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ABSTRACT

Active learning (AL) techniques are known for selecting the most informative
data points from large datasets, thereby enhancing model performance with fewer
labeled samples. This makes AL particularly useful in tasks where labeling is
limited or resource-intensive. However, most existing effective methods rely on
uncertainty scores to select samples, often overlooking diversity, which results in
redundant selections, especially when the batch size is small compared to the over-
all dataset. This paper introduces Efficient Blockwise Diverse Active Learning
(EBDAL), a generalizable framework that combines uncertainty with diversity-
based selection to overcome these limitations. By partitioning the dataset into
blocks via a clustering strategy, we ensure diverse sampling within each block,
enabling more efficient handling of large-scale datasets. To quantify diversity, we
minimize the Maximum Mean Discrepancy (MMD) between the selected subset
and the full dataset, which is then reformulated as a Quadratic Unconstrained Bi-
nary Optimization (QUBO) problem. The resulting QUBO is submodular, which
permits an efficient greedy algorithm. We further demonstrate feasibility on real
quantum hardware through an end-to-end selection experiment. Our experimental
results demonstrate that EBDAL not only improves the accuracy of uncertainty-
based strategies but also outperforms a wide range of selection methods, achieving
substantial computational speedups. The findings highlight EBDAL’s robustness,
efficiency, and adaptability across various datasets.

1 INTRODUCTION

Active learning (AL) is a learning paradigm in which a model interactively requests labels for the
most informative samples from a large unlabeled pool, aiming to attain strong predictive perfor-
mance with substantially fewer annotations. This is particularly relevant in modern deep learning,
where unlabeled data are plentiful but labeling is costly, time-consuming, or requires domain exper-
tise (e.g., medical imaging, autonomous driving). By selectively querying labels while maintaining
accuracy, AL provides a practical route to scaling supervised learning under budget constraints.
Methodologically, AL spans uncertainty sampling and Bayesian approximations (Lewis & Gale,
1994; Gal et al., 2017; Yoo & Kweon, 2019), geometric/coreset and representative selection (Sener
& Savarese, 2018), gradient-based hybrid criteria (Ash et al., 2019), and variational/adversarial for-
mulations (Sinha et al., 2019), with comprehensive surveys available in (Settles, 2009; Li et al.,
2024). Collectively, these lines of work underscore the need for query strategies that jointly balance
uncertainty, representativeness, and computational scalability.

Uncertainty-based active learning has achieved strong empirical success, reliably reducing anno-
tation cost by prioritizing highly informative queries. Nevertheless, redundancy frequently arises
under tight budgets: top-uncertainty samples often cluster within the same local region, leading to
inefficient label usage (Figure 1). Recent efforts have begun to address these issues but leave im-
portant gaps. For example, Wang et al. (2024b) automates strategy choice from a set of heuristics,
advancing ease of use; yet committing to a single policy per round limits the ability to balance uncer-
tainty and diversity within a batch, and the strategy-search/preparation phases introduce nontrivial
overhead that is often omitted from end-to-end timing. Likewise, Bae et al. (2025) improves repre-
sentativeness via uncertainty-weighted coverage, but the approach remains sensitive to uncertainty
calibration, is still prone to redundancy when uncertainty mass concentrates, and can under-sample
globally representative regions with lower uncertainty. These observations suggest that a more ef-
fective solution should explicitly integrate uncertainty with distributional diversity while remaining
computationally efficient across datasets and budget regimes.
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Figure 1: Visualization exam-
ple of redundancy

To address these challenges, we propose Efficient Blockwise Di-
verse Active Learning (EBDAL), a scalable framework that cou-
ples uncertainty with distributional diversity. We operationalize di-
versity through maximum mean discrepancy (MMD), selecting a
subset that approximates the kernel mean of the unlabeled pool,
thereby promoting broad coverage and reducing redundancy. In-
stead of performing a single global optimization, EBDAL adopts
a blockwise MMD minimization strategy, significantly improving
time and memory efficiency. We establish a bounded approximation
gap between the blockwise objective and the global optimum. To
balance informativeness and representativeness, our method selects
samples from a high-uncertainty candidate set without over-relying
on the precise uncertainty values. Technically, the blockwise MMD
selection is formulated as a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem with a submodular objective. This formulation admits an efficient greedy
algorithm in practice and is also compatible with modern quantum hardware.

The main contributions in this work are as follows:

• A scalable, redundancy-aware AL framework. We introduce EBDAL, which integrates
uncertainty with distributional diversity through blockwise MMD minimization. Operating
per block promotes broad feature-space coverage and substantially reduces small-batch
redundancy common to uncertainty-only selection, while remaining simple to deploy on
large unlabeled pools.

• Theory and efficiency. We provide a bounded approximation guarantee showing that
blockwise MMD closely tracks the global MMD objective, preserving distributional align-
ment. In practice, our complexity analysis and wall-clock experiments show consistent
speedups compared with full-pool, without loss of accuracy.

• Quantum-enabled selection. We formulate the blockwise MMD selection as a QUBO
problem whose objective is submodular. This formulation enables two complementary
solving approaches: (i) a fast greedy algorithm for practical applications, and (ii) direct
access to real quantum hardware. To our knowledge, this yields the first demonstration of
an end-to-end active-learning loop that uses a quantum computer for the selection phase
and a classical computer for model training, applied to classical datasets.

2 RELATED WORK

Active Learning Active learning (AL) targets high performance under tight labeling budgets by
querying the most informative points. Early work formalized uncertainty sampling for text (Lewis
& Gale, 1994). With deep models, approximate Bayesian inference enabled mutual-information
criteria such as Bayesian Active Learning by Disagreement (Gal et al., 2017); learnable acquisition
functions predict per-sample loss (Yoo & Kweon, 2019); and batch-diverse methods curb redun-
dancy via gradient-space clustering (BADGE) (Ash et al., 2019) or variational adversarial latent-
space selection (Sinha et al., 2019). Deterministic uncertainty estimation (DDU) provides a strong
non-Bayesian baseline (Mukhoti et al., 2023). Recent efforts emphasize scalability and automation,
including leverage-score sampling (Shimizu et al., 2023), uncertainty herding (Bae et al., 2025), and
differentiable strategy search (Wang et al., 2024b).

