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ABSTRACT

Reinforcement learning (RL) has displayed great potential on both discrete and
continuous tasks. However, its applicability in in realistic settings is curbed by the
inherent uncertainty in value estimates and policy estimates, especially for con-
tinuous control problem. We propose an off-policy actor-critic method for deep
reinforcement learning (DRL), where the value and policy are estimated by func-
tion approximation. The gradient decent approach to update parameters of multi-
ple neural networks alternatively will inevitably cause the saddle point problem,
which will degrade the overall convergence performance of training processes.
Besides, off-policy methods can induce distribution mismatch, causing a deadly
cycle of overestimation, when the candidate policies are conspicuously different
from the policy which produces the data in replay buffer. Therefore, despite en-
joying the advantage in sample complexity, the off-policy actor-critic methods
is highly sensitive to network initialization, especially in the absence of expert
demonstrations. We attempt to tackle these two issues by proposing a novel poli-
cy regularization and related value penalty, respectively. The policy regularization
makes the training less content with the saddle point which pretends to be an opti-
mal one and encourages the training to skip it. And the value penalty discourages
over-optimistic value estimates. The proposed method is further combined with
behavior cloning to apply to offline RL and tested on D4RL benchmarks.

1 INTRODUCTION

In recent years, DRL has demonstrated great potential in recent year. However, its application is
mainly limited to video games Mnih et al.|(2015));|Silver et al.|(2016;2018)) that can virtually interact
with the related environment. In Markov Decision Process (MDP) settings, the agent takes an action
on the basis of the current state in the environment and then observe the reward and next state. To
efficiently exploit the experience data, we focus on the off-policy issues where the policy underlying
the estimated value is evaluated by a dataset collected according to another behavior policy [Sutton
& Barto| (2018)). Off-policy methods usually use a replay buffer to store the states, actions and
observations as the experience data, which is quite significant in real-world applications because
the dataset of the replay buffer constitutes the heuristic basis of offline RL.

Although off-policy RL algorithms adopt mini-batches sampled from previously-collected dataset
during the training process, it does not always perform well due to the extrapolation error induced
by the mismatch between the distribution of experience dataset and the state-action visitation of the
current policy |[Fujimoto et al.|(2019). The main challenge encountered by related algorithms is that
the coverage of policy visitation is not enough for further evaluations, which can cause the out-of-
distribution (OOD) actions. The situation is even worse when OOD actions predict inaccurate value
estimates that outweigh the true value Thrun & Schwartz| (1993)), i.e., the overestimation, since RL
tends to choose actions pursuing value maximization. In practice, compared with underestimaton,
overestimation is less preferable because it further accumulates and broadcasts via bootstrapping of
temporal difference learning Sutton & Barto| (2018).

In continuous control setting, the actor-critic approach is unavoidably adopted due to the flexibility
brought by the function approximation. However, the induced intrinsic noise will aggravate the
inaccuracy of value estimates and thus cause estimation errors. Besides, the saddle point problem
will be exaggerated by the uncertainty of function approximation, and cause further suboptimal
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policies and fake convergence. In general, the saddle point problem is extremely difficult to solve
because of the nature of DRL, where the algorithm designer can only link the input actions and
observations through a ”’black box”. In comparison, the value overestimation is much easier to be
addressed. There have been several categories of methods developed to tackle the overestimation
caused by distribution shifts, including the policy constraint, V-function and conservative estimation
Zhao et al.| (2022). The V-function is distinct from the widely used actin-value (Q-value) function
because it does not rely on the action and thus avoid optimizing the policy heuristically. The policy
constraint explicitly constrains agent’s policy into behavior policy or uses divergence to keep policy
close to behavior policy. The conservative estimation reduces the value of OOD actions so that the
in-distribution actions have higher probability to be selected. It mitigates the policy extrapolation
errors while compromising with policy exploration. Therefore, the conservative estimation can be
realized by value penalty, and assisted with proper policy regularization, which is partly the attempt
of our work.

When we try to deal with standard off-policy RL, we need to mention the offline or batch RL, whose
dataset is given by some expert demonstrations instead of real environment interactions. Compared
with offline RL, online off-policy RL has the ability to test and adjust the policy trough environmen-
t interactions. However, the attempted exploration may be false or invalid due to inaccurate value
estimates, which may result in the worse performance than the offline counterpart with good fixed
dataset. Except for the sources of dataset, offline RL and online off-policy RL share the same prob-
lems in overestimation errors and saddle point. Therefore, we believe that our proposed approach to
off-policy RL can also apply to offline RL.

The paper aims to address the value overestimation and saddle point problems to get a better policy
appropriately while keeping the Q-values estimates relatively accurate. Specifically, to avoid subop-
timal or fake convergence, we first make the worst assumption that every candidate of optimal point
is suboptimal and make the agent get over it. This is realized by a gradient-based policy regulariza-
tion. We propose that the gradient of Q-value with respect to the action should be bounded by a hard
constraint. Second, to avoid the second order gradient of Q-value with respect to the action being
zero, we add some nonlinearity into the fully-connected critic layers. Third, we propose a value
penalty concerned with the norm of Q-value gradient with respect to the action to coordinate with
the regularization term and relieve the negative impact of overestimation. After that, we present a
novel algorithm which combines our method with a certain off-policy actor-critic approach to tackle
the above mentioned problems and pursue effective and stable exploration. Furthermore, the pro-
posed method is further constrained by behavior cloning to observe its offline performance, which is
evaluated on D4RL benchmarks of MuJoCo tasks. Finally, experimental evaluations are conducted
on a set of Gym tasks including HalfCheetah, Hopper, Walker2D, Ant and Humanoid, to compare
the proposed algorithm with several baselines in terms of sample efficiency and stability.

