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FlashSpeech: Efficient Zero-Shot Speech Synthesis
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ABSTRACT
Recent progress in large-scale zero-shot speech synthesis has been
significantly advanced by language models and diffusion models.
However, the generation process of both methods is slow and com-
putationally intensive. Efficient speech synthesis using a lower
computing budget to achieve quality on par with previous work re-
mains a significant challenge. In this paper, we present FlashSpeech,
a large-scale zero-shot speech synthesis system with approximately
5% of the inference time compared with previous work. FlashSpeech
is built on the latent consistency model and applies a novel adver-
sarial consistency training approach that can train from scratch
without the need for a pre-trained diffusion model as the teacher.
Furthermore, a new prosody generator module enhances the di-
versity of prosody, making the rhythm of the speech sound more
natural. The generation processes of FlashSpeech can be achieved
efficiently with one or two sampling steps while maintaining high
audio quality and high similarity to the audio prompt for zero-shot
speech generation. Our experimental results demonstrate the su-
perior performance of FlashSpeech. Notably, FlashSpeech can be
about 20 times faster than other zero-shot speech synthesis sys-
tems while maintaining comparable performance in terms of voice
quality and similarity. Furthermore, FlashSpeech demonstrates its
versatility by efficiently performing tasks like voice conversion,
speech editing, and diverse speech sampling. Audio samples can be
found in https://flashspeech.github.io/.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • Com-
puting methodologies→ Natural language generation.

KEYWORDS
Zero-Shot Speech Synthesis, Latent ConsistencyModel, Adversarial
Training

1 INTRODUCTION
In recent years, the landscape of speech synthesis has been trans-
formed by the advent of large-scale generative models. Conse-
quently, the latest research efforts have achieved notable advance-
ments in zero-shot speech synthesis systems by significantly in-
creasing the size of both datasets and models. Zero-shot speech
synthesis, such as text-to-speech (TTS), voice conversion (VC)
and Editing, aims to generate speech that incorporates unseen
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Figure 1: The inference time comparisons of different zero-
shot speech synthesis systems using the real-time factor
(RTF).

speaker characteristics from a reference audio segment during in-
ference, without the need for additional training. Current advanced
zero-shot speech synthesis systems typically leverage language
models (LMs) [20, 22, 39, 59, 61, 63, 66] and diffusion-style models
[18, 23, 26, 52] for in-context speech generation on the large-scale
dataset. However, the generation process of these methods needs
a long-time iteration. For example, VALL-E [59] builds on the lan-
guage model to predict 75 audio token sequences for a 1-second
speech, in its first-stage autoregressive (AR) token sequence gen-
eration. When using a non-autoregressive (NAR) latent diffusion
model [47] based framework, NaturalSpeech 2 [52] still requires 150
sampling steps. As a result, although these methods can produce
human-like speech, they require significant computational time
and cost. Some efforts have been made to accelerate the generation
process. Voicebox [26] adopts flow-matching [29] so that fewer
sampling steps (NFE1: 64) can be achieved because of the optimal
transport path. ClaM-TTS [22] proposes a mel-codec with a supe-
rior compression rate and a latent language model that generates
a stack of tokens at once. Although the slow generation speed is-
sue has been somewhat alleviated, the inference speed is still far
from satisfactory for practical applications. Moreover, the substan-
tial computational time of these approaches leads to significant
computational cost overheads, presenting another challenge.

The fundamental limitation of speech generation stems from
the intrinsic mechanisms of language models and diffusion models,
which require considerable time either auto-regressively or through
a large number of denoising steps. Hence, the primary objective of
this work is to accelerate inference speed and reduce computational
costs while preserving generation quality at levels comparable to
1NFE: number of function evaluations.

https://flashspeech.github.io/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the prior research. In this paper, we propose FlashSpeech as the
next step towards efficient zero-shot speech synthesis. To address
the challenge of slow generation speed, we leverage the latent
consistency model (LCM) [32], a recent advancement in generative
models. Building upon the previous non-autoregressive TTS system
[52], we adopt the encoder of a neural audio codec to convert
speech waveforms into latent vectors as the training target for our
LCM. To train this model, we propose a novel technique called
adversarial consistency training, which utilizes the capabilities of
pre-trained speech languagemodels [1, 6, 11] as discriminators. This
facilitates the transfer of knowledge from large pre-trained speech
language models to speech generation tasks, efficiently integrating
adversarial and consistency training to improve performance. The
LCM is conditioned on prior vectors obtained from a phoneme
encoder, a prompt encoder, and a prosody generator. Furthermore,
we demonstrate that our proposed prosody generator leads to more
diverse expressions and prosody while preserving stability.

Our contributions can be summarized as follows:
• We propose FlashSpeech, an efficient zero-shot speech syn-
thesis system that generates voice with high audio quality
and speaker similarity in zero-shot scenarios.
• We introduce adversarial consistency training, a novel com-
bination of consistency and adversarial training leveraging
pre-trained speech language models, for training the latent
consistency model from scratch, achieving speech genera-
tion in one or two steps.
• We propose a prosody generator module that enhances the
diversity of prosody while maintaining stability.
• FlashSpeech significantly outperforms strong baselines in au-
dio quality and matches them in speaker similarity. Remark-
ably, it achieves this at a speed approximately 20 times faster
than comparable systems, demonstrating unprecedented ef-
ficiency.