Coreset Selection Coresets approximate large datasets with small, weighted summaries to ac-
celerate training while maintaining accuracy. In AL, geometry-driven k-center selection reduces
redundancy for CNNs (Sener & Savarese, 2018). More broadly, coreset techniques offer scalable
summaries with provable guarantees (Mirzasoleiman et al., 2020) and bilevel updates for streaming
and continual learning (Borsos et al., 2020). Recent diversity-centric subset design revisits cov-
erage for robustness (e.g., instruction tuning) (Wang et al., 2024a). Our approach is coreset-like in
spirit but differs by optimizing an RKHS-grounded diversity objective (MMD) in a blockwise, active
pipeline that includes uncertainty filtering and an acceleration path via a QUBO reformulation.
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Submodularity and QUBO/Ising For subset selection under a cardinality constraint, constructing
(approximately) submodular objectives is a powerful design principle. Scalable variants tailor this
idea to machine learning, e.g., Bayesian batch AL as sparse subset approximation (Pinsler et al.,
2019), and distributed optimization for pairwise submodular functions (Böther et al., 2024). A
complementary line formulates selection as QUBO/Ising (see modeling and mapping references
(Lucas, 2014; Kochenberger et al., 2014; Glover et al., 2018)), enabling specialized solvers and
quantum optimizers such as quantum annealing (Kadowaki & Nishimori, 1998) and QAOA (Farhi
et al., 2014). In contrast to (Bae et al., 2025), which relies on uncertainty-weighted coverage and
can be sensitive to miscalibration and cluster concentration, our method optimizes an explicit MMD-
based distributional alignment with blockwise structure and a provable approximation to the global
objective, yielding stronger redundancy mitigation and robustness.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

We consider a standard pool-based active learning setup. Let DU = {xi}Ni=1 denote a large pool of
unlabeled data instances. The learning process begins with a small labeled set DL = {(xj , yj)}Mj=1,
where M ≪ N and yj represents the ground-truth label for xj . The core of the problem is a
sequential querying procedure governed by a fixed annotation budget Q. In each iteration t, an
acquisition function α(x,Mt−1), which quantifies the utility of querying the label of a point x, is
used to select a batch of b samples from the unlabeled pool:

Dt
q = argmax

D⊂DU ,|D|=b

∑
x∈D

α(x,Mt−1), (1)

The oracle then provides the labels {y} for the queried batch Dt
q . These newly labeled samples are

removed from DU and added to DL. The modelMt−1 is then trained on the newly labeled batch
Dt

q , and the training cycle repeats. This select-query-retrain cycle continues until the annotation
budget Q is exhausted. The objective is to maximize the sample efficiency of the learning process,
obtaining a highly accurate model with as few labeled examples as possible.

To mitigate the redundancy of conventional global top-b uncertainty sampling, we adopt a fil-
ter–then–match paradigm that couples uncertainty with diversity. We first retain a generous set
of high-uncertainty candidates, yielding a filtered search pool

D flt,t
U =

{
x ∈ DU

∣∣ x is among the k most uncertain points at iteration t
}
, k ≫ b. (2)

This step uses uncertainty purely as a screen: it prunes clearly low-utility points and curbs local
redundancy, while preserving a high-recall set of plausible candidates. Given the screened pool, the
final batch is selected by aligning with the distribution of the entire unlabeled set via MMD:

Dt
q = argmin

D⊂D flt,t
U , |D|=b

MMD2
(
D, DU

)
. (3)

Uncertainty forms a high-recall candidate set, and MMD enforces coverage/representativeness in
the final picks—yielding batches that are both informative and diverse. To scale to large datasets,
we first cluster the pool into feature-space blocks and then apply Eq.(2) and Eq.(3) in parallel within
each block before aggregating the selections.

3.2 DIVERSITY-ENHANCED

Active learning under a fixed budget can be viewed as iterative coreset selection: at each round, we
choose a small subset that minimizes the expected training loss (i.e., the loss gap relative to using the
full pool). This perspective turns batch acquisition into selecting representative points that preserve
loss, naturally motivating the joint use of uncertainty and coverage/diversity. Formally, the objective
can be expressed as:

min
Dt

q :=b
Ex,y∼P [l(x, y;Mt)] , (4)

3
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where xi, yi are i.i.d. drawn from an underlying distribution P , and l(x, y;Mt−1) is the loss func-
tion of the modelMt−1 after being trained on the batch Dt

q .

Directly minimizing the training loss in Eq. (4) is computationally challenging. To overcome this,
we introduce a tractable surrogate objective: instead of minimizing the loss directly, we propose
to minimize the MMD between the selected subset and the full dataset. We establish a connection
between the upper and lower bounds of the training loss function over a given subset and the MMD
of that subset with respect to the full unlabeled pool. Specifically, it measures the distance between
the distribution of the selected coreset and that of the full unlabeled set. The formal statement of
MMD between two distributions P and Q is as follows:

MMD[F , P,Q] = sup
∥f∥H≤1

(EP [f(x)]− EQ[f(y)]) , (5)

where F is a class of functions, and ∥f∥H denotes the norm of the function f in the reproducing
kernel Hilbert space (RKHS). The expectations EP [f(x)] and EQ[f(y)] represent the expected val-
ues of the function f under the distributions P and Q. The MMD measures the largest difference
between the distributions P and Q in terms of the function class F . By minimizing the MMD, we
encourage the selected subset to closely match the full distribution of the unlabeled data, ensuring
that the selected coreset is a good approximation of the entire dataset. Before formally establishing
the connection between the MMD discrepancy and the expected loss, we first state the following
key lemma.