2 RELATED WORK

Our work deals with the off-policy problems with the actor-critic method, which starts from poli-
cy iteration and alternates between policy evaluation and policy improvement steps, computing the
value function and deriving an updated policy, respectively. In off-policy RL, the agent has to bal-
ance the tradeoff between exploration and exploitation. Without exploration, the policy is unable to
improve by itself and the value evaluation cannot proceed to reach the fixed point for the overall
performance of training. Given no expert dataset, the agent needs to interact with the environment
to gain experience to optimize the RL objective. The exploration issue is addressed by maximum
entropy learning in the up-to-date literature Ziebart et al.| (2008)); [Toussaint/ (2009); Rawlik et al.
(2012); [Fox et al.| (2015); [Haarnoja et al.[| (2017), which can substantially improve the robustness
when dealing with uncertainty errors [Ziebart| (2010). Maximum entropy learning improves explo-
ration by broaden the diversity of behaviors [Haarnoja et al.| (2017), and its combination with the
actor-critic architecture, which separates the policy network from the value function, encourages
the action exploration and makes some efforts to combat the suboptimal convergence Barto et al.
(1983)); \Sutton & Barto| (2018)).

Policy entropy is also considered to belong to the family of regularizer |Schulman et al.| (2015
2017); Mnih et al.| (2016); |Gruslys et al.| (2017)), which is usually adopted to cope with erroneous
action-value estimates caused by function approximation and distribution shifts|Sutton|(19935)); Baird
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(1993); [Tsitsiklis & Van Roy| (1996); [Van Hasselt et al.| (2018). The solutions to these errors can be
divided into two directions, i.e., the value penalty and policy regularization. Based on the intuition
that the negative effect of overestimation is more destructive on OOD actions, the policy regular-
ization or constraint is often realized by constraining agent’s policy into the behavior policy or
regularizing the learned policy towards the behavior policy through some divergence criterion Fuji-
moto et al.| (2019); Kumar et al.| (2019); [Jaques et al.| (2019); [Laroche et al.[(2019). The maximum
entropy policy regularization [Haarnoja et al.| (2018a3b)) adopts stochastic policies to generalize the
policy improvement and introduce uncertainty into action decisions over deterministic counterparts
Heess et al.|(2015). A typical approach to the value penalty is sophisticated ensembles of target Q-
value to remedy the value overestimation and stabilize the trained Q-value function |[Fujimoto et al.
(2019); Kumar et al.[(2019); |Agarwal et al.[(2019). Another way to avoids overestimation induced
by OOD actions is the conservative estimation, which assigns lower value to potential state-action
pairs [Kumar et al.| (2020); [Kostrikov et al.|(2021)). Specially, [Zhao et al.| (2022) changes the degree
of conservatism in training by adding a simple constant term to the estimated Q-value, and |[Fakoor,
et al.| (2021) proposes a value-constraint to discourage over-optimistic value estimates and a poli-
cy constraint to reduce the divergence between the learnt policy and the unknown behavior policy,
respectively, involving several divergence metrics Wu et al.|(2019).

3 PRELIMINARIES

In this work, we focus on the Markov Decision Process (MDP). A standard MDP can be represented
by the tuple (S,.A, T, r) where S is the state space, A is the action space, T'(-|s, a) is the transition
probability of the next state s’ € S conditioned on the current state s € S and action a € A, and
r € § x A is the reward which is the feedback from the environment of the current state s and action
a. The objective of RL is to find a policy to maximize the expected return denoted by the discounted
cumulative reward. When the function approximation is adopted in actor-critic RL, both the policy
and value function are parameterized by neural networks. Let 7 denote the policy, then the objective
of expected return with respect to the state-action pair can be given in the form of

oo
Q‘n’(sa a) = ]Ep"(sdso,ao) Z’YtT(Sh at)‘SO =S,a0 =a|, (1)

t=0
where r(s,a) is the immediate reward produced by the state-action pair, and v € (0,1) is the
discount horizon factor for future rewards. With the effect of behavior policy 7, p™ (s¢|sg, ap) =
T(s1]s0,a0) IT; [Eas_r~nT(S¢|S1—1,a:—1)] is the trajectory distribution of an episode given the
initial state-action pair (s, ag), and 7(a¢+1|s:+1) indicates the conditional probability density func-
tion (pdf) for the agent to choose the action a;y; given the state s;;. We denote a = m(s) as the
generation function mapping the state to the action, which is distinct from the conditional pdf 7(a/s).