2 RELATEDWORK
2.1 Large Scale Speech Synthesis
Motivated by the success of the large language model, the speech
research community has recently shown increasing interest in scal-
ing the sizes of model and training data to bolster generalization
capabilities, producing natural speech with diverse speaker identi-
ties and prosody under zero-shot settings. The pioneering work is
VALL-E [59], which adopts the Encodec [8] to discretize the audio
waveform into tokens. Therefore, a language model can be trained
via in-context learning that can generate the target utterance where
the style is consistent with prompt utterance. However, generating
audio in such an autoregressive manner [39, 61]can lead to unstable
prosody, word skipping, and repeating issues [44, 52, 57]. To ensure
the robustness of the system, non-autoregressive methods such as
NaturalSpeech2 [52] and Voicebox [26] utilize diffusion-style model
(VP-diffusion [55] or flow-matching [29]) to learn the distribution of
a continuous intermediate vector such as mel-spectrogram or latent
vector of codec. Both LM-based methods [67] and diffusion-based
methods show superior performance in speech generation tasks.
However, their generation is slow due to the iterative computation.
Considering that many speech generation scenarios require real-
time inference and low computational costs, we employ the latent

consistency model for large-scale speech generation that inference
with one or two steps while maintaining high audio quality.

2.2 Acceleration of Speech Synthesis
Since early neural speech generation models [57] use autoregres-
sive models such as Tacotron [60] and TransformerTTS [27], caus-
ing slow inference speed, with O(𝑁 ) computation, where 𝑁 is
the sequence length. To address the slow inference speed, Fast-
Speech [44, 45] proposes to generate a mel-spectrogram in a non-
autoregressivemanner. However, thesemodels [46] result in blurred
and over-smoothed mel-spectrograms due to the regression loss
they used and the capability of modeling methods. To further en-
hance the speech quality, diffusion models are utilized [13, 40, 41]
which increase the computation to O(𝑇 ), where T is the diffusion
steps. Therefore, distillation techniques [33] for diffusion-based
methods such as CoMoSpeech [64], CoMoSVC [31] and Reflow-
TTS [10] emerge to reduce the sampling steps back to O(1), but
require additional pre-trained diffusion as the teacher model. Un-
like previous distillation techniques, which require extra training
for the diffusion model as a teacher and are limited by its perfor-
mance, our proposed adversarial consistency training technique
can directly train from scratch, significantly reducing training costs.
In addition, previous acceleration methods only validate speaker-
limited recording-studio datasets with limited data diversity. To the
best of our knowledge, FlashSpeech is the first work that reduces
the computation of a large-scale speech generation system back to
O(1).

2.3 Consistency Model
The consistency model is proposed in [53, 54] to generate high-
quality samples by directly mapping noise to data. Furthermore,
many variants [21, 25, 30, 51] are proposed to further increase the
generation quality of images. The latent consistency model is pro-
posed by [32] which can directly predict the solution of PF-ODE in
latent space. However, the original LCM employs consistency distil-
lation on the pre-trained latent diffusion model (LDM) which lever-
ages large-scale off-the-shelf image diffusion models [47]. Since
there are no pre-trained large-scale TTS models in the speech com-
munity, and inspired by the techniques [21, 25, 30, 51, 53], we pro-
pose the novel adversarial consistency training method which can
directly train the large-scale latent consistency model from scratch
utilizing the large pre-trained speech language model [1, 6, 11] such
as WavLM for speech generation.

3 FLASHSPEECH
3.1 Overview
Our work is dedicated to advancing the speech synthesis efficiency,
achieving O(1) computation cost while maintaining comparable
performance to prior studies that require O(𝑇 ) or O(𝑁 ) compu-
tations. The framework of the proposed method, FlashSpeech, is
illustrated in Fig. 2. FlashSpeech integrates a neural codec, an en-
coder for phonemes and prompts, a prosody generator, and an
LCM, which are utilized during both the training and inference
stages. Exclusively during training, a conditional discriminator is
employed. FlashSpeech adopts the in-context learning paradigm
[59], initially segmenting the latent vector z, extracted from the
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Figure 2: Overall architecture of FlashSpeech. Our FlashSpeech consists of a codec encoder/decoder and a latent consistency
model conditioned on feature from a phoneme and z𝑝𝑟𝑜𝑚𝑝𝑡 encoder and a prosody generator. A discriminator is used during
training.

codec, into z𝑡𝑎𝑟𝑔𝑒𝑡 and z𝑝𝑟𝑜𝑚𝑝𝑡 . Subsequently, the phoneme and
z𝑝𝑟𝑜𝑚𝑝𝑡 are processed through the encoder to produce the hidden
feature. A prosody generator then predicts pitch and duration based
on the hidden feature. The pitch and duration embeddings are com-
bined with the hidden feature and inputted into the LCM as the
conditional feature. The LCM model is trained from scratch using
adversarial consistency training. After training, FlashSpeech can
achieve efficient generation within one or two sampling steps.