Lemma 1. (Zheng et al., 2022) Given n i.i.d. samples drawn from Pµ as S = {(xi, yi)}i∈[n], where
yi ∈ [C] is the class label for example xi, a coreset S′ that is a p-partial r-cover for Pµ on the input
space X , and any ε > 1 − p, suppose: (i) the loss l(·, y, w) is λℓ-Lipschitz continuous for all y, w
and bounded by L; (ii) the class-specific regression function ηc(x) := P(y = c | x) is λη-Lipschitz
for all c ∈ [C]; and (iii) l(x, y;hS′) = 0 for all (x, y) ∈ S′. Then, with probability at least 1− ε,∣∣∣∣∣∣ 1n

∑
(x,y)∈S

l(x, y;hS′)

∣∣∣∣∣∣ ≤ r
(
λℓ + ληLC

)
+ L

√√√√ log
(

p
p+ε−1

)
2n

. (6)

Informally, we interpret a p-partial r-cover as the fraction p of points in the ground set X that
fall within distance r of the subset S (the formal definition is deferred to the Appendix A).By the
preceding lemma, with probability at least p, the loss in a single training pass is upper-bounded by
a quantity that is monotone in the covering radius r, and therefore is primarily determined by r.
Hence minimizing the loss can be viewed as selecting points with strong covering power under the
p-partial r-cover criterion. To facilitate such selection, we relate coverage to the empirical MMD
below.

Theorem 1 (Coverage–MMD relation). Let X be the full dataset and S ⊆ X a subset. For a radius
r > 0, denote the coverage ratio by

ρ(r) :=
1

|X|
∣∣{x ∈ X : dist(x, S) ≤ r }

∣∣.
Let k(·, ·) be the Gaussian kernel k(u, v) = exp

(
−∥u − v∥2/(2σ2)

)
. Then the following bounds

hold:
δMMD − e− r2/(2σ2)

1− e− r2/(2σ2)
< ρ(r) < δMMD |S| e r2/(2σ2). (7)

Here δMMD denotes the cross term in the empirical MMD between S and X .

Theorem 1 establishes a precise connection between the MMD term δMMD and data coverage. The
bounds in Eq.(7) show that a larger δMMD (implying a smaller MMD) tightens both the lower and
upper bounds on the coverage ratio ρ(r) for any radius r. This means that for a fixed target coverage
level p, the required radius rp decreases as δMMD increases. Combining this with Lemma 1 yields
the key insight: minimizing the MMD leads to a tighter probabilistic loss bound for a given success
probability p, by reducing the effective covering radius needed.
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3.3 FROM MMD-BASED DIVERSITY TO A QUBO FORMULATION

When P and Q are represented by empirical samples X = {xi}ni=1 and S ⊆ X , and using the
kernel mean embeddings µX = 1

n

∑n
i=1 ϕ(xi) and µS = 1

|S|
∑

x∈S ϕ(x), the squared MMD admits
a closed-form expression:

f(S) =
∥∥µS − µX

∥∥2
H.

Let K ∈ Rn×n be the Gram matrix with Kij = ϕ(xi) · ϕ(xj) = k(xi, xj) and m ∈ {0, 1}n encode
the selected subset with 1⊤m = k. The MMD-minimization problem is

min
m∈{0,1}n

1

k2
m⊤Km − 2

nk
1⊤Km s.t. 1⊤m = k . (8)

With a sufficiently large penalty on the cardinality constraint, Eq.(8) is directly converted into
a QUBO of the form minm∈0,1n m⊤Q̂,m having the same minimizers; the construction of Q̂
and the equivalence proof are deferred to Appendix B.Moreover, since common kernels satisfy
Kij ≥ 0, maximizing the negated objective of Eq.(8) under the same cardinality constraint yields a
quadratic set function whose continuous relaxation has the Hessian with non-positive off-diagonal
entries, hence it is submodular (Bian et al., 2017). Therefore, the instance can be tackled either by
(cardinality-constrained) greedy selection or by quantum QUBO/Ising solvers (see Appendix B).

Even with extensive engineering, greedy selection over the full pool is costly. If we precompute the
non-sparse Gram matrix once and update marginal gains incrementally, the computational complex-
ity of k-step greedy procedure on n points is as follows:

T full
greedy = O

(
n2 + kn

)
. (9)

After partitioning X =
⋃B

b=1 Xb with |Xb| = nb and running greedy inside each block, the total
cost becomes

T block
greedy = O

(
B∑

b=1

n2
b +

B∑
b=1

kbnb

)
,

B∑
b=1

kb = k. (10)

When blocks are reasonably balanced (nb ≈ n/B and kb ≈ k/B),

T block
greedy = O

(
n2

B
+

kn

B2

)
, (11)

the QUBO in Eq.(8) involves one binary variable per data point, making it prohibitively slow and
yielding poor solutions on large datasets for both classical and quantum solvers. Our blockwise
partitioning confines each QUBO instance to a scale of a few hundred variables, which is well within
the regime where classical optimizers perform efficiently and effectively, and is also compatible with
the capabilities of current quantum hardware.

To strengthen the alignment between a small MMD and strong coverage, as suggested by Theorem 1
which becomes tighter for data blocks with smaller diameter, we partition the data into compact clus-
ters (e.g., in kernel feature space) using K-means for its simplicity and scalability. Moreover, this
blockwise approach is principled: when the selection quota for each block is set proportional to
its size, optimizing MMD separately within each block serves as a surrogate for the global objec-
tive, since the latter is governed by a weighted average of the per-block objectives (a generalized
statement with a quota-mismatch penalty is given in Appendix C).

