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A Network Architectures

The detailed architecture for VanillaNet with 7-13 layers can be found in Table 1, where each
convolutional layer is followed with an activation function. For the VanillaNet-13-1.5×, the number
of channels are multiplied with 1.5. For the VanillaNet-13-1.5×†, we further use adaptive pooling for
stage 2,3 and 4 with feature shape 40×40, 20×20 and 10×10, respectively.

Input VanillaNet-5 VanillaNet-6 VanillaNet-7/8/9/10/11/12/13

stem 224×224 4×4, 512, stride 4

stage1 56×56 [1×1, 1024]×1 [1×1, 1024]×1 [1×1, 1024]×2
MaxPool 2×2 MaxPool 2×2 MaxPool 2×2

stage2 28×28 [1×1, 2048]×1 [1×1, 2048]×1 [1×1, 2048]×1
MaxPool 2×2 MaxPool 2×2 MaxPool 2×2

stage3 14×14 [1×1, 4096]×1 [1×1, 4096]×1 [1×1, 4096]×1/2/3/4/5/6/7
MaxPool 2×2 MaxPool 2×2 MaxPool 2×2

stage4 7×7 - [1×1, 4096]×1 [1×1, 4096]×1

classifier 7× 7 AvgPool 7×7
1×1, 1000

Table 1: Detailed architecture specifications.

B Training Details

For classification on ImageNet, we train the VanillaNets for 300 epochs utilizing the cosine learning
rate decay [5]. The λ is linearly decayed from 1 to 0 on epoch 0 and 100, respectively. The training
details can be fould in Table 2. For the VanillaNet-11, since the training difficulty is relative large, we
use the pre-trained weight from the VanillaNet-10 as its initialization. The same technique is adopt
for VanillaNet-12/13.

For detection and segmentation on COCO, we train all the networks using 12 epochs, multi-scale
training augmentation and a linear learning rate decay for fair comparison. Following ConvNextV2 [9]
which utilize self-supervised training, we use the ImageNet pre-trained weight using knowledge
distillation with n = 4 for a higher receptive field. We train the VanillaNet-13 using the Adamw
optimizer with a batch size of 32, an initial learning rate of 8e-5 for RetinaNet and 1.3e-4 for Mask
RCNN, an 0.05 weight decay and an 0.6 layer wise decay.
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Training Config VanillaNet-{5/6/7/8/9/10/11/12/13}
weight init trunc. normal (0.2)
optimizer LAMB [10]
loss function BCE loss
base learning rate 3.5e-3 {5,8-13} /4.8e-3 {6-7}
weight decay 0.35/0.35/0.35/0.3/0.3/0.25/0.3/0.3/0.3
optimizer momentum β1, β2=0.9, 0.999
batch size 1024
training epochs 300
learning rate schedule cosine decay
warmup epochs 5
warmup schedule linear
dropout 0.05
layer-wise lr decay [3, 1] 0 {5,8-12} /0.8 {6-7,13}
randaugment [4] (7, 0.5)
mixup [12] 0.1/0.15/0.4/0.4/0.4/0.4/0.8/0.8/0.8
cutmix [11] 1.0
color jitter 0.4
label smoothing [7] 0.1
exp. mov. avg. (EMA) [6] 0.999996 {5-10} /0.99992 {11-13}
test crop ratio 0.875 {5-11} /0.95 {12-13}

Table 2: ImageNet-1K training settings.

(a)Mis-classified by ResNet-50-TNR (b)Correctly classified by ResNet-50-TNR

(c)Mis-classified by VanillaNet-9 (d)Correctly classified by VanillaNet-9

Figure 1: Visualization of attention maps of the classified samples by ResNet-50 and VanillaNet-9.
We show the attention maps of their mis-classified samples and correctly classified samples for
comparison.

C Visualization of Attention

To have a better understanding of the proposed VanillaNet, we further visualize the features using
GradCam++ [2], which utilizes a weighted combination of the positive partial derivatives of the
feature maps generated by the last convolutional layer with respect to the specific class to generate a
good visual explanation.

Figure 1 shows the visualization results for VanillaNet-9 and ResNets-50-TNR [8] with similar
performance. The red color denotes that there are high activation in this region while the blue color
denotes the weak activation for the predicted class. We can find that these two networks have different
attention maps for different samples. It can be easily found that for ResNet-50, the area of active
region is smaller. For the VanillaNet with only 9 depth, the active region is much larger than that of
deep networks. We suggest that VanillaNet may be strong in extract all relative activations in the input
images and thoroughly extract their information by using large number of parameters and FLOPs. In
contrast, VanillaNet may be weak on analyzing part of the useful region since the non-linearity is
relatively low.
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