In the proposed MW-MHA module, individual attention heads capture information at multiple local
contexts, and the final projection matrix WO

i ∈ Rhdk×dm learns the contribution of each of these
heads, allowing inter-window interaction and connection. This design facilitates learning both
local and global time-frequency information at several granularities in every transformer block (as
supported by exploratory analysis in Section 5). This is in contrast to shifting (Liu et al., 2021; Chen
et al., 2022a), striped (Dong et al., 2022) windowed self-attention, or pooling attention (Fan et al.,
2021; Li et al., 2022; Zhu & Omar, 2023), where all attention heads within the same block have the
same window size and thus only perform local self-attention at the block level. Pseudo-code for the
proposed MW-MHA is provided in Appendix A.

3.2 MASKED AUTOENCODER WITH MULTI-WINDOW MULTI-HEAD ATTENTION

Patch embeddings, masking strategy and masking ratio: We use mel-spectrograms as inputs,
partitioning them into non-overlapping patches, which are then flattened and embedded into linear
projections. For encoding positional information, we use fixed sinusoidal positional embeddings,
similar to Baade et al. (2022); Niizumi et al. (2022); Huang et al. (2022). We use a high masking ratio
(80%) and random unstructured masking, which have been shown to work well for audio (Niizumi
et al., 2022; Huang et al., 2022).

Encoder: In line with previous work (He et al., 2022; Niizumi et al., 2022; Huang et al., 2022),
we use a Vision Transformer (ViT) (Dosovitskiy et al., 2021) based encoder, which only processes
non-masked patches (20% in this work). Due to the random masking strategy, majority of the patches
are not processed by the encoder at training time. This minimizes the benefit of using the proposed
MW-MHA modules in the encoder transformer blocks (as evidenced by experiments in Section 4.4).
Thus, transformer blocks in our encoder use standard Multi-Head Attention.

Decoder with Multi-Window Multi-Head Attention: We add fixed sinusoidal positional embed-
dings to the encoded visible patches concatenated with trainable masked tokens after restoring original
patch order. The resulting tensor is then fed to the decoder, which is also a stack of transformer
layers, followed by a linear head that reconstructs the original input spectrogram. This is consistent
with previous works (He et al., 2022; Niizumi et al., 2022; Huang et al., 2022). Given that the
decoder processes all the patches, we replace the Multi-Head Attention module with the proposed
Multi-Window Multi-Head Attention, thus modelling local-global attention in every decoder block.

Selecting window sizes: We follow a simple rule for determining the window sizes of each constituent
winHeadi: given the total number of patches np, we simply take all non-unary factors of np and
add two additional global self-attention heads. As an example, our default configuration yields
np = 250, and thus the window sizes for each MW-MHA module in all decoder blocks will be
[2, 5, 10, 25, 50, 125, 250, 250] for a total of 8 attention heads, which is a reasonable number of
attention heads inline with previous research (He et al., 2022; Huang et al., 2022). Not only is this
method simple to follow, but it also scales well with number of patches, effectively covering several
possible local context levels.

Pre-training objective: During pre-training, we optimize a loss function that computes mean squared
error (MSE) between the predicted masked patches and their corresponding input spectrogram patches.
In early experiments, we observed reduced performance when using per-patch normalization, and
thus we do not normalize target spectrogram patches.

4 EXPERIMENTS

4.1 DATASETS AND TASKS

Pre-training: We use the full AudioSet dataset (Gemmeke et al., 2017) (AS-5k) for pre-training
MAEs and MW-MAEs. With over 5000 hours of audio data distributed in 2 million 10-second weakly
annotated YouTube clips spanning 527 classes, AudioSet is one of the largest publicly available audio
corpora.
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Downstream tasks: Recently, several standardized benchmarks have been proposed to evaluate
audio representations thoroughly across a wide variety of domains, such as SUPERB (Yang et al.,
2021a) and HEAR (Turian et al., 2022). While both benchmarks offer avenues for fast, reproducible
and accessible comparison of audio representations, the SUPERB benchmark focuses primarily on
speech-processing applications. In contrast, the HEAR benchmark consists of 19 tasks spanning
diverse audio domains of speech, music and environmental sounds and redistributes standardized
and preprocessed datasets. However, some of these tasks are simply smaller subsets of one another,
whereas performance on some HEAR tasks has been demonstrated to be correlated (Turian et al.,
2022). For evaluating audio representations, we utilize a subset of the HEAR benchmark which con-
sists of ten diverse tasks spanning multiple domains: Beijing Opera, Crema-D, ESC-50, LibriCount,
Mridangam Stroke and Tonic, NSynth Pitch 5h, Speech Commands 5h, FSD50K and VoxLingua107.
More information can be found in Appendix B along with the underlying selection criterion. We
believe the selected tasks constitute a balanced evaluation protocol that facilitates assessment of
audio representations without doing excessive evaluations. For downstream evaluation, we follow
the HEAR protocol, where for each task, a shallow downstream classifier is trained on top of fixed
features extracted using a pretrained model. This practice has become quite prevalent and allows
the evaluation of how representations generalize to a broad range of tasks without the drawbacks of
fine-tuning large, heterogeneous neural networks.

Measuring overall performance: Given the wide variety of downstream tasks and feature repre-
sentations evaluated, a single metric to quantify the performance would significantly aid analysis.
However, given the differing difficulty levels of the tasks as well as outliers arising from the nature
of the representations evaluated, simply averaging the scores is not sufficient. To counteract this,
we utilize a normalized overall score to track overall performance of a given audio representation.
Mathematically, overall score s(m) ∈ [0., 100.] of a model m is given as:

s(m) =
1

|T |
∑
t∈T

xt(m)−mint

maxt −mint
∗ 100 (3)

where xt(m) denotes performance of the model m on task t, and mint and maxt represent the worst
and the best performance across all models on the task. By taking the relative performance of the
best and the worst approach on a task into consideration, this overall score takes how hard the task is
to improve on in consideration. It is worth noting that the normalized score is computed across all the
evaluated methods in all upcoming sections, including ablations. This is similar to the overall score
used by the public leaderboard of the SUPERB Yang et al. (2021a) benchmark, except that we do not
set the normalized value of the worst performing method to 0, and the proposed overall score has an
upper range of 100.0.

