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A LLM USAGE STATEMENT

Large language models were used solely as general-purpose writing assistance tools to aid in pol-
ishing the manuscript text and improving clarity of expression. LLMs did not contribute to research
ideation, methodology development, experimental design, data analysis, or the generation of scien-
tific insights presented in this work.

B VISUALIZATIONS

(a) Input (b) w/o AM (c) w/o SA (d) ViF
Figure A1: Visualization of ablation study for adaptive modulation (AM) and selective activation (SA).

Figure A2: Visualization of object detection.
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Figure A3: Visualization of semantic segmentation.

C DATASET DETAILS

ImageNet-1K for image classification. The ImageNet-1K dataset (Deng et al., 2009) comprises
1280k images for training and 50k images for validation, with 1,000 categories. For a fair compari-
son, we train our models under the same settings as Swin Transformer (Liu et al., 2021). Specifically,
we employ AdamW optimizer to train our models from scratch for 300 epochs. The initial learning
rate is set to 4 ˆ 10´3. We apply a cosine learning rate decay schedule with a linear warm-up of 20
epochs and a weight decay of 0.05. The batch size is set to 2048 for ViF-T and ViF-S, and 1024 for
ViF-B. The drop path rate is set to 0.2 for ViF-T, 0.3 for ViF-S and 0.5 for ViF-B. MESA (Du et al.,
2022) is used to prevent overfitting. Data augmentation techniques including RandAugment (Cubuk
et al., 2020), Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), and random erasing (Zhong
et al., 2020) are employed during training.

COCO for object detection. The COCO dataset (Lin et al., 2014) comprises 118K images for
training and 5K images for validation, with 80 object categories. We follow the standard 1ˆ and 3ˆ
Mask R-CNN (He et al., 2017) training settings in Swin Transformer (Liu et al., 2021) to conduct
our experiments. The pretrained ViF models on ImageNet-1K are employed as backbones and fine-
tuned on COCO. For the 1ˆ schedule, we train for 12 epochs with an initial learning rate of 2ˆ10´4

and decay the learning rate by 10 at epochs 8 and 11. For the 3ˆ schedule, we extend the training
to 36 epochs with learning rate decay at epochs 27 and 33. We use AdamW optimizer with a weight
decay of 0.05 and a batch size of 16. Data augmentation techniques including horizontal flipping
are employed during training.

ADE20K for semantic segmentation. The ADE20K dataset (Zhou et al., 2019) comprises 20K im-
ages for training, 2K images for validation, and 3K images for testing, with 150 semantic categories.
We follow the standard UPerNet (Xiao et al., 2018) training settings in Swin Transformer (Liu et al.,
2021) to conduct our experiments. The pretrained ViF models on ImageNet-1K are employed as
backbones and fine-tuned on ADE20K. We train for 160K iterations with an initial learning rate of
6 ˆ 10´5 using AdamW optimizer. The learning rate follows a polynomial decay schedule with a
power of 0.9. We set the weight decay to 1ˆ10´4 and use a batch size of 16. Data augmentation in-
cludes random horizontal flipping, random resizing with scale range [0.5, 2.0], and random cropping
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to 512ˆ512 pixels. We report both single-scale and multi-scale testing results, where multi-scale
testing uses scales of [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] with horizontal flipping.

D ARCHITECTURE DETAILS

The detailed architectures of ViF models are outlined in Tab. A1. Following the common four-stage
hierarchical framework Liu et al. (2021), we construct the ViF models by stacking our proposed ViF
blocks at each stage. Specifically, an input image with resolution of 224ˆ224 is firstly processed by
a stem layer, which consists of Convolution (Conv), Batch Normalization (BN) and GELU activation
function. The kernel size is 3ˆ3 with a stride of 2 at the first and last convolution layers, and a stride
of 1 for other layers. Each stage contains multiple ViF blocks, followed by a down-sampling layer
except for the last block. The down-sampling layer consists of a 3ˆ 3 convolution with a stride of 2
and a Layer Normalization (LN) layer. Each block incorporates a FNF module and a FFN module,
both with residual connections. The FNF module has two branches: one branch contains a local
convolution and a global convolution, the other branch contains a local convolution, where the local
convolution is a depth-wise convolution layer with the kernel of 3 ˆ 3. The expand ratio of SSM
is set to 2, doubling the number of channels. We modify the embedding dimension and number of
blocks to build our ViF-T/S/B models.