3.1 SADDLE POINT PROBLEM

The structured saddle point often shows up in the form of optimizing an objective over multiple
variables, which is applied in generative adversarial networks, robust optimization Ben-Tal et al.
(2009) and game theory [Leyton-Brown & Shoham|(2008)); Singh et al.|(2000). In actor-critic setting,
the saddle point problem is produced by alternatively solving the optimization of value function and
policy. To better illustrate the issue, we simply formulate our saddle point problem as

min HlélXE(S,a,r,s’) [L(w) + J(0)], )

where w and 6 are respectively the critic and actor parameters, J(0) = E, [Q. (s, mg(s)], and
Liw) = (r +9Q0 (5", 70 (5) = Qu(s,0))%, (3)

where (s, a,r, s’) is a transition slot sampled from the dataset at every environment step, and w’ and
0’ are the parameters of target value and target policy which are correlated with w and 6.

Let K (w, 6) denote the summation within the min-max operator in (2)), then solving (2)) is equivalent
to find a point (w*, *) which satisfies the following condition that

K(w*,0) < K(w*,0%) < K(w,0%). 4)
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Assume the gradient of K is Lipschitz with respect to the parameters (w, ) First-order gradient
descent or ascent is usually adopted to address RL, which gives the following iterative updates as

(W1, 0t41) = (we, 0t) + 1e(=V Li + Vo i), )

where I; is the learning rate, which is often selected to be time-decreased or a constant. Solving
can reduce to a locally optimal saddle point (w”, %), which meets VK (w”, %) = 0. Considering
the usage of updating rule in (3)), the property of zero gradient makes saddle point a candidate of
converged points. In another words, the gradient-based optimization is apt to converge to some
undesired stable stationary points, which are not able to escape through successive iterations of
gradient descent or ascent/Adolphs et al.|(2019).

4 METHODS

Our previous discussion on the problems existing in off-policy actor-critic RL suggests two aspects
of fixes that have the potential to improve the convergence while arriving at more precise Q-values
estimates. To address these, we first have to restrict the value overestimation through value penalty,
which is modeled as the norm of the partial gradient of Q-value function with respect to the action.
The heuristic intuition underlying this method is to penalize the value estimation at regions with
high sharpness of Q-values with respect to actions. Secondly, we enable the agent to escape from
the gravitation of any saddle point so that the final converged value can grow naturally with fewer
unreasonable caps. To achieve this goal, we have to make a conservative assumption that all station-
ary points encountered by the agent during the training are saddle points. We further optimize the
policy with a constraint set upon the partial gradient of Q-value with respect to the action. The com-
monly used Multi-Layer Perceptron (MLP) will reduce the partial gradient of Q-value with respect
to the action to be constant, so we reorganize the layer design.

4.1 GRADIENT-NORM CONSTRAINED VALUE ITERATION

The iteration of gradient-norm constrained (GNC) value is started by determining the target value
for the critic based on TD learning and Bellman equation, which is the selection of Qf, as shown
in (3). In standard deep deterministic policy gradient (DDPG) Lillicrap et al. (2015), Q, is exactly
the same as (),». When the entropy term is adopted in value penalty, like soft actor-critic (SAC)
Haarnoja et al.| (2018aib)), the target value is penalized by an entropy term to make the Q-value
estimate comply with the maximum entropy policy. Though in different forms, the entropy-based
value penalty seems to belong to the family of conservative estimation, which gives lower value
to selected regions of state-action pairs that have the potential to cause policy extrapolation errors.
Recently it is reported in [Zhao et al.| (2022) that a constant subtracted from (). can effectively
mitigate the overestimation of OOD actions. Overall, the conservative estimate of target Q-value has
the form of Q',, = Q. — penalty, where the penalty is usually nonnegative.

In our work, we model the value penalty as the second-order norm of the partial gradient of Q-value
function with respect to the action to approximate the sharpness of Q-value. Given the MDP denoted
by (S, A, p,r), then a modified Bellman backup operator 7™ is given by

Tﬂ-Q(sh at) = T(Stv at) + 7E8t+17€1t+1 [Qt(st-‘rl’ at+1)] ) (6)
where s;11 ~ T(+|s¢,a¢) and agq1 ~ 7(+|S¢41), and
Q" (st41, a141) = Q(S¢41, ar41) — Bl Vayy Q(St41, arg1) 2, (7N

is the gradient-norm constrained value function, and [ is a fixed newly-induced hyperparameter,
which is used to balance the contribution of GNC term to avoid over-punishment. By this means,
the agent are capable of penalizing the unstable gradients since the misleadingly sharp partial Q-
value gradients is inclined to get into OOD actions. In prior methods, the value penalty term is often
unrelated with the Q-value function, so that their convergence will not be affected by the extra term.
Although our value penalty is correlated with the partial gradient of Q-value, we can still prove that
repeatedly employing 7™ for any policy 7 will end up with a Q-value floating around the fixed point
of Bellman operator.