4.2 IMPLEMENTATION DETAILS

Features: We use log-scaled mel spectrograms with a window size of 25 ms, a hop size of 10 ms and
F = 80 mel-spaced frequency bins in the 50− 8000 Hz range, extracted using the torchaudio (Yang
et al., 2021b) toolkit. All datasets have a sampling frequency of 16000 Hz. Instead of normalizing by
dataset statistics, we adopt a per-instance standardization scheme.

Pre-training: We use the AudioSet dataset for pre-training our Masked Autoencoders. We extract
log-scaled mel spectrograms for the entire AudioSet dataset and randomly crop a segment 200
timesteps in length from each data sample. Our default configuration consists of a ViT-B encoder.
All our MAE variants accept a 200× 80-dimensional (T × F, respectively) input corresponding to
an audio duration of 2 seconds, which achieves performance on-par with longer input durations as
demonstrated by Niizumi et al. (2022). For our default configuration, our patch embedding computes
non-overlapping patches with a patch size of (4×16), given it’s desirable performance v/s complexity
tradeoff as found by Niizumi et al. (2022). A key characteristic of the Masked Autoencoder paradigm
is its asymmetric design, which allows pairing small decoders with large encoders while scaling
favourably for linear probe performance (He et al., 2022). Thus, in contrast to Huang et al. (2022),
we adopt a smaller 4-layer deep transformer-based decoder of width 384 and 8 attention heads for our
default configuration. We train Masked Autoencoders with the proposed MW-MHA module, which
are referred to as MW-MAEs, as well as their standard MAE counterparts. All MAEs are pre-trained
for 100 epochs with a batch size of 1024 and a weight decay of 0.05 on a single TPU-v3 VM with 8
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Table 1: Comparison with various audio representations from the literature. 95% confidence intervals
are reported over 10 runs on downstream classifiers. We pre-trained all highlighted audio representa-
tions, with different gray levels indicating directly comparable MAE and MW-MAE configurations.
We also pre-trained an AudioMAE model (“AudioMAE-B-4x16-4l”) from scratch, which is directly
comparable to our base configurations. We only pre-trained For other pre-trained audio representa-
tions, publicly available official implementations were used. All downstream models were trained
by us using the hear-eval-kit. s(m) denotes the proposed normalized overall score (Sec 4) *: same
configuration as MSM-200 16x4 (Niizumi et al., 2022), with 8 attention heads in the decoder instead
of 6. For model parameter counts, refer to Appendix G

Model PT-Data BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Naive Baselines
HEAR-Naive (Turian et al., 2022) - 52.6±2.4 30.9±0.8 5.8±0.2 33.5±1.1 38.0±1.3 36.4±1.9 18.6±4.4 8.5±0.4 7.1±0.2 11.2±0.5 5.0±0.7

Supervised
PaSST-base (Koutini et al., 2022) AS-5k 94.9±0.5 61.0±0.3 94.8±0.3 60.1±0.2 96.5±0.1 87.6±0.6 23.3±0.9 66.6±1.4 64.2±0.1 25.5±0.8 73.5±0.4

SSL
W2V2-base (Baevski et al., 2020) LS-960 74.0±1.0 46.4±0.3 31.1±0.4 51.2±0.2 77.3±0.2 55.1±0.3 7.4±0.8 90.8±0.3 18.1±0.1 35.5±0.8 43.1±0.2
W2V2-large (Baevski et al., 2020) VP-100k 93.1±0.7 66.9±0.4 60.1±0.5 62.4±0.3 93.9±0.1 77.4±0.2 42.0±1.0 87.6±0.5 34.2±0.1 53.6±1.0 74.0±0.4
WavLM-base (Chen et al., 2022b) LS-960 89.4±0.7 56.3±0.2 46.6±0.4 63.2±0.3 95.1±0.1 83.4±0.2 37.3±0.8 57.2±0.8 29.9±0.1 22.6±0.6 60.5±0.2
WavLM-large (Chen et al., 2022b) Mix-94k 96.4±0.5 57.2±0.2 47.9±0.4 61.1±0.3 96.8±0.1 89.5±0.1 53.7±0.5 46.2±0.8 29.0±0.1 23.7±0.9 64.0±0.2
HuBERT-base (Hsu et al., 2021a) LS-960 92.1±0.6 70.8±0.2 57.8±0.6 56.5±0.3 94.4±0.1 84.9±0.3 19.4±0.7 93.2±0.1 32.3±0.1 61.8±0.6 72.5±0.2
HuBERT-large (Hsu et al., 2021a) LL-60k 94.1±0.7 70.7±0.1 60.3±0.4 59.9±0.2 95.3±0.1 83.5±0.3 19.3±0.8 83.2±0.7 31.5±0.1 66.1±0.9 73.4±0.3
SSaST-base (Gong et al., 2022) AS+LS 93.4±0.9 56.5±0.2 68.4±0.4 60.7±0.3 96.7±0.1 96.3±0.1 66.8±0.7 53.5±1.3 38.2±0.1 28.5±0.9 71.7±0.2
BEATs-iter3 (Chen et al., 2023) AS-5k 94.0±0.8 67.3±0.2 83.7±0.3 68.0±0.2 94.7±0.1 95.8±0.1 69.4±0.8 85.2±0.3 53.6±0.2 38.5±1.0 85.7±0.3

MAE based
AudioMAE (Huang et al., 2022) AS-5k 93.7±0.6 68.2±0.2 60.6±0.4 42.2±0.2 89.2±0.2 86.6±0.2 64.5±0.8 28.6±1.5 37.9±0.1 29.7±1.0 62.9±0.3
AudioMAE-B-4x16-4l AS-5k 96.0±0.5 72.4±0.3 72.0±0.5 66.9±0.4 97.2±0.0 98.2±0.1 69.8±0.8 89.8±0.3 49.0±0.1 38.3±0.8 86.1±0.3

