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Supplementary Material

Implicit NNs are Almost Equivalent to Not-so-deep Explicit NNs for High-dimensional
Gaussian Mixtures

A PRELIMINARIES

,Z, € RP independently drawn from one of the K-class Gaus-

We consider n data vectors x1, - - -
,&,] € RP*™ with class C, having cardinality

sian mixture Cy,- -+ ,Cx and denote X = [x1, - -

ng, l.e., for x; € C,, we have
x; ~ N(ta/\/p; Ca/p)

Assumption 4. We assume that, as n — oo, we have, for a € {1,--- , K} that,
* p/n—c € (0,00) and ny/n — ¢4 € (0,1); and
 lptall = O(1); and
s forC° = Zle 72 C, and C; = C, — C°, we have ||C,|| = O(1), tr C; = O(p%>
and tr(C,Cy) = O(p) fora,b € {1,--- K}, and
o 79 = /tr C°/p converges in (0, 00).
Some quantities. We first introduce the following notations. For z;, x; € RP with ¢ # j, let
Ti = Wi/ P+ /D ® = Ri/DF 2P
so that z; ~ N(0,C;), z; ~ N(0,C), and

1 1 1
) @) = ];ZiTZj +];ll»iTuj + E(MTZJ‘ + ) zi),

O(p-1/2) o)

1 1 _ _
vi= il = wCi=0(p ), si= lwlP o+ 2]z /p =00

._1 o _ —-1/2 — 1 o —
tlfptrCifO(p ), To—@/pc = 0(1),

Xi= ti+v + s =zl -5
N—— ~~

o(p-1/2) O~

It can be checked that

T

1 2 1
laill® = = (i + 20) T (i + 2:) = —|pall® + =pf 2o+ -2 2
p p p

2 1 1
||Hz‘||2 + *H;-rzﬂr —trC° + —trC;y +
p b P ~—

— Y~ = o)
=5=0(p~1)  =3=0(1) =4,=0(p-1/?)

"I =

By Taylor-expanding +/||z;||? around 7, we have
1 1 .
]| = 70 + 5— (il /p + 218 zi/p+ ti + i) — —5 (i + ¥:)* + O(p 3/2>- (22)
2719 875
Additionally, we denote S;; terms of the form

1
Sij = Sij(71,72) = Ezi—rzj(%(ti + i) + 2t +5)),
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for random or deterministic scalars 1, y2 = O(1) (with high probability when being random). Note
that S;; = O(p~') and more importantly, it leads to, in matrix form, a matrix of spectral norm order
O(p~') (Couillet and Benaych-Georges| (2016).

Moreover, we introduce an important quantity 7., which plays a crucial role in our proof. We
recursively define 7; as

n = \Jo2Bl6(n16)] + (1 - o)1,
forl=1,2,---.
Lemma A.1. Let Condition[2|hold. As | — oo, 7 converges to a fixed point T* such that

lim n =1 = /o2E[$2(r€)] + (1 - 02)7.

l—o0

Proof. Lett = 7/ ;. By taking the derivative with respect to ¢ on the RHS of Eq. , we have
0

= (CE[f(ra9)] + (1= o))

= OB [V 6]

203% (/ \/%f(\/%-x)e_m;dx>
zag\/%/f/(\/i-x)%ﬁef%da:

2
:% -E[f"(11-1€)], by the Gaussian integration by parts formula,

which implies that the RHS of Eq. is a contractive mapping if

2
o, < —.

a L2
As a result, under Condition |2} the unique fixed point 7, exists. O

B PROOF OF THEOREM (1]

We prove Theoremby performing induction on the hypothesis that |G~ — G(-1) || = 0 holds
at layer [ — 1 with

G- = al_l,lXTX +vel-YyT 4 (Tl2_1 — Tgoq_l,l — Téal_Lg)In,

for C-1) — [ -ttt + o1 3T gt

T , and work on the CK matrix G at layer /.
ap-1,2t Qp_1,2

The following lemma plays an important role in our proof.