3.2 Latent Consistency Model
The consistency model [54] is a new family of generative models
that enables one-step or few-step generation. Let us denote the data
distribution by 𝑝data (x). The core idea of the consistency model is
to learn the function that maps any points on a trajectory of the
PF-ODE to that trajectory’s origin, which can be formulated as:

𝑓 (x𝜎 , 𝜎) = x𝜎𝑚𝑖𝑛 (1)

where 𝑓 (·, ·) is the consistency function and x𝜎 represents the data
x perturbed by adding zero-mean Gaussian noise with standard
deviation 𝜎 . 𝜎𝑚𝑖𝑛 is a fixed small positive number. Then x𝜎𝑚𝑖𝑛 can
then be viewed as an approximate sample from the data distribution
𝑝data (x). To satisfy property in equation (1), following [54], we
parameterize the consistency model as

𝑓𝜃 (x𝜎 , 𝜎) = 𝑐skip (𝜎)x + 𝑐out (𝜎)𝐹𝜃 (x𝜎 , 𝜎) (2)

where 𝑓𝜃 is to estimate consistency function 𝑓 by learning from
data, 𝐹𝜃 is a deep neural network with parameter 𝜃 , 𝑐skip (𝜎) and
𝑐out (𝜎) are are differentiable functions with 𝑐skip (𝜎𝑚𝑖𝑛) = 1 and
𝑐out (𝜎𝑚𝑖𝑛) = 0 to ensure boundary condition. A valid consistency
model should satisfy the self-consistency property [54]

𝑓𝜃 (x𝜎 , 𝜎) = 𝑓𝜃 (x𝜎 ′ , 𝜎′), ∀𝜎, 𝜎′ ∈ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ] . (3)

where 𝜎𝑚𝑎𝑥 = 80 and 𝜎𝑚𝑖𝑛 = 0.002 following [19, 53, 54]. Then the
model can generate samples in one step by evaluating

x𝜎𝑚𝑖𝑛 = 𝑓𝜃 (x𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑎𝑥 ) (4)

from distribution x𝜎𝑚𝑎𝑥 ∼ N(0, 𝜎2𝑚𝑎𝑥 I).
As we apply a consistency model on the latent space of audio, we

use the latent features 𝑧 which are extracted prior to the residual
quantization layer of the codec,

z = 𝐶𝑜𝑑𝑒𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (y) (5)

where y is the speech waveform. Furthermore, we add the feature
from the prosody generator and encoder as the conditional feature
𝑐 , our objective has changed to achieve

𝑓𝜃 (z𝜎 , 𝜎, 𝑐) = 𝑓𝜃 (z𝜎 ′ , 𝜎′, 𝑐) ∀𝜎, 𝜎′ ∈ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ] . (6)

During inference, the synthesized waveform 𝑦 is transformed from
𝑧 via the codec decoder. The predicted 𝑧 is obtained by one sampling
step

ẑ = 𝑓𝜃 (𝜖 ∗ 𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑎𝑥 ) (7)

or two sampling steps

ẑinter = 𝑓𝜃 (𝜖 ∗ 𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑎𝑥 ) (8)
ẑ = 𝑓𝜃 (ẑinter + 𝜖 ∗ 𝜎inter, 𝜎inter) (9)

where ẑinter means the intermediate step, 𝜎inter is set to 2 empiri-
cally. 𝜖 is sampled from a standard Gaussian distribution.

3.3 Adversarial Consistency Training
A major drawback of the LCM[32] is that it needs to pre-train a
diffusion-based teacher model in the first stage, and then perform
distillation to produce the final model. This would make the train-
ing process complicated, and the performance would be limited as
a result of the distillation. To eliminate the reliance on the teacher
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Figure 3: An illustration of adversarial consistency training.

model training, in this paper, we propose a novel adversarial con-
sistency training method to train LCM from scratch. Our training
procedure is outlined in Fig. 3, which has three parts:

3.3.1 Consistency Training. To achieve the property in equation
(3), we adopt following consistency loss

L𝑁𝑐𝑡 (𝜃, 𝜃−) = E[𝜆(𝜎𝑖 )𝑑 (𝑓𝜃 (z𝑖+1, 𝜎𝑖+1, 𝑐), 𝑓𝜃− (z𝑖 , 𝜎𝑖 , 𝑐))] . (10)

where 𝜎𝑖 represents the noise level at discrete time step 𝑖 , 𝑑 (·, ·)
is the distance function, 𝑓𝜃 (z𝑖+1, 𝜎𝑖+1, 𝑐) and 𝑓𝜃− (z𝑖 , 𝜎𝑖 , 𝑐) are the
student with the higher noise level and the teacher with the lower
noise level, respectively. The discrete time steps denoted as 𝜎𝑚𝑖𝑛 =