MAE-B-4x16-4l* AS-5k 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2

MAE-B-5x5-4l AS-5k 96.0±0.4 70.9±0.2 80.9±0.4 67.6±0.4 97.6±0.1 98.4±0.0 69.3±0.4 88.4±0.3 49.3±0.2 37.7±0.6 86.8±0.2

MAE-L-4x16-8l AS-5k 96.1±0.4 73.8±0.1 81.6±0.3 68.5±0.2 97.6±0.1 98.3±0.0 69.0±0.5 91.2±0.2 51.8±0.1 46.9±0.8 90.0±0.2

Proposed
MW-MAE-B-4x16-4l AS-5k 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

MW-MAE-B-5x5-4l AS-5k 96.6±0.4 73.8±0.4 82.0±0.3 70.1±0.4 97.5±0.1 98.3±0.1 72.9±0.5 91.7±0.2 51.3±0.1 44.2±0.6 90.6±0.1

MW-MAE-L-4x16-8l AS-5k 95.9±0.3 76.1±0.2 83.6±0.3 69.7±0.3 97.4±0.0 98.2±0.1 71.2±0.7 93.0±0.1 53.5±0.1 51.9±0.7 92.6±0.2

TPU cores, with the default configuration taking around 36 hours to train. We warm up for ten epochs
to a base learning rate of 1e-5, followed by a cosine decay schedule. A masking ratio of 0.8 with
unstructured random masking is used, and no other data augmentations are used during pre-training.

Training downstream models: We first extract fixed feature embeddings for all downstream tasks
to train downstream models. In the MAE framework, the decoder is discarded after pretraining and
feature embeddings are extracted using just the encoder. To generate scene embeddings consistent
with the HEAR protocol, we use the exact patch aggregation process as Niizumi et al. (2022): we
break audio clips into non-overlapping 2 second chunks, concatenating the features in time and finally
taking a mean over the time axis to generate a fixed vector representation independent of the input
audio duration. The hear-eval-kit, released alongside the HEAR benchmark, was used to extract
fixed feature embeddings and to train a shallow MLP classifier with a single hidden layer with 1024
neurons for each task in a reproducible manner. Experiments are repeated with at least ten random
seeds for each task, resulting in 100 experiments for every evaluated representation.

4.3 COMPARISON WITH EXISTING WORKS

Table 1 shows how MW-MAE fares against recent audio representations. The highlighted model
configurations that we pre-trained from scratch on AudioSet have the following naming convention:
the first substring shows the type of MAE (vanilla or proposed MW-MAE), followed by a single
alphabet denoting ViT Encoder configuration. This is followed by the patch size used, and finally,
the depth of the decoder. It’s worth noting that while embedding sizes of MAE and corresponding
MW-MAE configurations are the same, the embedding sizes of other methods can be different.
This is inline with the current consensus of evaluating self-supervised representations in the audio
domain (Yang et al., 2021a; Turian et al., 2022). MW-MAE configurations outperform all other
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comparable MAEs, with the largest "MW-MAE-L-4x16-8l" configuration outperforming all the
methods in overall performance (92.6±0.2). MW-MAEs also outperforms AudioMAE with standard
shifting window based attention, as well as the recent BEATs-iter3 approach, which is the pre-trained
representation obtained after 3 stages of self-distilled learning as proposed by Chen et al. (2023).
MW-MAEs perform exceptionally well on pitch perception (NS-5h), while achieving performance on-
par with speech specific representations such as WavLM, HuBERT and Wav2Vec2 (denoted W2V2)
for Keyword spotting (SC-5h). Perhaps more surprisingly, they outperform speech representations
trained on much larger training sets on the emotion recognition (CREMA-D) as well as speaker
count classification (LibriCount) tasks. While PaSST, which is a recent state-of-the-art approach for
training supervised transformers on AudioSet, outperforms every model on ESC-50 and FSD50K
tasks, the overall performance of the proposed approach is significantly better. Overall, the proposed
MW-MAEs learn a better general-purpose audio representation than standard MAEs, generalizing
well to several audio domains and demonstrating excellent overall performance in comparison to
recent audio representations.

4.4 KEY MODEL CHARACTERISTICS

We conduct several experiments to examine key differences between MAE and the proposed MW-
MAE. While we have only reported overall score s(m), detailed results for all these experiments,
along with additional experiments on attention heads and window sizes can be found in Appendix H.

Model Downstream Linear Probe Fine-tuning
s(m) (mAP) (mAP)

MAE Base 88.1±0.2 23.1±0.0 26.1±0.4
MW-MAE Base (decoder only) 89.2±0.2 24.2±0.1 26.1±0.7
MW-MAE Base (encoder only) 89.1±0.3 23.6±0.0 26.1±0.3
MW-MAE Base (enc+dec) 89.1±0.3 24.0±0.1 26.2±0.0

Table 2: Performance impact of MW-MHA
module placement

MW-MHA in the encoder: As previously mentioned,
adding MW-MHA to the encoder block does not im-
prove downstream performance. Further, we also inves-
tigate the impact of linear probing as well as fine-tuning
the entire encoder stack for in-domain classification on
AudioSet-20k balanced subset. No data augmentations
were used. As evident from Table 2, when compared
with including MW-MHA blocks in the decoder only,
there is no performance benefit to adding MW-MHA
blocks to the encoder for neither downstream performance, nor for in-domain linear probe on
AudioSet-20k. However, when fine-tuning the entire encoder stack, adding MW-MHA blocks to both
the encoder and the decoder provides a slight improvement and is worth considering.

Performance impact of various patch sizes: In an MAE, the patch embedding layer generates
non-overlapping patches from the input. Thus, the size of the patch governs the number of patches
as well as the time-frequency resolution that the transformer layers work at, making it an important
hyperparameter to investigate.
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Figure 2: Ablation experiments comparing standard MAE v/s proposed MW-MAE at different patch
sizes (a), encoder complexity (b), decoder depth (c) as well as amount of pre-training data used (d).
s(m) is the proposed overall score (Sec 4). Detailed results can be found in Appendix H.

