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SUPPLEMENTARY MATERIALS

A EXPERIMENT DETAILS

A.1 IMPLEMENTATION DETAILS

To clarify the difference between with/without negative prompts, and with/without Perp-Neg, we
provide an illustrative depiction in Figure 8. Our Perp-Neg does not require additional training
or fine-tuning, and is implemented in the sampling pipeline. A detailed implementation in each
timestep is shown in Algorithm 1.

Positive text prompt:
        “A lion, side view”
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       “A lion, front view”
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Figure 8: Illustrative depiction of Perp-Neg, and comparison with sampling without the usage of
negative prompt and compositional negative prompt fusion.

Algorithm 1 Perp-Neg Pseudocode at timestep t, PyTorch-like style

# epsilon: diffusion model
# x: the noisy image at the current timestep
# t: the current time step t
# c: main text prompt
# c_neg: auxiliary negative text prompt list
# a: classifier-free guidance scale
# w_pos: weight of main text prompts
# w_neg: weight list of negative text prompts

def Perp_neg(M, x, t, c, c_neg, a, w_pos, w_neg):
# get the main component
e_main = epsilon(x, t, c) - epsilon(x, t)

# proceed with auxiliary negative text prompts
for i, text_negative in enumerate(c_neg):

e_i = epsilon(x, t, text_negative) - epsilon(x, t)
accum_grad -= w_neg[i] * get_prependicualr_component(e_i, e_main) # accumulate the

negative gradients in the opposite direction

e = epsilon(x, t) + a * (w_pos * z_main + accum_grad) # update the noisy image at the
current timestep to the next step (eq. 8)

return e # return the final prediction at time step t.

# definition of "get_prependicualr_component"
def get_prependicualr_component(x, y):

# x: gradient of principle component
# y: gradient of auxiliary component
proj_x = ((torch.mul(x, y).sum())/(torch.norm(y)**2)) * y # cosine projection of x on

y
return x - proj_x # get perpendicular vector of x

For 2D generation, we implement our Perp-Neg into Stable Diffusion v1.4 pipeline. We adopt 50
DDIM steps, and fix the guidance scale as a = 7.5 and the positive weight wpos = 1, for each
generation. For negative weight, the value may vary and we find generally in the range [-5, -0.5] can
produce satisfactory images. In the 2D view generation experiments, we fix the negative weights to
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Accepted example - single object Accepted example - multiple objects Rejected example - counterfactualsRejected example - misalignment of  text Rejected example - color/texture artifacts

Figure 9: Example of the accepted/rejected generation.

wneg = �1.5 when there is only one negative prompt, and set wneg1 =wneg2 =�1 when there are
two negative prompts. The results are generated across seeds 0-49. For the interpolation between
two views, we normally interpolate rinter with stride 0.25 between 0 and 1 to have 5 images in
total. Moreover, for 3D generation, we employ Perp-Neg into Stable Dreamfusion. The results of
our baselines are reproduced with their open-source code12. All experiments are conducted using
Pytorch 1.10 on a single NVIDIA-A5000 GPU.

A.2 DETAILS ABOUT 2D EXPERIMENT

For the choice of prompt in the 2D experiment, we aim to test two groups of text prompts that
generate the side view and the back view of the objects, which are considered simple and complex
cases, respectively. For each group, when using the negative prompts, we use the complementary
view or the combination of the other two views, e.g., in the case of using the “side” view in the
positive prompt, we use the “front” view in the negative prompt. Both positive and negative prompts
follow the basic prompt pattern but respectively adopt positive and negative weight in the fusing
stage.

Criteria for successful view generation count Here we elaborate on the criteria for the successful
generation count in our quantitative experiments in Section 4.1. We reject the image samples with
the following criteria and examples are shown in Figure 9:

• The images that do not show requested object(s) or view. Note that if the generated image
contains multiple objects, and one of them is not positioned in the correct view, the image
will still be rejected.

• The images show hallucination including counterfactual details, for example, a panda has
three ears.

• The images have color or texture artifacts that make the images not realistic.

More details: On the side view and back view generation, in each group, we adopt 3 combinations
of the complementary view into the negative prompts, e.g., for the case that side view is used in the
positive prompt, we use front view, back view and both front and back view in the negative prompt.

A.3 FURTHER EXTENSIONS

Although we only provide an application of Perp-Neg using SDS loss, we will investigate its appli-
cation in novel view synthesis Deng et al. (2022); Liu et al. (2023); Tang et al. (2023); Vinod et al.
(2023); Watson et al. (2022), conditional 3D generation Karnewar et al. (2023); Nichol et al. (2022);
Po & Wetzstein (2023); Raj et al. (2023), editing Ceylan et al. (2023); Haque et al. (2023); Mikaeili
et al. (2023); Voynov et al. (2023) and adding texture Richardson et al. (2023).

B 3D EXPERIMENT DETAILS AND RESULTS:

To determine the negative prompt weight functions f , we used the general form of a shifted expo-
nential decay of the form f.(r) = a exp(�b ⇤ r) + c, where a, b, and c are greater than or equal to

1https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-
Models-PyTorch

2https://github.com/ashawkey/stable-dreamfusion
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zero. We set the parameters of the f functions separately for each text prompt by generating 2D in-
terpolation samples for 10 different random seeds and then selecting the parameters with the highest
accuracy in following the conditioned view. We observed that parameters that allow better interpo-
lation in 2D cases directly relate to the parameters that better help with the Janus problem in 3D. We
also noted that if the interpolation between two views remained unchanged while varying the angle
for a large range, then the 3D-generated scene was more likely to have a flat geometry from multiple
views, resulting in the Janus problem. To overcome this, we perturbed the interpolation factor r
with random noise, calculated the interpolated text embedding and their related negative weights,
and thus, the model is less likely to generate identical photos from a range of views. We provided
the code in the supplementary file for the exact details.