𝜎0 < 𝜎1 < · · · < 𝜎𝑁 = 𝜎𝑚𝑎𝑥 are divided from the time inter-
val [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ], where the discretization curriculum 𝑁 increases
correspondingly as the number of training steps grows

𝑁 (𝑘) = min(𝑠02
⌊
𝑘
𝐾 ′

⌋
, 𝑠1) + 1 (11)

where 𝐾 ′ =
⌊

𝐾
log2 ⌊𝑠1/𝑠0 ⌋+1

⌋
, 𝑘 is the current training step and 𝐾 is

the total training steps. 𝑠1 and 𝑠0 are hyperparameters to control the
size of 𝑁 (𝑘). The distance function 𝑑 (·, ·) uses the Pseudo-Huber
metric [3]

𝑑 (𝑥,𝑦) =
√︃
∥𝑥 − 𝑦∥2 + 𝑎2 − 𝑎, (12)

where 𝑎 is an adjustable constant, making the training more robust
to outliers as it imposes a smaller penalty for large errors than ℓ2
loss. The parameters 𝜃− of teacher model are

𝜃− ←− 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑 (𝜃 ), (13)

which are identical to the student parameters 𝜃 . This approach
[53] has been demonstrated to improve sample quality of previous
strategies that employ varying decay rates [54]. The weighting
function refers to

𝜆(𝜎𝑖 ) =
1

𝜎𝑖+1 − 𝜎𝑖
(14)

which emphasizes the loss of smaller noise levels. LCM through
consistency training can generate speech with acceptable quality in
a few steps, but it still falls short of previous methods. Therefore, to
further enhance the quality of the generated samples, we integrate
adversarial training.

Prosody 
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Figure 4: An illustration of prosody generator.

3.3.2 Adversarial Training. For the adversarial objective, the gener-
ated samples ẑ← 𝑓𝜃 (z𝜎 , 𝜎, 𝑐) and real samples z are passed to the
discriminator 𝐷𝜂 which aims to distinguish between them, where
𝜂 refers to the trainable parameters. Thus, we employ adversarial
training loss

Ladv (𝜃, 𝜂) = Ez [log𝐷𝜂 (z)] + E𝜎E𝑧𝜎 [log(1 − 𝐷𝜂 (𝑓𝜃 (z𝜎 , 𝜎, 𝑐)))] .
(15)

In this way, the error signal from the discriminator guides 𝑓𝜃 to
produce more realistic outputs. For details, we use a frozen pre-
trained speech language model 𝑆𝐿𝑀 and a trainable lightweight
discriminator head 𝐷ℎ𝑒𝑎𝑑 to build the discriminator. Since the cur-
rent 𝑆𝐿𝑀 is trained on the speech waveform, we covert both z and
ẑ to ground truth waveform and predicted waveform using the
codec decoder. To further increase the similarity between prompt
audio and generated audio, our discriminator is conditioned on
the prompt audio feature. This prompt feature 𝐹prompt is extracted
using 𝑆𝐿𝑀 on prompt audio and applies average pooling on the
time axis. Therefore,

𝐷𝜂 = 𝐷head (𝐹prompt ⊙ 𝐹gt, 𝐹prompt ⊙ 𝐹pred) (16)

where 𝐹gt and 𝐹pred refer to feature extracted through 𝑆𝐿𝑀 for
ground truth waveform and predicted waveform. The discriminator
head consists of several 1D convolution layers. The input feature
of the discriminator is conditioned on 𝐹prompt via projection [36].

3.3.3 Combined Together. Since there is a large gap on the loss
scale between consistency loss and adversarial loss, it can lead
to instability and failure in training. Therefore, we follow [9] to
compute the adaptive weight with

𝜆𝑎𝑑𝑣 =
∥∇𝜃𝐿L𝑁ct (𝜃, 𝜃−)∥
∥∇𝜃𝐿Ladv (𝜃, 𝜂)∥

(17)

where 𝜃𝐿 is the last layer of the neural network in LCM. The final
loss of training LCM is defined asL𝑁ct (𝜃, 𝜃−) +𝜆𝑎𝑑𝑣Ladv (𝜃, 𝜂) . This
adaptive weighting significantly stabilizes the training by balancing
the gradient scale of each term.

3.4 Prosody Generator
3.4.1 Analysis of the prediction of prosody. Previous regression
methods for prosody prediction [44, 52], due to their deterministic
mappings and assumptions of unimodal distribution, often fail to
capture the inherent diversity and expressiveness of human speech
prosody. This leads to predictions that lack variation and can ap-
pear over-smoothed. On the other hand, diffusion methods [26, 28]
for prosody prediction offer a promising alternative by providing
greater prosody diversity. However, they come with challenges
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regarding stability, and the potential for unnatural prosody. Addi-
tionally, the iterative inference process in DMs requires a significant
number of sampling steps that may also hinder real-time applica-
tion. Meanwhile, LM-based methods [15, 59] also need a long time
for inference. To alleviate these issues, our prosody generator con-
sists of a prosody regression module and a prosody refinement
module to enhance the diversity of prosody regression results with
efficient one-step consistency model sampling.