Lemma 1. Given the condition that V ,Q(s,a) is well defined, and 3L, Lg,Lv > 0 such that
Ir(s,a)] < L, |Q(s,a)] < Lg,|[|VaQ(s,a)|l2 < Lv,V(s,a) € Sx A then the sequence
Quyoir (51, a¢) = T Quy,, (51, ay) will be bounded around a fixed point as t — oo.
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The proof of Lemma 3|can be found in Appendix[A]l According to the proof, how far it deviates from
the original fixed point can be controlled by the hyperparameter of 5. Throughout this proof, we did
not use the original definition of Q-value in (T)), since the function approximation is often adopted
in DRL to replace (I)). However, (I) constitutes the basis of Bellman operator. The requirement for
the 2-norm of the partial gradient of Q-value function w.r.t. the action to be bounded is weak and
can be satisfied by rearranging the critic network. In comparison to the work in |Gao et al.| (2022),
which proposes a sufficient condition that the norm of the partial gradient of policy m w.r.t. the
action should be bounded below unit to ensure that the norm of the partial gradient of Q-value
function w.r.t. the action to be bounded, our condition is looser because the design of actor network
is subjected to normalization except for the hard constraint less than 1. Since the state-action spaces
are continuous and the transition probability is unknown in model-free DRL, the Q-value function
cannot be formulated or tabulated by the state-action pairs, which means the function approximation
gives no absolute guarantee for the bounded Q-values. Therefore, instead of repeatedly applying (6]
directly, the practical evaluation step is estimated by minimizing the expected mean square error
(MSE) between 7™ Q(s, a) and Q(s,a). Once the expected MSE converges to be acceptably small,
the updates of Q-value function based on MSE will end up with little fluctuation around the fixed
point when the [ is proper.

4.2 GRADIENT-NORM CONSTRAINED POLICY REGULARIZATION

When it comes to the policy regularization, we try to avoid any candidate of saddle points. However,
due to the inaccurate value estimates and unknown transition probability, the distinction between
the optimal point and saddle points is invisible to algorithm developers. Therefore, we treat all
stationary points to be saddle points to make a compromise between the asymptotic performance
and convergence rate. Based on this idea, we optimize the policy subjected to a condition that the
partial gradient of Q-value w.r.t. the action should be nonnegative. We give the constrained policy
regularization as

mgaXEs [Qu(s,mo(s))] st. Eg[VeQu(s,me(s))] >0, (8)

where 7y is the policy approximation parameterized by 6, which is often modeled as the standard
deviation of a Gaussian distribution concerned with the action. The heuristic intuition underlying
this constraint is to encourage the agent to skip the current stationary point and find the next one.
However, this constraint is not easy to address in this form, we change it into some dual form instead.

Proposition 1. Given the condition that the policy is parameterized as a Gaussian distribution w.r.t.
the action, then the following condition that

|Al

Es Z(vaiQw(Syai)) Z 01 (9)

=0

where | A| represents the dimension of action space and a; is the i-th element of the action vector, is
sufficient for B [VoQu (s, mo(s))] > 0.

The proof of Proposition[2]can be found in Appendix [B] We use the summation of all elements of the
Q-value’s partial gradient w.r.t. the action to weight its contribution because V,Q, (s, a) is a vector.
Since the constraint optimization problem can be solved by Lagrange dual form, we can project the
policy onto a unconstrained normalized distribution, which is given by

Q™ (s,)~—£2— . V.Q(s.)
a4 = Tpew(s) = arg min Dk, ( (s)lle \/@ >
L ¢
=argmaxE, [Q(s,a) — — Va,Q(s,a:) |, (10)
4 | Al i=0

where s ~ S, a ~ 7(:|s¢), Dk (+]|-) is the KL divergence, Q™ (s, ) = Q(s, -) + alog(w(:|s)) is the
revised value to resist the extra exploration weighted by the temperature parameter «, and the choice
of policy 7 is limited to a set of parameterized Gaussian distributions for flexibility. The equality in
holds with modest computation which can be found in Appendix |C| The KL divergence D,
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shows that the improved policy is updated towards the distribution constituted by the exponential of
the normalized Q-value function.

In model-free RL problems on continuous control with function approximation, where the transition
probability is unknown in continuous state and action spaces, it is extremely difficult to provides
pointwise policy improvement (absolute policy improvement) over S x .A. Therefore, we propose
a looser but more practical criterion for the policy improvement, which is denoted as the expected
policy improvement in this paper. In general, maximizing the Q-value or keeping the policy reg-
ularization in the same form with the value penalty will simply produce higher updated Q-value
formulated by (I). We show that the projected policy in (22)) coordinated with the value update as
(6) remains the virtue of policy improvement, and the result is organized in Lemmal[d]

Lemma 2. Denote ., and mo)q as the policies before and after the update defined in 22), respec-
tively. Then the expected policy improvement, i.e., E(s, a,)~sx A[Qryer (5, Q1) = Qrpry (5, a1)] > 0,
can be guaranteed, where Q. is the real Q-value following bellman operator and Qr,,, is the
modified value employing (6).

The proof of Lemma]can be found in Appendix D} Besides projecting the policy into a selected set
of distributions, also normalizes the regularization term by |.4|, which is the key to the guarantee
of the wanted expected policy improvement, shown in the last step of proving Lemmafd] In discrete
control problems, where the state-action spaces are both discrete and bounded, the pointwise policy
improvement may be realized without the expectation over (s,a) ~ S x A in Lemma

The GNC iteration alternates between the policy evaluation and the expected policy improvement
steps, and can be summarized by combining Lemma [3|and Lemma 4] as following

Theorem 1. Given the condition that V ,Q(s, a) is well defined, and all the reward function, ap-
proximated Q-value function and its partial gradient w.r.t. the action are bounded throughout the
state-action space, then repeatedly employing (6) will finally reach a value bounded around a fixed
point. If the policy updating rule follows @2), the real Q-value following bellman operator after
updating is no less than the modified value employing (6) before updating in expectation form.