Lemma B.1 (|Gu et al.[(2022)). Assume that the activation function ¢(-) is “centred”, such that
E[¢(r€)] = 0, and

Gz(éil) =770 +a—1aXi + u—15(t + )% + (9(p_3/2>

2
_ 1
Gfé D= iz T+ a1t + )t ) ol s (pz;rzg) + Sij + (’)(p_3/2>.
It holds that

_ (i-1\?
- Gf.l} 2 _ G;
E ¢<x/G§é ”-&) x ¢ | =& +,|G}; ”—()-é}-

Gl=b ci Y

-1, %1 1 2oy,
B0/ (PG + B P (12T + T €+ 0l + )

+ S5 + O<p73/2).
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On the diagonal. By induction hypothesis on the layer [ — 1, we have
GV =1ty + i + st + i)+ O(p7H2). 23)

By Eq. (3), we have

G\ = o%E + (1= 02)[|l2)%,

6 (x/Gﬁi‘” -5>2

for & ~ N(0,1).
By Taylor-expanding, one gets

2 2
AT 015 — 0 4

—= (i + i) + (9(]9_3/2)-

-1 1
Gz('i ) _ Ti—1 + o 10&1_174)(1‘ + 373
- -1

For simplicity, we denote the shortcut f(-) = ¢2(-). By Talor-expanding and Eq. , one gets

" (Ws) (1= 02zl = o%R [f (Wfﬂ (1= 02) ]

4 2 B A2
f(rz_1£>+f'(n_1£>€< ai_1axi + LS al‘1’4<ti+wi>2>]

G =oim

_ 2
=o,E

1
27’171 87—[71

+ 2B [ m106] 14 1 o) + v + 07

47
=2E [f(ra8)] + (1= )75 + (255 EL (1 ©)] +1 - 02) i
7 foc B ; Bl 1E) (ti+ 1)+ O(p2),

where we use the facts that

E[f"(n-16)] = n1Elf"(n-1€)],  E[f"(n-16)(€* = 1)] = 721 E[f"" (n-1€)],
for £ ~ N(0,1), as a result of the Gaussian integration by parts formula.

Consequently, we obtain the following relation

7 = B [f(n-1)] + (1 - 07)75,

2
ag
g = 7“]E[f"(7171§)]a171,4 +1-o02, (24)
2
ag
a5 = 7G]E[f (—18)]ou—15 + 8“E[f””(7-l,15)]al2,1,4.

By Lemma | under Condmon | it holds that “E[ f"(m1-18)] < 1, which implies that, as [ — oo,
the iterations in Eq. (24) converge. Let [ — co, we obtain that

Te = lim 7 = \/J?IE [f(r8)] + (1 — 02)78,

l—o00
o2 -1
ava = Jimari = (1- ZE09]) (-0 2s)

: (1- ”gE[f"mg)])l B[ (r6)]a’,
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Off the diagonal. For i # j, by induction hypothesis on the layer [ — 1, we have

_ 1 ?
G% Y= i1 Aij + st + i) (8 + ) + i <pzisz> + S5 + O(p73/2>-

Using the Gram-Schmidt orthogonalization for standard Gaussian random variable, we write

G = o2k |¢? (\/ Gi-n 5)] (1=l

_ (1-1\2

. G!'~Y B G

6 =oi& o (Vo ) o | e 6| 1)(G(l—1>)'fj +(1- oD a
G i

Using Lemma|[B.1] we have

_ 1-1)?
G G,
) e [o (VT &) o | S e - S0 6 ) s

Nlelas Gl

—02E[¢/ (r_16)]2 GV

)

2 2
+ 02 (C";“Ew"(n_m (372) + 5B a4 v + wn)

+S;;+(1— 0’2):13;(13]' + O(p_B/Q)
1 2
=0 B¢ (1i—18)]? (0411,1%ij +og_1o(ti + i)t + ) + a3 (pzi—rzj> >

2
QAr_ 14

2 2
+ 0 (oQQM]EW”(Tzﬁ)}Q (;ziTZj) +— E[¢" (ri—1&)]* (ti + i) (t; +1/Jj)>

+ S+ (1= oDal w; + 0(p~/2).
Consequently, it holds that
2
1
G\ = aam] x; + ana(ti +vi)(t; + ;) + aus (pZiTZj) + Sij + O(P_?’/Z), (26)
where
a1 = 0RE[¢ (n-1€)Pai1a +1 - op,

2
s = SB[ (1P a2 + LES ()P 4, 27

2
Q3 = UzE[W(quf)]zal—L:a + %]E[fﬁu(Tlflf)]Qal{Ll-

)

Note that it holds that o2E[¢/(7.£)]?> < 1 under Condition [1} This means that, as [ — oo, the
iterations in Eq. converge.Let [ — oo, we obtain that

