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A APPENDIX

A.1 MPTP

Algorithm 1 Multi-party Training Process w.r.t. D (MPTP)
Insurer Input: data: {Xi, Yi}

n
i=1, hypothesis class: H (if obtain T via supervised learning)

Insurer Output: {X̃i}
n
i=1

TTP Input: data: {X̃i, Yi, Di}, hypothesis class: F , risk function: R(f1, . . . , f|D|) (Eq. (1))
repeat

train f1, . . . , f|D| by minimizing Eq. (1)
until Convergence
compute h⇤(X̃) using Eq. (2)
return f1, . . . , f|D|, h

⇤(X̃)

TTP Output: f1, . . . , f|D|, h
⇤(X̃)

A.2 MPTP-LDP

Algorithm 2 Multi-party Training Process w.r.t. S (MPTP-LDP)
Insurer Input: data: {Xi, Yi}

n
i=1, hypothesis class: H (if obtain T via supervised learning), hypoth-

esis class: K (if obtain X⇤ via supervised learning)
Insurer Output: {X̃i}

n
i=1, {X

⇤
i }

n
i=1

TTP Input: data: {X̃i, Yi, Si}
n
i=1, {X

⇤
i , Si}

n
i=1, hypothesis class G, risk function: 8k 2

[n1], R(gk) =
Pm

j=1 L(gk(X
⇤
k,j , Sk,j)) (see Lemma 4.4), hypothesis class: F , risk function:

R(f1, . . . , f|D|) (Eq. (6)),
if scenario 2 (⇡, ⇡̄ unknown) then

compute ⇡̂k, ˆ̄⇡k, k 2 [n1] (by applying Lemma 4.4)
compute Ĉ1 using ⇡̂k, ˆ̄⇡k, k 2 [n1] (by C1 estimation procedure 4.3)
compute ⇡̂, ˆ̄⇡ using Ĉ1

compute ⇧̂�1 using ⇡̂, ˆ̄⇡
else

compute ⇧�1 using ⇡, ⇡̄
end if
repeat

train f1, . . . , f|D| by minimizing Eq. (6)
until convergence
compute h⇤(X̃) using Eq. (2)
return f1, . . . , f|D|, h

⇤(X̃)

TTP Output: f1, . . . , f|D|, h
⇤(X̃)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DEFERRED DISCUSSION ON ASSUMPTIONS

B.1 RESTRICTIONS ON ASSUMPTION A

The restriction of Assumption A relies on the type of generator (which will influence the tail
distribution of ⇡̂) and the number of data within each group (which will influence the accuracy of ⇡̂).
The condition in Assumption A is equivalent to:

P

0

B@

⇣
1� 1

|D|

⌘2

t
>

����⇡̂ �
1

|D|

����

1

CA  exp(
�t

K
),

when K > 0 is a constant.

Generally speaking, this assumption holds if ⇡̂ is inverse exponential distributed with a translation of
1

|D| , or having a lighter tail than the inverse exponential distribution that is

f⇡̂(t) 
1

K(t� |D|)2
exp(�

1

K|t� 1
D |

),

when t is close to 1
|D| , where f⇡̂(t) is the pdf of ⇡̂. Especially, since a bounded distribution is also

sub-exponential, if |⇡̂ � 1
|D| | > ✏, for some ✏ > 0 condition is also satisfied. This will happen when

the number of data within groups (m) is sufficiently large and ⇡ � 1
|D| is large enough.

B.2 A GENERAL DISCUSSION

It is imperative to note that the support of our assumptions and theorem requires the availability
of multiple independent datasets. when the observations are naturally organized in this manner,
the application of the following assumptions is direct. Notice that the same concept applies to
non-independent datasets with a mixing property (such as ↵-mixing). In such cases, we only need to
use the Bernstein inequality under strong mixing conditions(Bousquet & Bousquet (2009),Chen &
Louis (2008)).

According to the form of Ĉ1,k, the tail of this estimator is equivalent to the distribution of ⇡̂k =
maxi2[m] ĝk(X

⇤
k,i) near 1

|D| . If ĝk is a good estimator as well as m is large enough, ⇡̂k will be
concentrated near ⇡ > 1

|D| , which is guaranteed by Lemma 4.4. Especially when ⇡� 1
|D| is relatively

large, it is reasonable to expect that ⇡̂k has a sparse distribution near 1
|D| , which implies that Ĉ1,k

has a sub-exponential tail (or even bounded). For Assumption B 4.3, notice that within every group
k 2 [n1], ⇡̂k are estimators for ⇡, and thus Ĉ1,k are plug-in estimator for C1. Since Ĉ1,k are i.i.d., it
is reasonable to assume Ĉ1,k are “nearly” unbiased.
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C DEFERRED PROOFS

C.1 LEMMA 4.2 PROOF

Lemma 4.2 Given the privacy parameter ✏, minimizing the following risk (Risk-LDP) Eq. (6) under
✏-LDP w.r.t. privatized sensitive attributes S is equivalent of minimizing Eq. (1) w.r.t. true sensitive
attributes D at the population level:

R
LDP (f1, . . . , fk) =

|D|X

k=1

|D|X

j=1

0

@⇧�1
kj EY,X̃|S=j

h
L
�
fk(X̃), Y

�i
·

|D|X

l=1

T�1
kl P(S = l)

1

A , (7)

where ⇧�1 and T�1 are |D|⇥ |D| row-stochastic matrics.

Proof. Step 1:
Since the ✏-LDP randomization mechanism is independent of X,Y , therefore, the distribution of S is
fully characterized by the privacy parameter ✏ and the distribution of D. Therefore, the distribution
of S is deterministic once the privacy parameter ✏ and the distribution of D is given.