4.3 GRADIENT-NORM CONSTRAINED ALGORITHM

We have discussed above conditions of Theorem [I] in large continuous domains, which requires
parameterized function approximations to estimate both the Q-value and the policy. Prior works in
the literature usually adopt a separated target network to stabilize the training process for both the
Q-value and the policy. Given the current and target networks of both the Q-value and the policy and
on the basis of (6), the loss function for the update of critic parameters in the policy evaluation step
can be estimated by

1
L(W) = IE(s.,a,r,s’) i(r + ’YQZ;’(S/a a/) - Qw(87 a))2 ; (11)
Qzﬂ (8/7 a/) = Qw’ (8/7 a/) - ﬁ”va/Qw/(S/, CL/)||27 (12)

where o' = my/(s) is the action following the target policy parameterized by ¢, (s, a,r, s") is a tuple
of history data sampled from the experience pool, w and w’ parameterize the critic network and its
target estimate, respectively, and g/ (+|s’) is the target policy pdf conditioned on the next state s’.

By minimizing (TT)), the critic parameters can be updated at every policy evaluation step with s-
tochastic gradient as

va(w) = IE(s,aL,r,s’) [vaw (S, a) (Qw (8, a) —-—r—= ’YQZ;' (S/, a/))]~ (13)

It is noticeable that no additional network is induced in GNC value penalty or policy regularization,
only the hyperparameter 3 is adopted to control the contribution of GNC related terms. Then the sur-
rogate objective function to update the current actor parameter 6 in the expected policy improvement
step (see Lemma[d) can be given by

|-Al

J(0) = . Qw<s,m<s>>—V%Zvaiczw<s,ai> , (14)
i=0



Under review as a conference paper at ICLR 2024

where a = my(s) is the reparameterized action with parameter ¢ based on s sampled from the
tuple of history data, and a; is the i-th element of the action vector. By maximizing (14)), the actor
parameter can be updated at every policy improvement step. The gradient of (T4) is computed as

|A|
VOJ(Q) =E, aQw(S a’ Zv Qw S, a’l -V@ﬂ'e(s)7 (15)

where Vgi represents the second order partial gradient w.r.t. a;.

Algorithm 1 GNC Algorithm

1: Initialize parameters w < wy, 6 < g

2: Initialize target parameters w’ < wy(, 8’ < 6},

3: Initialize the learning rates [, [, for the critic and the actor, the time step ¢ < 0, the soft update
hyperparameter 7, the maximum time step T, the batch size B and the replay buffer D < ().

4: whilet < T do

5:  Select action a; ~ g, (at|st)

6:  Observe the reward and next state ;41,7 ~ T(S¢+1|S¢, ar)

7

8

Store transition D < D U {(s¢, at, 74, stﬂ)}
: Sample a batch of transitions B = (s, a,r, s ) , from D
9:  for each time step do
10: wiy1 ¢ wy — 1V, L(wy) following

11: 0141 <+ 04 + 1, Vg, J(0;) following (T3]
12: w’t+1 — TWit1 + (1 — T)w/t

13:  end for

14: Sta1 < St

150 t+t+1

16: end while

4.4 GRADIENT-NORM CONSTRAINED ALGORITHM WITH BEHAVIOR CLONING

The extrapolation error commonly happens to offline RL and can be can be interpreted as the in-
competence to address OOD actions. Considering this issue, priors approaches resort to varieties
of regularizing methods to make the OOD actions easier to be identified. Although there are works
trying to minimize some distance metrics, like the KL divergence, [Fujimoto & Gul (2021) simply
adopts minimal modifications to pre-existing twin delayed deep deterministic policy gradient (TD3)
Fujimoto et al.| (2018) to reduce the extrapolation error. By applying the minimal modifications,
some benefits can be achieved, for example, not adding the variable parameters, reducing the com-
putational complexity and providing analysis avenue for future methods. The algorithm proposed by
Fujimoto & Gu|(2021)) is built on top of TD3 and named as TD3+BC, which makes a compromise
between TD3 and behavior cloning (BC). There are two changes of TD3+BC, the first one of which
is adding a behavior cloning regularization term to the policy improvement step of TD3 so that the
policy can be pushed towards actions contained in the dataset. The second change is normalizing
the Q-value term to strike a balance between it and the BC term. Overall, the method of combining
the actor update term and the BC term with a hyperparameter to tune their relative weight can be
applied to our algorithm.

When applying similar modifications to our algorithm, the two main changes are the dataset and the
policy improvement step. In offline RL, the dataset is collected by interacting with the environment,
while the dataset of online RL is given by prior demonstrations. Therefore, a successful policy
has to be explored around the dataset, in other words, the policy far away from the distribution of
given dataset will generate failing OOD actions. In summary, we balance the policy exploration and
imitation as following

[A|
0 = arg ;naxE(&a)ND/ A Qu(s,ma(s)) — |ﬂ.A| Z Vi, Qu(s,a;)| — (me(s) — a)2 , (16)
i=0
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(a) (b)

Figure 1: (a) Ant; (b) Halfcheetah; (c) Hopper; (d) Walker2d; (¢) Humanoid

where D’ represents the given dataset, and X is a hyperparameter that balances the values of original
actor update term and the BC term. Since the scale of action is often assumed to be bounded, the
balance can be easily broken by the Q-value that is highly susceptible to the scale of reward without
any adjustment. In this case, A includes a normalization term to limit the contribution of Q-value. In
our work, the normalization term is given by

B §
o E(s,a)~D/ [|Qw(3a a)|] ’

where £ is a constant hyperparameter, and (s, a) represents mini-batches sampled from D’. The
arrangement of \ given by (I7) is a convenient reference to [Fujimoto & Gu| (2021). However, the
actor exploration term in (T6) is different, then the GNC regularization term that follows the Q-value
term will not degrade as the increase of Q-value’s absolute value. By the way, the actor exploration
term (actor update term) consists of the Q-value term and the GNC regularization term. Applying
these modifications, we organize the GNC algorithm constrained by BC cloning as GNC-BC.