1 = llgglo a1 = (1 - o2E[¢' (1)) (1 — 02),

2

oz = lim a5 = %(1 — aAE[¢/ (1)) TE[¢" (1.6)Pal 4, (28)
2

e = Jim arg = (1 - GZE[Y (r.)?) Bl (r8) a2,

where

ro = OB (1)) + (1 - o2)72,
avi= (1- 2B e]) a-od)
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Assembling in matrix form. Using the fact that | M||; < nmax; ; |M;;| for M € R"*" and
{Sii}ii = Oy (p~1/?) (Couillet and Benaych-Georges, [2016), it holds that

G =0 1 X' X+VCV'T + (72 = 18auy — 1ga.s), + OH.H(p*%) (29)

where O (p~ %) denotes matrices of spectral norm order O (p_% ), with

ottt + aysT  ayot
V =[J/vp.¢], C:[ GO ] (30)
and
1 K 1
T = {ptrCaCb} 5 t= {\/ﬁtrcg} (31)
a,=1

Remark 4 (Lack of bias term in Eq. (I) and Theorems [[H2). Note that different from (Jacot et al.
2018; [Feng and Kolter}, [2020), here we consider (explicit or implicit) networks without the bias term.
see Eq. (I). This is indeed a limitation of the present analysis approach, and the proposed theoretical
framework is not able to cover deterministic and/or random bias. As a matter of fact, considering
(say deterministic) bias in Eq. (T)) is equivalent, from a technical perspective, to relax the “centered”
activation assumption E[¢(7.£)] = 0,& ~ N(0,1). This will make a few terms of order O (p~3/2)
no longer neglectable in the current proof of Theorem [I] To the best of our knowledge, the only
work on precise high-dimensional asymptotics of DNN models that has taken the bias into account
is (Adlam et al.;,|2022), but only on a single-hidden-layer and explicit neural network model. It would
be of future interest to extend the proposed analysis approach to cover deterministic or random bias,
which may lead to further improvement on the network practical performance.

C PROOF OF THEOREM

C.1 THECKG

Before proving Theorem one needs to deal with the CK G.

Recall that
- (1
Gy = agE(u,v)~N(0,A§?)[¢/(u)¢,(v)]7
[ A=) A=)
! G, G,
where AL = | iyl 1
L T Ji Jj

Using the Gram-Schmidt orthogoalizaiton procedure, we have

B 2
G9=aﬁlw<VG31W@>]

(1-1) - <G<.l,—1>>2 (32)

- - Gi’ ¥
G —atm |¢ (Va6 ) xo | =g 657 - g

On the diagonal. First recall that

- 1 4t Q1,5 — al
m = Ti—1 -|— 2 al*1,4Xi + -1 —-1,4 (tz + w1)2 + O(p_3/2),

1 87511
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Denote the shortcut f(t) = (¢/(t))?, using Taylor-expand again, we have
2
G0 _o2g l(bf (Ve ) ] ~oe[r (Vi <))

4 2 _ A2
=0.E [f(ﬂlf)‘Ff/(TllE)f( : aq—1,4Xi + Timamis %174(%‘—1—%)2)]

211 8Tl3_1
+oE {1f”(n—1£)€2} @(t + )% + O(p‘3/ 2)
@2 47'l2_1 ‘ ¢
=02E [f(m-1§)] + (02 5Bl (n18)])

o doq—1 sE[f"(11-18)] 48-%21’4E[f"”(7'l—1€)] n 0(10—3/2)7

Thus, we conclude that

2
¢ (Ve Te) | =it + o),
with the sequence 7; defined as follows
71 = VE[¢(n€)?].

Off the diagonal For i # j, by Lemma[B.1] it holds that

oy Gl (G<.lf1>)2
— i — 3
¢ d)/( G 1)'5i>x¢/ =G| G D‘W‘@

=E[¢/(11-18)]* + E[¢" (-18)]* - u_112] x;

+ B¢ (ma©)E0" (na§)] - =5 () + O

G\ = 52E

Thus, we have

(1-1) Gz(éfl)f

6 =oie o (/o e) o [ ey o (O
Jel GI D

&

= ffilE[qS’(THS)]Z + UiE[Qy/(quﬁ)]z ) al—1,133;r$j

+ 2B (1)) B0 (1)) Y21 (i + x) + O ()