Table A1: Architecture details of our ViF models.
Layer Output size ViF-T ViF-S ViF-B
Stem 56 ˆ 56 Conv 3 ˆ 3 stride 2, BN, GELU; Conv 3 ˆ 3 stride 1, BN; Conv 3 ˆ 3 stride 2, BN

Stage1 28 ˆ 28

ViF Blocks ViF Blocks ViF Blocks»

———–

Linear 64 Ñ 128
LocalConv 128
GlobalConv 128
Linear 128 Ñ 64

FFN 64

fi

!!!fl ˆ 2

»

———–

Linear 64 Ñ 128
LocalConv 128
GlobalConv 128
Linear 128 Ñ 64

FFN 64

fi

!!!fl ˆ 2

»

———–

Linear 96 Ñ 192
LocalConv 192
GlobalConv 192
Linear 192 Ñ 96

FFN 96

fi

!!!fl ˆ 2

Down Sampling Conv 3 ˆ 3 stride 2, LN

Stage2 14 ˆ 14

ViF Blocks ViF Blocks ViF Blocks»

———–

Linear 128 Ñ 256
LocalConv 256
GlobalConv 256

Linear 256 Ñ 128
FFN 128

fi

!!!fl ˆ 4

»

———–

Linear 128 Ñ 256
LocalConv 256
GlobalConv 256

Linear 256 Ñ 128
FFN 128

fi

!!!fl ˆ 5

»

———–

Linear 192 Ñ 384
LocalConv 384
GlobalConv 384

Linear 384 Ñ 192
FFN 192

fi

!!!fl ˆ 5

Down Sampling Conv 3 ˆ 3 stride 2, LN

Stage3 7 ˆ 7

ViF Blocks ViF Blocks ViF Blocks»

———–

Linear 256 Ñ 512
LocalConv 512
GlobalConv 512

Linear 512 Ñ 256
FFN 256

fi

!!!fl ˆ 8

»

———–

Linear 256 Ñ 512
LocalConv 512
GlobalConv 512

Linear 512 Ñ 256
FFN 256

fi

!!!fl ˆ 19

»

———–

Linear 384 Ñ 768
LocalConv 768
GlobalConv 768

Linear 768 Ñ 384
FFN 384

fi

!!!fl ˆ 19

Down Sampling Conv 3 ˆ 3 stride 2, LN

Stage4 7 ˆ 7

ViF Blocks ViF Blocks ViF Blocks»

———–

Linear 512 Ñ 1024
LocalConv 1024
GlobalConv 1024

Linear 1024 Ñ 512
FFN 512

fi

!!!fl ˆ 4

»

———–

Linear 512 Ñ 1024
LocalConv 1024
GlobalConv 1024

Linear 1024 Ñ 512
FFN 512

fi

!!!fl ˆ 5

»

———–

Linear 768 Ñ 1536
LocalConv 1536
GlobalConv 1536

Linear 1536 Ñ 768
FFN 768

fi

!!!fl ˆ 5

Head 1 ˆ 1 Average pool, Linear 1000, Softmax

E SPATIAL AND FREQUENCY ANALYSIS

To quantitatively assess the influence of different modules (SA and AM) on feature representations,
we perform comprehensive spatial- and frequency-domain analyses on the fourth-layer features of
our model.

E.1 SPATIAL CORRELATION ANALYSIS

Given a feature map F P RCˆHˆW from the fourth layer, we compute spatial correlation to charac-
terize structural relationships across spatial locations.

A3



Published as a conference paper at ICLR 2026

We first reshape the feature map into a matrix X P RpH¨W qˆC , where each row corresponds to the
feature vector at a specific spatial position. Each vector is then normalized as:

Xnormpiq “ Xpiq
}Xpiq}2 ` ω

, (A1)

where i P t1, 2, . . . , H ¨ W u indexes spatial locations and ω “ 10´6 prevents division by zero.

The spatial correlation matrix R P RpH¨W qˆpH¨W q is computed by:

R “ XnormX
T

norm, (A2)

where Rpi, jq measures the correlation between spatial positions i and j.