3.4.2 Prosody refinement via consistency model. As shown in 4,
our prosody generator consists of two parts which are prosody
regression and prosody refinement. We first train the prosody re-
gression module to get a deterministic output. Next, we freeze the
parameters of the prosody regression module and use the residual
of ground truth prosody and deterministic predicted prosody as
the training target for prosody refinement. We adopt a consistency
model as a prosody refinement module. The conditional feature
of the consistency model is the feature from prosody regression
before the final projection layer. Thus, the residual from a stochastic
sampler refines the output of a deterministic prosody regression
and produces a diverse set of plausible prosody under the same
transcription and audio prompt. One option for the final prosody
output 𝑝final can be represented as:

𝑝final = 𝑝res + 𝑝init, (18)

where 𝑝final denotes the final prosody output, 𝑝res represents the
residual output from the prosody refinement module, capturing the
variations between the ground truth prosody and the deterministic
prediction, 𝑝init is the initial deterministic prosody prediction from
the prosody regression module. However, this formulation may
negatively affect prosody stability, a similar observation is found in
[26, 58]. More specifically, higher diversity may cause less stability
and sometimes produce unnatural prosody. To address this, we
introduce a control factor 𝛼 that finely tunes the balance between
stability and diversity in the prosodic output:

𝑝final = 𝛼𝑝res + 𝑝init (19)

where 𝛼 is a scalar value ranging between 0 and 1. This adjustment
allows for controlled incorporation of variability into the prosody,
mitigating issues related to stability while still benefiting from the
diversity offered by the prosody refinement module.

3.5 Applications
This section elaborates on the practical applications of FlashSpeech.
We delve into its deployment across various tasks such as zero-shot
TTS, speech editing, voice conversion, and diverse speech sampling.
All the sample audios of applications are available on the demo
page.

3.5.1 Zero-Shot TTS. Given a target text and reference audio, we
first convert the text to phoneme using g2p (grapheme-to-phoneme
conversion). Thenwe use the codec encoder to convert the reference
audio into z𝑝𝑟𝑜𝑚𝑝𝑡 . Speech can be synthesized efficiently through
FlashSpeech with the phoneme input and z𝑝𝑟𝑜𝑚𝑝𝑡 , achieving high-
quality text-to-speech results without requiring pre-training on the
specific voice.

3.5.2 Voice Conversion. Voice conversion aims to convert the source
audio into the target audio using the speaker’s voice of the reference
audio. Following [43, 52], we first apply the reverse of ODE to dif-
fuse the source audio into a starting point that still maintains some
information in the source audio. After that, we run the sampling
process from this starting point with the reference audio as z𝑝𝑟𝑜𝑚𝑝𝑡
and condition 𝑐 . The condition 𝑐 uses the phoneme and duration
from the source audio and the pitch is predicted by the prosody
generator. This method allows for zero-shot voice conversion while
preserving the linguistic content of the source audio, and achieving
the same timbre as the reference audio.

3.5.3 Speech Editing. Given the speech, the original transcription,
and the new transcription, we first use MFA (Montreal Forced
Aligner) to align the speech and the original transcription to get
the duration of each word. Then we remove the part that needs to
be edited to construct the reference audio. Next, we use the new
transcription and reference to synthesize new speech. Since this
task is consistent with the in-context learning, we can concatenate
the remaining part of the raw speech and the synthesized part as
the final speech, thus enabling precise and seamless speech editing.

3.5.4 Diverse Speech Sampling. FlashSpeech leverages its inherent
stochasticity to generate a variety of speech outputs under the
same conditions. By employing stochastic sampling in its prosody
generation and LCM, FlashSpeech can produce diverse variations
in pitch, duration, and overall audio characteristics from the same
phoneme input and audio prompt. This feature is particularly useful
for generating a wide range of speech expressions and styles from
a single input, enhancing applications like voice acting, synthetic
voice variation for virtual assistants, and more personalized speech
synthesis. In addition, the synthetic data via speech sampling can
also benefit other tasks such as ASR [48].

4 EXPERIMENT
In the experimental section, we begin by introducing the datasets
and the configurations for training in our experiments. Following
this, we show the evaluation metrics and demonstrate the compar-
ative results against various zero-shot TTS models. Subsequently,
ablation studies are conducted to test the effectiveness of several
design choices. Finally, we also validate the effectiveness of other
tasks such as voice conversion. We show our speech editing and
diverse speech sampling results on our demo page.