= b0 + duom] @5 + duo (xi + x5) + o(p™),

with
a0 = o, E[¢ (1)),
o1 = oJE[¢" (18P,
Qo = %gEW(Tz—15)]E[¢m(Tz—lf)]al—1,4~
As | — oo, lim;_,o, 77 = T+, and thus it holds that
b0 = 0,E[¢' (18)],

d1 = 0LB[0" (1.6)P v 1,

0.2
G2 = ZEF (RO (1)l
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C.2 ImpLICIT NTKSs

Now, we are ready to prove Theorem 2] We assume the induction hypothesis holds for [ — 1, that
KO = w1+ 0(p7),
1 1 ?
Ki(j) = B2 T + Bi—12(t + i) (i + Vi) + B (pzisz) + S + O(pfd/z)-
On the diagonal. First, note that
K =G+ KU 60 = o + o2t + 0(57),
Thus, it holds that
Ki =T} + 0a1} - Ki_y.
Under Condition it holds that oK [¢/(7..£)?] < 1. Thus, for | — oo, one gets that
K2 = (1 -0 [¢/(r8)%]) " 2. (33)
Off the diagonal. For i # j, we have
0 _ W (1=1) ~()
K, =G,y + K;; "G,

2
1
=a @, T+ apa(t; + )t + ;) + s (pz;zj)

2
+ (51—1,158,-ij + Bi—12(ti + i) (t; +¥5) + Bi—13 (;ZJZJ) >

x (Gu,0 + oz Tj + duo (xi +x;) + O 1)) + 0(19_3/2)
=(au1 + Bi—11 - do)®] i + (w2 + Bio1,2 - duo)(ti + i) (t; + ;)

. . 1 ? _
+ (w3 + Bi—1,3- Qo+ Bi—11 - Q1) (pZiTZj) + 5 + O(p 3/2>,

so that

Bii =1+ Bi—1.1¢u0,

B2 = a2+ Bi—1.200,

B3 =3z + Bi—1,30,0+ Bi—1,1¢,1,
with

a0 = ooE[¢' (11-18))?
a1 = o2E[¢" (1-18)Pou_11

As | — oo, it holds that lim;_,oo 77 = 7%, limy_ o Q. = Ok, and lim;_, C-kl’k = O.[*Qk, for
k = 1,2, 3. Therefore, for | — oo, one gets that

) 1 ’ .
Ki(j) = Bum; @j + Bia(ti +0i)(t; + ;) + Bis <p2:zj> + Sij + O(P 3/2>

with

Bia = (1 —duo) tan,

Bia = (1= o) T,

Big = (1= o) s + Buicun),
and

Giv 0 = 02 E[¢) (1.6)]7,

b1 = 0 Bl" (1) o .
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Figure 4: Eigenvalue density distribution histograms (top) and dominant eigenvectors (bottom) of
Implicit-CK matrices G* (blue) defined in Eq. (3) (with expectation estimated from 400 independent
realizations of As and Bs) and Explicit-CKs @) (red). A Gaussian implicit NN on two-class
GMM data, with p = 1000, n = 800, s = [0s(a—1); 8; Op—sga+7). Ca = (1 +8(a —1)//p)I,, for
a € {1, 2} using Cosine activations.

Assembling in matrix form: Using the fact that | M|, < nmax; ; |M;;| for M € R™*™ and
{Sij}ij = O (p~1/? |C0ulllet and Benaych- Georges| (]2016[) it holds that

K*=8,X X +VD. V" + (k2 — 1281 — 78Bu3)Ln + O (p72), (34)

with T

Beott” + B, 5T 5*215]
= J D* = ’ ’ ’ y 35
[ /\/i),’l,b], |: ,8*72tT ﬂ*,Q ( )
and
T {%cc}K ¢ {Hce} (36)
=< —-trC, , = —trC, ;.
p ’ a,=1 \/f)

D PROOF OF COROLLARY [1]

It follows from (Gu et al [2022, Theorem 1) that for weight matrices W;s having i.i.d. entries of
Zero mean, unit variance, and finite fourth order moment, one has, for any two-hidden-layer fully-

connected explicit NN defined in Eq. (18) that, the second-layer CK matrix X(?) satisfies
E( ) = 0[2 1XTX + VCQV + (7'2 — Tgag’l — Téagyg) n + OHH(’ni / )

where 75 = E[o%(71€)], 77 = E[o}(10€)] for £ ~ N(0,1), and 7y = 70, oy(-) are “centred” such
that E[o;(73€)] = 0forl = 1,2,