Figure 2a shows how different patch sizes affect downstream performance. The proposed MW-MAE
model, with an overall score of 90.6±0.1, outperforms standard MAE for every patch size for identical
decoder configurations. It’s also worth noting that MAE performance degrades as we decrease the
patch size beyond 4× 16, whereas MW-MAE performance continues to improve. These observations
show that the proposed MW-MAE adapts better to varying patch sizes and time-frequency resolutions,
while scaling well with increasing number of patches.

Encoder size: As shown in Figure 2b, we investigate how encoders of five different complexities
affect overall performance. All the trained models have the same decoder configuration (384 neurons,
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Figure 3: Investigating MAE and MW-MAE encoder attention heads. (a) depicts average entropies
of encoder attention heads over the course of pretraining in a every encoder transformer block. (b)
Depicts mean attention distance distributions of the first two and the last two transformer blocks at
different amounts of pretraining data used.

depth=4, h=8). With an overall score of 89.2±0.2, MW-MAE with the ViT-Base encoder performs
better than MAEs with encoders of any size in this experiment. The most prominent performance gap
is observed for the ViT-Large setting, where MAE and MW-MAE attain overall scores of 88.2±0.2

and 92.3±0.2, respectively. The drop in performance for the ViT-Huge encoder for both MAEs and
MW-MAEs suggests possible overfitting.

Decoder depth: In Figure 2c, we show how increasing decoder complexity by increasing decoder
depth affects overall performance. As expected, increasing decoder depth improves performance
for both methods. For decoder depth=8, MW-MAE (89.9±0.2) outperforms MAE (88.2±0.1) by a
considerable margin in overall performance. We also observed that with an overall score of 88.3±0.2,
MW-MAE with depth=2 performs on par with MAEs with up to 4 decoder blocks. This observation
complements the inherent asymmetric nature of Masked Autoencoders, and thus the proposed
MW-MAE performs favourably in terms of complexity and scalability.

Pre-training data: Finally, Figure 2d depicts how performance varies as we reduce the amount of
data used for pre-training. Overall, performance for both the MAE and the proposed MW-MAE
methods continues to decrease monotonically as we remove more and more data. However, the
performance loss trend for MW-MAE is much more favourable. A 90% reduction in the amount of
pre-training data results in a 28.17% reduction in performance for standard MAEs (from 88.1±0.2 to
63.3±0.2), whereas MW-MAE only suffers a 13.5% drop in performance (from 89.2±0.2 to 77.2±0.3).
Thus, we conclude that the proposed MW-MAEs are more adept at handling low-data scenarios in
comparison to standard MAEs.

5 EXPLORATORY ANALYSIS

5.1 INSPECTING ENCODER ATTENTION HEADS

Analyzing attention entropies: We first analyze individual attention heads in a ViT-Medium encoder
(depth=12, h=8). Figure 3a shows scatter plots of average entropies of individual encoder attention
heads computed over the entire NSynth Pitch 5h validation set on a block-by-block basis at different
stages during pre-training. It’s worth noting that the higher the entropy, the more global the attention,
with lower attention mass spent on closer tokens (Clark et al., 2019), and thus, a higher variance in
entropies of individual attention heads highlights more spread out local and global attention. In the
early epochs, MAE encoders actually have higher variance in entropy distribution, especially in the
latter transformer layers. As pretraining goes on, interestingly, this effect is reversed, and the attention
heads in the MW-MAE encoder now start converging towards high entropy variance configurations
in the early layers.

Analyzing attention distances: We analyze mean attention distances for attention heads in the first
two and the last two encoder blocks. Similar to Raghu et al. (2021), we compute attention-weighted
patch distances between the query patch position and the locations it attends to for each attention head,
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Figure 4: Comparing features learned by different attention heads in the encoder and the decoder of a
standard MAE and the proposed MW-MAE using PWCCA. Each tick separates the attention heads
of a transformer block from the next.

averaging it for all patches positions. This is repeated for all inputs in the FSD50K validation set.
Figure 3b depicts the distribution of mean attention distance for MAE and MW-MAE encoders (base
configuration) pretrained with different amounts of training data. We can observe that MW-MAE
attention heads demonstrate a broader distribution of attention distances, modelling local-global
attention better than the MAE encoder especially in the first two transformer blocks. From these
observations, we can conclude that in an MW-MAE, the decoder fitted with an MW-MHA can force
the encoder to better capture local-global interactions even without explicit windowed attention
modules, leading to improved performance.

5.2 COMPARING ATTENTION FEATURE REPRESENTATIONS THROUGH PWCCA

Several recent works have used Canonical Correlation Analysis (CCA) to compare feature repre-
sentations and learning dynamics of deep neural networks (Raghu et al., 2017; Pasad et al., 2021).
We use Projection Weighted CCA (PWCCA) (Morcos et al., 2018), which computes a weighted
mean of the CCA vectors to compare the representations learned by individual attention heads of the
encoder and the decoder in identically configured MAE and MW-MAE (ViT-M encoder: depth=12,
h=8; Default decoder: 384 neurons, depth=4, h=8). MW-MAE decoder uses default attention head
window sizes as specified in Sec 3.2. Figure 4 depicts correlation matrices of measured PWCCA
score between attention heads. We can observe a remarkable difference in correlation between the
decoders: feature representations from the MW-MAE decoder attention heads with the same window
sizes are strongly correlated across decoder layers, whereas attention heads with global self-attention
(7, 8, 15, 16, 23, 24, 31, 32) are the least correlated, consistent with observations made for the MAE
decoder. These observations suggest a decoupling of different aspects of the feature hierarchy in the
MW-MAE decoder, as attention heads of specific window sizes in each decoder block capture local
information at a specific granularity, which is in line with our original hypothesis. These observations
are also corroborated by decoder depth ablation experiments from Sec 4.4, where we observed that a
MW-MAE with a single transformer block performs on par with MAEs fitted with up to 4 decoder
blocks. Finally, the difference in correlation matrices between the encoders is much less stark, which
is expected since both use standard MHA blocks.