To evaluate the effectiveness of the Perp-Neg in alleviating the Janus problem, we conducted our
experiments using prompts that did not depict circular objects. For each prompt, we utilized the
DreamFusion method with and without the Perp-Neg algorithm. For Stable-Diffusion DreamFusion,
we run 14 trials for each approach with different seeds. Our results indicate the number of successful
outputs generated without a Janus problem when using the Perp-Neg algorithm: “a corgi standing” 2
times, “a westie” 5 times, “a lion” 1 time, “a Lamborghini” 5 times, “a cute pig” 0 times, and “Super
Mario” 4 times. In contrast, when we ran the model without the Perp-Neg, it failed to generate
any correct output except for “a Lamborghini” 4 times and “Super Mario” 2 times. These findings
clearly demonstrate the advantages of utilizing the Perp-Neg in mitigating the Janus problem. Please
refer to Figure 20 for some of these examples.

For DeepFloyd-IF DreamFusion, we run 6 trials for each approach with different seeds. Our results
indicate the number of successful outputs generated without a Janus problem when using the Perp-
Neg algorithm: “a Shiba dog wearing sunglasses” 4 times “a marble lion bust” 4 times, “a tiger cub”
3 times, “a corgi taking a selfie” 3 times, “an ancient golden pig” 1 time, and “a DSLR photo of a
lion bust” 3 times. In contrast, when we ran the model without the Perp-Neg, it failed to generate
any correct output except for “a corgi taking a selfie” 1 time.

We also incorporated Perp-Neg during the high-quality mesh optimization stage of Magic3D. When
Perp-Neg was not used, we observed that in a few cases, even if the initial mesh (the output of
DreamFusion) did not exhibit the Janus problem, the second stage of Magic3D optimization resulted
in a multiface issue with the mesh. However, with the use of Perp-Neg, we never encountered a
second-stage multiface issue.

C ADDITIONAL EXPERIMENTS

C.1 CASE-BY-CASE STUDY

We further conduct case-by-case studies for the previous experiments, where we collect statistics of
every tested object per view. We report the averaged acceptance rate across all possible positive and
negative combinations in Table 1.

From the table, we find back view is consistently more difficult to generate than the side view. A
possible explanation is that the generator may have more information about the front view from the
training datasets, and the side view possesses more connection to the front view, while it requires
additional knowledge to generate the corresponding back view. In terms of the objects, we find it
is less likely to generate faithful images of peacock(s) in the side view, as well as peacock(s) in the
back view lion in the back view, as there may have less corresponding training images in the original
training datasets.

View Side Back
Object Lion Panda Peacock Lion Panda Peacock
SD 58.0% 44.0% 24.0% 8.0% 28.0% 8.0%
CEBM 14.0% 13.3% 10.7% 0% 4.0% 2.0%
Ours 80.7% 83.3% 55.3% 49.3% 34.0% 38.0%

Table 1: Case-by-case percentage of successful view generations different objects.
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C.2 ABLATION STUDY

We also provide ablation studies on the effects of negative prompt weights to see how the weight
affects the usage of negative attribute elimination. We show the results of generations using different
negative prompt weights wi in Figure 10-12. We can observe for CEBM, the results are consistently
not relevant to the requested text content, no matter the negative prompt weights are small or big. For
Perp-Neg, we can see with larger weights, e.g., w = �0.1, the generated results are not positioned
in the side view. As we decrease the weight, the generated image becomes more relevant to the text.
This observation indicates Perp-Neg has better controllability in eliminating the negative attributes
in the prompts.
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Figure 10: Ablation studies with different negative prompt weights in the generation, side view of
peacocks.
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Figure 11: Analogous visualization of lions to Figure 10.
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Figure 12: Analogous visualization of pandas to Figure 10.
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C.3 ADDITIONAL RESULTS

SD CEBM SD + Perp-Neg SD CEBM SD + Perp-Neg

Figure 13: Analogous visualization to Figure 6, side-view generation.

Figure 14: Additional visualization of panda back-view from our experiment. Here we provide
a part of those generations with seeds 0-49 using Perp-Neg, including both successful and failed
samples. Most of the generations show the semantics of “panda back view”.

Figure 15: Analogous visualization to Figure 14 visualization of peacock back-view.
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Figure 16: Analogous visualization to Figure 14 visualization of lion side-view.

Figure 17: Analogous visualization to Figure 14 visualization of panda side-view.

Figure 18: Analogous visualization to Figure 14 visualization of peacock side-view.
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C.4 VIEW INTERPOLATION

In the following, we provide additional qualitative results of 2D generation and view interpolation.
And for 3D generation results, please refer to the provided video in the supplementary file. We
explore how Perp-Neg can be employed for effective interpolation between two views of an object
in 2D as it is needed for 3D cases, as illustrated in Figure ??.

a giant panda, side view ���! a giant panda, front view

a Friesian horse, side view ���! a a Friesian horse, front view

a cute tiger cub, side view ���! a cute tiger cub, back view
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a lion, side view ���! a lion, front view

a snow leopard, side view ���! a snow leopard, front view
Figure 19: Qualitative comparison of view interpolation with/without Perp-Neg. We fixed the
seed across different images of each prompt. For each prompt, the top row shows the result of text-
embedding interpolation without Perp-Neg. And, the bottom row shows the result of Perp-Neg.
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Figure 20: Qualitative examples of Stable-Dreamfusion with Perp-Neg, using prompts “a westie”, “Super
Mario” and “a lion.”
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