Theorem 2 (Blockwise MMD approximation with proportional quotas). Let X =
⋃B

b=1 Xb be a
partition with weights wb := |Xb|/|X|. From each block b, select Sb ⊆ Xb of size |Sb| = kb and set
S =

⋃B
b=1 Sb, with αb := kb/k and

∑B
b=1 αb =

∑B
b=1 wb = 1. Let k be a bounded positive definite

kernel with feature map ϕ into an RKHS H, and assume supx k(x, x) ≤ κ2 (for a normalized RBF
kernel, κ = 1). Denote µA := |A|−1

∑
x∈A ϕ(x) and MMD2(A,B) := ∥µA − µB∥2H. If quotas

are proportional, i.e., α = w, then

MMD2(S,X) ≤ 2

B∑
b=1

wb MMD2(Sb, Xb) ≤ 2 max
b

MMD2(Sb, Xb). (12)

In particular, if each blockwise procedure achieves MMD2(Sb, Xb) ≤ εb, then MMD2(S,X) ≤
2
∑

b wb εb ≤ 2maxb εb.

5
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Theorem 2 indicates that with proportional quota allocation (α = w), the global MMD error is
bounded by a weighted average of the per-block errors. Thus, by ensuring the selection from each
compact cluster is representative, the blockwise procedure closely approximates the global objective.
Consequently, optimizing MMD within each block is a principled surrogate for the intractable global
optimization. If the quotas deviate from this proportion, an additional penalty term is incurred.

3.4 ALGORITHM

Given a candidate set Cb ⊆ Xb and quota kb, we solve the per-block MMD problem

min
Sb⊆Cb, |Sb|=kb

MMD2(Sb, Xb) =

∥∥∥∥∥ 1

kb

∑
x∈Sb

ϕ(x)− 1

nb

∑
x∈Xb

ϕ(x)

∥∥∥∥∥
2

H

. (13)

With proportional quotas (kb ∝ |Xb|), Theorem 2 ensures that the global error is controlled by a
weighted average of the per-block errors.

Algorithm 1 EBDAL (multi-round active learning)

Require: Initial labeled set L0, unlabeled pool U0, number of AL rounds T , per-round batch size
k, candidate ratio τ , max block size Mmax, kernel k(·, ·), uncertainty scorer uθ(·), SOLVER for
Eq. equation 13

Ensure: Final trained model θT
1: L← L0, U ← U0

2: for t = 1 to T do ▷ outer AL loop
3: Train / fine-tune model parameters θ on L
4: Compute embeddings zθ(x) for all x ∈ U
5: Cluster U in the kernel/feature space (e.g., recursive Kmeans) so each block size ≤ Mmax:

U =
⋃B

b=1 Xb, nb ← |Xb|
6: Set block quotas: kb ← round

(
k nb/|U |

)
; adjust by ±1 to ensure

∑
b kb = k

7: Set global candidate budget M ← ⌈τ |U |⌉ and distribute to blocks: cb ←
min{nb, max(kb, round(M nb/|U |)) }; adjust by ±1 so

∑
b cb = M

8: S(t) ← ∅
9: for b = 1 to B do

10: Rank Xb by uncertainty uθ(·) (descending); let Cb be the top-cb in Xb

11: (Optional) Fit per-block kernel parameters (e.g., RBF bandwidth via the median heuristic
on Xb)

12: Solve the per-block objective: Sb ← SOLVER(Cb, Xb, kb; k(·, ·)) for Eq. (13)
13: S(t) ← S(t) ∪ Sb

14: Query labels y for all x ∈ S(t) from the oracle
15: L← L ∪ {(x, y) : x ∈ S(t)}, U ← U \ S(t)

16: Train model fθT using {(x, y) : x ∈ S(t)

17: return θT

Remarks. (i) By setting quotas proportional to block sizes (kb ∝ nb), we adhere to the conditions
of Theorem 2, which eliminates the quota-mismatch penalty and bounds the global MMD by a
weighted sum of the local block MMDs.

(ii) Candidate filtering (cb ≪ nb) reduces the kernel computation cost within each block from O(n2
b)

to O(c2b) and significantly shrinks the problem size for the downstream solver.

(iii) Blocks are processed independently, enabling parallelization. The framework is solver-agnostic,
accommodating various backends (e.g., QUBO/Ising solvers; see Appendix D).

(iv) Hardware-aware Ising mapping. To cope with the limited bitwidth and dynamic range of
current quantum hardware, we adopt a precision-aware multi-auxiliary construction that splits large
data-spin fields into several couplers to a small set of ancilla spins. This redistributes scale so that
individual coefficients are comparable to the typical Jij level after global rescaling/quantization,
thereby preserving the effective resolution of J and mitigating precision loss; implementation
choices (e.g., ∆J , γ,Gi, Bg) are detailed in Appendix D.

6
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4 EXPERIMENTS

We evaluate our diversity-enhanced acquisition framework on standard image-classification bench-
marks by integrating it with representative uncertainty criteria and comparing each baseline to
its diversity-enhanced counterpart, reporting both accuracy-budget curves and the Area Under the
Curve (AUC). We also benchmark the selection backend by comparing a fast greedy solver against
a quantum QUBO/Ising formulation. Finally, we perform ablations that successively enable three
core modules: block partitioning with proportional per-block budgets; an in-block uncertainty filter
that forms a candidate pool; and MMD-based selection within each block. This setup isolates their
individual contributions.

4.1 EXPERIMENT SETTINGS

Datasets and Baselines We evaluate on five image classification benchmarks: CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), MNIST (Deng, 2012), SVHN (Netzer et al., 2011), and Fashion-
MNIST (Xiao et al., 2017). To study the benefit of diversity, we combine our framework with three
representative uncertainty-based selectors: entropy (probability-based) (Shannon, 2001), BALD
(Bayesian active learning by disagreement) (Gal et al., 2017), and LPL (learning-loss predictor)
(Yoo & Kweon, 2019). Methods suffixed with “-EBDAL” denote the corresponding algorithms
augmented by our diversity module.