A

a7

5 EXPERIMENTS

5.1 ONLINE BENCHMARKS AND BASELINES

Fig. [I] shows the illustrations of benchmarks adopted in this paper. The adopted baselines include
DDPG, TD3 and SAC. Before the existence of SAC, DDPG is regarded as one of the most efficient
oft-policy DRL methods |Duan et al.| (2016), followed by TD3 as an extension. SAC has achieved
model-free state-of-the-art sample efficiency in multiple challenging continuous control domains

Christodoulou (2019)).

Our proposed algorithm shares the same set of hyperparameters with other baselines to keep fairness.
We organize the network architectures and hyperparameters in Appendix [E|and [F] respectively. The
Adam optimizer [Kingma & Ba| (2014) is used to update the network parameters. To keep a fair
comparison, we train 5 seeds for each algorithm and plot the average reward versus the time step
with recorded point at every 500 iterations (time steps). The results of algorithms are tested on
selected benchmarks and shown in Fig.[2}

5.2 ONLINE RESULTS

For figures from Fig. we can see that GNC is more stable than all the selected baselines,
which is revealed by the fact that the confidence interval (CI) of GNC is far less than that of other
counterparts. The smallest CI is due to the low over-optimistic value estimates contributed by the
proposed GNC value penalty in (T2). Another noticeable observation from Figs. is that
the converged value of GNC is the highest among all the baselines, especially in the Humanoid
task. This phenomenon means GNC has stronger ability to break the cap set by undesired stationary
points or saddle points, considering the contribution from the proposed GNC policy regularization in
(T4). We can also see that Fig. shows overwhelmed advantage of GNC over other algorithms in
both CI and converged value. We found the nonlinear inputs of GNC critic networks in Appendix
are not suitable for the Humanoid task, so a® is removed from the inputs of critic networks in the
Humanoid task, which can be seen as a special case of our method. In this case, the partial gradient
of Q-value w.r.t. the action is equal to the network parameters, which is similar to the constant
penalty in (2022). By heuristic intuition, conservative value estimate will result in lower
convergence. However, the coordination between GNC policy regularization and value penalty leads
to stable value improvement until convergence, as told in Lemma ]
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Figure 2: Average reward versus time step in (a) Ant; (b) Halfcheetah; (c) Hopper; (d) Walker2d; (e)
Humanoid; (f) Walker2d ablation; (g) Halfcheetah ablation; (h) Hopper ablation; (i) Ant ablation;
(j) Humanoid ablation

To better understand the two parts of GNC, we perform ablation studies by disabling either part.
The results are illustrated in Figs 22 in which GNC-VP and GNC-PR represents a variant
GNC algorithm without the policy regularization and another variant without the value penalty term,
respectively. It can be observed that GNC-VP or GNC-PR does not always perform well on these
tasks, however, GNC-PR in Fig. 2() breaks 5000 score in Walker-2d during training, although it
is unstable. In humanoid, GNC-VP is the same as GNC since VgQw in (]ED is zero as mentioned
above.

5.3 OFFLINE BENCHMARKS AND RESULTS

This part can be found in Appendix

6 CONCLUSION

In this paper, we propose a method based on a novel policy regularization and related value penalty,
which attempt to tackle the saddle point problem and discourage the over-optimistic value estimates,
respectively. Moreover, the proposed method is further constrained by behavior cloning to observe
its offline performance and tested on DARL benchmarks.
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A PROOF OF LEMMA [3]

Lemma 3. Given the condition that V ,Q)(s,a) is well defined, and 3L,., Lg, Ly > 0 such that
Ir(s,a)] < L, |Q(s,a)] < Lg,|[VeQ(s,a)llz < Lv,V(s,a) € Sx A then the sequence
Quyoir (5t,a8) = T Quy, (¢, ay) will be bounded around a fixed point as t — oo.
Proof
T™Q(st, ar)

:T(St, at) + 7E8t+17at+1 [Q(SH‘U a’H‘l) - ﬁ||th+1Q(St+1’ at+1)||2]

Zr(st7 at) - ’Y/BLV + 7E8t+1,at+1 [Q<St+1) at+1)]

=r(st,at) = VBLy + VEspiv ares [T(St415 @141) + VEs, 0,000 [Q(St42, At42)]]

=r(st, ar) + Z ’YkEsM,aM [7(St+ks ark)] — vBLv
k=1

:T'(St, at) + ﬁ]}zs,a [’I"(S, a)] - ’YBLV7 (18)

where the second equality is due to the Q-value function’s Bellman expansion, and the last second
equality holds because the Q-values are assumed to be bounded and 0 < « < 1 by iteratively
employing the Bellman equation. By the way, E, ., o, [7(St4k,aeqk)] = Es 4 [r(s,a)] because
of the expectation form.Similarly, we can also prove

T Qse,ar) < r(se, ar) + %E [r(s,a)] , (19)
then by denoting Q* = r(ss, a;) + ﬁEs,a [r(s,a)] as the fixed point, we can reach a conclusion
that Q* — vBLv < T™Q(st, a;) < Q*. The fluctuation can be adapted by change [. O

12
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B PROOF OF PROPOSITION 2]

Proposition 2. Given the condition that the policy is parameterized as a Gaussian distribution w.r.t.
the action, then the following condition that

|Al

Es | Y (Va,Quls,a)) | >0, (20)

i=0
where | A| represents the dimension of action space, is sufficient for Bs [V Q. (s, mg(s))] > 0.