Step 2: Recover distributions w.r.t. D

Inspired by proposition 1 in Mozannar et al. (2020). Let E1, E2 be two probability events defined with
respect to (X̃, Y, Ŷ ), then consider the following probability:

P(E1, E2 | S = d)

=
X

d02D

P(E1, E2 | S = d,D = d0)P(D = d0 | S = d)

=
X

d02D

P(E1, E2 | D = d0)P(D = d0 | S = d)

=
X

d02D

P(E1, E2 | D = d0)
P(S = d | D = d0)P(D = d0)P

d002D P(S = d | D = d00)P(D = d00)

=P (E1, E2 | D = d)
⇡P(D = d)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
+
X

d0\d

P (E1, E2 | D = d0)
⇡̄P(D = d0)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
.

Then, let E1 = Y, E2 = X̃ , we obtain the following:

P(Y, X̃ | S = d)

=
X

d02D

P(Y, X̃ | S = d,D = d0)P(D = d0 | S = d)

=
X

d02D

P(Y, X̃ | D = d0)P(D = d0 | S = d)

=
X

d02D

P(Y, X̃ | D = d0)
P(S = d | D = d0)P(D = d0)P

d002D P(S = d | D = d00)P(D = d00)

=P (Y, X̃ | D = d)
⇡P(D = d)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
+
X

d0\d

P (Y, X̃ | D = d0)
⇡̄P(D = d0)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
.

Denote pd = P(D = d), then let ⇧ be the following |D|⇥ |D| matrix with the following entries:
8
><

>:

⇧i,i =
⇡pi

⇡pi+
P

d00\i
⇡̄pd00

, for i 2 D

⇧i,j =
⇡̄pj

⇡pi+
P

d00\i
⇡̄pd00

, for i, j 2 D s.t.,i 6= j
,
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then we have the following system of linear equations:
2

6664

P(Y, X̃ | S = 1)
.
.
.

P(Y, X̃ | S = |D|)

3

7775
= ⇧

2

6664

P(Y, X̃ | D = 1)
.
.
.

P(Y, X̃ | D = |D|)

3

7775
,

denote as s1 = ⇧d1, where s1 = P(Y, X̃ | S), d1 = P(Y, X̃ | D).

Since ⇧ is row-stochastic and invertible, we show that the entries of ⇧�1 take the following forms:
8
<

:
⇧�1

i,i = ⇡+|D|�2
|D|⇡�1

⇡pi+
P

d00\i ⇡̄pd00

pi
, for i 2 D

⇧�1
i,j = ⇡�1

|D|⇡�1

⇡̄pi+
P

d00\i ⇡pd00

pi
, for i, j 2 D s.t.,i 6= j

,

multiplying ⇧�1 on both side, we recovered

P(Y, X̃ | D = k) =

|D|X

j=1

⇧�1
kj P(Y, X̃ | S = j)

= ⇧�1
k· P(Y, X̃ | S)

where ⇧�1
k· denotes the kth row of ⇧�1.

However, there is still one component that we do need to estimate in order to recover the population
distribution of P(Y, X̃ | D). We need to further estimate P(D = d). Using the same technique, to
estimate P(D = d), first write P (S = d) in terms of the conditional probability of S given D as:

P(S = d) =
X

d02D

P(S = d | D = d0)P(D = d0)

= P(S = d | D = d)P(D = d) +
X

d0\d

P(S = d | D = d0)P(D = d0)

= ⇡pd +
X

d0\d

⇡̄pd0 .

Then we write the above expression in terms of a system of linear equations. Let T be an |D|⇥ |D|

matrix with the following entries:
⇢
Ti,i = ⇡, for i 2 D
Ti,j = ⇡̄, for i, j 2 D s.t.,i 6= j

,

then we have the following system of linear equations:
2

6664

P(S = 1)
.
.
.

P(S = |D|)

3

7775
= T

2

6664

P(D = 1)
.
.
.

P(D = |D|)

3

7775
,

denote as s2 = Td2, where s2 = P(S) and d2 = P(D).

It follows the same argument that T is row-stochastic and invertible and it is easy to verify that T�1

takes the following form:
(
T�1
i,i = ⇡+|D|�2

|D|⇡�1 , for i 2 D

T�1
i,j = ⇡�1

|D|⇡�1 , for i, j 2 D s.t.,i 6= j
,

by multiplying T�1 on both side, we obtain:

P(D = k) =

|D|X

j=1

TkjP(S = j)

= T�1
k· P(S).
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Step 3: Recover the loss w.r.t. D

At the population level, we have recovered that:

P(Y, X̃ | D = k) = ⇧�1
k· P(Y, X̃ | S),

where P(D = k) = T�1
k· P(S) is used in calculation of ⇧�1

k· .

Hence, we recover the population equivalent of Eq. (1):

|D|X

k=1

⇣
EY,X̃|D=k

h
L
�
Y, fk(X̃)

�i
· P(D = k)

⌘

=

|D|X

k=1

✓Z

Y

Z

X̃
P(Y, X̃ | D = k)L

⇣
Y, fk(X̃)

⌘
dX̃dY · P(D = k)

◆

=

|D|X

k=1

0

@

2

4
Z

Y

Z

X̃

|D|X

j=1

⇧�1
kj P(Y, X̃ | S = j)L

�
Y, fk(X̃)

�
dX̃dY

3

5 ·

|D|X

l=1

T�1
kl P(S = l)

1

A

=

|D|X

k=1

0

@

2

4
|D|X

j=1

Z

Y

Z

X̃
⇧�1

kj P(Y, X̃ | S = j)L
�
Y, fk(X̃)

�
dX̃dY

3

5 ·

|D|X

l=1

T�1
kl P(S = l)

1

A

=

|D|X

k=1

|D|X

j=1

0

@⇧�1
kj EY,X̃|S=j

h
L
�
fk(X̃), Y

�i
·

|D|X

l=1

T�1
kl P(S = l)

1

A .