As baselines, we include the standalone versions of the above three uncertainty methods (entropy,
BALD, LPL), as well as BADGE (Ash et al., 2019), Kmeans (Lloyd, 1982) clustering–based se-
lection, and the recent uncertainty-herding approach Uherding (Bae et al., 2025). Further imple-
mentation details (initial labeled size, labeling budgets, model/backbone, training schedules, and
hyperparameters) are provided in the Appendix E.

4.2 PERFORMANCE COMPARISON ACROSS DATASETS
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(e) FashionMNIST
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Figure 2: Overall performance trends across labeling budgets. Test accuracy vs. labeled training
set size on five benchmarks.
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Method CIFAR-10 CIFAR-100 SVHN MNIST FMNIST

Bald 0.6450 0.2866 0.7351 0.8392 0.8110
Bald-EBDAL 0.6482 (+0.32) 0.3005 (+1.39) 0.7440 (+0.89) 0.8589 (+1.97) 0.8180 (+0.70)
Entropy 0.6391 0.2902 0.7259 0.8418 0.8061
Entropy-EBDAL 0.6469 (+0.78) 0.2997 (+0.95) 0.7359 (+1.00) 0.8573 (+1.55) 0.8212 (+1.51)
LPL 0.5851 0.2258 0.7478 0.8880 0.8184
LPL-EBDAL 0.5977 (+1.26) 0.2446 (+1.88) 0.7595 (+1.17) 0.9219 (+3.39) 0.8467 (+2.83)
Badge 0.6480 0.3107 0.7448 0.8748 0.8188
Kmeans 0.6282 0.2940 0.7209 0.8146 0.8039
Uherding 0.6441 0.2923 / / /

Table 1: AUC (Area Under Curve) across datasets. Best per dataset in bold. Values in parentheses
show the improvement over the corresponding non-EBDAL baseline (in percentage points).

Across the five image classification benchmarks, we observe a consistent pattern: for a fixed labeling
budget, uncertainty methods augmented with our diversity module (the “-EBDAL” variants) shift the
entire accuracy–budget curve upward relative to their uncertainty-only counterparts. This translates
into fewer redundant queries and more effective use of labels (see Figure 2; quantitative AUCs
appear in Table 1).

The gains are especially pronounced on settings with many classes and noisier raw uncertainty sig-
nals (e.g., CIFAR-100), where both LPL-EBDAL and Entropy-EBDAL deliver clear AUC improve-
ments over their baselines. On easier datasets such as MNIST and SVHN, where most methods
already perform strongly at small budgets, EBDAL variants still yield consistent positive shifts;
notably, LPL-EBDAL attains the best AUC on MNIST.

Compared with diversity-only baselines (e.g., KMeans, BADGE), EBDAL achieves a more robust
exploration–exploitation balance by first forming a high-uncertainty candidate pool within each
block and then selecting a subset that minimizes MMD to the block population. This design avoids
small-batch redundancy caused by concentrated uncertainty mass while preserving global represen-
tativeness and scalability.

The sixth panel further contrasts greedy and quantum backends under the same setup. The two
curves closely align, with AUCs of 0.903 (EBDAL-Greedy) and 0.912 (EBDAL-Quantum), demon-
strating the feasibility of an end-to-end selection–training loop on real hardware. In our testbed, the
quantum backend solves a 500-variable QUBO instance in about 0.2ms per call, which is orders of
magnitude faster than the second-scale runtime of the greedy (submodular) solver on problems of
comparable size. Given the current invocation associated with quantum resources, we therefore use
the greedy solver for the main experiments and ablations, and report the quantum results as a fea-
sibility and effectiveness reference. A representative Hamiltonian-energy evolution trace and brief
explanation are provided at the end of Appendix E.

Overall, EBDAL delivers consistent accuracy gains and strong computational scalability across
datasets and budgets, validating the benefit of integrating blockwise diversity with uncertainty in
practical active learning pipelines.

4.3 ABLATION STUDIES

We ablate the three components of our diversity-enhanced acquisition pipeline—(i) block partition-
ing in feature space, (ii) per-block uncertainty filtering that forms an uncertainty candidate pool, and
(iii) distributional selection via in-block MMD minimization—using three variants: LPL (standard)
without blocks or explicit diversity; Block-TopU with block partitioning and UCPs but selecting the
kb most-uncertain points per block; and LPL-EBDAL with the full blockwise MMD selection. All
configurations share the same backbone, training schedule, data splits, and label budgets; curves
report test accuracy versus labeled-set size to isolate acquisition effects.

Across MNIST, CIFAR-10, and SVHN, the full LPL-EBDAL consistently dominates its ablations
over a wide range of budgets, indicating that explicit distributional matching (MMD) adds value
beyond uncertainty guidance and block partitioning alone. Block-TopU improves over LPL in the
low-budget regime by dispersing queries across blocks (reducing obvious redundancy), but it tends
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Figure 3: Ablation on MNIST, CIFAR10, and SVHN. We compare LPL (no blocking/diversity),
Block-TopU (blocking + per-block top-uncertainty), and LPL-EBDAL (full). LPL-EBDAL con-
sistently achieves the best label-efficiency by combining uncertainty guidance with MMD-based
distributional matching within each block.

to plateau earlier when high-uncertainty points cluster within the same local regions. In contrast,
LPL-EBDAL continues to benefit as the budget grows, suggesting that aligning the selected subset’s
kernel mean with each block’s population mitigates within-block redundancy and recovers globally
representative samples that pure uncertainty may undervalue. Representative trajectories are shown
in Figure 3.

5 CONCLUSION

We presented Efficient Blockwise Diverse Active Learning (EBDAL), a practical framework that in-
tegrates uncertainty guidance with distributional diversity through blockwise MMD minimization.
By framing active learning as iterative coreset selection, we establish a theoretical link between
distributional alignment and loss control. Technically, we formulate the per block MMD objec-
tive as a submodular QUBO, enabling efficient greedy selection and compatibility with quantum
solvers. Theoretically, we derive a coverage MMD bound and prove that blockwise optimization
with proportional quotas closely approximates the global objective. Empirically, EBDAL consis-
tently improves accuracy budget curves and AUC over uncertainty only and diversity only baselines
across standard image benchmarks, while reducing runtime. Ablations validate the contribution of
each component, and a direct comparison demonstrates the feasibility of executing the selection
phase on real quantum hardware.