6 CONCLUSION

This work presents Multi-Window Masked Autoencoder (MW-MAE) for learning general-purpose au-
dio representations. Decoders in MW-MAEs are fitted with a novel Multi-Window Multi-Head Atten-
tion (MW-MHA) module, which learns information captured at multiple granularities of local-global
context by its constituent attention heads computing self-attention over different non-overlapping
windows. Empirical experiments on ten downstream tasks show that the proposed MW-MAEs
consistently outperform standard MAEs in overall performance when pre-trained on the AudioSet
dataset, demonstrating better scaling characteristics. Exploratory analyses highlight key differences
between the attention representations learned by standard MAEs and the proposed MW-MAEs. Based
on attention entropy and mean attention distance analysis, we discover that encoder attention heads
in an MW-MAE better capture local-global interactions, even without explicit local-global attention
modules. We also learn that attention heads of the same window size across the transformer blocks of
the MW-MAE decoder are correlated, learning a decoupled feature hierarchy allowing transformers
to capture relevant information at the block level, supporting our original motivation.
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APPENDIX

A MULTI-WINDOW MULTI-HEAD ATTENTION

def WinAttention(Q, K, V, win_i):
n, d_k = Q.shape[-2:]
# partition inputs along patch dimension
# into non-overlapping windows
Q = Q.reshape(-1, win_i, d_k)
K = K.reshape(-1, win_i, d_k)
V = V.reshape(-1, win_i, d_k)
# compute self-attention
X = softmax(Q.(K.transpose()) / sqrt(d_k)).V
# reshape results
X = X.reshape(-1, n, d_k)
return X

Figure 5: Pseudocode for WinAttention

B MORE ABOUT DOWNSTREAM TASKS

Table 3: Overview of tasks for downstream evaluation. All these tasks are a part of the HEAR (Turian
et al., 2022) benchmark.

Short Hand Name Description Size (in Hours) Metric

BO Beijing Opera (Tian et al., 2014; Turian et al., 2022) Classifying percussion instruments 0.3 Accuracy
CD Crema-D (Cao et al., 2014) Emotion Recognition ∼ 10 Accuracy
ESC-50 ESC-50 (Piczak, 2015) Environmental Sound Classification 2.77 Accuracy
LC LibriCount (Stöter et al., 2018; Stöter et al., 2018) Speaker Count Identification, Simulated Cocktail Party ∼ 8 Accuracy
Mri-S Mridangam Stroke (Anantapadmanabhan et al., 2013) Stroke classification in pitched percussion instruments 1.57 Accuracy
Mri-T Mridangam Tonic (Anantapadmanabhan et al., 2013) Tonic classification in pitched percussion instruments 1.57 Accuracy
NS-5h NSynth Pitch 5h (Turian et al., 2022; Engel et al., 2017) 88-way Pitch Classification, reduced training subset ∼ 5.5 Accuracy
SC-5h Speech Commands 5h (Turian et al., 2022; Warden, 2018) Keyword Spotting, reduced training subset ∼ 6.5 Accuracy
F50K FSD50K (Fonseca et al., 2021) Multilabel, large scale Audio Tagging ∼ 100 mAP
VL VoxLingua107 Top10 (Turian et al., 2022; Kim et al., 2018) Spoken language identification 5 Accuracy

The following is our reasoning behind excluding the other tasks from the HEAR benchmark suite:

1. Nsynth-Pitch 50hr and Speech Commands Full because we already use the smaller
subsets.

2. Gunshot Triangulation: Gunshot is an event in both AudioSet and FSD50k ontology, and
is thus redundant.

3. GTZAN Music Speech: FSD50k already has music and speech labels, and the model
performance correlation study in the HEAR paper (Turian et al., 2022) shows high correlation
with FSD50k.

4. GTZAN Genre: highly correlated results with FSD50K and ESC-50 (surprisingly) as per
(Turian et al., 2022)

5. Vocal Imitations: high correlation with LibriCount (Turian et al., 2022).
6. Bee Hive state Classification: large runtime costs, niche task.
7. MAESTRO 5hr and DCASE 2016 Task 2: significant complexity (storage, runtime,

timestep based evaluation).

C EXPERIMENTAL DETAILS AND HYPERPARAMETERS

In this section, we provide additional experimental details. Apart from AudioSet, all other datasets
are obtained directly from the HEAR 1, where they are pre-processed to 16000 Hz and distributed in
a standard format.

Similar to Huang et al. (2022), our effective learning rate (lreff) depends on the base learning
rate (lrbase) and the batch size as follows: lreff = lrbase ∗ batch size

256 . In early experiments, we did

1https://hearbenchmark.com/hear-tasks.html
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not find strong augmentations at pre-training time to improve downstream performance, hence no
augmentations are used. For more details, refer to Table 4. As previously mentioned, hear-eval-kit2
was used for downstream experiments, and along with the details provided here should allow for
consistent, reproducible downstream experimentation.

Table 4: Pre-training (PT) and Downstream (FT) hyperparameters. *: For ViT-L and ViT-H
based models, smallest batch size that didn’t give OOM was used.

Configuration AS-5k Pre-training Downstream

Optimizer AdamW Adam
Optimizer momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.95
Weight decay 0.05 N/A
Base learning rate 0.000015 0.0001
Learning rate schedule linear-warmup + cosine decay fixed
Minimum learning rate 0.0 0.0001
Dropout 0. 0.25
Warm-up epochs 10 N/A
Epochs 100 500
Early Stopping N/A 20
Batch size 1024* 1024
Accelerators 8x TPU-v3 cores 1 Nvidia-A40

The code for feature extraction and running downstream experiments for our default configura-
tions as well as the corresponding pre-trained weights can be found at https://github.com/
SarthakYadav/mwmae-jax-official.

D AUXILIARY MODALITY TESTED: IMAGENET

Given the in-depth ablations and exploratory analysis, as well as resource constraints, we couldn’t
dive deeper into full scale testing of an additional modality given. However, as a proof of concept, we
pre-trained MAE and MW-MAEs with ViT-Medium encoder on ImageNet for 100 epochs, followed
by evaluating linear probe performance (training for 50 epochs) on the ImageNet validation set.

Table 5: Proof of concept ImageNet experiments.