4.1 Experimental Settings
4.1.1 Data and Preprocessing. We use the English subset of Mul-
tilingual LibriSpeech (MLS) [42], including 44.5k hours of tran-
scribed audiobook data and it contains 5490 distinct speakers. The
audio data is resampled at a frequency of 16kHz. The input text is
transformed into a sequence of phonemes through grapheme-to-
phoneme conversion [56] and then we use our internal alignment
tool aligned with speech to obtain the phoneme-level duration. We
adopt a hop size of 200 for all frame-level features. The pitch se-
quence is extracted using PyWorld2. we adopt Encodec [8] as our
audio codec. We use a modified version 3 and train it on MLS. We

2https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
3https://github.com/yangdongchao/UniAudio/tree/main/codec
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Table 1: The evaluation results for FlashSpeech and the baseline methods on LibriSpeech testclean. ★means the evaluation is
conducted with 1 NVIDIA V100 GPU. ♦means the device is not available. Abbreviation: MLS (Multilingual LibriSpeech [42]),G
(GigaSpeech [4]), L(LibriTTS-R [24]), V(VCTK [62]), LJ(LJSpeech [12]), W(WenetSpeech [65]).

Model Training Data RTF ↓ Sim-O ↑ Sim-R ↑ WER ↓ CMOS ↑ SMOS (↑ )
GroundTruth - - 0.68 - 1.9 0.11 4.39
VALL-E reproduce [59] Librilight 0.62 ♦ 0.47 0.51 6.1 -0.48 4.11
NaturalSpeech 2 [52] MLS 0.37 (NFE:150) ★ 0.53 0.60 1.9 -0.31 4.20
Voicebox reproduce [26] Librilight 0.66 (NFE:64) ♦ 0.48 0.50 2.1 -0.58 3.95
Mega-TTS [17] G+W 0.39 ♦ - - 3.0 - -
CLaM-TTS [22] MLS+G+L+V+LJ 0.42 ♦ 0.50 0.54 5.1 - -
FlashSpeech (ours) MLS 0.02 (NFE: 2) ★ 0.52 0.57 2.7 0.00 4.29
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Figure 5: User preference study. We compare the audio quality and speaker similarity of FlashSpeech against baselines with
their official demo.

use the dense features extracted before the residual quantization
layer as our latent vector 𝑧.

4.1.2 Training Details . Our training consists of two stages, in
the first stage we train LCM and the prosody regression part. We
use 8 H800 80GB GPUs with a batch size of 20k frames of latent
vectors per GPU for 650k steps. We use the AdamW optimizer
with a learning rate of 3e-4, warm up the learning rate for the
first 30k updates and then linear decay it. We deactivate adver-
sarial training with 𝜆𝑎𝑑𝑣 = 0 before 600K training iterations. For
hyper-parameters, we set 𝑎 in Equation (12) to 0.03. In equation
(10), 𝜎𝑖 =

(
𝜎
1/𝜌
min +

𝑖−1
𝑁 (𝑘 )−1

(
𝜎
1/𝜌
max − 𝜎

1/𝜌
min

))𝜌
, where 𝑖 ∈ [1, 𝑁 (𝑘)],

𝜌 = 7, 𝜎min = 0.002, 𝜎max = 80. For N(k) in Equation (11), we set
𝑠0 = 10, 𝑠1 = 1280, 𝐾 = 600𝑘 . After 600k steps, we activate adversar-
ial loss, and N(k) can be considered as fixed to 1280. We crop the
waveform length fed into the discriminator into minimum wave-
form length in a minibatch. In addition, the weight of the feature
extractor WavLM and the codec decoder are frozen.

In the second stage, we train 150k steps for the prosody refine-
ment module with consistency training in Equation (10). Different
from the above setting, we empirically set 𝑠1 = 160, 𝐾 = 150𝑘 .

During training, only the weight of the prosody refinement part is
updated.

4.1.3 Model Details . The model structures of the prompt encoder
and phoneme encoder are follow[52]. The neural function part
in LCM is almost the same as the [52]. We rescale the sinusoidal
position embedding in the neural function part by a factor of 1000.
As for the prosody generator, we adopt 30 non-casual wavenet
[37] layers for the neural function part in the prosody refinement
module and the same configurations for prosody regression parts
in [52]. And we set 𝛼 = 0.2 for the prosody refinement module
empirically. For the discriminator’s head, we stack 5 convolutional
layers with weight normalization [50] for binary classification.