Therefore, we conclude that it is equivalent to minimizing:

(f1⇤ , . . . , fk⇤) argmin
f1,...,fk

|D|X

k=1

|D|X

j=1

0

@⇧�1
kj EY,X̃|S=j

h
L
�
fk(X̃), Y

�i
·

|D|X

l=1

T�1
kl P(S = l)

1

A

This completes the proof.
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C.2 THEOREM 4.3 PROOF

Theorem 4.3 For any � 2 (0, 1
2 ), C1 = ⇡+|D|�2

|D|⇡�1 , denote V C(F) as the VC-dimension of the

hypothesis class F , and K be some constant that depends on V C(F). Let f = {fk}
|D|
k=1 where

fk 2 F and let L : Y ⇥ Y ! R+ be a loss function bounded by some constant M . Denote

k⇤  argmax
k

|R̂
LDP (fk)P̂(D = k) � R

LDP (fk)P(D = k)|, if n �
8 ln ( |D|

� )
mink P(S=k) then with

probability 1� 2�:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2C1M |D|

P(S = k⇤)
.

Proof. Step 1: simplify the objective

Denote R(f) as the expected risk of (f1, . . . , f|D|) defined in Lemma 4.2, R(fk) as the expected
risk of fk, and R̂(fk) as the empirical risk of fk that depends on the data set given, then we start with

P
⇣���R̂LDP (f)P̂(D = k)�R(f)P(D = k)

��� > ✏
⌘

=P
⇣���R̂LDP (f)P̂(D = k) +R

LDP (f)P(D = k)�R
LDP (f)P(D = k)�R(f)P(D = k)

��� > ✏
⌘

P
⇣���R̂LDP (f)P̂(D = k)�R

LDP (f)P(D = k)
���+
��RLDP (f)P(D = k)�R(f)P(D = k)

�� > ✏
⌘

(a)
=P

⇣���R̂LDP (f)P̂(D = k)�R
LDP (f)P(D = k)

��� � ✏)
⌘

=P

0

@

������

|D|X

k=1

R̂
LDP (fk)P̂(D = k)�

|D|X

k=1

R
LDP (fk)P(D = k)

������
> ✏

1

A

P

0

@
|D|X

k=1

���R̂LDP (fk)P̂(D = k)�R
LDP (fk)P(D = k)

��� > ✏

1

A

(b)
P

✓
max

k

���R̂LDP (fk)P̂(D = k)�R
LDP (fk)P(D = k)

��� >
✏

|D|

◆

(c)
=P

0

@

������

|D|X

j=1

⇧̂�1
k⇤j

1

nj

X

i:Si=j

L
⇣
Yi, fk⇤(X̃i)

⌘ |D|X

l=1

T̂�1
k⇤l

nl

n
�⇧�1

k⇤·EY,X̃|S

h
L
⇣
Y, fk⇤(X̃)

⌘i
T�1
k⇤·P(S)

������
>

✏

|D|

1

A ,

where k⇤  argmax
k

���R̂LDP (fk)P̂(D = k)�R
LDP (fk)P(D = k)

��� and P̂(S = k) = nk
n .

T�1 and ⇧�1 are as introduced in Lemma 4.2.

(a) is obtained from the population equivalence of two risks from Lemma 4.2.

(b) is followed by for two events A,B, if A implies B then P (A) < P (B).

(c) is obtained by expanding R̂
LDP (fk⇤)P̂(D = k⇤) and R

LDP (fk⇤)P(D = k⇤) respectively.

Step 2: concentration of the empirical risk under Risk-LDP

Denote nN
yx̃s =

P
i 1(yi = y, x̃i = x̃, si = s),Qyx̃s = P(Y = y, X̃ = x̃, S = s), and define the

random variable Nyx̃s = {i | yi = y, x̃i = x̃, si = s}. We can deduce nN
s =

P
x̃2X̃,y2Y 1(yi =

y, x̃i = x̃, si = s). Then, we have E[R̂LDP (fk⇤)P̂(D = k⇤) | NY X̃S ] = R
LDP (fk⇤)P(D = k⇤),

where NY XS denotes all possible Nyx̃s. Using similar approach of Lemma 2 in Mozannar et al.
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(2020), we can write:

P
✓
R̂

LDP (fk⇤)N P̂(D = k⇤)N �R
LDP (fk⇤)P(D = k⇤) >

✏

|D|

◆

(a)
=
X

NY X̃S

P
✓
R̂

LDP (fk⇤)N P̂(D = k⇤)N �R
LDP (fk⇤)P(D = k⇤) >

✏

|D|

����NY X̃S

◆
· P(NY X̃S)

(b)
P

0

@
[

x̃2X̃,y2Y,s2S

⇢
nN
s <

n
P

x̃2X̃,y2Y Qyx̃s

2

�1

A

+
X

8x̃,y,Nyx̃s:nN
s �

n
P

x̃2X̃,y2Y
Qyx̃s

2

P
✓
R̂

LDP (fk⇤)N P̂(D = k⇤)N �R
LDP (fk⇤)P(D = k⇤) >

✏

|D|

���NY X̃S

◆
· P(NY X̃S)