Proof As mentioned, a = 7(s) is the generation function mapping the state to the action, and
7(als) is the conditional pdf of the action given the state, then 7(s) = F~!(uls), where u is the
uniform distribution ranging from 0 to 1, and F~! represents the inverse function of cumulative
distribution of 7 (als), then

Es [VoQu(s,mo(s))]
Es [VaQu(s,a) x Vga]

s, a

UJ

:Es[ (s,a) x (Vomg(als)) "]

—E, [ Qu(s,a) x (21|A\X1 x mg(als) o 3)71}

=2E; [VaQu(s,a) x 7y ' (as) 0 6°]

>2argm1n]E [ aQu(s,a) x (m ;1(§|3)m)093}
|

— —_—

—27r91a| VQwsa X1|A\><\9|09:|
14|

=27, @) | S (Va, Qui(5,0)) Trg) © 6°
=0
14|

:2W;1(E|S)ES Z (vdiQw(s7ai)) 11><\9| o 937 (21)
=0

where we simply use (-) ! and o to stand for the elementwise reciprocal and elementwise product,
respectively, and 1,,,«,, means a matrix of m x n with all ones. Since the actions are bound, there
exists a scalar @ to minimize E, [V,Q.(s,a) x m, ' (a|s)], then the inequality of above deriva-
tion holds, and 7, L(@|s) is also a scalar. Since both the conditional pdf and 6 are nonnegative,

Es Z‘Zﬂ) (Vi Qu (s, ai))} > 0 can ensure to be nonnegative.

(Il
C PROOF OF (22)
a4 = Tpew(S)
Q(s,) — > V.Q(s, )
=arg min Dgy, | w(-|s)| exp \/‘7
mel]
|A|
=arg maxE, | Q(s,a) (s,a:) |, (22)

a Va, @
mel] \/W Z '
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Proof

Q(s,-) + alog(n(-|s)) — 3.V.Q(s, )
Tnew(s) = arg min D p, | 7(+|s)]| exp \/\7

well «

Q(S, CL) + alog(w(a|3)) - = Z"Lél vaiQ(S? ai)
=argminE,4 |7(als) | log(m(als)) — VIAI 0

mel] «

Qs,a) + alog(r(als)) = —= T4 Vo, Q(s, 01)

=argminE, (|5 log(m(als)) —

mel] a
3 |A]
=arg maxE, |Q(s,a) — — Z Vo, Q(s,a:)| , (23)
mell ‘.A| i—0
where Dgr,(-||-) is the KL divergence. O

D PROOF OF LEMMA [4]

Lemma 4. Denote e,y and 7,14 as the policies before and after the update defined in @]), respec-
tively. Then the expected policy improvement, i.e., E(s, 0,)~sx A|Qmner (58, A1) = Qrory (8¢, a:)] > 0,
can be guaranteed, where Q). is the real Q-value following bellman operator and Q,, is the
modified value employing (6).

Proof

E(Stvat) [Qﬂnew (Sta at)]
= E(sr.aBisipnan) [1(56, 1) + 7@, (8141, a111)]

|A|
B
2 Bisp a0 Bisiiniae) |7(5608) +7Qr,. (St41, a141) — Z Vair Qrnew (St41,0111,0)
| | VI £
i PRNE|
2 E(st’a")E(sf*l*aHl) T(St’ at) + ’yQTrold (St+1a at+1) \/W Z vat+1 LQTFoLd(stJrl? at+1, z)
~8 |A|
= E(Staat) Qrpra(st:at) + 7B Va, Qota(st+1, at41) |2 — \/|7 Z Vai, Qo (Se41, 0411, i)
2 E(Stfat)[Qﬂ'old(st? a’t)]7 (24)

where the first equality follows the bellman operator, the first inequality holds because
Es {Z‘Al (Va,Qu(s, ai))} > 0, the second inequality holds because of the update rule of (22,

the second equality follows the expected form of modified Bellman backup operator given by (6)),
and the last inequality holds because the difference of last two terms is nonnegative. ]

E NETWORK ARCHITECTURE

We construct the critic network based on a fully-connected MLP with four hidden layers. The input
is composed of the state and action, outputting a value representing the Q-value. The ReLU functions
are adopted to activate the two hidden layers. To avoid the second order gradient of Q-value with
respect to the action being zero, we add some nonlinearity into the fully-connected critic layers,

14
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Table 1: List of hyperparameters