Model Params Validation Accuracy

MAE Medium Encoder 38 M 29.0±0.0

MW-MAE Medium Encoder 38 M 29.8±0.0

E AUXILIARY TASK TESTED: SUPERVISED ASR

We have conducted some preliminary experiments to investigate the applicability of the proposed
MW-MHA module beyond MAEs. We evaluated Supervised Transformer based ASR models, trained
using CTC objective function. We trained on LibriSpeech 100h subset and reported Word Error
Rates (WER) on the test sets, using validated recipes from the SpeechBrain toolkit 3. The network
architecture used consists of a 2-layer Convolutional frontend, followed by a 12-layer encoder and
4-layer decoder, each with 4 attention heads. We trained on mel-filterbanks with 80 mel bins.

Table 6: Preliminary experiments on LibriSpeech ASR.

Model Params Test-Clean Test-Other
(WER) (WER)

Transformer 8.7 M 7.56 17.90
MW-MHA Transformer 8.7 M 6.73 17.20

2https://github.com/hearbenchmark/hear-eval-kit
3https://speechbrain.github.io

16

https://github.com/SarthakYadav/mwmae-jax-official
https://github.com/SarthakYadav/mwmae-jax-official
https://github.com/hearbenchmark/hear-eval-kit
https://speechbrain.github.io


Published as a conference paper at ICLR 2024

For the MW-MHA Transformer, we only replaced the MHA blocks in the encoder with MW-MHA
blocks, and used attention window sizes of 1/8, 1/4, 1/2 and global attention corresponding to the
number of timeframes obtained from the largest audio segment in the corpus. MW-MHA transformer
outperforms baseline transformer by a considerable margin on both test sets, and although we haven’t
yet conducted full scale librispeech experiments, this shows potential avenues for further applications.

F ADDITIONAL EVALUATION ON A FRAME LEVEL TASK: MAESTRO-5H

We have compared our base MAE and MW-MAE configurations on the MAESTRO-5h task, which is
a part of the HEAR protocol, to include proof that the proposed approach also works for frame level
tasks. MAESTRO-5h is evaluated in a 5-fold cross validation setting, with Onset FMS evaluation
metric. We conducted the experiments 5 times and report 95% confidence intervals over the cross
validation scores of individual runs.

Table 7: Downstream performance evaluation on the MAESTRO-5h task.

Model Onset FMS

MAE Base 46.47±0.05
MW-MAE Base 47.31±0.07

MW-MAE does demonstrate improved performance on MAESTRO-5h. While this might not look
like much, at the time of writing, MW-MAE outperforms every method on the HEAR leaderboard4

for MAESTRO-5h, including large multi and cross-modal ensemble methods, so this is excellent
performance for a single method.

As previously mentioned in Appendix B, we didn’t evaluate all methods on MAESTRO to begin with
because it poses serious computation (and space) complexity: it takes longer to evaluate downstream
performance on just MAESTRO than it takes to evaluate all the other downstream tasks combined.
This was unfeasible given the number of experiments we did in this paper, more so given the fact that
we evaluate on FSD50K, where local information is known to be of importance.

G PARAMETER COUNT, AVERAGES AND OVERALL SCORES

Table 8: Models, number of parameters, plain average scores and overall scores of models omitted
from Table 1 due to space constraints.

Model # Params Average s(m)

HEAR-Naive - 24.3±0.5 5.0±0.7
PaSST-base 86 M 67.5±0.3 73.5±0.4

SSL
Wav2Vec2-base 94.4 M 48.7±0.1 43.1±0.2
Wav2Vec2-large 315.4 M 67.1±0.2 74.0±0.4
WavLM-base 94.4 M 58.1±0.1 60.5±0.2
WavLM-large 315.4 M 60.1±0.1 64.0±0.2
HuBERT-base 94.4 M 66.3±0.1 72.5±0.2
HuBERT-large 315.4 M 66.4±0.2 73.4±0.3
SSaST-base 89 M 65.9±0.1 71.7±0.2
BEATs-Iter3 90 M 75.0±0.2 85.7±0.3

MAE based
AudioMAE 86.0 M 60.1±0.2 62.9±0.3
MAE-B-4x16-4l 86.0 M 76.4±0.1 88.1±0.2
MAE-B-5x5-4l 86.0 M 75.6±0.1 86.8±0.2
MAE-L-4x16-8l 302.4 M 77.5±0.1 90.0±0.2

Proposed
MW-MAE-B-4x16-4l 86.0 M 77.0±0.1 89.2±0.2
MW-MAE-B-5x5-4l 86.0 M 77.8±0.1 90.6±0.1
MW-MAE-L-4x16-8l 302.4 M 79.1±0.1 92.6±0.2

4https://hearbenchmark.com/hear-leaderboard.html
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H DETAILED ABLATION RESULTS

Tables 9, 10, 11, 12 present expanded results of our ablation experiments from Sec 4.4.
Table 9: Results from Patch size ablation experiments. ViT-B encoder was used for all experiments.
n denotes total number of patches, and h denotes the number of attention heads in each decoder
transformer block.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Patch Size=(8×16), n=125, h=4
MAE 94.9±0.8 70.2±0.3 80.4±0.5 66.0±0.3 97.4±0.1 97.7±0.1 65.9±0.7 88.9±0.5 49.4±0.1 40.6±0.5 85.9±0.3
MW-MAE 95.9±0.5 72.3±0.2 81.2±0.3 68.4±0.3 97.3±0.1 97.8±0.1 67.4±0.8 90.0±0.3 50.8±0.1 41.9±0.5 88.0±0.2

Patch Size=(4×16), n=250, h=8
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

Patch Size=(8×8), n=250, h=8
MAE 96.1±0.6 72.5±0.2 81.3±0.2 66.0±0.3 97.5±0.1 98.1±0.0 68.5±0.7 89.5±0.4 50.2±0.1 42.3±0.5 87.7±0.2
MW-MAE 96.3±0.4 73.0±0.1 82.6±0.3 69.3±0.3 97.5±0.1 98.1±0.1 70.3±0.8 90.5±0.1 51.4±0.1 42.3±0.5 89.4±0.1