(c)
 |D| exp

⇢
�
mins n

P
x̃2X̃,y2Y Qyx̃s

8

�

+
X

8x̃,y,Nyx̃s:nN
s �

n
P

x̃2X̃,y2Y
Qyx̃s

2

P
✓
R̂

LDP (fk⇤)N P̂(D = k⇤)�R
LDP (fk⇤)P(D = k⇤) >

✏

|D|

���NY X̃S

◆
· P(NY X̃S),

where (a) follows by conditioning over all 2n|X̃|
n
|D|

n possible configurations of Nyx̃s ⇢ [n].
(b) is obtained by splitting the configurations where 8x̃, y,Nyx̃s : nN

s �
n
P

x̃2X̃,y2Y Qyx̃s

2 and
the complement of the event and upper bound the complement of the event by the probability
that 9s s.t. nN

s <
n
P

x̃2X̃,y2Y Qyx̃s

2 . (c) is obtained by the union bound and we know nN
s ⇠

Binomial
⇣
n,
P

x̃2X̃,y2Y Qyx̃s

⌘
and apply the Chernoff bound on nN

yx̃s.

Notice that fk(·) only takes X̃ 2 T (X ) as input, therefore, we will be able to apply the McDiarmid
Inequality McDiarmid (1989). Let Xn = (X1, . . . , Xn) 2 Xn be n independent random variables
and let g : Xn

! R, if there exists constants c1, . . . , cn s.t.
sup

x1,...,xi,x0
i,...,xn

|g(x1, . . . , xi, . . . , xn)� g(x1, . . . , x
0
i, . . . , xn)|  ci, i = 1, . . . , n,

then 8✏ > 0:

P(|g(x1, . . . , xi, . . . , xn)� E[g(x1, . . . , x
0
i, . . . , xn)]| > ✏)  2 exp

✓
�

2✏2Pn
i=1 c

2
i

◆
.

Since by conditioning on NY X̃S , then for R̂LDP (fk⇤), everything else is now deterministic except
for fk⇤ , in other words, by conditioning on NY X̃S , the value of R̂LDP (fk⇤) only depends on fk⇤ .
Then, for two datasets N,N 0 where they only differ by one value of fk⇤(X̃i), we try to bound how
much fk⇤ can change.

Recall from Lemma 4.2, we computed the entries of ⇧�1 takes the following form:
8
<

:
⇧�1

i,i = ⇡+|D|�2
|D|⇡�1

⇡pi+
P

d00\i ⇡̄pd00

pi
, for i 2 D

⇧�1
i,j = ⇡�1

|D|⇡�1

⇡̄pi+
P

d00\i ⇡pd00

pi
, for i, j 2 D s.t.,i 6= j

.

For simplicity, let C1 = ⇡+|D|�2
|D|⇡�1 , C2 = ⇡�1

|D|⇡�1 , since we do not have access to D, therefore we can
not directly observe pd, hence we write ⇧�1 in terms of Ps where Ps = P(S):

8
><

>:

⇧�1
i,i = C1

⇡T�1
i· Ps+

P
l\i ⇡̄T

�1
l· Ps

T�1
i· Ps

, for i 2 D

⇧�1
i,j = C2

⇡̄T�1
i· Ps+

P
l\i ⇡T

�1
l· Ps

T�1
i· Ps

, for i, j 2 D s.t.,i 6= j
,

we also computed T�1 as:
(
T�1
i,i = ⇡+|D|�2

|D|⇡�1 , for i 2 D

T�1
i,j = ⇡�1

|D|⇡�1 , for i, j 2 D s.t.,i 6= j
,
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then we have

sup
N,N 0

���R̂LDP (fk⇤)N P̂(D = k⇤)N � R̂
LDP (fk⇤)N

0
P̂(D = k⇤)N

0
���

(a)
 sup

N,N 0

���R̂LDP (fk⇤)N � R̂
LDP (fk⇤)N

0
���

=

�����C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N +

X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

� C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

0
+
X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

0

�����

=

�����C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

✓P
i2N,x̃2X̃,y2Y,S=k L (yi, fk⇤(x̃i))

nk⇤
�

P
i2N 0,x̃2X̃,y2Y,S=k L (yi, fk⇤(x̃i))

nk⇤

◆

+
X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

✓P
i2N,x̃2X̃,y2Y,S=j L (yi, fk⇤(x̃i))

nk⇤
�

P
i2N 0,x̃2X̃,y2Y,S=j L (yi, fk⇤(x̃i))

nk⇤

◆�����

(b)


������
C1

⇡ max
m2[|D|]

T�1
m· P

N
s + (|D|� 1)⇡̄ max

m2[|D|]
T�1
m· P

N
s

T�1
k⇤·P

N
s

·
M

nk⇤

������

=

����C1

�
⇡ + ⇡̄(|D|� 1)

�
·
M

nk⇤

����

(c)
=

����
C1M

nk⇤

���� ,

where (a) is followed by the fact that we only consider the change in X̃ , and P̂(D = k⇤)  1. (b) is
obtained by C2  0, 8⇡ 2 ( 1

|D| , 1]. (c) is followed by the fact that ⇡ + ⇡̄(|D|� 1) = 1.

Now, we are ready to apply the McDiarmid Inequality:
X

8x̃,y,Nyx̃s:nN
s �

n
P

x̃2X̃,y2Y
Qyx̃s

2

P
✓
R̂

LDP (fk⇤)N �R
LDP (fk⇤) >

✏

|D|

���NY X̃S

◆
· P(NY X̃S)



X

8x,y,Nyx̃s:nN
s �

n
P

x̃2X̃,y2Y
Qyx̃s

2

2 exp

8
<

:�
2✏2

|D|2

n·
�
C1M
nk⇤

�2

9
=

; · P(NY X̃S)

(a)
2 exp

(
�2n✏2

✓
P(S = k⇤)

2C1M |D|

◆2
)
,

where (a) is obtained since when nk⇤ =
n
P

x̃2X̃,y2Y Qyx̃k⇤

2 = nP(S=k⇤)
2 , the quantity is maximized.