Hyperparameter  Value Description Algorithm applied
LR_a 0.0003 Learning rate of actor All
LR c 0.0003 Learning rate of critic All
T_Q 1 Soft update parameter of actor All
T_C 0.005 Soft update parameter of critic All
vy 0.99 Discount horizon factor All
var 0.2 The variance of exploration noise All
@ 0.1 Fixed temperature Except DDPG and TD3

Qg 0.1 Wight factor of KL regularization BRAC

B8 0.05 newly-induced hyperparameter GNC
Batch 256 Size of each mini-batch All
Units 256 Hidden layer units All
Memory 1000000 Size of replay buffer All
Interval 500 Evaluation period All
Test 10 Rollouts per evaluation All

which is formulated by

Ly = ReLU (w - [s,a,a?’} + b1),

Ly = ReLU(ws - L1 + ba),

L3 = ReLU(ws - Lo + b3),

Q = ReLU(wy - L3 + by), (25)
where w; and b; for i € {1,2, 3,4} are hidden parameters of critic layers.

The setting of policy network follows normal random distribution, whose expectation and variance
are fully-connected networks fed only by the state. Both of them have two hidden layers activated by
the ReL.U function. After the hidden layers, a Tanh function and a Softplus function follows to form
the expectation and variance, respectively. With the expectation and variance, a normal distribution
can be achieved to represent the random policy. The architecture of networks are plotted in Fig. [3]

The above mentioned network architecture is adopted for the random policy. For the algorithm using
the deterministic policy, the output of actor network is the expectation of normal random distribution.

F HYPERPARAMETERS

Table[T]lists the common hyperparameters shared by all experiments and their respective settings. In
this table, L R_a means the learning rate of the actor (includes lambda in our proposed algorithm),
and L R_c means the learning rate of critics. 7_a and 7_c represent soft update hyperparameter of the
actor and the critic, respectively, and 7_a = 1 means we adopt immediate update for the actor. The
symbol var represents the variance of gaussian exploration noise, and « is the fixed temperature
hyperparameter, which is applied in algorithms except DDPG and TD3. a4 represents the weight
factor of KL divergence for policy regularization applied in BRAC, and g is fixed newly-induced
hyperparameter to balance the contribution of GNC term.

Moreover, Batch represents the size of mini-batches sampled for training, and M emory is short for
the size of replay buffer. The rest in Table [1| are the hyperparameters for the evaluation procedure,
specifically, Interval means how many time steps between two successive evaluation procedures,
and T'est means the number of rollouts run during each evaluation procedure.

G OFFLINE BENCHMARKS AND RESULTS

In this part, we evaluate the proposed approach on the D4RL benchmark of MuJoCo tasks [Todorov
et al.| (2012); Brockman et al.| (2016); [Fu et al.| (2020), which includes multiple datasets related to
different tasks. The benchmarks selected to evaluate the proposed offline algorithm include Ant,
Humanoid, walker2d and Halfcheetah related offline tasks.
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Figure 3: Architecture of networks.

The baselines we adopt to compare with our proposed algorithm are implicit g-learning (IQL)
Kostrikov et al) (2021)), batch-constrained deep Q-learning (BCQ) [Fujimoto et al| (2019) and T-
D3+BC. To ensure a fair experimental evaluation, we share the same set of hyperparameters across
algorithms for the same benchmark. After some experimental trials, we determine to utilize the
delayed update rule to update the target parameters (w’, ) instead of “soft” target updates. Specif-
ically, we execute w’ < w and #’ < @ every 100 steps. We set the maximum time step as 10° for
each algorithm and evaluate it every 5000 time steps. The evaluation process consists of 10 episodes,
whose results will be averaged to get the periodical evaluation. We record the final performance re-
sults in Table and show the learning curves in Fig. ]
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{
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Figure 4: Normalized score versus time step in (a) Ant-expert; (b) Ant-medium-expert; (c)
Ant-medium-replay; (d)Ant-medium; (e) Halfcheetah-expert; f Halfcheetah-medium-expert; (g)
Halfcheetah-medium-replay; (h) Halfcheetah-medium; (i) Hopper-expert; j Hopper-medium-expert;
(k) Hopper-medium-replay; (1) Hopper-medium; (m) Walker2d-expert; (n) Walker2d-medium-
expert; (0) Walker2d-medium-replay; (p) Walker2d-medium

From these figures, we can observe that the performance of GNC-BC (labeled as "GNC” in these
plots) is close to that of TD3+BC when the dataset is expert, because expert demonstrations make
the behavior cloning reliable. In other word, good dataset reduces the necessity of policy exploration
and thus enhances the dependence on behavior cloning. Another observation is that GNC-BC has
much higher converged value and better stability than other baselines except for the Hopper task,
considering the benefits of GNC policy exploration to skip suboptimal points. As for the Hopper
task, it is easy to gain policy improvement without guarantee of stability, according to our empirical
trials.

17



	Introduction
	Related Work
	Preliminaries
	Saddle Point Problem

	Methods
	Gradient-norm Constrained Value Iteration
	Gradient-norm Constrained Policy Regularization
	Gradient-norm Constrained Algorithm
	Gradient-norm Constrained Algorithm with Behavior cloning

	Experiments
	Online Benchmarks and Baselines
	Online Results
	Offline Benchmarks and Results

	Conclusion
	Proof of Lemma 3
	Proof of Proposition 2
	Proof of (22)
	Proof of Lemma 4
	Network Architecture
	Hyperparameters
	Offline Benchmarks and Results