In summary, EBDAL delivers a scalable and label efficient approach to active learning by cou-
pling uncertainty with principled blockwise distribution matching, providing a practical bridge to
advanced optimizers without sacrificing accuracy.
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LARGE MODEL USAGE STATEMENT

We used large language models for text translation and polishing.

A PROOF OF THEOREM1

In this section we make precise the notion of a p-partial r-cover and present a complete proof of The-
orem 1. We first recall the formal definition of p-partial r-cover. We then prove two-sided bounds
that relate ρ(r) to the empirical MMD cross term under a Gaussian kernel. This establishes a rigor-
ous connection between RKHS-based distributional discrepancy and geometric coverage, clarifying
why minimizing MMD promotes stronger coverage.

Definition 1 (p-partial r-cover). Following (Zheng et al., 2022), given a metric space (X, d) and a
probability measure µ on X (with density Pµ), a set S ⊂ X is a p-partial r-cover if∫

X

1⋃
x∈S Bd(x,r)(x) dµ(x) = p,

where Bd(x, r) = {x′ ∈ X : d(x, x′) ≤ r } is the radius-r ball centered at x, and 1A denotes the
indicator of a set A.

Proof. Let
A := {x ∈ X : dist(x, S) ≤ r }, |A| = |X| ρ(r). (14)

Write the (standard) MMD cross average as

δMMD =
1

|S| |X|
∑
s∈S

∑
x∈X

k(s, x) =
1

|X|
∑
x∈X

( 1

|S|
∑
s∈S

k(s, x)
)
. (15)

For any x ∈ A there exists s⋆ ∈ S with ∥x− s⋆∥ ≤ r, hence

1

|S|
∑
s∈S

k(s, x) ≥ 1

|S|
k(s⋆, x) ≥ 1

|S|
e− r2/(2σ2). (16)

Averaging Eq.(16) over x ∈ A and discarding the (nonnegative) contribution from X \A gives

δMMD ≥
|A|
|X|
· 1

|S|
e− r2/(2σ2) =

ρ(r)

|S|
e− r2/(2σ2). (17)

Therefore
ρ(r) ≤ δMMD |S| e r2/(2σ2). (18)

For any x /∈ A we have dist(x, S) > r, so k(s, x) ≤ e− r2/(2σ2) for all s ∈ S, while k(s, x) ≤ 1
always. Hence

1

|S|
∑
s∈S

k(s, x) ≤

{
1, x ∈ A,

e− r2/(2σ2), x /∈ A.
(19)

Averaging Eq.(19) over x ∈ X yields

δMMD ≤
1

|X|

(
|A| · 1 + (|X| − |A|) e− r2/(2σ2)

)
= ρ(r) +

(
1− ρ(r)

)
e− r2/(2σ2). (20)

Solving Eq.(20) for ρ(r) gives

ρ(r) ≥ δMMD − e− r2/(2σ2)

1− e− r2/(2σ2)
. (21)

Combining Eq.(18) and Eq.(21) proves Eq.(7).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B FROM MMD MINIMIZATION TO QUBO

We briefly show how the cardinality–constrained MMD objective becomes a single-matrix QUBO.
From Eq.(22), (i) add the quadratic penalty λ(1⊤m − k)2 to enforce 1⊤m = k, and (ii) use the
binary identity m2

i = mi to absorb the linear term into the diagonal, yielding a standard QUBO with
matrix Q̂. For sufficiently large λ, minimizers coincide. We also give element-wise coefficients of
Q̂ for implementation.

Let K ∈ Rn×n be the Gram matrix with Kij = k(xi, xj) and m ∈ {0, 1}n encode the selected
subset with 1⊤m = k. The empirical MMD objective between the subset and the full pool reduces
to

min
m∈{0,1}n

1

k2
m⊤Km︸ ︷︷ ︸

quadratic

− 2

nk
1⊤Km︸ ︷︷ ︸
linear

s.t. 1⊤m = k. (22)

Step 1 (penalize the cardinality constraint). Add a quadratic penalty with λ > 0:

λ
(
1⊤m− k

)2
= λm⊤Jm − 2kλ1⊤m + λk2, J := 11⊤.

Dropping the constant λk2, we obtain the unconstrained binary quadratic objective

min
m∈{0,1}n

m⊤Qm + q⊤m + const, Q :=
1

k2
K + λJ, q := − 2

nk
K1− 2kλ1. (23)

For sufficiently large λ, any minimizer of Eq.(23) satisfies 1⊤m = k and thus solves Eq.(22).

Step 2 (absorb the linear term into the quadratic). For binary m, m2
i = mi, hence q⊤m =∑

i qimi =
∑

i qim
2
i = m⊤Diag(q)m. Define

Q̂ := Q+Diag(q) =
1

k2
K + λJ + Diag

(
− 2

nk
K1− 2kλ1

)
.

Then we obtain a standard single-matrix QUBO:

min
m∈{0,1}n

m⊤Q̂m (24)

and Eq.(24) and Eq.(22) have the same minimizers (constants omitted). This QUBO can be handled
by classical QUBO solvers or quantum Ising backends; the detailed equivalence proof and choices
of λ are in Appendix B.

Element-wise coefficients of Q̂. Let u := K1. Then

Q̂ij =


1

k2
Kij + λ, i ̸= j,

1

k2
Kii + λ − 2

nk
ui − 2kλ, i = j.

Here J contributes λ to all entries, including the diagonal; the linear term contributes only to the
diagonal via Diag(q).