Now, we have:

P
⇣���R̂LDP (f)�R(f)

��� > ✏
⌘
 |D| exp

⇢
�
mink P(S = k)

8

�
+2 exp

(
�2n✏2

✓
P(S = k⇤)

2C1M |D|

◆2
)
,

solve for �, we now have, for any � 2 (0, 1
2 ), ✏ �

q
ln ( �

2 )
2n

2C1M |D|
P(S=k⇤) , if n � 8 ln ( |D|

� )
mink P(S=k) , then

P
⇣���R̂LDP (f)�R(f)

��� > ✏
⌘
 2�

Step 3: Obtain the final result

Recall that one can easily show

R̂
LDP (f)�R(f⇤)  2 sup

f2F

���RLDP (f)� R̂
LDP (f)

��� ,
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but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any � 2 (0, 1
2 ), if n � 8 ln ( |D|

� )
mink P(S=k) , we have:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2C1M |D|

P(S = k⇤)
.

This completes the proof.
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C.3 LEMMA 4.4 PROOF

Lemma 4.4 Consider ✏-LDP setting with ⇡ 2 ( 1
|D| , 1] and ⇡̄ 2 [0, 1

|D| ). For some transformation of
X , denoted by X⇤ = T̃ (X), assume there exists at least one anchor point X⇤

anchor in the dataset s.t.
P(D = j⇤|X⇤

anchor) = 1 for some j⇤ 2 [|D|]. Then ⇡ = P(S = j⇤|X⇤
anchor). Empirically, for a dataset

with n observation, let ⌘n
j⇤(X

⇤) =
⇣
P̂(S = j⇤|X⇤

1 ), . . . , P̂(S = j⇤|X⇤
n)
⌘

, then ⇡̂ =
��⌘n

j⇤(X
⇤)
��
1.

Proof. Notice that ⇡ 2 ( 1
|D| , 1], ⇡̄ 2 [0, 1

|D| ) and consequently we have ⇡ > ⇡̄. Hence, by Theorem 5
of Zhang et al. (2021), we are in a good position to apply the noise rate estimation method (Theorem
3) in Patrini et al. (2017) to estimate ⇡, ⇡̄. Our ✏-LDP setting can be considered as a special case of
CCN (class conditional noise) where the flip probability is the same across all groups in D. Consider

P(S = j⇤|X⇤
anchor) =

|D|X

k=1

P(S = j⇤|D = k) · P(D = k|X⇤
anchor)

(a)
=

|D|X

k=1

P(S = j⇤|D = k) · 1{j⇤ = k}

= ⇡,

(a) is followed by the definition of anchor point

P(D = j⇤|X⇤
anchor) = 1 =) P(D = k|X⇤

anchor) = 0, 8k 6= j⇤, k, j⇤ 2 [|D|].

Then one can easily see that P(S = j⇤|X⇤
i ) attains its maximum when P(D = j⇤|X⇤

i ) = 1, since
we know ⇢

P(S = j⇤|D = k) = ⇡, if j⇤ = k
P(S = j⇤|D = k) = ⇡̄, if j⇤ 6= k,

hence we know P(S = j⇤|X⇤
i ) is actually a weighted sum of ⇡ and ⇡̄, where the weights are

simply {P(D = k|X⇤
i )}

|D|
k=1. But we also know that ⇡ > ⇡̄. Hence, for empirical estimation,

⌘n
j⇤ =

⇣
P̂(S = j⇤|X⇤

1 ), . . . , P̂(S = j⇤|X⇤
n))
⌘

, then ⇡̂ = k⌘n
j⇤k1.

This completes the proof
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C.4 THEOREM 4.5 PROOF

Theorem 4.5 For any � 2 (0, 1
3 ), C1 = ⇡+|D|�2

|D|⇡�1 , denote V C(F) as the VC-dimension of the
hypothesis class F , and K be some constant that depends on V C(F). If Assumption A, B, and
Lemma 4.4 hold, let f = {fk}

|D|
k=1 where fk 2 F and let L : Y ⇥Y ! R+ be a loss function bounded

by some constant M . Denote k⇤  argmax
k

|R̂
LDP (fk)P̂(D = k⇤) �R

LDP (fk)P(D = k⇤)|, if

n �
8 ln ( |D|

� )
mink P(S=k) , n1 �

1
c(✏̃�✓)2 (Mg + C1+✓

ln 2 )2 ln( 2� ), and Mg + C1+✓
ln 2 > ✏̃ > ✓, where c is an

absolute constant, then with probability 1� 3�:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2(C1 + ✏̃)M |D|

P(S = k⇤)
.

Proof. We will first introduce some preliminaries that will be used in the proof. We will first introduce
how we obtain Ĉ1 and then state the assumptions used for the proof.

Step 1: Grouping: we evenly divide {X⇤
i , Si}

n
i=1, into n1 groups, with m = n

n1
samples each.

Step 2: Estimating within groups: for any k 2 [n1], within each group {X⇤
k,j , Sk,j}

m
j=1, we

can derive an m-dimension vector ⌘m
j⇤,k(X

⇤
k,·) =

�
P̂k(S = j⇤|X⇤

k,1), . . . , P̂k(S = j⇤|X⇤
k,m)

�
and

⇡̂k = k⌘m
j⇤,k(X

⇤
k,·)k1, as defined in Lemma 4.4. Then, by a simple plug in to get Ĉ1,k = ⇡̂k+|D|�2

|D|⇡̂k�1 .
Step 3: Averaging: Ĉ1 is our estimator for C1, computed as Ĉ1 = 1

n1

Pn1

k=1 Ĉ1,k, Ĉ1,k, k 2 [n1].