4.2 Evaluation Metrics
We use both objective and subjective evaluation metrics, including

• RTF: Real-time-factor (RTF) measures the time taken for the
system to generate one second of speech. This metric is cru-
cial for evaluating the efficiency of our system, particularly
for applications requiring real-time processing. We measure
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the time of our system end-to-end on an NVIDIA V100 GPU
following [52].
• Sim-O and Sim-R: These metrics assess the speaker sim-
ilarity. Sim-R measures the objective similarity between
the synthesized speech and the reconstruction reference
speech through the audio codec, using features embedding
extracted from the pre-trained speaker verification model
[22, 59]4. Sim-O is calculated with the original reference
speech. Higher scores in Sim-O and Sim-R indicate a higher
speaker similarity.
• WER (Word Error Rate): To evaluate the accuracy and
clarity of synthesized speech from the TTS system, we em-
ploy the Automatic Speech Recognition (ASR) model [59] 5
to transcribe generated audio. The discrepancies between
these transcriptions and original texts are quantified using
the Word Error Rate (WER), a crucial metric indicating intel-
ligibility and robustness.
• CMOS, SMOS, UTMOS: we rank the comparative mean op-
tion score (CMOS) and similarity mean option score (SMOS)
using mturk. The prompt for CMOS refers to ’Please focus
on the audio quality and naturalness and ignore other fac-
tors.’. The prompt for SMOS refers to ’Please focus on the
similarity of the speaker to the reference, and ignore the
differences of content, grammar or audio quality.’ Each audio
has been listened to by at least 10 listeners. UTMOS [49]
is a Speech MOS predictor6 to measure the naturalness of
speech. We use it in ablation studies which reduced the cost
for evaluation.
• Prosody JS Divergence: To evaluate the diversity and ac-
curacy of the prosody prediction in our TTS system, we in-
clude the Prosody JS Divergence metric. This metric employs
the Jensen-Shannon (JS) divergence [35] to quantify the di-
vergence between the predicted and ground truth prosody
feature distributions. Prosody features, including pitch, and
duration, are quantized and their distributions in both syn-
thesized and natural speech are compared. Lower JS diver-
gence values indicate closer similarity between the predicted
prosody features and those of the ground truth, suggesting
a higher diversity of the synthesized speech.

4.3 Experimental Results on Zero-shot TTS
Following [59], We employ LibriSpeech [38] test-clean for zero-shot
TTS evaluation. We adopt the cross-sentence setting in [59] that we
randomly select 3-second clips as prompts from the same speaker’s
speech. The results are summarized in table 1 and figure 5.

4.3.1 Evaluation Baselines.

• VALL-E [59]: VALL-E predicts codec tokens using both AR
and NAR models. RTF7 is obtained from [22, 26]. We use our
reproduced results for MOS, Sim, and WER. Additionally, we
do a preference test with their official demo.

4https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
5https://huggingface.co/facebook/hubert-large-ls960-ft
6https://github.com/tarepan/SpeechMOS
7In CLaM-TTS and Voicebox, they report the inference time for generating 10 seconds
of speech. Therefore, we divide by 10 to obtain the time for generating 1 second of
speech (RTF).

• Voicebox [26]: Voicebox uses flow-matching to predictmaksed
mel-spectrogram. RTF is from the original paper. We use our
reproduced results for MOS, Sim, and WER. We also imple-
ment a preference test with their official demo.
• NaturalSpeech2 [52]: NaturalSpeech2 uses a latent diffusion
model to predict latent features of codec. The RTF is from
the original paper. the Sim, WER and samples for MOS are
obtained through communication with the authors. We also
do a preference test with their official demo.
• Mega-TTS [17]8: Mega-TTS uses both language model and
GAN to predict mel-spectrogram. We obtain RTF from mo-
bilespeech [14] and WER from the original paper. We do a
preference test with their official demo.
• ClaM-TTS [22]: ClaM-TTS uses the AR model to predict
mel codec tokens. We obtain the objective evaluation results
from the original paper and do a preference test with their
official demo.

4.3.2 Generation Quality. FlashSpeech stands out significantly in
terms of speaker quality, surpassing other baselines in both CMOS
and audio quality preference tests. Notably, our method closely
approaches ground truth recordings, underscoring its effectiveness.
These results affirm the superior quality of FlashSpeech in speech
synthesis. our method.

4.3.3 Generation Similarity. Our evaluation of speaker similarity
utilizes Sim, SMOS, and speaker similarity preference tests, where
our methods achieve 1st, 2nd, and 3rd place rankings, respectively.
These findings validate our methods’ ability to achieve compara-
ble speaker similarity to other methods. Despite our training data
(MLS) containing approximately 5k speakers, fewer than most other
methods (e.g., Librilight with about 7k speakers or self-collected
data), we believe that increasing the number of speakers in our
methods can further enhance speaker similarity.

4.3.4 Robustness. Our methods achieve aWER of 2.7, placing them
in the first echelon. This is due to the non-autoregressive nature of
our methods, which ensures robustness.

4.3.5 Generation Speed. FlashSpeech achieves a remarkable ap-
proximately 20x faster inference speed compared to previous work.
Considering its excellent audio quality, robustness, and compara-
ble speaker similarity, our method stands out as an efficient and
effective solution in the field of large-scale speech synthesis.

4.4 Ablation Studies
4.4.1 Ablation studies of LCM. We explored the impact of different
pre-trained models in adversarial training on UTMOS and Sim-O.
As shown in the table 2, the baseline, which employs consistency
training alone, achieved a UTMOS of 3.62 and a Sim-O of 0.45.
Incorporating adversarial training using wav2vec2-large9, hubert-
large10, and wavlm-large11 as discriminators significantly improved
both UTMOS and Sim-O scores. Notably, the application of ad-
versarial training with Wavlm-large achieved the highest scores

8Since we do not find any audio samples for Mega-TTS2 [16] under the 3-second
cross-sentence setting, we are not able to compare with them.
9https://huggingface.co/facebook/wav2vec2-large
10https://huggingface.co/facebook/hubert-large-ll60k
11https://huggingface.co/microsoft/wavlm-large
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Table 2: The ablation study of discriminator design.