To obtain a per-pixel correlation response, we average the correlation of each location with all others:

Cpiq “ 1

H ¨ W
H¨Wÿ

j“1

Rpi, jq. (A3)

We then reshape C to spatial dimensions and normalize it:

Cmap “ ReshapepC, H,W q, Cnorm “ Cmap ´ minpCmapq
maxpCmapq ´ minpCmapq . (A4)

Higher values in Cnorm indicate spatial locations that exhibit stronger global correlation, reflecting
the model’s capacity to capture structural and contextual dependencies.

Structural Difference Metric. To quantify structural differences between models, we compute
the Pearson correlation coefficient between correlation maps:

!struct “ p1 ´ εpCfull, Cablationqq ˆ 100%, (A5)

where ε denotes the Pearson correlation coefficient. Larger !struct indicates greater structural dis-
crepancy.

E.2 FREQUENCY SPECTRUM ANALYSIS

To examine the frequency characteristics of learned representations, we apply a Fourier transform to
the activation maps. For a given feature map F P RCˆHˆW , we first compute the spatial activation:

A “ 1

C

Cÿ

c“1

F2
c
. (A6)

We then apply a 2D Fourier transform and compute the magnitude spectrum:

F “ FFTShiftpFFT2DpAqq, (A7)

M “ 20 ¨ logp|F | ` 1q, (A8)
where FFTShift centers the zero-frequency component and logarithmic scaling improves visual in-
terpretability.

Frequency Energy Distribution. The spectrum is decomposed into three frequency bands ac-
cording to the radial distance r from the center:

Elow “
ÿ

r!0.1rmax

Mprq, (A9)

Emid “
ÿ

0.1rmax"r"0.3rmax

Mprq, (A10)

Ehigh “
ÿ

r#0.3rmax

Mprq, (A11)
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where rmax “ minpH{2,W {2q denotes the maximum radius.

The frequency shift metric is defined as:

!freq “
pEablation

mid ` Eablation
high q ´ pEfull

mid ` Efull
highq

Efull
total

ˆ 100%. (A12)

A positive !freq indicates that the ablated model retains more high-frequency components, whereas
negative values suggest that the full model better preserves fine-grained details.

Figure A4: Visualization of Spatial and Frequency Analysis (1).

Figure A5: Visualization of Spatial and Frequency Analysis (2).

Figure A6: Visualization of Spatial and Frequency Analysis (3).
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Figure A7: Visualization of Spatial and Frequency Analysis (4).

Figure A8: Visualization of Spatial and Frequency Analysis (5).

Figure A9: Visualization of Spatial and Frequency Analysis (6).
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F EFFECTIVE RECEPTIVE FIELD COMPARISON

We compare the effective receptive field (ERF) characteristics of three representative architectures:
Transformer, Fourier Neural Field (FNF), and Mamba with different scanning strategies (Figure X).
Transformer employs self-attention mechanisms that establish all-to-all connections between tokens,
achieving a global receptive field from the first layer. However, this comes at the cost of O(N!)
computational complexity, where N is the sequence length, making it computationally prohibitive
for long sequences exceeding several thousand tokens. FNF leverages Fourier transforms to operate
in the frequency domain, enabling global receptive field coverage through spectral convolutions.
By transforming inputs via Fast Fourier Transform (FFT), mixing in frequency space, and applying
inverse FFT, FNF achieves global modeling with O(N log N) complexity. This approach provides
an efficient middle ground between local convolutions and quadratic attention mechanisms.

Mamba employs selective state space models (SSMs) with linear O(N) complexity, making it highly
efficient for long sequences. Unlike Transformer and FNF, Mamba’s receptive field is not immedi-
ately global from the first layer but rather develops through recurrent state propagation. We visualize
three scanning variants: (1) Unidirectional scanning follows a causal dependency pattern, suitable
for autoregressive tasks; (2) Bidirectional scanning enables two-way information flow, enhancing
contextual understanding; (3) Quad-directional scanning performs multi-way traversal (top-down,
bottom-up, left-right, right-left), approximating more uniform spatial coverage comparable to global
attention.

As shown in our complexity analysis, Mamba maintains constant per-token cost regardless of se-
quence length, while Transformer’s cost grows quadratically and FNF’s grows quasi-linearly. The
ERF visualizations demonstrate that while Transformer and FNF achieve uniform global coverage,
Mamba variants exhibit distance-dependent patterns influenced by their scanning strategies, with
quad-directional scanning providing the most balanced spatial coverage among Mamba variants.

Figure A10: Effective Receptive Field Comparison.
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