Next, we state two assumptions used to derive Theorem 4.5 (noise rate is estimated from the data).

Assumption A: (Sub-exponentiality) For all k 2 [n1], define ĝk(X⇤) = P̂k(S = j⇤|X⇤) There exists
a constant Mg > 0, such that kĈ1,kk 1 = kmini2[m]

ĝk(X
⇤
k,i)+|D|�2

|D|ĝk(X⇤
k,i)�1 k 1  Mg for all k 2 [n1],

where k · k 1 is the sub-exponential norm: kXk 1 = inf{t > 0|E[eX/t]  2}.

Assumption B: (Nearly Unbiasedness) For all k 2 [n1], Ĉ1,k is a “nearly” unbiased estimator of C1,
namely

���E[Ĉ1,k]� C1

��� < ✓ for all k 2 [n1], where ✓ > 0.

Now, we begin the proof.

First, we will prove a concentration inequality with regard to Ĉ1 and C1.

Since for any constant L, we have
kLk 1 = inf{t > 0|E[e|L|/t]  2}

= inf{t > 0|e|L|/t
 2}

=
|L|

ln 2
,

and k · k 1 is a norm, we can conclude that the standardized statistic C̃1,k = Ĉ1,k � E[Ĉ1,k] is also
sub-exponential:

kC̃1,kk 1  kĈ1,kk 1 + kE[Ĉ1,k]k 1

Mq +
|E[Ĉ1,k|]

ln 2
(a)
= Mq +

C1 + ✓

ln 2
,

where (a) is obtained by Assumption B.

Among different groups, the data are mutually independent, then we know that {C̃1,k}
n1
k=1 are

independent random variables with mean 0.

Therefore, we can apply Bernstein inequality(R.Vershynin (2018)):

P
 �����

1

n1

n1X

k=1

C̃1,k

����� > ✏̃+ ✓

!
 2 exp


�cmin

✓
(✏̃+ ✓)2

(Mg + C1/ ln 2)2
,

✏̃+ ✓

Mg + C1/ ln 2

◆
n1

�
,
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where c > 0 is an absolute constant.

Since we have Mg +
C1+✓
ln 2 > ✏̃ > ✓, which implies ✏̃

Mg+C1/ ln 2 < 1, we can transform the inequality
above into

P
⇣���Ĉ1 � C1

��� > ✏̃
⌘
= P

 �����
1

n1

n1X

k=1

C̃1,k

����� > ✏̃� ✓

!

 2 exp


�c

(✏̃� ✓)2

(Mg + (C1 + ✓)/ ln 2)2
n1

�

(a)
 �,

where (a) is obtained by n1 �
1

c(✏̃�✓)2 (Mg +
C1+✓
ln 2 )2 ln( 2� ).

Second, we can apply Theorem 4.3 to the case when using ⇡̂ instead of ⇡. Therefore, by the end of
Step 2 in the proof of Theorem 4.3, we will derive the following conclusion:

For any � 2 (0, 1
3 ), ✏ �

q
ln ( �

2 )
2n

2Ĉ1M |D|
P(S=k⇤) , if n � 8 ln ( |D|

� )
mink P(S=k) , then

P
�
|R̂

LDP (f)�R(f)| > ✏
�
 2�.

Third, Assume the events

A1 =
n���Ĉ1 � C1

���  ✏̃
o
,

A2 =

8
<

:|R̂
LDP (f)�R(f)|  ✏, ✏ �

s
ln ( �2 )

2n

2Ĉ1M |D|

P(S = k⇤)
, n �

8 ln ( |D|
� )

mink P(S = k)

9
=

; ,

A3 =

8
<

:|R̂
LDP (f)�R(f)|  ✏, ✏ �

s
ln ( �2 )

2n

2(C1 + ✏̃)M |D|

P(S = k⇤)
, n �

8 ln ( |D|
� )

mink P(S = k)

9
=

; ,

then we have A1 \A2 ✓ A3.

From the First part and Second part of the proof, we have P(AC
1 )  �,P(AC

2 )  2�, then

P(A3) � P(A1 \A2) � 1� P(AC
1 )� P(AC

2 ) � 1� 3�,

which is equivalent to the following statement: For any � 2 (0, 1
3 ), ✏ �

q
ln ( �

2 )
2n

(2(C1+✏̃)M |D|
P(S=k⇤) , if

n �
8 ln ( |D|

� )
mink P(S=k) , then

P
�
|R̂

LDP (f)�R(f)| > ✏
�
 3�.

Finally, similar to Step 3 in the proof of Theorem 4.3, recall that one can easily show

R̂
LDP (f)�R(f⇤)  2 sup

f2F

��RLDP (f)� R̂
LDP (f)

��,

but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any � 2 (0, 1
3 ), if n � 8 ln ( |D|

� )
mink P(S=k) , then with

probability 1� 3� we have:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2(C1 + ✏̃)M |D|

P(S = k⇤)
.

This completes the proof.
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D DEFERRED EXPERIMENT RESULTS

D.1 AUTO INSURANCE

D.1.1 DATA

The Auto Insurance data set contains 8150 observations, 17 features, and 1 binary response. In our
experiment, we choose D = sex to be the sensitive attribute taking values ”Male” and ”Female”.
privatized sensitive attribute S is generated under different privacy levels using a set of ✏’s by
Definition 4.1. D was used to set the performance benchmark and is masked under any other settings.