C PROOF OF THEOREM2

We bound the global RKHS discrepancy between the selected set and the pool by separating it into
(a) within-block mismatches and (b) a quota-mismatch term that measures how far the selection
weights α deviate from the block proportions w. Using a two-term inequality with a tunable con-
stant, convexity, and bounded-kernel arguments, we obtain the blockwise approximation bound in
Eq.( 31); when quotas are proportional (α = w), it simplifies to Eq.( 32). The details follow.

We first note the blockwise decompositions

µS =

B∑
b=1

αb µSb
, µX =

B∑
b=1

wb µXb
, (25)

13
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which imply

µS − µX =

B∑
b=1

αb (µSb
− µXb

)︸ ︷︷ ︸
≜U

+

B∑
b=1

(αb − wb)µXb︸ ︷︷ ︸
≜V

. (26)

(i) Two-term split with a tunable constant. For any η > 0, the parallelogram-type inequality

∥U + V ∥2 ≤ (1 + η)∥U∥2 +
(
1 +

1

η

)
∥V ∥2

holds. Taking η = 1 recovers the bound used in the main text:

∥µS − µX∥2 ≤ 2∥U∥2 + 2∥V ∥2. (27)

This shows where the factor 2 comes from and also allows a trade-off via η when one term is known
to be small.

(ii) First term via Jensen/convexity. Because
∑

b αb = 1 and ∥ · ∥2 is convex,∥∥∥ B∑
b=1

αb(µSb
− µXb

)
∥∥∥2 ≤ B∑

b=1

αb ∥µSb
− µXb

∥2 =

B∑
b=1

αb MMD2(Sb, Xb). (28)

(iii) Second term via bounded kernels. Assume supx k(x, x) ≤ κ2. Then ∥ϕ(x)∥ ≤ κ and hence

∥µXb
∥ =

∥∥∥ 1

|Xb|
∑
x∈Xb

ϕ(x)
∥∥∥ ≤ 1

|Xb|
∑
x∈Xb

∥ϕ(x)∥ ≤ κ. (29)

By the triangle inequality,∥∥∥ B∑
b=1

(αb − wb)µXb

∥∥∥ ≤ B∑
b=1

|αb − wb| ∥µXb
∥ ≤ κ ∥α− w∥1. (30)

Combining Eq.(27)– Eq.(30) yields the general bound

MMD2(S,X) ≤ 2

B∑
b=1

αb MMD2(Sb, Xb) + 2κ2 ∥α− w∥21. (31)

(iv) Proportional quotas as a corollary. When α = w (quotas proportional to block sizes), the
mismatch term vanishes and Eq.(31 )simplifies to

MMD2(S,X) ≤ 2

B∑
b=1

wb MMD2(Sb, Xb) ≤ 2 max
b

MMD2(Sb, Xb), (32)

which is exactly the theorem stated in the merged main text.

(v) Optional variants. If additional structure is available, one may tighten the mismatch term:

• Using ∥
∑

b cbµXb
∥ ≤

(∑
b c

2
b

)1/2(∑
b ∥µXb

∥2
)1/2 ≤ κ

√
B ∥α−w∥2 gives an alternative

bound 2κ2B ∥α− w∥22, which can be sharper or looser than the ℓ1 bound depending on B
and the sparsity of α− w.

• If blocks are very compact so that ∥µXb
− µX∥ ≤ ∆ for all b, then writing V =

∑
b(αb −

wb)(µXb
−µX) yields ∥V ∥ ≤ ∆ ∥α−w∥1, replacing κ by the typically smaller dispersion

∆.

(vi) Equality and interpretation. If α = w and each block attains µSb
= µXb

(perfect local match-
ing), then the right-hand side of Eq.(32) is 0, hence MMD2(S,X) = 0. Thus compact clustering
plus proportional quotas makes the global error a convex combination of local errors, explaining
why blockwise MMD optimization closely tracks the full-pool objective.
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D ISING MODEL

This subsection has two parts. First, we recall the standard, closed-form mapping from a binary
QUBO to an Ising model via the change of variables xi = (si + 1)/2, yielding explicit expressions
for the pairwise couplers Jij , local fields hi, and the constant shift. Second, we address a practical
issue on current quantum/annealing hardware: coefficients are encoded with limited bitwidth and
dynamic range. In many AL objectives the cardinality penalty aggregates into large local fields hi

whose scale can dwarf the pairwise couplers Jij ; after global rescaling/quantization this compresses
the effective resolution of Jij . We therefore describe a multi-auxiliary scheme that redistributes
overly large data-spin fields into several couplers to a small set of ancilla spins, so that each coupling
sits on the same scale as typical Jij . This improves numerical conditioning and retains more useful
precision for J in QUBO→Ising deployments.

D.1 STANDARD QUBO TO ISING MAPPING

Consider a QUBO in the upper-triangular form

min
x∈{0,1}n

EQUBO(x) =
∑
i≤j

Qij xixj + C0, (33)

where linear terms have been absorbed into the diagonal (Qii). Introduce Ising spins s ∈ {−1, 1}n
via xi = (si + 1)/2. Using

xixj = 1
4

(
1 + si + sj + sisj

)
(i < j), xi = 1

2 (1 + si),

we obtain an Ising Hamiltonian (up to an additive constant)

min
s∈{−1,1}n

EIsing(s) = −
∑
i<j

Jij sisj −
∑
i

hi si + C, (34)

with coefficients

Jij = − Qij

4
(i < j), hi = − Qii

2
− 1

4

∑
j ̸=i

Qij , (35)

and constant C = C0 +
1
4

∑
i<j Qij +

1
2

∑
i Qii (which does not affect minimizers). Equations

Eq.(33) and Eq.(34) therefore have the same minimizers after the change of variables xi = (si +
1)/2.