Patch Size=(4×8), n=500, h=12
MAE 96.7±0.2 71.3±0.3 79.0±0.4 67.8±0.3 97.7±0.0 98.5±0.0 68.7±0.4 89.0±0.4 49.8±0.2 39.2±0.7 87.2±0.1
MW-MAE 95.6±0.7 74.1±0.2 81.9±0.3 70.1±0.3 97.6±0.1 98.2±0.1 72.0±0.7 91.2±0.3 51.6±0.1 44.0±0.8 90.3±0.2

Patch Size=(5×5), n=640, h=16
MAE 96.0±0.4 70.9±0.2 80.9±0.4 67.6±0.4 97.6±0.1 98.4±0.0 69.3±0.4 88.4±0.3 49.3±0.2 37.7±0.6 86.8±0.2
MW-MAE 96.6±0.4 73.8±0.4 82.0±0.3 70.1±0.4 97.5±0.1 98.3±0.1 72.9±0.5 91.7±0.2 51.3±0.1 44.2±0.6 90.6±0.1

Table 10: Effect of encoder size on performance. Patch size of 4×16 was used for all experiments.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

Encoder=ViT-T
MAE 95.6±0.5 63.2±0.2 70.1±0.5 64.6±0.3 97.1±0.1 97.4±0.1 66.4±0.7 74.3±0.8 41.6±0.1 26.4±0.6 77.6±0.3
MW-MAE 93.3±1.0 64.4±0.2 71.9±0.5 65.5±0.3 97.1±0.1 97.6±0.1 68.1±0.4 77.0±0.6 43.4±0.1 28.6±1.1 79.0±0.3

Encoder=ViT-M
MAE 95.2±0.7 69.5±0.2 77.8±0.3 67.4±0.3 97.4±0.0 98.0±0.1 66.6±0.7 88.0±0.4 48.1±0.1 38.3±0.8 85.3±0.2
MW-MAE 95.9±0.3 71.8±0.3 80.3±0.4 69.7±0.1 97.2±0.1 97.8±0.1 68.1±0.5 88.8±0.6 49.6±0.1 39.8±0.8 87.5±0.2

Encoder=ViT-B
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

Encoder=ViT-L
MAE 95.8±0.6 72.4±0.1 79.7±0.3 66.8±0.4 97.5±0.1 98.2±0.1 69.5±0.6 90.9±0.2 50.7±0.1 43.6±0.4 88.3±0.2
MW-MAE 95.7±0.5 75.5±0.2 82.5±0.5 70.1±0.3 97.4±0.0 98.1±0.1 70.7±0.6 93.2±0.1 53.3±0.1 51.9±0.8 92.3±0.2

Encoder=ViT-H
MAE 96.8±0.2 71.1±0.2 78.3±0.4 67.1±0.2 97.5±0.0 98.5±0.0 67.6±0.6 89.6±0.1 49.5±0.2 40.0±0.7 86.9±0.1
MW-MAE 96.8±0.2 74.8±0.1 81.6±0.4 69.5±0.4 97.4±0.0 98.2±0.1 70.8±0.5 92.4±0.2 52.1±0.1 47.5±0.6 91.1±0.2

Table 11: Effect of decoder depth on downstream performance. ViT-B encoder, patch size of 4×16
were used for each experiment.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

depth=1
MAE 96.4±0.2 69.8±0.3 78.9±0.3 67.4±0.3 97.4±0.1 97.9±0.1 66.4±0.8 88.5±0.2 49.4±0.2 39.0±1.1 86.1±0.2
MW-MAE 96.6±0.5 72.4±0.2 79.0±0.4 68.7±0.3 97.5±0.1 98.0±0.1 68.8±0.5 90.2±0.3 50.6±0.1 39.1±0.8 87.8±0.2

depth=2
MAE 96.8±0.3 71.3±0.3 78.8±0.2 68.8±0.2 97.4±0.1 98.2±0.0 67.2±0.6 90.0±0.2 49.6±0.2 39.4±0.7 87.3±0.1
MW-MAE 96.0±0.7 73.1±0.2 79.4±0.3 69.2±0.3 97.4±0.1 98.2±0.1 69.0±0.6 90.6±0.2 50.7±0.2 40.1±0.6 88.3±0.3

depth=4
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

depth=8
MAE 96.3±0.3 71.7±0.3 81.6±0.4 67.4±0.3 97.4±0.0 98.1±0.1 67.8±0.7 89.9±0.3 50.8±0.2 43.4±0.6 88.2±0.1
MW-MAE 96.2±0.5 73.2±0.2 82.2±0.4 69.7±0.3 97.3±0.0 98.1±0.1 69.4±0.5 91.3±0.2 52.0±0.2 44.7±0.8 89.9±0.2

H.1 ADDITIONAL WINDOW AND ATTENTION HEAD SIZE ABLATIONS

Although the proposed window size strategy in Sec 3.2 is quite straightforward and covers all potential
windows for given number of input patches, we have conducted some additional ablations comparing
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Table 12: Amount of pre-training dataset used v/s downstream performance.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

10% of AS-5k
MAE 93.6±0.7 51.3±0.2 49.5±0.3 48.4±0.4 97.1±0.1 96.4±0.1 61.1±0.7 70.4±0.9 29.7±0.2 17.3±0.5 63.3±0.2
MW-MAE 94.1±0.3 63.9±0.3 67.1±0.3 60.5±0.2 97.3±0.1 97.6±0.0 64.4±0.5 82.0±0.4 40.9±0.2 30.1±1.1 77.2±0.3

25% of AS-5k
MAE 96.2±0.6 57.5±0.3 64.9±0.4 56.9±0.3 97.4±0.1 97.5±0.1 65.0±0.6 79.3±0.4 39.2±0.1 24.2±0.7 73.6±0.2
MW-MAE 96.1±0.5 68.0±0.2 75.5±0.4 67.2±0.3 97.3±0.1 98.0±0.1 65.9±0.4 86.5±0.2 46.4±0.1 35.7±0.6 83.8±0.2

50% of AS-5k
MAE 97.2±0.3 65.5±0.3 74.1±0.3 64.3±0.3 97.5±0.1 98.1±0.1 67.0±0.6 85.3±0.6 45.1±0.1 32.4±0.8 81.9±0.2
MW-MAE 95.9±0.5 70.9±0.2 79.1±0.3 69.1±0.4 97.4±0.1 98.1±0.1 68.4±0.7 88.5±0.2 49.1±0.1 39.5±0.5 87.0±0.2

75% of AS-5k
MAE 95.3±0.5 70.2±0.2 79.0±0.3 67.4±0.2 97.4±0.1 98.1±0.1 67.4±0.6 88.8±0.3 49.2±0.1 39.5±0.7 86.2±0.2
MW-MAE 96.0±0.5 72.6±0.3 80.5±0.4 69.5±0.3 97.4±0.1 97.9±0.1 68.3±0.4 89.9±0.2 50.5±0.1 41.7±0.8 88.4±0.2

100% of AS-5k
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

how performance treads with different window and attention head sizes in the decoder, as shown in
Table 13. These experiments were done on the base configuration from the paper (ViT-B encoder,
np = 250, decoder with 4 layers and 384 hidden dimensions).