D.1.2 EXPERIMENTS SETUP

We conduct experiments 1) when the noise rate ⇡, ⇡̄ are known and 2) when the noise rates are
unknown. To investigate how a transformation T may affect the performance of our method, we
consider a transformation T (X) = X̃ obtained via supervised learning (as shown in Example 4.1).
Other transformations, such as grouping, and discretization are very commonly seen in insurance
pricing.

For both scenarios, we let the hypothesis class F be the class of linear models for all settings as this
is a more practical setup in an insurance pricing setting due to requirements on transparency. We
ran our algorithm on three pre-defined ⇡’s, namely 0.8, 0.7, and 0.6 to demonstrate how noise rate
may affect the performance of our method for both scenarios. We also created various subsets of the
original data to demonstrate how sample size may affect the performance of our method for both
scenarios. Additionally, under scenario 2, we compared performance using three different n1 values,
namely 1, 2, and 4 to verify our results in Theorem 4.5. To obtain the discrimination-free price h⇤,
we choose P ⇤(d) to be the empirical marginal distribution of D.

In all figures in the remaining section, the curves represent the empirical test loss of the best-estimate
price defined in 3.1. Blue curve (Best-Estimate) is obtained using a naive logistic regression. While
the orange curve (MPTP) and the rest (MPTP-LDP) are also obtained using a naive logistic regression,
group-specific score functions (defined in Eq. (1)) were used instead.

D.1.3 SCENARIO 1 (KNOWN NOISE RATE)

Since the main issue is to estimate µ(X,D) when the true sensitive attribute is not accessible, we
will focus on presenting our results in the estimation of µ(X,D). However, results for h⇤(X) under
scenario 1 can also be found in Appendix F. We first investigate the effect of noise rate on loss
approximation when the sample size is fixed:

(a) µ(X,D) Test Loss (b) µ(X̃,D) Test Loss

Figure 5: Test Loss for Scenario 1 (fixed sample size)

As expected, we observe very similar patterns compared to the healthcare insurance dataset.

Next, we study the effect of sample size on loss approximation for fixed noise rates (⇡ = 0.7).
To compare the performance on loss approximation on different sample sizes, we randomly create
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a subset of the full data set (1338 observations) that contains only half of its observations (669
observations) and then run the same experiment over the full data set (green curve) and the subset
(red curve) to obtain the following result:

(a) µ(X,D) Test Loss (b) µ(X̃,D) Test Loss

Figure 6: Test Loss for Scenario 1 (fixed noise rate: ⇡ = 0.7)

Again, we observe very similar patterns compared to the healthcare insurance dataset.

D.1.4 SCENARIO 2 (UNKNOWN NOISE RATE)

Similar to the procedure in scenario 1, with the key difference being that ⇡ is replaced by an estimate ⇡̂
obtained following Lemma 4.4, and Theorem 4.5. To demonstrate the consistency with our theoretical
results in Theorem 4.5, on top of the comparison under fixed sample size or true noise rate, we also
present the result with different n1 values. As mentioned, results for h⇤(X) under scenario 2 can
also be found in Appendix F. The same method is used to estimate ⇡ compared to the healthcare
insurance dataset.

We first present the empirical results for the effect of noise rate on loss approximation when the
sample size is fixed:

(a) µ(X,D) Test Loss (n1 = 1) (b) µ(X,D) Test Loss (n1 = 2) (c) µ(X,D) Test Loss (n1 = 4)

(d) µ(X̃,D) Test Loss (n1 = 1) (e) µ(X̃,D) Test Loss (n1 = 2) (f) µ(X̃,D) Test Loss (n1 = 4)

Figure 7: Test Loss for Scenario 2 (fixed sample size)

We will now show our findings for the effect of sample size on loss approximation for a fixed noise
rate (⇡ = 0.8) in the following:
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(a) µ(X,D) Test Loss (n1 = 1) (b) µ(X,D) Test Loss (n1 = 2) (c) µ(X,D) Test Loss (n1 = 4)

(d) µ(X̃,D) Test Loss (n1 = 1) (e) µ(X̃,D) Test Loss (n1 = 2) (f) µ(X̃,D) Test Loss (n1 = 4)

Figure 8: Test Loss for Scenario 2 (fixed noise rate: ⇡ = 0.8)

We noticed that in this data set, although the noise rate is overestimated with all n1’s, there is no issue
in terms of convergence behavior. This provides further evidence that underestimation can be much
more destructive to the algorithm than overestimation.

D.1.5 EMPIRICAL STUDY ON THE IMPACT OF NOISE RATE ESTIMATION ERROR

we present our findings on the effect of estimation error for ⇡ on the empirical performance of
our algorithm. Particularly, we investigate the effect of underestimation and overestimation for ⇡
under both balanced and imbalanced distribution for privatized sensitive attributes S by introducing
pre-defined estimation errors. We sampled subsets of the full data set to obtain data with imbalanced
distribution for privatized sensitive attributes. For conciseness, we present our results for the balanced
case below and defer results for the imbalanced case in Appendix E.

(a) µ(X,D) Test Loss (⇡ = 0.8) (b) µ(X,D) Test Loss (⇡ = 0.7) (c) µ(X,D) Test Loss (⇡ = 0.6)

(d) µ(X̃,D) Test Loss (⇡ = 0.8) (e) µ(X̃,D) Test Loss (⇡ = 0.7) (f) µ(X̃,D) Test Loss (⇡ = 0.6)

Figure 9: Test Loss for Noise Rate Estimation Error (error = ±15%)

We observe further empirical evidence that underestimation can cause issues in terms of convergence
behavior.
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E DEFERRED INVESTIGATION OF NOISE RATE ESTIMATION ERROR

E.1 HEALTH INSURANCE

For completeness, we present the effect of noise rate estimation error on loss approximation when the
privatized sensitive attributes S have unbalanced distribution.