_ nx(K+1) A | a2 ott’ +a2 3T oot (K+1)x (K +1)
[J/vp, Y] €R , C oot T Gnn eR (37)

with

21 = Elob(REPElo (R, G2 = {ElobREPEI! (o8] + SElof (REE[(0 (r08)) "%
o5 = SElOAREElo} (o) + SElof (REPE[} (Roe)]*
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m 32 64 128 256 512 1024 2048 4096 8192
[G-—=@| | 1732 1024 653 3.71 1.60 093 081 012 0.12

Table 1: The spectral norm difference | G* — 2(2)|| for finite-width ploy-ENN on GMM data under
the same setting as FigureEl

Since the Explicit-CK X(?) takes a similar form as the “equivalent” Implicit-CK G (and thus the
Implicit-CK G*) per Theorem [} it then suffices to choose the activations of ploy-ENN in such a
way that the key coefficients &1, da, &3 and 74 coincide with those Ot 1, Oy 2, Oy 3 and 72 defined
in Theorem Specifically, We consider a quadratic function o;(z) = a;z? + bz + ¢;. In order to
ensure o, (-) are “centered,” i.e., E[o;(7;—1£)] = 0, we take ¢; = —a; 77, such that
o(z) = az® + br — a;77,.
One can derive that, for £ ~ A/(0,1),
Elo} (7—16)] = 2a{ 7Ly + {7y, E[(07(7i-1))"] = 8ai7iy + 207,

Elo)(7i-16)]* = b,  Elo] (7—1€)]* = 4af.
As a result, we have

Qo1 = b3bY, Qoo = bjai + aj(4airy + 07)?,

Qo3 = 20363 4 24307, T2 = 2a3(2aiTy 4+ b37E)? 4 b3 (2aiTy + bITE).
Solving a1, b1, as, bo, such that &2,1 = O,1, &272 = Qix,2, 542)3 = Q% 3, and 7'*2 — Tga*71 — 7'610(*73 =
73 — 780y — Tiag, we obtain the aimed activations o7 and oo of two-layer “equivalent” explicit
NNs. This concludes the proof of Corollary [1]
A numerical simulation using Cosine activations is presented in Figure [ to validate our theory.
Moreover, Table |I| demonstrates that ||G* — X(2)|| for finite-width ploy-ENN decreases with the
increase of the width m. Note particularly that the approximation saturates at a low level (~ 0.12)

and this is due to the finite n, p in the setting of Figure [ as opposed to our asymptotic theoretical
results.

E PROOF OF COROLLARY

For ¢(x) = max(ax, br) — %=Ly, with a > b > 0, we have, for £ ~ N(0, 1)

V2w
a,2 2 T — a a — 2
Blp?(mg)] = LD gy = @2

The corresponding CK of the single-layer explicit NN with the activation ¢ is given by

~ T ~2 ~2~ ~4~
GwialX +(7’2 77’10[177'1043)1'",

a1 = El¢'(18)]*, 71 = VE[L?(10€)].

Solving a and b such that &1 = a1 and 77 — 7801 = T2 — ToQu 1, i.e.,

{ (a—b)*= 40‘3,1

(n—1)(a®+b%)+ab_o  (atb)?
o To 1

where

2 _ 2 2
TO = T* — 04*717'0

we obtain the aimed biased Leaky-ReLU function ¢ of the single-layer equivalent explicit NN. This
concludes the proof of Corollary 2]

F ADDITIONAL EXPERIMENTAL RESULTS

Here we provide additional experiments on the CIFAR-10 dataset. We use features from a pretrained
VGG-19 model. The VGG-19 model is specifically pre-trained on the training set of CIFAR-10 data.
This differs from the case of Figure3}(c) which uses a VGG-19 pre-trained on ImageNet. As shown
in Figure [5] the best accuracy is close to 85% (which is significantly higher that Figure (C)), and
as the dimension m increases, the performance of L-RelLU-ENNs closely matches that of INN.
Meanwhile, a noticeable performance gap exists between ReLU-ENN and INN.
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-~ NN
——L-ReLU-ENN
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2% o8 Qio ol2
m

Figure 5: The evolution of classification results w.z¢ the width m of implicit ReLU NNs (blue,
INN), the corresponding equivalent single-layer Leaky-ReLLU explicit NNs (red, L-ReLU-ENN),
and ReL.U explicit NNs (green, ReLU ENN for short) on CIFAR-10. Different from Figure |3|-(c)
which uses a VGG-19 pre-trained on ImageNet, here, we adopt a VGG-19 pretrained on the training
set of CIFAR-10, and get (significantly) higher accuracy than Figure E|~(C),
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