Multi-auxiliary (precision-aware) construction We start from the Ising form

E(s) = −
∑
i<j

Jij sisj −
n∑

i=1

hi si, si ∈ {−1, 1}. (36)

When the bitwidth is limited, very large |hi| (e.g., from a cardinality penalty) dominate the global
scale used for coefficient normalization/quantization, thereby squeezing the dynamic range available
to represent Jij . To alleviate this, we split each large field into several couplers to auxiliary spins so
that every individual coupling magnitude is comparable to a chosen J-scale.

Concretely, introduce G ancilla spins ag∈{−1, 1} and nonnegative weights wig such that

Gi∑
g=1

wig = |hi|, wig ≈ ∆J , (37)

where Gi = max
(
1, ⌈|hi|/(∆J)⌉

)
and ∆J is a reference coupler scale (e.g., ∆J = mediani<j |Jij |

or maxi<j |Jij |). Let σi = sign(hi). We implement the following bounded-scale Ising model on
hardware:

Esplit(s, a) = −
∑
i<j

Jij sisj −
G∑

g=1

( n∑
i=1

σi wig si

)
ag −

G∑
g=1

Bg ag, (38)
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with modest ancilla biases Bg chosen by a simple rule such as

Bg = (1 + ϵ)

n∑
i=1

wig with 0 < ϵ≪ 1, (39)

and then jointly rescaled with {Jij} to the device’s representable range. By construction, each
coupling |σiwig| is of the same order as ∆J , so after the single global rescaling/quantization step the
Jij entries retain substantially more effective resolution. In practice this “field-to-coupler splitting”
acts as a precision-aware reparameterization: it reduces dynamic-range imbalance between h and J
without altering the data–data couplers {Jij}.

E IMPLEMENTATION DETAILS

We benchmark on five image–classification datasets, deliberately using relatively small batch sizes
b to emphasize the small–batch regime where diversity matters. Table 2 summarizes the datasets
and our default AL settings. We largely follow prior configurations, but intentionally adopt rela-
tively small batch sizes b to highlight the importance of diversity in the small-batch regime. Unless
otherwise noted, the backbone is ResNet-18 (He et al., 2016). Our DAL framework is built on the
evaluation setup of (Zhan et al., 2022); please refer to their paper for additional architectural and
training details.

i is the size of initial labeled pool, u is the size of unlabeled data pool, t is the size of testing set, b
is the per-round batch size, Q is the total query budget, C is the number of categories, and e is the
number of epochs used to train the basic classifier in each AL round. Each algorithm is run three
times per dataset to report the mean and variance. Mmax is the maximum block size and τ is the
candidate ratio (fraction of unlabeled pool sampled as candidates). For fairness, we set the number
of training epochs for Uherding to match the other methods, while keeping its original learning rate
0.025; empirically, reducing it to 0.001 (the rate used by other methods) led to much slower accuracy
improvements. Because the public Uherding codebase does not provide configurations for SVHN,
MNIST, and FashionMNIST, we did not reproduce Uherding on these three datasets. The head-to-
head comparison between the quantum solver and the greedy algorithm was conducted with batch
size b = 100 and candidate ratio τ = 0.06, reflecting the nontrivial overhead of invoking current
quantum hardware and chosen to conserve computational resources.

When blocks are used, we fix the maximum block size Mmax, adopt proportional quotas (αb = wb),
and use the same candidate ratio τ to form UCPs. The kernel function we adopt is the Gaussian
kernel function. Kernel bandwidths are set per block via the median heuristic; the solver for the
MMD subproblem is identical across runs. Each method is run three times per dataset with different
seeds.

Dataset i u t b Q C e Mmax τ

MNIST 100 59,500 10,000 50 1,000 10 20 5,000 0.1
FashionMNIST 500 59,500 10,000 50 5,000 10 20 5,000 0.1
SVHN 500 72,757 26,032 50 5,000 10 20 5,000 0.1
CIFAR10 1,000 49,000 10,000 100 6,000 10 30 5,000 0.1
CIFAR100 1,000 49,000 10,000 100 10,000 100 40 5,000 0.1

Table 2: Datasets used in comparative experiments.

Figure 4 shows the measured expectation of the problem Hamiltonian during a single annealing
run. The characteristic steep initial descent reflects the transition from the initial driver Hamiltonian
to the problem Hamiltonian, during which the system rapidly explores the energy landscape and
converges toward low-energy regions. The long, flat plateau that follows indicates the system has
settled into a metastable state within a low-energy basin, which corresponds to the solution subset
returned by the annealer. In our encoding, a lower Hamiltonian expectation corresponds directly to
a smaller MMD objective. Therefore, the observed trajectory confirms that the quantum annealer
successfully progresses to a high-quality solution.
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Figure 4: Hamiltonian evolution.

F ADDITIONAL PAIRWISE PLOTS (ABLATIONS)

In Figure 5 we present pairwise comparisons that isolate the effect of our diversity module: for
each selector (Entropy, BALD, LPL) we plot its uncertainty-only variant against its “–EBDAL”
counterpart under identical backbones, training schedules, and budgets. The only change within
each pair is the addition of blockwise candidate filtering and MMD-based selection.

Across datasets, the EBDAL curves consistently lift and smooth the accuracy–budget trajectories
relative to their baselines, with the largest gains on harder settings such as CIFAR-100. Improve-
ments are already visible at small budgets—where uncertainty-only methods tend to sample clus-
tered, redundant points—and remain evident as labeling proceeds on CIFAR-10, SVHN, MNIST,
and FashionMNIST.

Overall, these plots confirm that coupling uncertainty with blockwise diversity reduces small-batch
redundancy and improves label efficiency in a method-agnostic way.
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Figure 5: Pairwise comparisons of uncertainty-only vs. EBDAL variants. Columns: (left)
Entropy vs. Entropy-EBDAL; (middle) BALD vs. BALD-EBDAL; (right) LPL vs. LPL-EBDAL.
Rows: CIFAR-10, CIFAR-100, SVHN, MNIST, FashionMNIST. EBDAL smooths and elevates the
curves at the same budget.
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