Method UTMOS ↑ Sim-O ↑
Consistency training baseline 3.62 0.45
+ Adversarial training (Wav2Vec2-large) 3.92 0.50
+ Adversarial training (Hubert-large) 3.83 0.47
+ Adversarial training (Wavlm-large) 4.00 0.52

- prompt projection 3.97 0.51

Table 3: The ablation study of sampling steps for LCM

NFE UTMOS ↑ Sim-O ↑
1 3.99 0.51
2 4.00 0.52
4 3.91 0.51

(UTMOS: 4.00, Sim-O: 0.52), underscoring the efficacy of this pre-
trained model in enhancing the quality and speaker similarity of
synthesized speech. Additionally, without using the audio prompt’s
feature as a condition the discriminator shows a slight decrease
in performance (UTMOS: 3.97, Sim-O: 0.51), highlighting the im-
portance of conditional features in guiding the adversarial training
process.

As shown in table 3, the effect of sampling steps (NFE) on UTMOS
and Sim-O revealed that increasing NFE from 1 to 2 marginally
improves UTMOS (3.99 to 4.00) and Sim-O (0.51 to 0.52). However,
further increasing to 4 sampling steps slightly reduced UTMOS
to 3.91 due to the accumulation of score estimation errors [5, 34].
Therefore, we use 2 steps as the default setting for LCM.

4.4.2 Ablation studies of Prosody Generator. In this part, we inves-
tigated the effects of a control factor, denoted as 𝛼 , on the prosodic
features of pitch and duration in speech synthesis, by setting an-
other influencing factor to zero. Our study specifically conducted
an ablation analysis to assess how 𝛼 influences these features, em-
phasizing its critical role in balancing stability and diversity within
our framework’s prosodic outputs.

Table 4 elucidates the effects of varying𝛼 on the pitch component.
With 𝛼 set to 0, indicating no inclusion of the residual output from
prosody refinement, we observed a Pitch JSD of 0.072 and a WER of
2.8. A slight modification to 𝛼 = 0.2 resulted in a reduced Pitch JSD
of 0.067, maintaining the same WER. Notably, setting 𝛼 to 1, fully
incorporating the prosody refinement’s residual output, further
decreased the Pitch JSD to 0.063, albeit at the cost of increased WER
to 3.7, suggesting a trade-off between prosody diversity and speech
intelligibility.

Similar trends in table 5 are observed in the duration component
analysis. With 𝛼 = 0, the Duration JSD was 0.0175 with a WER
of 2.8. Adjusting 𝛼 to 0.2 slightly improved the Duration JSD to
0.0168, without affectingWER. However, fully embracing the refine-
ment module’s output by setting 𝛼 = 1 yielded the most significant
improvement in Duration JSD to 0.0153, which, similar to pitch
analysis, came with an increased WER of 3.9. The results under-
line the delicate balance required in tuning 𝛼 to optimize between

Table 4: The ablation study of control factor for pitch

𝛼 Pitch JSD ↓ WER↓
0 0.072 2.8
0.2 0.067 2.8
1 0.063 3.7

Table 5: The ablation study of control factor for duration

𝛼 Duration JSD ↓ WER ↓
0 0.0175 2.8
0.2 0.0168 2.8
1 0.0153 3.9

Table 6: Voice Conversion

Method CMOS ↑ SMOS ↑ Sim-O ↑
YourTTS [2] -0.16 3.26 0.23
DDDM-VC [7] -0.28 3.43 0.28
Ours 0.00 3.50 0.35

diversity and stability of prosody without compromising speech
intelligibility.

4.5 Evaluation Results for Voice Conversion
In this section, we present the evaluation results of our voice con-
version system, FlashSpeech, in comparison with state-of-the-art
methods, including YourTTS 12 [2] and DDDM-VC 13 [7]. We con-
duct the experiments with their official checkpoints in our internal
test set.

Our system outperforms both YourTTS and DDDM-VC in terms
of CMOS, SMOS and Sim-O, demonstrating its capability to produce
converted voices with high quality and similarity to the target
speaker. These results confirm the effectiveness of our FlashSpeech
approach in voice conversion tasks.

4.6 Conclusions and Future Work
In this paper, we presented FlashSpeech, a novel speech generation
system that significantly reduces computational costs while main-
taining high-quality speech output. Utilizing a novel adversarial
consistency training method and an LCM, FlashSpeech outperforms
existing zero-shot TTS systems in efficiency, achieving speeds about
20 times faster without compromising on voice quality, similarity,
and robustness. In the future, we aim to further refine the model to
improve the inference speed and reduce computational demands.
In addition, we will expand the data scale and enhance the system’s
ability to convey a broader range of emotions and more nuanced
prosody. For future applications, FlashSpeech can be integrated for
real-time interactions in applications such as virtual assistants and
educational tools.

12https://github.com/coqui-ai/TTS
13https://github.com/hayeong0/DDDM-VC
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