(a) µ(X,D) Test Loss (⇡ = 0.8) (b) µ(X,D) Test Loss (⇡ = 0.7) (c) µ(X,D) Test Loss (⇡ = 0.6)

(d) µ(X̃,D) Test Loss (⇡ = 0.8) (e) µ(X̃,D) Test Loss (⇡ = 0.7) (f) µ(X̃,D) Test Loss (⇡ = 0.6)
Figure 10: Test Loss for Noise Rate Estimation Error (ratio = 2:1, error = ±15%)

(a) µ(X,D) Test Loss (⇡ = 0.8) (b) µ(X,D) Test Loss (⇡ = 0.7) (c) µ(X,D) Test Loss (⇡ = 0.6)

(d) µ(X̃,D) Test Loss (⇡ = 0.8) (e) µ(X̃,D) Test Loss (⇡ = 0.7) (f) µ(X̃,D) Test Loss (⇡ = 0.6)
Figure 11: Test Loss for Noise Rate Estimation Error (ratio = 4:1, error = ±15%)
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E.2 AUTO INSURANCE

For completeness, we present the effect of noise rate estimation error on loss approximation when the
privatized sensitive attributes S have unbalanced distribution.

(a) µ(X,D) Test Loss (⇡ = 0.8) (b) µ(X,D) Test Loss (⇡ = 0.7) (c) µ(X,D) Test Loss (⇡ = 0.6)

(d) µ(X̃,D) Test Loss (⇡ = 0.8) (e) µ(X̃,D) Test Loss (⇡ = 0.7) (f) µ(X̃,D) Test Loss (⇡ = 0.6)

Figure 12: Test Loss for Noise Rate Estimation Error (ratio = 2:1, error = ±15%)

(a) µ(X,D) Test Loss (⇡ = 0.8) (b) µ(X,D) Test Loss (⇡ = 0.7) (c) µ(X,D) Test Loss (⇡ = 0.6)

(d) µ(X̃,D) Test Loss (⇡ = 0.8) (e) µ(X̃,D) Test Loss (⇡ = 0.7) (f) µ(X̃,D) Test Loss (⇡ = 0.6)

Figure 13: Test Loss for Noise Rate Estimation Error (ratio = 4:1, error = ±15%)
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F DEFERRED FIGURES

F.1 HEALTH INSURANCE

For completeness, we present the loss approximation performance under both scenarios of h⇤(X)
computed with P⇤(d) recovered using the empirical distribution of privatized sensitive attribute S.

F.1.1 SCENARIO 1 (KNOWN NOISE RATE)

(a) h⇤(X) Test Loss (b) h⇤(X̃) Test Loss

Figure 14: Test Loss for Scenario 1 (fixed sample size)

(a) h⇤(X) Test Loss (b) h⇤(X̃) Test Loss

Figure 15: Test Loss for Scenario 1 (fixed noise rate: ⇡ = 0.7)

F.1.2 SCENARIO 2 (UNKNOWN NOISE RATE)

(a) h⇤(X) Test Loss (n1 = 1) (b) h⇤(X) Test Loss (n1 = 2) (c) h⇤(X) Test Loss (n1 = 4)

(d) h⇤(X̃) Test Loss (n1 = 1) (e) h⇤(X̃) Test Loss (n1 = 2) (f) h⇤(X̃) Test Loss (n1 = 4)

Figure 16: Test Loss for Scenario 2 (fixed sample size)
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(a) h⇤(X) Test Loss (n1 = 1) (b) h⇤(X) Test Loss (n1 = 2) (c) h⇤(X) Test Loss (n1 = 4)

(d) h⇤(X̃) Test Loss (n1 = 1) (e) h⇤(X̃) Test Loss (n1 = 2) (f) h⇤(X̃) Test Loss (n1 = 4)

Figure 17: Test Loss for Scenario 2 (fixed noise rate: ⇡ = 0.8)

F.2 AUTO INSURANCE

For completeness, we present the loss approximation performance under both scenarios of h⇤(X)
computed with P⇤(d) recovered using the empirical distribution of privatized sensitive attribute S.

F.2.1 SCENARIO 1 (KNOWN NOISE RATE)

(a) h⇤(X) Test Loss (b) h⇤(X̃) Test Loss

Figure 18: Test Loss for Scenario 1 (fixed sample size)

(a) h⇤(X) Test Loss (b) h⇤(X̃) Test Loss

Figure 19: Test Loss for Scenario 1 (fixed noise rate: ⇡ = 0.7)
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F.2.2 SCENARIO 2 (UNKNOWN NOISE RATE)

(a) h⇤(X) Test Loss (n1 = 1) (b) h⇤(X) Test Loss (n1 = 2) (c) h⇤(X) Test Loss (n1 = 4)

(d) h⇤(X̃) Test Loss (n1 = 1) (e) h⇤(X̃) Test Loss (n1 = 2) (f) h⇤(X̃) Test Loss (n1 = 4)

Figure 20: Test Loss for Scenario 2 (fixed sample size)

(a) h⇤(X) Test Loss (n1 = 1) (b) h⇤(X) Test Loss (n1 = 2) (c) h⇤(X) Test Loss (n1 = 4)

(d) h⇤(X̃) Test Loss (n1 = 1) (e) h⇤(X̃) Test Loss (n1 = 2) (f) h⇤(X̃) Test Loss (n1 = 4)

Figure 21: Test Loss for Scenario 2 (fixed noise rate: ⇡ = 0.8)
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