Table 13: Ablation experiments on different window sizes and number of attention heads h. Irrespec-
tive of the window size/number of heads used, MW-MAE outperforms MAE in overall performance
by a considerable margin.

Model BO CD ESC-50 LC Mri-S Mri-T NS-5h SC-5h F50K VL s(m)

h=4, Windows for MW-MAE: [5,25,125,250]
MAE 96.1±0.4 71.9±0.1 80.2±0.5 67.6±0.3 97.5±0.1 98.0±0.1 66.7±0.4 89.7±0.2 49.8±0.1 42.8±0.9 87.6±0.2
MW-MAE 95.9±0.5 73.5±0.2 81.5±0.4 69.6±0.2 97.4±0.1 98.0±0.0 69.5±0.5 90.6±0.4 51.2±0.1 44.2±1.0 89.5±0.2

h=6, Windows for MW-MAE:[5,10,25,50,125,250]
MAE 96.4±0.7 70.9±0.2 79.8±0.4 67.1±0.3 97.5±0.1 98.3±0.1 66.3±0.6 88.5±0.2 49.8±0.1 41.5±0.6 86.9±0.2
MW-MAE 96.2±0.5 73.3±0.4 81.3±0.3 68.4±0.2 97.2±0.1 97.9±0.1 68.8±0.6 90.3±0.3 51.1±0.1 44.7±0.9 89.1±0.2

h=8, Windows for MW-MAE: [2,5,10,25,50,125,250,250]
MAE 96.2±0.3 72.2±0.2 80.9±0.4 67.3±0.3 97.4±0.1 98.3±0.1 68.3±0.4 89.4±0.3 50.4±0.1 43.1±0.9 88.1±0.2
MW-MAE 96.0±0.5 73.1±0.3 81.2±0.4 68.8±0.2 97.4±0.1 97.9±0.1 69.3±0.6 90.9±0.2 51.2±0.2 44.2±0.9 89.2±0.2

h=12, Windows for MW-MAE: [2,5,5,10,25,25,50,50,125,125,250,250]
MAE 96.6±0.4 70.7±0.4 79.1±0.5 67.4±0.5 97.5±0.1 98.3±0.1 67.4±0.6 89.3±0.2 49.2±0.1 40.4±1.1 86.8±0.3
MW-MAE 96.3±0.6 73.6±0.3 81.0±0.4 68.9±0.2 97.5±0.0 98.0±0.1 70.3±0.9 91.1±0.2 50.9±0.1 44.2±0.9 89.5±0.3

h=16, Windows for MW-MAE: [2,2,5,5,10,10,25,25,50,50,125,125,250,250,250,250]
MAE 96.5±0.4 70.7±0.1 77.1±0.2 67.8±0.3 97.5±0.1 98.4±0.0 68.2±0.6 88.5±0.3 48.5±0.2 38.7±0.9 86.4±0.2
MW-MAE 95.6±0.6 73.1±0.2 81.7±0.3 69.9±0.2 97.5±0.1 98.0±0.0 69.8±0.7 91.6±0.2 51.2±0.1 44.5±0.8 89.7±0.2
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I LIMITATIONS

The direct limitations of our work are:

1. Pre-training data scale: As opposed to text corpus used in NLP Devlin et al. (2019) as well
as speech representations Baevski et al. (2020); Hsu et al. (2021a), AudioSet is several order
of magnitudes smaller. While MW-MAEs demonstrate good performance characteristics in
low-data scenarios, analysis on larger scales of data would be beneficial. However, given
the scope of this work (general-purpose audio representation learning), we firmly believe
AudioSet is the best fit, as most of the larger audio corpora are speech only.

2. Computational demands: transformer based models are computationally expensive to train,
and despite their favourable generalization characteristics, MW-MAEs are no different.
MW-MAEs and as well as previous works Niizumi et al. (2022); Huang et al. (2022) have
showed the efficacy of MAEs when pretrained with AudioSet, however, training on longer
duration audio data is still a challenge.

3. Runtime Overhead: For our base configuration, the training time throughput of MW-MAE
(4109 samples/ sec) is 9.14% slower than an MAE (4536 samples/sec) on the same hardware.
This is primarily due to kernel call overhead of the MW-MHA module since we have to
make individual calls for each attention head in an MW-MAE, whereas optimized MHA
implementations do so in one kernel call. A better native implementation can alleviate this
difference. However, since the decoder is discarded after pretraining, there is no difference in
throughput when running downstream experiments/inference/finetuning since the encoders
are identical.

20


	Introduction
	Background and Related Works
	Proposed Approach
	Multi-Window Multi-Head Attention
	Masked Autoencoder with Multi-Window Multi-Head Attention

	Experiments
	Datasets and Tasks
	Implementation Details
	Comparison with Existing Works
	Key Model Characteristics

	Exploratory Analysis
	Inspecting encoder attention heads
	Comparing attention feature representations through PWCCA

	Conclusion
	Multi-Window Multi-Head Attention
	More about downstream tasks
	Experimental Details and Hyperparameters
	Auxiliary modality tested: ImageNet
	Auxiliary task tested: Supervised ASR
	Additional evaluation on a frame level task: MAESTRO-5h
	Parameter count, averages and overall scores
	Detailed Ablation Results
	Additional window and attention head size ablations

	Limitations

